Positional-Player Games

Orna Kupferman =
School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel

Noam Shenwald &

School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel

—— Abstract

In reactive synthesis, we transform a specification to a system that satisfies the specification in all
environments. For specifications in linear-temporal logic, research on bounded synthesis, where the
sizes of the system and the environment are bounded, captures realistic settings and has lead to
algorithms of improved complexity and implementability. In the game-based approach to synthesis,
the system and its environment are modeled by strategies in a two-player game with an w-regular
objective, induced by the specification. There, bounded synthesis corresponds to bounding the
memory of the strategies of the players. The memory requirement for various objectives has been
extensively studied. In particular, researchers have identified positional objectives, where the winning
player can follow a memoryless strategy — one that needs no memory.

In this work we study bounded synthesis in the game setting. Specifically, we define and study
positional-player games, in which one or both players are restricted to memoryless strategies, which
correspond to non-intrusive control in various applications. We study positional-player games with
Rabin, Streett, and Muller objectives, as well as with weighted multiple Biichi and reachability
objectives. Our contribution covers their theoretical properties as well as a complete picture of the
complexity of deciding the game in the various settings.

2012 ACM Subject Classification Theory of computation — Formal languages and automata theory;
Theory of computation — Semantics and reasoning

Keywords and phrases Games, w-Regular Objectives, Memory, Complexity

Digital Object Identifier 10.4230/LIPIcs. MFCS.2025.64

Related Version Full Version: https://www.cs.huji.ac.il/~ornak/publications/mfcs25.pdf

1 Introduction

Synthesis is the automated construction of a system from its specification [46]. A reactive
system interacts with its environment and has to satisfy its specification in all environments
[28]. A useful way to approach synthesis of reactive systems is to consider the situation as a
game between the system and its environment. In each round of the game, the environment
provides an assignment to the input signals and the system responds with an assignment to
the output signals. The system wins if the generated computation satisfies the specification.
The system and the environment are modeled by transducers, which direct them how to
assign values to the signals given the history of the interaction so far.

Aiming to study realistic settings, researchers have studied bounded synthesis [50]. There,
the input to the problem also contains bounds on the sizes of the transducers. Beyond
modeling the setting more accurately, bounded synthesis has turned out to have practical
advantages. Indeed, bounding the system enables a reduction of synthesis to SAT [19, 22].
Bounding both the system and the environment, a naive algorithm, which essentially checks
all systems and environments, was shown to be optimal [38]. In richer settings, for example
ones with concurrency, partial visibility, or probability, restricting the available memory is
sometimes the key to decidability or to significantly improved complexity [9, 42, 16].

Algorithms for synthesis reduce the problem to deciding a two-player graph game. The
arena of the game is a graph induced from the specification. The vertices are partitioned
between the two players, namely the system and the environment. Starting from an initial
? Orna Kupferman a.nd Noam Shenv.vald;

37 icensed under Creative Commons License CC-BY 4.0
50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Pawel Gawrychowski, Filip Mazowiecki, and Michal Skrzypczak; Article No. 64; pp. 64:1-64:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:orna@cs.huji.ac.il
https://orcid.org/0000-0003-4699-6117
mailto:noam.shenwald@mail.huji.ac.il
https://orcid.org/0000-0003-1994-6835
https://doi.org/10.4230/LIPIcs.MFCS.2025.64
https://www.cs.huji.ac.il/~ornak/publications/mfcs25.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

64:2

Positional-Player Games

vertex, the players jointly generate a play, namely a path in the graph, with each player
deciding the successor vertex when the play reaches a vertex she owns. The objectives of the
players refer to the infinite play that they generate. Each objective « defines a subset of V¢
[41], where V is the set of vertices of the game graph.! For example, in games with Biichi
objectives, « is a subset of V', and a play satisfies « if it visits vertices in « infinitely often.

In the graph-game setting, a strategy for a player directs her how to proceed in vertices
she owns, and it is winning if it guarantees the satisfaction of the player’s objective. Winning
strategies may need to choose different successors of a vertex in different visits to the vertex.
Indeed, choices may depend on the history of the play so far. The number of histories is
unbounded, and extensive research has concerned the memory requirements for strategies
in games with w-regular objectives, namely the minimal number of equivalence classes to
which the histories can be partitioned [51, 18, 8, 10]. For example, it is well known that a
winning strategy for a conjunction of k Biichi objectives requires memory & [18]. In practice,
the strategies of the system and the environment are implemented by controllers whose state
spaces correspond to the different memories that the strategies require. Clearly, we seek
winning strategies whose controllers are of minimal size. Of special interest are memoryless
strategies (also called positional strategies), which depend only on the current vertex. For
them, all histories are in one equivalence class, leading to trivial controllers.

The need to design efficient controllers has led to extensive research on memoryless
strategies. Researchers identified positional objectives, namely ones in which both players can
use memoryless strategies (formally, an objective « is positional if in all games with objective
«, the winner of the game has a memoryless winning strategy), and half-positional objectives,
namely ones in which one of the players can use a memoryless strategy (formally, an objective
« is 1-positional (2-positional) if in all games with objective «, if the system (environment,
respectively) wins the game, then it has a memoryless winning strategy). For example, it is
well known that parity (and hence, also Biichi) objectives are positional [21, 55, 26]. Then,
Rabin objectives are 1-positional, and their dual Streett objectives are 2-positional [21, 35].
On the other hand, Muller objectives are not even half-positional. In addition, researchers
study positional [25, 14, 45] and 1-positional [36, 44, 7] fragments of objectives that are in
general not positional. For example, [11] identifies a class of parity automata that recognize
general w-regular positional objectives.

In this work we take a different view on the topic. Rather than studying the memory
required for different types of objectives, we take the approach of bounded synthesis and
study games in which the memory of the players is bounded, possibly to a level that prevents
them from winning. We focus on controllers of size 1. Note that while transducers of size 1
are not of much interest, controllers of size 1 in the game setting correspond to memoryless
strategies, and are thus of great interest. Indeed, in applications like program repair [33, 27],
supervisory control [17] and regret minimization [31], researchers have studied non-intrusive
control, which is modeled by memoryless strategies. Although controllers of size 1 do not
always exist, due to the obvious implementation advantages, one can first try to find a
controller of size 1, and extend the search if one does not exist. Since memoryless strategies
amount to consistent behavior, restricting the memory of the environment models setting in
which the system may learn an unknown yet static environment [47, 48].

We define and study positional-player games (PPGs, for short), in which both players
are restricted to memoryless strategies, and half-positional-player games (HPPGs, for short),
in which only one player is restricted to memoryless strategies. We distinguish between

L As we elaborate in Section 2, all our results apply also for edge-based objectives, namely when o defines
a subset of E“, for the set F of edges of the graph.

0. Kupferman and N. Shenwald

positional-Player 1 games (PP1Gs, for short), in which only the system is restricted to
memoryless strategies, and positional-Player 2 games (PP2Gs, for short), in which only the
environment is restricted.

We study PPGs and HPPGs with Rabin, Streett, and Muller objectives, as well as with
weighted multiple objectives [40]. Such objectives are of the form (a,w,t), where o C 2V, is a
set of objectives that are all Biichi, co-Biichi, reachability, or avoid objectives, w : 2 — IN is
a non-decreasing, non-negative weight function that maps each subset S of « to a reward
earned when exactly all the objectives in S are satisfied, and ¢t > 0 is a threshold. An objective
can be viewed as a maximization objective, in which case the goal is to maximize the earned
reward (and t serves as a lower bound) or a minimization objective, in which case the goal
is to minimize the earned reward (and t serves as an upper bound). Weighted multiple
objectives can express generalized objectives, namely when « contains several objectives, all
of which have to be satisfied. A weight function allows for a much richer reference to the
underlying objectives: prioritizing them, referring to desired and less desired combinations,

and addressing settings where we cannot expect all sub-specifications to be satisfied together.

Studying the theoretical properties of PPGs and HPPGs, we start with some easy
observations on how the positionality of the objective type causes different variants of PPGs
to coincide. We then study determinacy for PPGs and HPPGs; that is, whether there
always exists a player that has a winning strategy. Clearly, if a player wins in a game but

needs memory in order to win, she no longer wins when restricted to memoryless strategies.

Can the other player always win in this case? We prove that the answer is positive for
prefix-independent objectives (and only for them). On the other hand, when the other
player is restricted too, the answer may be negative; thus PPGs of all objective types that
are not 1-positional or not 2-positional need not be determined. Also, interestingly, even
for objectives that are 1-positional, Player 1 may need memory in order to win against
a positional Player 2. Indeed in games in which Player 2 wins when her memory is not
bounded, Player 1 can win only by learning and remembering the memoryless strategy of
Player 2.

We continue and study the complexity of deciding whether Player 1 or Player 2 win in
a given PPG or HPPG. Our results are summarized in Tables 1 and 2. Since memoryless
strategies are polynomial in the game graph, the problems for PPGs are clearly in X%, namely
they can be solved in NP using a co-NP oracle. Indeed, one can guess a strategy for the
system, then guess a strategy for the environment, and finally check their outcome. Our
main technical contribution here is to identify cases in which this naive algorithm is tight and
cases where it can be improved. Moving to HPPGs, deciding the winner involves reasoning
about the graph induced by a given strategy, and again, the complexity picture is diverse
and depends on the half-positionality of the objective, the determinacy of HPPGs, and the
succinctness of the objective type. In particular, handling Muller objectives, we have to cope
with their complementation (a naive dualization may be exponential) and to introduce and
study the alternating vertex-disjoint paths problem, which adds alternation to the graph.

2 Preliminaries

2.1 Two-player games

A two-player game graph is a tuple G = (Vq, V3, vg, E), where V1, V4 are finite disjoint sets
of vertices, controlled by Player 1 and Player 2, respectively, and we let V' = V; U V5. Then,
v € V is an initial vertex, and E C V x V is a total edge relation, thus for every v € V,
there is w € V such that (v,u) € E. The size of G, denoted |G|, is |E|, namely the number
of edges in it.

64:3

MFCS 2025

64:4

Positional-Player Games

In the beginning of a play in the game, a token is placed on vy. Then, in each turn, the
player that owns the vertex that hosts the token chooses a successor vertex and moves the
token to it. Together, the players generate a play p = vg,v1, ... in GG, namely an infinite path
that starts in vg and respects E: for all ¢ > 0, we have that (v;,v;41) € E.

For i € {1,2}, a strategy for Player i is a function f; : V*-V; — V that maps prefixes
of plays that end in a vertex that belongs to Player ¢ to possible extensions in a way that
respects E. That is, for every p € V* and v € V;, we have that (v, f;(p-v)) € E. Intuitively,
a strategy for Player i directs her how to move the token, and the direction may depend on
the history of the game so far. The strategy f; is finite-memory if it is possible to replace the
unbounded histories in V* by a finite number of memories. The strategy f; is memoryless
if it depends only on the current vertex,? thus for all p,p’ € V* and v € V;, we have that
filp-v) = fi(p" - v). Accordingly, a memoryless strategy is given by a function f; : V; — V.

A profile is a tuple m = {f1, fa) of strategies, one for each player. The outcome of a profile
7 = (f1, f2) is the play obtained when the players follow their strategies in . Formally,
outcome(m) = vg, v1,... € V¥ ig such that for all j > 0, we have that vj11 = f;(vo,v1,...,v;),
where i € {1,2} is such that v; € V;.

A two-player game is a pair G = (G, ¢), where G = (V1, Va, vy, E) is a two-player game
graph, and v is a winning condition for Player 1, specifying a subset of V', namely the set
of plays in which Player 1 wins. The game is zero-sum, thus Player 2 wins when the play
does not satisfy . A strategy fi is a winning strategy for Player 1 if for every strategy fs for
Player 2, Player 1 wins in the profile (f1, f2), thus outcome({f1, f2)) satisfies ¢». Dually, a
strategy fo for Player 2 is a winning strategy for Player 2 if for every strategy fi for Player 1,
we have that Player 2 wins in (f1, f2). We say that Player ¢ wins in G if she has a winning
strategy. A game is determined if Player 1 or Player 2 wins in it.

2.2 Boolean objectives

For a play p = wvg,v1,..., we denote by reach(p) the set of vertices that are visited at
least once along p, and we denote by inf(p) the set of vertices that are visited infinitely
often along p. That is, reach(p) = {v € V : there exists i« > 0 such that v; = v}, and
inf(p) = {v € V : there are infinitely many ¢ > 0 such that v; = v}. For a set of vertices
a C V, a play p satisfies the reachability objective a iff reach(p) N a # 0, and satisfies the
Biichi objective « iff inf(p) N o # 0. The objectives dual to reachability and Biichi are
avoid (also known as safety) and co-Biichi, respectively. Formally, a play p satisfies an avoid
objective a iff reach(p) N o = 0, and satisfies a co-Biichi objective a iff inf(p) N a = 0.

A Rabin objective is a set a = {(L;, R;) }ier) € 2Y %2V of pairs of sets of vertices. A play p
satisfies «v iff there exists ¢ € [k] such that p visits L; infinitely often and visits R; only finitely
often. That is, inf(p) N L; # 0§ and inf(p) N R; = 0, for some ¢ € [k]. The objective dual to
Rabin is Streett. Formally, a play p satisfies a Streett objective v = {(L;, R;) }iepy € 2V x 2V
iff inf(p) N L; = 0 or inflp) N R; # 0, for every i € [k].

Finally, a Muller objective over a set of colors [k] is a pair o = (F,x), where F C 2[¥l
specifies desired subsets of colors and x : V' — [k] colors the vertices in V. A play p satisfies o
iff the set of colors visited infinitely often along p is in F. That is, {i € [k] : inf(p) N x (i) #
0} € F. The objective dual to « is the Muller objective (2F\ F, x).

2 Memoryless strategies are sometimes termed positional strategies. We are going to use “positional” in
order to describe objectives and games in which the players use memoryless strategies, and prefer to
leave the adjective used for describing strategies different from the one used for describing objectives
and games.

0. Kupferman and N. Shenwald

We define the size of an objective as the size of the sets in it. For Muller objectives, we
also add the number k of colors. That is, the size of (F,x) is k + > pc» [F|.

» Remark 1. Objectives in two-player games can also be defined with respect to the edges
(rather than vertices) traversed during plays. For some problems, the change is significant.
For example, minimization of some types of automata is NP-complete in the state-based
setting and can be solved in polynomial time in the edge-based setting [49, 1]. For our study
here, all the results also apply for edge-based objectives. For example, for Muller objectives,
by adding a new color, we can allow uncolored vertices, which enable a translation of games
with colored-edges objectives to games with colored-vertices objectives in a way that preserves
winning and memoryless winning strategies. Similar translations can be applied for other
types of objectives. <

For two types of objectives v and 7/, we use v < 7 to indicate that every set of plays that
satisfy an objective of type 7 can be specified also as an objective of type v/. For example,
Biichi < Rabin, as every Biichi objective « is equivalent to the Rabin objective {(«, 0)}.

An objective type «v is prefiz-independent if the satisfaction of any - objective v in a
play depends only on the infinite suffix of the play. That is, for every play p, we have
that p satisfies v iff every infinite suffix p’ of p satisfies ¢). An objective that is not prefix-
independent is prefiz-dependent. Note that objectives defined with respect to inf(p) only are
prefix-independent, whereas objectives defined with respect to reach(p) are prefix-dependent.

2.3 Weighted multiple objectives

A weighted objective is a pair (a, w), where o = {ay,...,ax} is a set of k objectives, all of
the same type, and w : 2% — IN is a weight function that maps subsets of objectives in
a to natural numbers. We assume that w is non-decreasing: for every sets S,5’ C a, if
S C S, then w(S) < w(S"). In the context of game theory, non-decreasing functions are
very useful, as they correspond to settings with free disposal, namely when satisfaction of
additional objectives does not decrease the utility [43]. We also assume that w(f)) = 0. A
non-decreasing weight function is additive if for every set S C «, the weight of S equals to the
sum of weights of the singleton subsets that constitute S. That is, w(S) = >_,, - w({i}).
An additive weight function is thus given by w : @« — IN, and is extended to sets of objectives
in the expected way, thus w(S) = >_, cgw(a;), for every S C a.

For a play p, let sat(p, @) C « be the set of objectives in a that are satisfied in p. The
satisfaction value of {a, w) in p, denoted val(p, o, w), is then the weight of the set of objectives
in « that are satisfied in p. That is, val(p, a, w) = w(sat(p, @)).

Weighted objectives can be viewed as either maximization or minimization objectives.
That is, the goal is to maximize or minimize the weight of the set of objectives satisfied.
3 Note that when w is uniform, thus when w(S) = |S| for all S C «, the goal is to
maximize or minimize the number of satisfied objectives. A special case of the latter,
known in the literature as generalized conditions, is when we aim to satisfy all or at
least one objective. We denote different classes of weighted objectives by acronyms in
{MaxW, MinW, All, Exists} x {R, A, B, C}, describing the way we refer to the satisfaction
value and the objectives type: reachability (R), avoid (A), Biichi (B), or co-Biichi (C).
Formally, for a play p € V¥, an objective type v € {R, A, B, C}, a set a = {ay,...,a} of

3 Note that adding a threshold to the objective makes satisfaction binary, and the corresponding optimiz-
ation problem can be solved using a binary search.

64:5

MFCS 2025

64:6

Positional-Player Games

objectives, a weight function w : 2% — IN, and a threshold ¢ € IN, we have the following
winning conditions.

p satisfies a MaxW-v objective (o, w,t) if val(p, o, w) > t.

p satisfies a MinW-v objective {a,w,t) if val(p, o, w) < t.

p satisfies an All-y objective « if |sat(p, @)| = |a|.

p satisfies an Exists-y objective «a if [sat(p, a)| > 1.

For All-y and Exists-y objectives, we omit the weight function from the specification
of the objective. Note that for all objective types 7, we have that All-y < MaxW-v and
Exists-y < MaxW-v. Also, by [40], MaxWB < Muller. Indeed, it is easy to specify in a
Muller objective all sets S such that w(S) > t. Since we assume non-decreasing weight
functions, the other direction does not hold, thus Muller A MaxWB. In Section 8, we study
dualities in weighted objectives and extend the above observations to minimization games
and to underlying co-Biichi and avoid objectives. Finally, note that MaxW-v and MinW-~
objectives are prefix-independent iff ~ is prefix-independent.

3 Positional Objectives and PPGs

For i € {1,2}, an objective type v is i-positional if for every y-game G, Player ¢ wins in G iff
she has a memoryless winning strategy in G. Then, 7y is positional iff it is both 1-positional
and 2-positional, thus the winner of every y-game has a memoryless winning strategy. If
is neither 1-positional nor 2-positional, we say that it is non-positional.® It is known that
the objective types reachability, Biichi, and parity (and thus also avoid and co-Biichi) are
positional [21], Rabin is 1-positional (and thus Streett is 2-positional) [35], and Muller is
non-positional [18]. As for weighted multiple objectives, MaxWB and MinWB are 2- and
1-positional, respectively, whereas MaxWR and MinWR are non-positional [40].

We lift the notion of positionality to games, studying settings in which one or both
players are restricted to memoryless strategies. For ¢ € {1,2}, a game is a positional-Player i
game if Player i is restricted to memoryless strategies, and is a positional-player game (PPG,
for short) if both players are restricted to memoryless strategies. Positional-Player 1 and
positional-Player 2 games are also called half-positional-player games (HPPG, for short).?

For a game G, we use Pos-G, 1Pos-G, and 2Pos-G to denote the positional-player and
half-positional-player variants of G, respectively. Formally, for a game G = (G,), we have
the following.

Player 1 wins Pos-G iff she has a memoryless strategy fi such that for every memoryless

strategy fo for Player 2, we have that outcome({f1, f2)) satisfies v.

Player 1 wins 1Pos-G iff she has a memoryless strategy fi such that for every strategy fo

for Player 2, we have that outcome((f1, f2)) satisfies).

Player 1 wins 2Pos-G iff she has a strategy f1 such that for every memoryless strategy fo

for Player 2, we have that outcome({f1, f2)) satisfies).

» Example 2. Consider the AlIB game G = (G, a), for G that appears in Fig. 1, and
a = {{u1,us},{d1,d2}}. Since the objective of Player 1 is to satisfy both Biichi objectives in
«, she wins iff for infinitely many traversals of G, the choices of the players from the vertices
v1 and vg as to whether they go up or down do not match.

4 In the literature, 1-positional and 2-positional objectives are sometimes termed positional, and positional
objectives are sometimes termed bipositional [11].
5 An automaton is determinizable by pruning if it embodies an equivalent deterministic automaton, thus

0. Kupferman and N. Shenwald

(]

Figure 1 The game graph G. Drawing game graphs, vertices owned by Player 1 are circles, and
vertices owned by Player 2 are squares.

It is easy to see that Player 1 wins in G. Indeed, a winning strategy fi for Player 1 can
move the token up to uy after visits of the token in ds, and move the token down to d; after
visits of the token in wus. Since 2Pos-G only restricts the strategies that Player 2 may use,
the strategy fi is a winning strategy for Player 1 also in 2Pos-G.

On the other hand, Player 1 does not win in 1Pos-G. Indeed, for every memoryless
strategy fi for Player 1, Player 2 has a strategy fs, in fact a memoryless one, that matches
the choice Player 1 makes in v1. That is, if f1(v1) = uq, then fo(ve) = ug, and if fi(vy) = dy,
then fo(ve) = dy. Since fo is memoryless, Player 1 does not win in Pos-G either.

As for Player 2, she clearly does not win in G and 2Pos-G. In 1Pos-G, a winning strategy
fo2 for Player 2 can move the token up to us after visits in u;, and move the token down
to do after visits in d;. The strategy fo requires memory, and Player 2 does not have a
winning strategy in Pos-G. Indeed, for every memoryless strategy for Player 2, Player 1 has
a memoryless strategy in which the choice in v; does not match the choice Player 2 makes
in vy, causing both Biichi objectives to be satisfied. Thus, interestingly, even though AllB
objectives are 2-positional, Player 2 needs memory in order to win in 1Pos-G. <

We conclude with some easy observations about PPGs and HPPGs and positional and
half-positional objectives. The first follows immediately from the fact that the restriction to
memoryless strategies only reduces the set of possible strategies. For a player i € {1,2}, we
use ¢ to denote the other player; thus, if i = 1, then ¢ = 2, and if i = 2, then ¢ = 1.

» Theorem 3. For every game G and i € {1,2}, all the following hold.
If Player i wins iPos-G, then she also wins G and Pos-G.
If Player i wins Pos-G, then she also wins iPos-G.

We continue with observations that use the positionality of the objective type in order
to relate different variants of PPGs. The proof of Theorem 4 follows immediately from the
definitions and the proof of Theorem 5 can be found in the full version.

» Theorem 4. Consider i € {1,2} and an i-positional objective type . For every v-game G,
Player i wins G iff Player i wins iPos-G. In particular, if v is positional, then Player i wins
G iff Player i wins Pos-G, 1Pos-G, and 2Pos-G.

» Theorem 5. Consider i € {1,2}, and an i-positional objective type v. For every y-game
G, Player i wins iPos-G iff Player i wins Pos-G.

if nondeterminism can be resolved in a memoryless manner [3]. This may hint on a relation to PP1Gs.
However, the labels on the transitions of automata make the setting different, and reasoning about
determinization by pruning is different from reasoning about PP1Gs [37, 2].

64:7

MFCS 2025

64:8

Positional-Player Games

4 Determinacy of PPGs and HPPGs

Games with w-regular objectives enjoy determinacy: in every game, one player wins [41].
In this section we study the determinacy of PPGs and HPPGs. As expected, restricting
the strategies of both players makes some games undetermined. Surprisingly, we are able
to prove that for every prefix-independent objective ¢ that is not positional, there is an
undetermined PPG with the objective ¢». On the other hand, all HPPGs with prefix-
independent objectives are determined. Thus, if a player needs memory in order to win
a game with a prefix-independent objective, then restricting her to use only memoryless
strategies without restricting her opponent, not only prevents her from winning, but also
makes the opponent winning.

» Theorem 6. For every objective ¢ that is prefiz-independent, not positional, and requires
finite memory, there is an undetermined PPG with objective 1. In particular, AllB and
ExistsC PPGs need not be determined.

Proof. Since v is not positional, then it is not 1-positional or not 2-positional. We consider
the case 9 is not 1-positional. The case 1) is not 2-positional follows, as Player 2 has an
objective that is not 1-positional. In the full version, we prove that for every objective 1
as above, there is a set V' of vertices, a finite graph G over V consisting of a vertex v € V
and two simple and vertex-disjoint paths p,q € V*, such that v -p and v - ¢ are cycles, and
either (v-p-v-q)¥ satisfies ¢, and (v-p)¥ and (v-q)* do not satisfy ¢, or (v-p-v-q)* does
not satisfy ¢, and (v-p)* and (v - q)* satisfy 1. We then take two copies of G in order to
construct a PPG with the same objective in which no player wins. |

We continue to HPPGs. Note that for G in Example 2, allowing a single player to use
memory makes this player win. Indeed, as the other player uses a memoryless strategy, she
commits on her strategy in vertices visited along the play. As we formalize in Theorem 7
below, the player that uses memory can then learn these commitments, and follow a strategy
that is tailored for them. Since learning is performed during a traversal of a prefix of the
play, this works only for objectives that are prefix-independent.

» Theorem 7. Consider a prefiz-independent objective type v. For every y-game G and
i € {1,2}, we have that iPos-G is determined.

Proof. Consider a y-game G = (G,v). Let G = (V1, Vo, v, E). We show that Player 1 wins
in 1Pos-G iff Player 2 does not win 1Pos-G. The proof for 2Pos-G is similar.

Clearly, if Player 1 wins 1Pos-G, then Player 2 does not win 1Pos-G. For the second
direction, assume that Player 1 does not win 1Pos-G. We show that then, Player 2 has a
strategy that wins against all memoryless strategies of Player 1. Let V' C V be the set of
vertices from which Player 1 does not have a memoryless winning strategy in G, and let
G’ be the sub-graph of G that contains only vertices in V’. That is, G’ = (Vi NV, V5 N
V' vg, EN (V! x V')). Note that indeed vy € V' since Player 1 does not win 1Pos-G.

Let f1,...,fr be all the memoryless strategies for Player 1 in G’. Since all of them
are not winning strategies, there exist strategies gi,..., gy for Player 2 in G’ such that
outcome({f;, g;)) does not satisfy ¢, from every vertex in V', for every i € [k]. Note that for
every ¢ € [k], such a strategy g; exists only because f; is restricted to vertices in V'. We
construct from g1, ..., gx a winning strategy ¢ for Player 2 in 1Pos-G.

Intuitively, starting with ¢ = 1, the strategy ¢ follows g;, and whenever Player 1 takes a
transition from a vertex v € V4 NV’ to a vertex wu, it checks that the transition is consistent
with f;; that is, whether f;(v) = w. If this is not the case, the strategy g updates i to the

0. Kupferman and N. Shenwald

minimal j > ¢ such that f;(v) = u. In the full version, we define g formally and prove that
an index j as above always exists, and that the process eventually stabilizes, simulating a
game in which Player 1 uses some memoryless strategy f;, and Player 2 uses a strategy that
wins against f;, making g a winning strategy for Player 2. <

As for prefix-dependent objective types, here the vertices traversed while the unrestricted
player learns the memoryless strategy of the restricted player may play a role in the satisfaction
of the objective, and the picture is different (see detailed proof in the full version):

» Theorem 8. For every objective type v such that AlIR =<~ or EzxistsA = ~, both v-PPGs
and v-HPPGSs need not be determined.

5 The Complexity of PPGs and HPPGs

Given a game G, we would like to decide whether Player 1 wins in 1Pos-G, 2Pos-G, and Pos-G.

The complexity of the problem depends on the type of objective in G. In this section we
present general complexity results for the problem. Then, in Sections 6, 7, and 8, we provide
an analysis for the different objective types. Note that since not all PPGs and HPPGs are

determined, the results for Player 2 do not follow immediately from the results for Player 1.

They do, however, follow from results about the dual objective.

5.1 General upper bound results

We start with upper bounds. We say that an objective type v is path-efficient if given a
lasso shape path py - (p2)®, for p; € V* and py € VT, checking whether p; - (p2)* satisfies a
~ objective 1) can be done in time polynomial in |p1|, |p2|, and |¢b|. We say that an objective
type «v is all-path-efficient if given a graph G, checking whether all the infinite paths in G
satisfy a v objective ¢ can be done in time polynomial in |G| and [|¢].

The complexity class ¥5 contains all the problems that can be solved in polynomial time
by a nondeterministic Turing machine augmented by a co-NP oracle. Since memoryless
strategies are of polynomial size, the complexity class X} is a natural class in the context of
PPGs. Formally, we have the following (see proof in the full version).

» Theorem 9. Consider a path-efficient objective type . For every ~v-game G, deciding
whether Player 1 wins in Pos-G can be done in 25.

For HPPGs, once a memoryless strategy for Player 1 is guessed, one has to check all the
paths in the graph that are consistent with it. Formally, consider a y-game G = (G, %) and a
memoryless strategy fi for Player 1. Let Gy, be the graph obtained from G by removing
edges that leave vertices in V; that do not agree with f1. Clearly, fi is a winning strategy iff
all the paths in Gy, satisfy ¢. Hence, we have the following (see proof in the full version).

» Theorem 10. Consider an all-path-efficient objective type v. For every vy-game G, deciding
whether Player 1 wins 1Pos-G can be done in NP.

Note that beyond the fact that not all objective types are known to be all-path-efficient,
the upper bounds that follow from Theorems 9 and 10 need not be tight.
5.2 General lower bound constructions

For our lower bounds, we use reductions from two well-known problems: QBF (Quantified
Boolean Formulas) and its special case 2QBF, which are standard problems for proving
hardness in PSPACE and Y%, respectively. Here, we define these problems and set some

64:9

MFCS 2025

64:10

Positional-Player Games

infrastructure for the reductions. Consider a set X = {z1,...,7,} of variables. Let X =
{Z1,...,%n}. A QBF formula is of the form ® = Q121Q2z5 ... Qnxnp, where Q1,...,Q, €
{3,V} are existential and universal quantifiers, and ¢ is a propositional formula over X U X.
The QBF problem is to decide whether ® is valid.

A QBF formula ® is in 2QBF if there is only one alternation between existential and
universal quantification in ®, and the external quantification is existential. In 2QBF, we
can assume that ¢ is given in 3DNF. For nicer presentation, we use X = {z1,...,z,}
and Y = {y1,...,ym} for the sets of existentially and universally quantified variables,
respectively. That is, a 2QBF formula is of the form ® = Jz;...3x,Vy1 ... Yy, where
=01 V...VCy, for some k > 1, and for every 1 < i < k, we have C; = (I} A2 AI3), with
L2 BeXUuXUYuy.

Below we describe two game graphs that are used in our reductions.

Consider a set of variables X ={x1,...,2,}, and a QBF formula ® =Q121Q225 . .. Qnnp,
where Q1,...,Q, € {3,V}. The two-player game graph Gg lets Player 1 choose assignments
to the existentially-quantified variables and Player 2 choose assignments to the universally-
quantified variables. The idea is that when the players use memoryless strategies, they repeat
the same choices. For the special case of 2QBF (see Figure 2), the order of the quantifiers on
the variables corresponds to the way the strategies of the players are quantified. For QBF,
the quantification on the variables is arbitrary, and G is used in the context of HPPGs. In
the full version, we define G formally.

Figure 2 The game graph Go for a 2QBF formula ® = 3z ... 3x,Vy1 ... Yyme.

In Gg, the vertices that correspond to the assignment to the last variable go back to the
initial vertex. We use Reach(Gg) to denote the game graph obtained from G4 by replacing
these edges by self-loops. Note that G and Reach(Gg) are independent of ¢ and only
depend on the partition of X in ® to existentially and universally quantified variables.

Next, we define a game graph Fg, induced by a QBF formula ® = Q121Q225 ... Qnznp,
for ¢ in 3DNF. The game proceeds in two phases that are repeated infinitely often and
are described as follows (see the full version for the full details, and Figure 3 below for an
example). In the assignment phase, the players choose an assignment to the variables in X.
This is done as in Gg. Then, the game continues to a checking phase, in which Player 2 tries
to refute the chosen assignment by showing that every clause has a literal that is evaluated
to false. For this, the game sequentially traverses, for every clause C;, a vertex from which
Player 2 can visit refute-literal vertices, associated with E, E, and @, and continues to
the next clause. Thus, for every clause, Player 2 chooses a vertex that corresponds to the
negation of one of its literals.

Intuitively, when the players use memoryless strategies, the assignment phase induces
an assignment to the variables. An assignment satisfies ¢ iff there exists a clause all whose
literals are evaluated to true, which holds iff Player 2 is forced to choose a refute-literal
vertex that corresponds to a literal evaluated to false. Then, ® is valid iff there exists a
memoryless strategy for Player 1 such that for every memoryless strategy for Player 2, there
exists a literal 7 such that both and a refute-literal vertex that corresponds to I/ are
visited infinitely often.

0. Kupferman and N. Shenwald

Figure 3 The game graph Fg, for ® = 3z1VooIzs(x1 Az Axs) V (11 AT2 AT3) V (TT A T2 AT3).

We use Reach(Fg) to denote the game graph obtained from Fg by replacing the edges
from the rightmost refute-literal vertices to the initial vertex by self-loops.

6 Rabin and Streett PPGs and HPPGs

In this section we study Rabin and Streett (and their respective special cases ExistsC and
AlIB) PPGs and HPPGs. Our results are summarized in Table 1 below.

Table 1 Complexity results for w-regular PPGs and HPPGs. For positional objectives, the
problems coincide with deciding usual games. Accordingly, they can be solved in PTIME for
reachability, avoid, Biichi and co-Biichi objectives [5, 32, 55, 53], and in UP N co-UP for parity
objectives [34].

Type H Positionality ‘ P1 wins G ‘ P1 wins Pos-G ‘ P1 wins 1Pos-G ‘ P1 wins 2Pos-G ‘
PTIME PTIME
ExistsC 1-positional [12] 5 -complete (Theorem 11) co-NP-complete
(Theorem 12) (Theorem 11)
Rabi Lvositional NP-complete NP-complete
m “position [20] (Theorem 11)
PTIME PTIME
AlIB 2-positional [12] NP-complete NP-complete (Theorem 11)
(Theorem 13) (Theorem 11)
Streett 9 positional co-NP-complete co-NP-complete
P [20] (Theorem 11)
. PSPACE-complete Y5 -complete NP-complete co-NP-complete
Muller non-positional [30] (Theorem 15) (Theorem 17) (Theorem 17)

We start with HPPGs (see proof in the full version).

» Theorem 11. Deciding whether Player 1 wins:
an EzistsC PP1G or a AlIB PP2G can be done in polynomial time.
a v-PP1G is NP-complete, for v € {Rabin, AllB, Streett}.
a v-PP2G is co-NP-complete, for v € {Streett, ExistsC, Rabin}.

» Theorem 12. Deciding whether Player 1 wins a Rabin PPG is XY -complete. Hardness in
¥ applies already for ExistsC PPGs.

Proof. The upper bound follows from Theorem 9. For the lower bound, we describe a
reduction from 2QBF. That is, given a 2QBF formula ®, we construct an ExistsC game Gg
such that ® = true iff Player 1 wins Pos-Gg.

Consider a 2QBF formula ® = 3XVY ¢ such that ¢ = C; V...V Cy and C; = (I} ANIZ AI3).

Recall the game graph G4 defined in Section 5.2, and recall that memoryless strategies for
the players induce assignments to the variables in X and Y in a way that corresponds to their
quantification in ®. Thus, we only need to define an objective that captures the satisfaction

of some clause in . For this, we define the ExistsC objective o = {{II,12,13} :

i € [k]}.

64:11

MFCS 2025

64:12

Positional-Player Games

Thus, each clause C; of ¢ contributes to « a set with the negations of the literals in C;. Since
for each variable z € X UY, a play visits exactly one of the literal vertices z and Z infinitely
often, the play satisfies a co-Biichi objective in « iff the chosen assignment satisfies ¢, and so
® = true iff Player 1 wins in Pos-(Gg, o) (see proof in the full version). <

Theorem 12 shows that Rabin PPGs are strictly more complex than general Rabin games.
For the dual Streett objective, the 1-positionality of Rabin objectives does make the problem
easier. Formally, we have the following (see proof in the full version).

» Theorem 13. Deciding whether Player 1 wins a Streett PPG is NP-complete. Hardness
in NP applies already for AllB PPGs.

7 Muller PPGs and HPPGs

In this section, we study the complexity of Muller PPGs and HPPGs. Our results are
summarized in Table 1. We start with PPGs. It is not hard to see that Muller is path-
efficient, and so Theorem 9 implies that the problem of deciding whether Player 1 wins a
Muller PPG is in ¥%. In Theorem 12, we proved that the problem is ¥5-hard for Rabin
and even ExistsC PPGs, and as ExistsC < Muller, it may seem that a similar lower bound
would be easy to obtain. The translation from an ExistsC objective to a Muller objective
may, however, be exponential [6], which is in particular the case for the objective used in the
lower bound proof in Theorem 12. Note that the AllB objective used in the lower bound
proof in Theorem 13 can be translated with no blow-up to a Muller objective, but deciding
whether Player 1 wins an AlIB PPG is NP-complete.

Accordingly, our first heavy technical result in the context of Muller PPGs is a proof of
their ¥5-hardness. For this, we add an alternation to the problem of vertex-disjoint paths,
used in [33] in order to prove NP-hardness for AlIB PPGs. We show that a Muller objective
can capture the alternation, which lifts the complexity from NP to ¥¥.

We first need some definitions and notations. Consider a directed graph G = (V, E). A
path p in G is simple if each vertex appears in p at most once. Two simple paths p and ¢ in
G are vertez-disjoint iff they do not have vertices in common, except maybe their first and
last vertices. The vertez-disjoint-paths (VDP, for short) problem is to decide, given G and
two vertices s,t € V', whether there exist two vertex-disjoint paths from s to t and from ¢ to
s in G. The complementing problem, termed NVDP, is to decide whether there do not exist
two vertex-disjoint paths from s to ¢ and from ¢ to s in G.

Now, the alternating NVDP problem (ANVDP, for short) is to decide, given a two-player
game graph G = (V1, V5, E) and two vertices s,t € V, whether there exists a memoryless
strategy fi for Player 1 in G such that the (Gy,, s,t) is in NVDP. That is, there do not exist
two vertex-disjoint paths from s to ¢t and from ¢ to s in Gy, .

» Lemma 14. ANVDP is XY -complete.

Proof. VDP is known to be NP-complete [24, 33], making NVDP co-NP-complete, and
inducing a ¥5 upper bound. NP-hardness is shown in [24] by a reduction from 3SAT (see full
version for details): given a 3CNF formula ¢ over variables in X, a graph G, with vertices s
and t is constructed such that paths from s to ¢ correspond to choosing an assignment to the
variables in X, and then choosing one literal in every clause in . Then, a path p from s to ¢
has a path ¢ from ¢ to s that is vertex-disjoint from p iff all the chosen literals are evaluated
to true in the chosen assignment. Accordingly, (G, s,t) is in VDP iff ¢ is satisfiable.

For ANVDP, we use a similar reduction, but from 2QBF. Given a 2QBF formula
® = JXVY ¢ where ¢ is in 3DNF, we construct a game graph similar to G for the 3CNF
formula @ with vertices s and t, where memoryless strategies for Player 1 correspond to

0. Kupferman and N. Shenwald

assignments to the variables in X. Every such assignment defines a sub-graph that is in
VDP iff there exists an assignment to the variables in Y that, together with the assignment
Player 1 chose, satisfies . Accordingly, there exists a memoryless strategy for Player 1 such
that the corresponding sub-graph, together with s and ¢, is in NVDP iff & = true. |

» Theorem 15. Deciding whether Player 1 wins a Muller PPG is %5 -complete.

Proof. The upper bound follows from Theorem 9. For the lower bound, we describe a
reduction from ANVDP, which, by Lemma 14, is XF-hard. Consider a two-player game
graph G = (V1,Va, s, E), and a vertex t € V' \ {s}. We define a Muller game G = (G, (F, x))
such that Player 1 wins Pos-G iff (G, s,t) is in ANVDP.

Consider the set of colors {1,2,3}. We define x : V' — {1, 2,3}, where x(s) =1, x(¢t) = 2,
and x(v) = 3 for every v € V\{s,t}. Then, F = {{1}, {2}, {3}, {1, 3}, {2, 3}}. Thus, Player 1
wins in a play iff it does not visit both s and ¢ infinitely often. For the correctness of the
construction, note that for every memoryless strategy fi for Player 1 in G, we have that f;
is winning in Pos-G iff Player 2 does not have a memoryless winning strategy in G,, which
she has iff there exists a simple cycle in Gy, that visits both s and ¢. Such a simple cycle
exists iff there exist two vertex-disjoint paths from s to t and from ¢ to s in Gy,. That is, if
(Gy,,s,t) is in VDP. Accordingly, Player 1 wins Pos-G iff (G, s,t) is in ANVDP. <

We continue to Muller HPPGs. Note that beyond implying membership in NP for the
problem of deciding whether Player 1 wins a Muller PP1G, establishing the all-path efficiency
of the Muller objective also implies that the universality problem for universal Muller word
automata can be solved in polynomial time.5

» Theorem 16. Muller objectives are all-path-efficient.

Proof. Consider a graph G, and a Muller objective a = (F, x) defined over a set of colors
[k]. Deciding whether every infinite path in G satisfies & can be reduced to deciding whether
there is an infinite path in G that satisfies the dual Muller objective @ = (2I* \ F, x). Since
the size of & need not be polynomial in |F|, a naive algorithm that checks the existence of a
path that satisfies & does not run in polynomial time.

The key point in our algorithm is to complement a given Muller objective F not to
another Muller objective, but rather to view F as a DNF formula ¢r over [k], dualize it
to a CNF formula pF, and then convert pr to an equivalent DNF formula. Specifically,
07 = Vper(Nier O A (Nigppr 1)), With the semantics that a literal ¢ € [k] (4, respectively)

requires vertices with the color ¢ to be visited infinitely (finitely, respectively) often [4].

The dual Muller objective then corresponds to the complementing CNF formula; thus it
corresponds to the Emerson-Lei objective [30] 7 = Apez((Vier 1) V (Viepp r 9)-

Note that deciding whether a graph G has a path that satisfies a DNF formula can be
done in polynomial time (for example by checking whether there exists a path in G that
respects the requirements induced by one clause in the formula). On the other hand, deciding
whether a graph G has a path that satisfies a CNF formula is hard, which is why we convert
©F to an equivalent DNF formula. Converting CNF to DNF is in general exponential. The
CNF formula @7, however, is full: for every variable i, every conjunct contains the literal
i or the literal 7. In the full version, we show that full CNF formulas can be converted to

6 An alternative proof to Theorem 16 can use the known polynomial translation of Muller objectives to
Zielonka DAGs [30] and the fact Zielonka-DAG automata can be complemented in polynomial time [29].
In the full version, we describe this approach in detail. We find our direct proof useful, as it shows that
translating full CNF formulas to equivalent DNF formulas can be done in polynomial time.

64:13

MFCS 2025

64:14

Positional-Player Games

DNF in polynomial time. The conversion is based on the equality ¢ = (p A z,) V (0 A Tp),
recursively applied to (¢ A z,,) and (¢ A T,,). The blow-up is kept polynomial by minimizing
(¢ A zp,) to include only clauses of ¢ that contain x,, after removing z,, from them, and
similarly for (o A T,). |

We can now conclude with the complexity of Muller HPPGs (see proof in the full version).

» Theorem 17. Deciding whether Player 1 wins a Muller PP1G is NP-complete, and deciding
whether Player 1 wins a Muller PP2G is co-NP-complete.

8 Weighted Multiple Objectives PPGs and HPPGs

In this section we study PPGs and HPPGs with weighted multiple objectives. We focus on
games with underlying Biichi or reachability objectives. In the full version, we prove that
the results for underlying co-Biichi or avoid objectives follow. Essentially, this follows from
the fact that weighted objectives may be dualized by complementing either the type of the
objective or the way we refer to the satisfaction value. Specifically, for an objective type
v € {R, A, B, C}, let 5 be the dual objective, thus R = A and B = C. Then, as shown
in [40], for every v € {R, A, B, C}, every MaxW-v objective has an equivalent MinW-¥
objective of polynomial size, and vise versa. Our results are summarized in Table 2 below.

Table 2 Complexity results for PPGs with weighted multiple objectives.

Type H Positionality ‘ P1 wins G ‘ P1 wins Pos-G ‘ P1 wins 1Pos-G ‘ P1 wins 2Pos-G ‘
MaxWB 2-positional co-NP-complete Yh-complete 5 -complete co-NP-complete
MinWC [40] [40] (Theorem 18) (Theorem 20) (Theorem 20)
MinWB 1-positional NP-complete 5 -complete NP-complete 15 -complete
MaxWC [40] [40] (Theorem 18) (Theorem 20) (Theorem 20)
M%XWR non-positional PSPACE-complete ST _complete Y5-complete PSPACE-complete
MinWA [40] 40 Th 19 (Theorem 21) (Theorem 21)
MinWR || non-positional [40] (Theorem 19) ¥ -complete PSPACE-complete
MaxWA [40] (Theorem 21) (Theorem 21)

We start with PPGs with underlying Biichi and reachability objectives.

» Theorem 18. Deciding whether Player 1 wins a MinWB or MazWB PPG is X% -complete.
Hardness in X5 applies already for games with uniform weight functions.

Proof. Both upper bounds follow from Theorem 9. Since the ExistsC objective used in
the lower bound in the proof of Theorem 12 can be specified as a MinWB objective with a
uniform weight function, a matching lower bound for MinWB PPGs is easy.

A lower bound for MaxWB PPGs is less easy. Consider a 2QBF formula ® = 3XVY ¢
such that ¢ is in 3DNF. We construct a MaxWB game Gg over the game graph Fg defined
in Section 5.2 such that ® = true iff Player 1 wins Pos-Gg.

For every literal | in ¢, we define a Biichi objective oy as the set of vertices associated
with [. That is, the literal vertex [from the assignment phase of the game, and refute-literal
vertices in the checking phase that originate from [appearing in some clause. The objective
of Player 1 is to satisfy at least |X| + |Y| + 1 different Biichi objectives, which can be
expressed with a uniform weight function. Formally, Go = (Fg,, |X| + [Y| + 1), where
a={a:1e XUXUYUY}, with oy = {I}U{C/ : i € [k],j € [3], and I/ = I}, for every
le XUXUYUY.

Intuitively (see proof in the full version), the literal vertices that a play visits infinitely
often are exactly those that correspond to literals evaluated to true in the chosen assignment,
and thus the play satisfies | X| 4 |Y| Biichi objectives during the assignment phase — one for

0. Kupferman and N. Shenwald

every literal evaluated to true. Then, the game satisfies an additional Biichi objective in
the checking phase iff Player 2 chooses a refute-literal vertex that corresponds to a literal
evaluated to false. Since Player 2 is forced to choose such a refute-literal vertex iff there
exists a clause all whose literals are evaluated to true, Player 2 is forced to satisfy an
additional Biichi objective iff the chosen assignment satisfies . Therefore, & = true iff
Player 1 can force the satisfaction of at least |X| + |Y| + 1 Biichi objectives. <

» Theorem 19. Deciding whether Player 1 wins a MinWR or MazWR PPG is XX -complete.
Hardness in X5 applies already for uniform weight functions.

Proof. The upper bounds follow from Theorem 9. The reductions from 2QBF to MinWB
and MaxWB PPGs in the proof of Theorem 18 are also valid for MinWR and MaxWR PPGs.
Indeed, when the players are restricted to memoryless strategies in G¢ and Fg, every vertex
is visited infinitely often iff it is reached. Thus, a Biichi (co-Biichi) objective « is satisfied iff
the reachability (avoid, respectively) objective « is satisfied. <

Moving to HPPGs, we start with underlying Biichi objectives, where things are easy (see
proof in the full version):

» Theorem 20. Deciding whether Player 1 wins:
a MinWB PP1G is NP-complete.
a MaxWB PP1G is ¥ -complete.
a MaxWB PP2G is co-NP-complete.
a MinWB PP2G is I15 -complete.
In all cases, hardness holds already for games with a uniform weight function.

For HPPGs with underlying reachability objectives, things are more complicated. First,
recall that MinWR and MaxWR HPPGs are undetermined, thus the results for PP2Gs
cannot be inferred from the results for PP1Gs. In addition, since MinWR and MaxWR
objectives are not half-positional, the memory requirements for the unrestricted player adds
to the complexity.

» Theorem 21. Deciding whether Player 1 wins:
a MinWR or MazWR PP1G is ¥5 -complete.
a MinWR or MaxWR PP2G is PSPACE-complete.
In all cases, hardness holds already for games with a uniform weight function.

Proof. (sketch, see full details in the full version). We start with PP1Gs. For the upper
bounds, consider a MinWR or MaxWR game G = (G,®). A memoryless strategy fi
for Player 1 in G is winning iff the objectives that are satisfied in ¢ are reached within
polynomially many rounds of the game. Hence, an NP algorithm that uses a co-NP oracle
guesses a memoryless strategy fi for Player 1, and checks that ¢ is satisfied in every guessed
path of the appropriate length in G,.

For the lower bounds, we argue that the reductions from 2QBF to MinWR and MaxWR
PPGs in the proof of Theorem 19 are valid also for MinWR and MaxWR PP1Gs when repla-
cing the game graphs G¢ and Fg by Reach(Gg) and Reach(Fg), respectively. Essentially,
this follows from the fact that in these games each vertex is visited at most once.

We continue to the PP2Gs. Proving a PSPACE upper bound, we describe an ATM T that
runs in polynomial time and accepts a MinWR or a MaxWR game G = (G, v) iff Player 1
wins 2Pos-G. The alternation of T is used in order to simulate the game, and we show that,
for MaxWR, we can require the reachability objectives to be satisfied within |V -|«|, and for
MinWR, we can require the reachability objectives to not be satisfied while traversing a cycle.

64:15

MFCS 2025

64:16

Positional-Player Games

Accordingly, we can bound the number of rounds in the simulation, with 7" maintaining on
the tape the set of reachability objectives satisfied so far, and information required to detect
when it may terminate and to ensure that Player 2 uses a memoryless strategy.

For the lower bounds, we describe reductions from QBF. That is, given a QBF formula
O = Q1x1Q2x2 . .. Qurxnp, we construct a MinWR and a MaxWR game G = (Reach(Gg), &)
such that ® = true iff Player 1 wins 2Pos-Gg. For MinWR, we assume that ¢ is in DNF and
the winning objective « is similar to the ExistsC objective in Theorem 12. For MaxWR, we
assume that ¢ is in CNF, and define an AlIR objective in which each clause induces the set
of its literals. It is easy to see that the reduction is valid when the strategies of the players
are not restricted. We argue that since each vertex in Reach(Gg) is visited in each outcome
at most ones, Player 1 wins Gg iff Player 1 wins 2Pos-Gg, and so we are done. |

9 Discussion

We introduced and studied positional-player games, where one or both players are restricted
to memoryless strategies. Below we discuss two directions for future research.

The focus on memoryless strategies corresponds to non-intrusiveness in applications
like program repair [33, 27], supervisory control [17], regret minimization [31], and more.
More intrusive approaches involve executing controllers of bounded size in parallel with the
system or environment, leading to bounded-player games. There, the input to the problem
contains, in addition to the game G, also bounds m; and ms to the sizes of the system and
the environment. Player 1 wins (m, mo)-G iff she has a strategy with memory of size at
most m, that wins against all strategies of size at most mso of Player 2.

Note that the games (1,1)-G, (1,00)-G, and (00, 1)-G coincide with Pos-G, 1Pos-G, and
2Pos-G, respectively, and so our complexity lower bounds here apply also to the bounded
setting. Moreover, if we assume, as in work about bounded synthesis [38], that m; and
mso are given in unary, then many of our upper bounds here extend easily to the bounded
setting. Indeed, upper bounds that guess memoryless strategies for a player can now guess
memory structures of the given size, and reason about the game obtained by taking the
product with the structures. Some of our results, however, are not extended easily. For
example, the NP upper bound for Streett PPGs relies on the fact that for every memoryless
strategy fi1 for Player 1, we have that Player 2 has a winning strategy in Gy, iff she has a
memoryless winning strategy in Gy,. When mg < my, the latter is not helpful for Player 2,
and we conjecture that the problem in the bounded setting is more complex.

The second direction concerns positional-player non-zero-sum games, namely multi-player
games in which the objectives of the players may overlap [13, 52]. There, typical questions
concern the stability of the game and equilibria the players may reach [54]. In particular, in
rational synthesis, we seek an equilibrium in which the objective of the system is satisfied
[23, 15]. The study of positional strategies in the non-zero-sum setting is of particular
interest, as it also restricts the type of deviations that players may perform, and our ability
to incentivize or block such deviations [39].

—— References

1 B. Abu Radi and O. Kupferman. Minimization and canonization of GFG transition-based
automata. Log. Methods Comput. Sci., 18(3), 2022. doi:10.46298/LMCS-18(3:16)2022.

2 B. Abu Radi, O. Kupferman, and O. Leshkowitz. A hierarchy of nondeterminism. In 46th
Int. Symp. on Mathematical Foundations of Computer Science, volume 202 of LIPIcs, pages
85:1-85:21, 2021. doi:10.4230/LIPICS.MFCS.2021.85.

https://doi.org/10.46298/LMCS-18(3:16)2022
https://doi.org/10.4230/LIPICS.MFCS.2021.85

0. Kupferman and N. Shenwald

10

11

12

13

14

15

16

17

18

B. Aminof, O. Kupferman, and R. Lampert. Formal analysis of online algorithms. In 9th Int.
Symp. on Automated Technology for Verification and Analysis, volume 6996 of Lecture Notes
in Computer Science, pages 213-227. Springer, 2011. doi:10.1007/978-3-642-24372-1_16.
T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Kretinsky, D. Miiller, D. Parker, and
J. Strejcek. The hanoi omega-automata format. In Proc. 27th Int. Conf. on Computer Aided

Verification, volume 9206 of Lecture Notes in Computer Science, pages 479-486. Springer, 2015.

doi:10.1007/978-3-319-21690-4_31.

C. Beeri. On the membership problem for functional and multivalued dependencies in relational

databases. ACM Trans. on Database Systems, 5:241-259, 1980. doi:10.1145/320613.320614.

U. Boker. On the (in)succinctness of muller automata. In Proc. 26th Annual Conf. of the

European Association for Computer Science Logic, volume 82 of LIPIcs, pages 12:1-12:16.
Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, 2017. doi:10.4230/LIPICS.CSL.2017.12.

P. Bouyer, A. Casares, M Randour, and P. Vandenhove. Half-Positional Objectives Recognized
by Deterministic Bilichi Automata. In Proc. 33rd Int. Conf. on Concurrency Theory, volume
243 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1-20:18. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPICS.CONCUR.2022.20.

P. Bouyer, Fijalkow N, M. Randour, and P. Vandenhove. How to play optimally for regular
objectives?, 2023. doi:10.4230/LIPICS.ICALP.2023.118.

N. Bulling and V. Goranko. Combining quantitative and qualitative reasoning in concurrent
multi-player games. In Proceedings of the 21st International Conference on Autonomous Agents
and Multiagent Systems, page 192671928. International Foundation for Autonomous Agents
and Multiagent Systems, 2022.

A. Casares. On the minimisation of transition-based rabin automata and the chromatic
memory requirements of muller conditions. In Proc. 80th Annual Conf. of the European
Association for Computer Science Logic, volume 216 of LIPIcs, pages 12:1-12:17. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPICS.CSL.2022.12.

A. Casares and P. Ohlmann. Positional w-regular languages. In Proc. 39th ACM/IEEE Symp.
on Logic in Computer Science. Association for Computing Machinery, 2024.

K. Chatterjee, W. Dvorak, M. Henzinger, and V. Loitzenbauer. Conditionally optimal
algorithms for generalized biichi games. In 41st Int. Symp. on Mathematical Foundations of
Computer Science, volume 58 of LIPIcs, pages 25:1-25:15. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, 2016. doi:10.4230/LIPICS.MFCS.2016.25.

K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equilibria in stochastic games. In
Proc. 13th Annual Conf. of the European Association for Computer Science Logic, volume
3210 of Lecture Notes in Computer Science, pages 26—40. Springer, 2004. doi:10.1007/
978-3-540-30124-0_6.

T. Colcombet and D. Niwinski. On the positional determinacy of edge-labeled games. Theor-
etical Computer Science, 352(1):190-196, 2006. doi:10.1016/J.TCS.2005.10.046.

R. Condurache, E. Filiot, R. Gentilini, and J.-F. Raskin. The complexity of rational synthesis.
In Proc. 43th Int. Colloq. on Automata, Languages, and Programming, volume 55 of LIPIcs,
pages 121:1-121:15. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2016. doi:10.4230/
LIPICS.ICALP.2016.121.

F. Delgrange, J.P. Katoen, T. Quatmann, and M. Randour. Simple strategies in multi-objective
mdps. In Proc. 26th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, pages 346-364. Springer International Publishing, 2020.

J. Dubreil, Ph. Darondeau, and H. Marchand. Supervisory control for opacity. IEEE
Transactions on Automatic Control, 55(5):1089-1100, 2010. doi:10.1109/TAC.2010.2042008.
S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory is needed to win
infinite games. In Proc. 12th ACM/IEEE Symp. on Logic in Computer Science, pages 99-110,
1997.

64:17

MFCS 2025

https://doi.org/10.1007/978-3-642-24372-1_16
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1145/320613.320614
https://doi.org/10.4230/LIPICS.CSL.2017.12
https://doi.org/10.4230/LIPICS.CONCUR.2022.20
https://doi.org/10.4230/LIPICS.ICALP.2023.118
https://doi.org/10.4230/LIPICS.CSL.2022.12
https://doi.org/10.4230/LIPICS.MFCS.2016.25
https://doi.org/10.1007/978-3-540-30124-0_6
https://doi.org/10.1007/978-3-540-30124-0_6
https://doi.org/10.1016/J.TCS.2005.10.046
https://doi.org/10.4230/LIPICS.ICALP.2016.121
https://doi.org/10.4230/LIPICS.ICALP.2016.121
https://doi.org/10.1109/TAC.2010.2042008

64:18

Positional-Player Games

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

R. Ehlers. Symbolic bounded synthesis. In Proc. 22nd Int. Conf. on Computer Aided
Verification, volume 6174 of Lecture Notes in Computer Science, pages 365-379. Springer, 2010.
doi:10.1007/978-3-642-14295-6_33.

E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proc.
29th IEEE Symp. on Foundations of Computer Science, pages 328—-337, 1988.

E.A. Emerson and C. Jutla. Tree automata, p-calculus and determinacy. In Proc. 32nd IEEE
Symp. on Foundations of Computer Science, pages 368-377, 1991.

E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL realizability. In Proc.
21st Int. Conf. on Computer Aided Verification, volume 5643, pages 263-277, 2009. doi:
10.1007/978-3-642-02658-4_22.

D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In Proc. 16th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems, volume 6015 of Lecture Notes
in Computer Science, pages 190-204. Springer, 2010. doi:10.1007/978-3-642-12002-2_16.
S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem.
Theoretical Computer Science, 10(2):111-121, 1980. doi:10.1016/0304-3975(80)90009-2.
H. Gimbert and W. Zielonka. Games where you can play optimally without any memory. In
Proc. 16th Int. Conf. on Concurrency Theory, volume 3653 of Lecture Notes in Computer
Science, pages 428442, 2005. doi:10.1007/11539452_33.

E. Gradel. Positional determinacy of infinite games. In Proc. 21st Symp. on Theoretical
Aspects of Computer Science, volume 2996 of Lecture Notes in Computer Science, pages 4—18,
2004. doi:10.1007/978-3-540-24749-4_2.

D. Harel, G. Katz, A. Marron, and G. Weiss. Non-intrusive repair of reactive programs. In
17th IEEE International Conference on Engineering of Complex Computer Systems, ICECCS
2012, Paris, France, July 18-20, 2012, pages 3—-12. IEEE Computer Society, 2012. doi:
10.1109/ICECCS.2012.25.

D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt, editor, Logics
and Models of Concurrent Systems, volume F-13 of NATO Advanced Summer Institutes, pages
477-498. Springer, 1985.

C. Hugenroth. Zielonka dag acceptance and regular languages over infinite words. In Dewvelop-
ments in Language Theory, pages 143—155. Springer Nature Switzerland, 2023.

P. Hunter and A. Dawar. Complexity bounds for regular games. In 30th Int. Symp. on
Mathematical Foundations of Computer Science, volume 3618, pages 495-506. Springer, 2005.
doi:10.1007/11549345_43.

P. Hunter, G.A. Pérez, and J.F. Raskin. Reactive synthesis without regret. In Proc. 26th Int.
Conf. on Concurrency Theory, volume 42 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 114-127. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2015. doi:
10.4230/LIPICS.CONCUR.2015.114.

N. Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer
and Systems Science, 22(3):384-406, 1981. doi:10.1016/0022-0000(81)90039-8.

B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Proc. 17th Int.
Conf. on Computer Aided Verification, volume 3576 of Lecture Notes in Computer Science,
pages 226238, 2005. doi:10.1007/11513988_23.

M. Jurdzinski. Deciding the winner in parity games is in UP N co-UP. Information Processing
Letters, 68(3):119-124, 1998.

N. Klarlund. Progress measures, immediate determinacy, and a subset construction for
tree automata. Annals of Pure and Applied Logic, 69(2):243-268, 1994. doi:10.1016/
0168-0072(94)90086-8.

E. Kopczynski. Half-positional determinacy of infinite games. In Proc. 33rd Int. Collog. on
Automata, Languages, and Programming, volume 4052 of Lecture Notes in Computer Science,
pages 336-347. Springer, 2006. doi:10.1007/11787006_29.

https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-02658-4_22
https://doi.org/10.1007/978-3-642-02658-4_22
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1007/11539452_33
https://doi.org/10.1007/978-3-540-24749-4_2
https://doi.org/10.1109/ICECCS.2012.25
https://doi.org/10.1109/ICECCS.2012.25
https://doi.org/10.1007/11549345_43
https://doi.org/10.4230/LIPICS.CONCUR.2015.114
https://doi.org/10.4230/LIPICS.CONCUR.2015.114
https://doi.org/10.1016/0022-0000(81)90039-8
https://doi.org/10.1007/11513988_23
https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1007/11787006_29

0. Kupferman and N. Shenwald

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

D. Kuperberg and A. Majumdar. Width of non-deterministic automata. In Proc. 35th Symp.
on Theoretical Aspects of Computer Science, volume 96 of LIPIcs, pages 47:1-47:14. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/LIPICS.STACS.2018.47.

O. Kupferman, Y. Lustig, M.Y. Vardi, and M. Yannakakis. Temporal synthesis for bounded
systems and environments. In Proc. 28th Symp. on Theoretical Aspects of Computer Science,
pages 615-626, 2011.

O. Kupferman and N. Shenwald. Games with trading of control. In Proc. 84th Int. Conf.
on Concurrency Theory, volume 279 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 19:1-19:17. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023. doi:
10.4230/LIPICS.CONCUR.2023.19.

O. Kupferman and N. Shenwald. Games with weighted multiple objectives. In 22nd Int. Symp.
on Automated Technology for Verification and Analysis, Lecture Notes in Computer Science.
Springer, 2024.

D.A. Martin. Borel determinacy. Annals of Mathematics, 65:363-371, 1975.

S. Nain and M.Y. Vardi. Solving partial-information stochastic parity games. In Proc. 28th
ACM/IEEE Symp. on Logic in Computer Science, pages 341-348. IEEE Computer Society,
2013. doi:10.1109/LICS.2013.40.

N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vagzgirani. Algorithmic Game Theory. Cam-
bridge University Press, 2007.

P. Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs.
In Proc. 87th ACM/IEEE Symp. on Logic in Computer Science. Association for Computing
Machinery, 2022.

P. Ohlmann and M. Skrzypczak. Positionality in 32 and a completeness result, 2024. arXiv:
2309.17022.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp.
on Principles of Programming Languages, pages 179-190, 1989.

D. Raju, R. Ehlers, and U. Topcu. Playing against opponents with limited memory. CoRR,
abs/2002.07274, 2020. arXiv:2002.07274.

D. Raju, R. Ehlers, and U. Topcu. Adapting to the behavior of environments with bounded
memory. In Proc. 12th International Symposium on Games, Automata, Logics and Formal
Verification, 2021.

S. Schewe. Minimising good-for-games automata is NP-complete. In Proc. 40th Conf. on
Foundations of Software Technology and Theoretical Computer Science, volume 182 of LIPIcs,
pages 56:1-56:13. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/
LIPICS.FSTTCS.2020.56.

S. Schewe and B. Finkbeiner. Bounded synthesis. In 5th Int. Symp. on Automated Technology
for Verification and Analysis, volume 4762 of Lecture Notes in Computer Science, pages
474-488. Springer, 2007. doi:10.1007/978-3-540-75596-8_33.

W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Symp. on Theoretical
Aspects of Computer Science, volume 900 of Lecture Notes in Computer Science, pages 1-13.
Springer, 1995. doi:10.1007/3-540-59042-0_57.

M. Ummels. The complexity of Nash equilibria in infinite multiplayer games. In Proc. 11th Int.
Conf. on Foundations of Software Science and Computation Structures, pages 20-34, 2008.
M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal
of Computer and Systems Science, 32(2):182-221, 1986. doi:10.1016/0022-0000(86)90026-7.
J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1953.

W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200(1-2):135-183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

64:19

MFCS 2025

https://doi.org/10.4230/LIPICS.STACS.2018.47
https://doi.org/10.4230/LIPICS.CONCUR.2023.19
https://doi.org/10.4230/LIPICS.CONCUR.2023.19
https://doi.org/10.1109/LICS.2013.40
https://arxiv.org/abs/2309.17022
https://arxiv.org/abs/2309.17022
https://arxiv.org/abs/2002.07274
https://doi.org/10.4230/LIPICS.FSTTCS.2020.56
https://doi.org/10.4230/LIPICS.FSTTCS.2020.56
https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1007/3-540-59042-0_57
https://doi.org/10.1016/0022-0000(86)90026-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

	1 Introduction
	2 Preliminaries
	2.1 Two-player games
	2.2 Boolean objectives
	2.3 Weighted multiple objectives

	3 Positional Objectives and PPGs
	4 Determinacy of PPGs and HPPGs
	5 The Complexity of PPGs and HPPGs
	5.1 General upper bound results
	5.2 General lower bound constructions

	6 Rabin and Streett PPGs and HPPGs
	7 Muller PPGs and HPPGs
	8 Weighted Multiple Objectives PPGs and HPPGs
	9 Discussion

