Deciding Regular Games:

a Playground for Exponential Time Algorithms
Zihui Liang! =
University of Electronic Science and Technology of China, Chengdu, China

Bakh Khoussainov! &
University of Electronic Science and Technology of China, Chengdu, China

Mingyu Xiao &
University of Electronic Science and Technology of China, Chengdu, China

—— Abstract

Regular games form a well-established class of games for analysis and synthesis of reactive systems.

They include colored Muller games, McNaughton games, Muller games, Rabin games, and Streett
games. These games are played on directed graphs G where Player 0 and Player 1 play by generating
an infinite path p through the graph. The winner is determined by specifications put on the set X of
vertices in p that occur infinitely often. These games are determined, enabling the partitioning of G
into two sets Wing and Win, of winning positions for Player 0 and Player 1, respectively. Numerous
algorithms exist that decide instances of regular games, e.g., Muller games, by computing Winy and
Wini. In this paper we aim to find general principles for designing uniform algorithms that decide
all regular games. For this we utilize various recursive and dynamic programming algorithms that
leverage standard notions such as subgames and traps. Importantly, we show that our techniques
improve or match the performances of existing algorithms for many instances of regular games.

2012 ACM Subject Classification Theory of computation — Algorithmic game theory; Theory of
computation — Logic and verification

Keywords and phrases Regular games, colored Muller games, Rabin games, McNaughton games,
Muller games, deciding games

Digital Object Identifier 10.4230/LIPIcs. MFCS.2025.66

Funding This work was supported by the National Science Foundation of China under grant
No0.62172077, No.62350710215, and No0.62372095, and the Natural Science Foundation of Sichuan
Province of China under grant No.2025HJPJ0006.

1 Introduction

In verification of reactive systems, model checking, and logic, studying games played on finite
graphs is a key research topic [18, 26]. Colored Muller games, Rabin games, Streett games,
Muller games, and McNaughton games constitute such classes of games. The recent work
[16] serves as an excellent reference for the state-of-the-art in this area. Interest in these
games arises from their role in modeling and verifying reactive systems as games on graphs.

1.1 Arenas, regular games, subarenas, and traps

All games that we listed above are played in arenas:

» Definition 1. An arena A is a bipartite directed graph (Vo, V1, E), where

1. VonVi=0, and V =Vy UV, is the set of nodes, also called positions.

2. ECVy x V1 UVy x V) is the edge set where each node has an outgoing edge.
3. Vo and Vp are sets of positions for Player 0 and Player 1, respectively.

L Corresponding authors.
© Zihui Liang, Bakh Khoussainov, and Mingyu Xiao;
oY licensed under Creative Commons License CC-BY 4.0
50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Pawel Gawrychowski, Filip Mazowiecki, and Michal Skrzypczak; Article No. 66; pp.66:1-66:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:zihuiliang.tcs@gmail.com
https://orcid.org/0000-0002-9022-6470
mailto:bmk@uestc.edu.cn
mailto:myxiao@uestc.edu.cn
https://orcid.org/0000-0002-1012-2373
https://doi.org/10.4230/LIPIcs.MFCS.2025.66
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

66:2

Deciding Regular Games: a Playground for Exponential Time Algorithms

For each v € V, let E(v) = {u | (v,u) € E} be the set of successors of v.

Players play the game in a given arena 4 by taking turns and moving a token along the
edges of the arena. Initially, the token is placed on a node vy € V. If vg € Vj, then Player
0 moves first. If vy € V7, then Player 1 moves first. In each round of play, if the token is
positioned on a Player o’s position v, then Player o chooses u € E(v), moves the token to u
along the edge (v,u), and the play continues on to the next round. Note that condition 2 on
the arena guarantees that the players can always make a move at any round of the play.

» Definition 2. A play, in a given arena A, starting at vg, is an infinite sequence p =
Vg, V1, V2, . .. such that v;y1 € E(v;) for all i € N.

Given a play p = vg, v1,. .., the set Inf(p) = {v € V' | I¥i(v; = v)} is called the infinity
set of p. The winner of this play is determined by a condition put on Inf(p). We list several
of these conditions that are well-established in the area.

» Definition 3. The following games played on a given arena A = (Vy, V1, E) are known as

regular games:

1. A colored Muller game is G = (A, c,(Fo,F1)), where ¢ : V. — C is a mapping from
V into the set C of colors, Fo U Fy =2 and Fo N Fy = 0. Player o wins the play p if
c(Inf(p)) € Fy, where 0 =0, 1.

2. A McNaughton game is the tuple G = (A, W, (Fo, F1)), where W CV, FoU F; =2V
and Fo N Fy = 0. Player o wins the play p if Inf(p) "W € F,.

3. A Muller game is the tuple G = (A, (Fo, F1)), where Fo U Fy =2V and FoNF; = 0.
Player o wins the play p if Inf(p) € Fo.

4. A Rabin game is the tuple G = (A, (U1, V1),..., (Ug, Vi)), where U;, V; CV, (U;, V;) is
a winning pair, and k is the index. Player 0 wins p if there is a pair (U;, V;) with
Inf(p) NU; # 0 and Inf(p) N'V; = 0. Else, Player 1 wins.

5. A Streett game is the tuple G = (A, (U1, V1),...,(Ux, Vi), where U;, V; are as in
Rabin game. Player 0 wins the play p if for all i € {1,...,k} if Inf(p) N U; # O then
Inf(p) N V; # 0. Otherwise, Player 1 wins.

6. A KL game is the tuple G = (A, (u1,51), ..., (u,St)), where u; € V, S; CV, (u4, ;)
is a winning pair, and t is the index. Player 0 wins p if there is a pair (u;, S;) such
that u; € Inf(p) and Inf(p) C S;. Else, Player 1 wins.

The first three games are symmetric. Rabin games can be considered as dual to Streett
games. The first five winning conditions are well-established conditions. The last condition is
new. The motivation behind this new winning condition lies in the transformation of Rabin
and Streett games into Muller games via the KL winning condition. In a precise sense, as
will be seen in Section 4.5 via Lemma 26, the KL condition is a compressed Rabin condition.

» Definition 4. Let A be an arena. A pseudo-arena of A determined by X is the tuple
A(X) = (XQ,Xl,Ex) where X() == VO OX, X1 == V1 ﬂX, EX =FEnN (X X X) If this
pseudo-arena is an arena, then we call it the subarena determined by X.

The opponent of Player o, where o € {0, 1}, is denoted by Player . Traps are subarenas
in games where one of the players has no choice but stay:

» Definition 5 (o-trap). A subarena A(X) is a o-trap for Player o if each of the following
two conditions are satisfied: (1) For all x € X5 there is a y € X, such that (z,y) € E. (2)
For all x € X, it is the case that E(z) C X.

If A(X) is a o-trap, then Player ¢ can stay in A(X) forever if the player wishes so.



Z. Liang, B. Khoussainov, and M. Xiao

Let T be a subset of the arena A = (Vj, V1, E). The attractor of Player o to the set
T C V, denoted Attr,(T,.A), is the set of positions from where Player o can force the plays
into T. The attractor Attr,(T,.A) is computed as follows:

Wo=T, Wi+1 :WiU{UGVG |E(u)ﬂWi7é®}U{u€V5 |E(U) QWZ},
and then set  Attro(T,.A) = ;5 Wi

The set Attr,(T,A) can be computed in O(|E|). We call Attr, the attractor operator.

Note that the set V' \ Attr, (T, A), the complement of the o-attractor of T, is a o-trap for all
T. This set is the emptyset if and only if V = Attr, (T, A).

A strategy for Player o is a function that receives as input initial segments of plays
Vo, V1, ..., Uk where vg € V,, and outputs some vp41 such that vgy1 € E(vg). An important
class of strategies are finite-state strategies. R. McNaughton in [33] proved that the winner in
McNaughton games has a finite state winning strategy. W. Zielonka proves that the winners
of regular games have finite state winning strategies [39]. S. Dziembowski, M. Jurdzinski,
and I. Walukiewicz in [11] investigate the memory needed for the winners of colored Muller

games. They show that the memory |V|! is a sharp bound for finite state winning strategies.

In the study of games, solving a given game entails two key objectives. First, one aims
to devise an algorithm that, when provided with a game G, partitions the set V into two
sets Wing(G) and Winy(G) such that v € Win,(G) if and only if Player o wins the game
starting at v, where o € {0,1}. This is called the decision problem where one wants to
find out the winner of the game. Second, one would like to design an algorithm that, given a

game, extracts a winning strategy for the winner. This is known as the synthesis problem.

Traditionally, research on regular games specifically selects an instance of regular games,
e.g., Muller games, Rabin games or Streett games, and studies the decision and synthesis
problems for these instances. This paper however, instead of focusing on instances of regular
games, aims at finding uniform algorithms and general principles for deciding all regular
games. Importantly, we show that our techniques based on general principles improve or

match the performances of existing decision algorithms for many instances of regular games.

1.2 Our contributions in light of known algorithms

We provide two types of algorithms for deciding regular games. The first is recursion based,
and the second is dynamic programming based. Recursive algorithms have been exploited in
the area significantly. To the best of our knowledge, dynamic programming techniques have
not been much used in the area. We utilize these techniques and improve known algorithms
for deciding all regular games defined above.

The performances of algorithms for games G can be measured in two ways. One is when
the input sizes are |V| 4 |E|. The other is when G is presented explicitly by listing V, E, and
the corresponding winning conditions. In these explicit representations the sizes of Muller,
McNaughton, and colored Muller games are bounded by |V| + |E| + 2IVI . [V|. For these
games, explicit representations list the collection Fy instead of listing both Fy and F;. The
sizes of Rabin and Streett games are bounded by V| + |E| 4+ 4/V!. |V|. The sizes of the KL
games are bounded by |V/|+|E|+2/V!.|V|2. We use the notation |G| for these representations
of games G. These two ways of representing inputs, together with the parameters |C|, |W]|,
k, and t, should be taken into account in our discussion below.

» Definition 6. Call |C| and |W| small parameters, k and t (potentially) large parameters.

66:3

MFCS 2025



66:4

Deciding Regular Games: a Playground for Exponential Time Algorithms

A: Colored Muller games. The folklore algorithms deciding colored Muller games use
recursion on |C| with running time O(|C||E|(|C||V|)!¢I~1) and space O(|G| + |C||V]) [16].
Using the breakthrough quasi-polynomial time algorithm for parity games, C. Calude, S.
Jain, B. Khoussainov, W. Li, and F. Stephan were able to decide colored Muller games with
the running time O(|C|°I€! - |V|?) and space O((|C|!|V][)®™) [4]. Bjérklund et al. showed
that under the ETH it is impossible to decide colored Muller games in time O(2°U0€D . ||,
where a > 0 [1]. C. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan in [4] improved
this by showing that under the ETH it is impossible to decide colored Muller games in
time 20(C11os(CD) Poly(|V]). Their proof implies that this impossibility result holds when
|C| < \/]V]. The table below now compares these results with our algorithms.

Best known (running time, space) Our algorithm (s)
OCPIT- [VE), o((Clv ™)) (oEvcllEl), o(g] +2[v]))
[4] Theorem 15 (DP)
©O(clE|(CV)IC=h, oG]+ IClIv])) ©OEvIVIE, O(g] +2)
folklore, e.g., see[16] Theorem 19 (DP)
©(CI(ENIVIED, 0G| + |ClIV])
Theorem 12 (recursion)

The algorithms from Theorems 15 and 19 are dynamic programming (DP) algorithms.

One can verify that if |V|/loglog(|V]) < |C|, e.g., |[V|/a < C where a > 1 is fixed, then:

1. Running times of both of these algorithms are better than O(|C|°II - |V]?),

2. Moreover, these two algorithms run in 2°UC118(IC€D) Poly(|V]). This obviously refines and
strengthens the impossibility result that under the ETH no algorithm decides colored
Muller games in 2°UC110e(CD) Poly(|V|) [4].

3. The spaces of both of these algorithms are also better than O((|C|![V])©M).

4. All of the previously known algorithms have superexponential running times. Our
algorithms run in exponential time.

When the parameter C satisfies |C| < log(]V]), the algorithms from [4] and [16] outperform
our algorithms. When |V|/loglog(|V]) < |C|, as we stated above, our algorithms are better
for any value of |C| with C > |V|/a. Furthermore, our algorithms run in exponential time
thus matching the bound of the impossibility result of Bjérklund et al. [1].

Our algorithm in Theorem 12 is a recast of standard recursive algorithms. However, as
shown in the table, a careful running time analysis implies that our recursive algorithm has
a better running time and it matches the space bounds of the previous recursive algorithms.

B: Rabin and Streett games. Historically, M. Rabin was the first who built the parameter
independent exponential time algorithm that solves the emptiness problem for w-tree automata
with Rabin acceptance condition (which is equivalent to solving Rabin games). Namely, given
an w-tree automata A = (S, M, sg, 2) with Rabin acceptance condition, Rabin’s algorithm
runs in time O(|%]4*>151) and space O(22/*I51 . |%|S]), where ¥ is the size of the alphabet
[38]. Note that |3| appears in the exponent?.

E. A. Emerson and C. S. Jutla show that deciding Rabin games is NP complete [12, 14].
Hence, deciding Streett games is co-NP complete. Horn’s algorithm for deciding Rabin games
has the running time O(K!|V/|?*) [19]. N. Piterman and A. Pnueli show that Rabin and
Streett games can be decided in time O(|E||V|**1kk!) and space O(nk) [37]. C. Calude, S.

! The authors thank M. Vardi for informing us of this Rabin’s algorithm.



Z. Liang, B. Khoussainov, and M. Xiao

Jain, B. Khoussainov, W. Li, and F. Stephan gave a FPT algorithm for Rabin games on &
colors by converting it to a parity game and using the quasi-polynomial algorithm [4]. A
Rabin game with n vertices, m edges and k colors, can be reduced to a parity game with
N = nk?k! vertices, M = nk*k!m edges and K = 2k + 1 colors [13]. By reducing Rabin
games to parity games and using the state-of-the-art algorithms for parity games [7, 8, 15, 23]
in a “space-efficient” manner, one solves Rabin games in time O(max{M N?238 20(Klog K)1)
with exponential space, see Jurdzinski and Lazié¢ [23]. Using the values of M and N, the
algorithm of Jurdzifiski and Lazié¢ takes time at least proportional to m(nk2k!)33%. The
parity games obtained from Rabin games are such that the number of vertices IV is much
larger than the number of colors K, namely K € o(log(NN)). For cases where the number
of vertices of the resulting parity game is much larger than the number of priorities, say
the number of colors (2k + 1) is o(log(N)), Jurdzinski and Lazié also give an analysis of
their algorithm that would solve Rabin games in time O(nmk!*t°(1)) . Closely matching this
are the run times in the work of Fearnley et al. [15] who provide, among other bounds, a
quasi-bi-linear bound of O(M Na(N )¢ N) where a is the inverse-Ackermann function. In
either case above, this best-known algorithm has at least a (k!)2T°(Y) dependence in its run

time, and takes the space proportional to (nk2k!) log(nk?k!); so we still have a k! dependence.

R. Majumdar et al. in [32] recently provided an algorithm that decides Rabin games in
O(|E|V|(K)*+°M) time and O(|V|klog klog |V]) space. This breaks through the 2 + o(1)
barrier. Importantly, A. Casares et al. prove that under the ETH it is impossible to decide
Rabin games in 2°(1°8%) Poly(|V]) [6]. Just like for colored Muller games, this impossibility
result holds true when k& < \/m . The next table compares these results with our findings.

Best known (running time, space) Our algorithm (s)
(O BI|VI*+1EKY, O(IG] + kV]) O(KIVI+2VIEDIV]), 0G| + 2V V)
[37] Theorem 28 (DP)

(O B||V|(k)FoM), O(IG] + K|V |log klog [V])) OVIVI(E]+EIVD), O(G] + [VI*)
[32] Theorem 14 (recursion)

(O(zja*™1Ish, 0@l x| s)))
Rabin’s algorithm [38]

We single out four key parts of both of our algorithms:

1. In terms of time, both our dynamic and recursive algorithms outperform the known
algorithms when the parameter k ranges in [|V],4!V]. In particular, when & is polynomial
on |V| (which is a practical consideration), then our algorithms have better running times.

2. Just as for colored Muller games we refine the impossibility result of A. Casares et al.
under the assumption of the ETH [6]. Namely, when the parameter k > |V|log|V]|,
both of our algorithms run in 2°(*1°8¥) Poly(|V|). The condition k > |V|log|V| is clearly
reasonable and practically feasible.

3. Our DP algorithm from Theorem 28 is the first exponential time algorithm that decides
Rabin games. The previously known algorithms run in superexponential times.

4. When k falls into the range [|V],4/V!], then the recursive algorithm from Theorem 14
performs the best in terms of space against other algorithms.

If Player 0 wins Rabin games, then the player wins with a memoryless strategy [14].
Hence, one might suggest the following way of finding the winner. Enumerate all memoryless
strategies and select the winning one. Even when the arena is sparse, e.g., positions have
a fixed bounded out-degree, this process does not lead to exponential running time as the
opponent might have a winning strategy with a large memory.

66:5

MFCS 2025



66:6

Deciding Regular Games: a Playground for Exponential Time Algorithms

C: Muller games. Nerode, Remmel, and Yakhnis were the first who designed a competitive
algorithm that decides Muller games [35]. The running time of their algorithm is O(|V|! -
[V||E]). W. Zielonka [39] examines Muller games through Zielonka trees. The size of Zielonka
tree is O(2!V'1) in the worst case. S. Dziembowski, M. Jurdzinski, and I. Walukiewicz in [11]
show that deciding Muller games with Zielonka trees as part of the input is in NP N co-NP.
D. Neider, R. Rabinovich, and M. Zimmermann reduce Muller games to safety games with
O((JV|1)?) vertices; safety games can be solved in linear time [34]. F. Horn in [20] provides
the first polynomial time decision algorithm for explicitly given Muller games, which operates
by solving update network games [2, 9, 10, 22] iteratively on transformed subgames. The
running time of Horn’s algorithm is O(|V| - |Fo| - (|V| + |Fo|)?). F. Horn’s correctness proof
has a non-trivial flaw. B. Khoussainov, Z. Liang, and M. Xiao in [28] provide a correct
proof of Horn’s algorithm through new methods; their methods improve the running time to
O(|Fo| - (JV| + | Fol) - [Vo|log |Vo|). All the known algorithms that decide Muller games are
either recursive algorithms or reductions to other known classes of games. Our algorithm is a
dynamic programming algorithm, and to the best of our knowledge, the first such algorithm
that decides Muller games. The table below compares the best of these results for Muller
games, in terms of time and space, with our algorithm from this paper:

Best known (running time, space) Our algorithm
(O(IFol - (IV] + | Fol) - [Vollog [Vol), O(IG| + [ Fol (VI + 1 Fol)) | (OCVIVIIE]), O(G] +2!V1))
[28] Theorem 20 (DP)

One can see that the algorithm from [28], in terms of running time and space, is better
than our algorithm when |Fy| < V2IVI. However, our algorithm becomes competitive (or
better) than the algorithm in [28] when |Fy| > V2IVI. Also, note that by running our
algorithm and the algorithm in [28] in parallel, we get the best performing polynomial time
algorithm that solves explicitly given Muller games.

D: McNaughton games. R. McNaughton [33] provided the first algorithm that decides
McNaughton games in time O(al™!- |W|! - |V|?), for a constant a > 1. Nerode, Remmel,
and Yakhnis in [35] improved the bound to O(|W|!|W||E|). A. Dawar and P. Hunter proved
that deciding McNaughton games is a PSPACE-complete problem [21], while the one-player
version can be decided in linear time [24]. The table below compares our algorithms with
currently the best algorithm that runs in time O(|W|!|W||E|):

Best known (running time, space) Our algorithm (s)
(O(WIIE[W]Y), O(IG] + Poly(IV]))) | (OVIWIIE]), O(IG| + 2IVT|V]))
[35] Theorem 21 (DP)

©OEVIIVIIE)), O(g| +2')
Theorem 21 (DP)

It is not too hard to see that when |W| exceeds |V|/loglog(|V]), e.g., |[W| > |V|/a where
a > 1 is fixed, then our algorithm has better running time than previous algorithms.

Important comments. All the previously known algorithms, apart from the exponential
time algorithm of Rabin, involve the parameters |C|, k, and |WW|. When these parameters
move from very small to reasonable sizes, such as from log(|V|) to over |V|/loglog(|V]) (and
above) for |C| and |[W|, and from log(|V]) to |V| (and above) for k, the running times become
unreasonable as they involve the multiplicative factors [V'[¥, k!, |C|!, |C|I€], and |[W|!. In all



Z. Liang, B. Khoussainov, and M. Xiao

of these cases, our algorithms perform better in order of magnitude. Also, our algorithms are
based on a new approach where we trade the parameters for |V|. One can argue that in some
situations, the parameters are small with respect to |V|. For instance, one can invoke the
reduction of non-deterministic Buchi automata to deterministic automata. In this reduction
the index & of Rabin accepting condition is bounded by log(]S|), where S is the states of the
deterministic automata. The following examples address these types of arguments:
The article [5] provides a natural transformation of Muller games (A, Fy) on arena A
to Rabin games (A’, (U1, V1),..., (U, Vi)). This natural transformation can produce
examples of Rabin games where k is exponential on the number of positions in A’.
Boker in [3] shows examples of deterministic Muller automata M; and M, that have n
states with index n, that is |Fo| = n, such that every non-deterministic Muller automata
accepting L(M7) N L(Mz) has index 2™. This is an example where a natural algebraic
and set-theoretic operation produces a large Muller acceptance condition.
Although parity games can be solved in quasipolynomial time [4, 15, 36, 27], it is worth
to mention when one translates parity games to Rabin games the parameter k equals the
number of priorities, e.g., k can equal |V].
Random Muller games are obtained as follows. In an arena of size n, select a subset X at
random. Declare Fy = 2. The expected size of Fy is 2"/2.

Our algorithms and their correctness look deceivingly simple. This is achieved due
to Definition 7, Lemmas 8-10, Lemmas 17-18, The Enumeration Lemma 22, and The
Transformation Lemma 26 each of which is non-trivial on its own. Furthermore, our
algorithms remove existing superexponential bounds from the running times of the known
algorithms, an important issue in regular games and w-automata.

2  The notion of full win and characterization of winning regions

In this section we develop a few concepts and techniques used throughout the paper. We first
define the notion of full win. This will be used in designing dynamic programming algorithms

for deciding regular games. Then we provide Lemma 8 that characterizes winning regions.

This lemma is used for designing recursive algorithms for solving regular games. The last
result of this section is Lemma 10. We call the lemma trichotomy lemma as it characterizes
three cases: (1) Player 0 fully wins the game, (2) Player 1 fully wins the game, and (3) none
of the players fully wins the game. This lemma will be the basis of our dynamic algorithms.

» Definition 7. If Win,(G) =V, then player o fully wins G. Else, the player does not
Sully win G. If Win,(G) #V and Wing(G) #V, then no player fully wins G.

We now provide two lemmas that characterize winning regions in colored Muller games.

Later we algorithmically implement the lemmas and analyze them. We start with the first
lemma. The statement of the lemma and its equivalent forms have been known and used in
various forms [33] [16]. Later we will utilize the lemma in our recursive algorithms through
their detailed exposition and analysis.

» Lemma 8. Let o € {0,1} such that ¢(V') € F,. Then we have the following:

1. If for allc € ¢(V), Attro(c71(c'), A) =V or Player o fully wins G(V \ Attr,(c=1(¢), A)),
then Player o fully wins G.

2. Otherwise, let ¢’ be a color in C such that Attr,(c=t(c'), A) # V and Player o doesn’t
fully win G(V \ Attry(c=1(c'),A)). Then we have Wing,(G) = Winy(G(V \ X)), where
X = Attrs Winz (G(V \ Attr,(c71(c), A))), A).

66:7

MFCS 2025



66:8

Deciding Regular Games: a Playground for Exponential Time Algorithms

Proof. Part 1: Assume that for all ¢’ € ¢(V'), Player o fully wins G(V \ Attr,(c71(c'),A))
or V = Attry(c71(c’), A). Construct the following winning strategy for Player o in G. Let
(V) =Aco,...,cx—1} and let 7 initially be 0.

If the token is in Attr,(c~1(c;), A), then Player o forces the token to a vertex in ¢~ !(c;)

and once the token arrives at the vertex, sets i =i+ 1 mod k.

Otherwise, Player o uses a winning strategy in G(V \ Attry(c~1(c;), A)).

Consider a play consistent with the strategy. If there is an ¢ such that the token finally stays
in G(V \ Attr,(c 1(c;),A)), then Player o wins the game. Otherwise, c(Inf(p)) = ¢(V). So
Player o wins as ¢(V) € F,. Thus, Player o fully wins G.

Part 2: Let ¢/ € C such that Attr,(c71(c’),A) # V and Player o doesn’t fully win
G(V \ Attry(c7Y(c'), A)). Let V! = Wing(G(V \ Attry(c71(c’),A))). Consider the set
X = Attrs(V', A) as defined in the statement of the lemma. Note that A(V’) is a o-trap
in AV \ Attr,(c71(c), A)); furthermore, A(V \ Attr,(c7*(¢’), A)) is a o-trap in A. This
implies that A(V’) is a o-trap in A. Now we want to construct a winning strategy for Player
& in the arena A when the token is placed on v € X UWins(G(V'\ X)). The winning strategy
for Player ¢ in this case is the following:

If v € X, Player ¢ wins by forcing the token into V' and following the winning strategy

in o-trap A(V').

If v € Winz(G(V'\ X)), Player ¢ in game G(Winz(G(V \ X))) follows a winning strategy

until the opponent moves the token into X.

Note that A(Win,(G(V\X))) is a o-trap in A(V'\ X) and A(V'\ X) is a o-trap in A. Hence,
the set A(Win,(G(V \ X))) is a o-trap in the arena A. Therefore, we have the equality
Win,(G) = Win, (G(V \ X)). <

As an immediate corollary we get the following lemma for Player o.

» Lemma 9. Let G be a colored Muller game and let o € {0,1} be such that c(V) € F,.
Player o fully wins G if and only if for all ¢’ € ¢(V), Attry(c7(¢'), A) =V or Player o fully
wins G(V '\ Attr,(c71(c), A)). N

Now we provide the next lemma that we call Trichotomy lemma. We will use this lemma
in our dynamic programming based algorithms.

» Lemma 10 (Trichotomy Lemma). Let G be a colored Muller game and let o € {0,1} be

such that ¢(V) € F,. Then we have the following three cases:

1. If for allcd € c(V), Attry(c71(c'), A) =V or Player o fully wins G(V \ Attr,(c=1(c), A)),
then Player o fully wins G.

2. Otherwise, if for allv € V, Attrz({v}, A) =V or Player ¢ fully wins G(V\ Attrz({v}, A)),
then Player ¢ fully wins G.

3. Otherwise, none of the players fully wins.

Proof. By Lemma 9, Part 1 is proved. For the remaining parts of the lemma, we are under
the assumption that Player ¢ doesn’t fully win G. For the second part, if Player ¢ fully
wins G, then for any v € V, Attrs({v},. A) = V or Player ¢ fully wins the game in -trap
AV \ Attrs({v},A)). Otherwise, for all v € Wins(G), Attrs({v}, A) # V and Player &
doesn’t fully win G(V'\ Atirs({v}, A)). <

Part 2 of the lemma assumes that Player o for which ¢(V') € F, does not fully win the
game. With this assumption, the second part characterizes the condition when Player ¢ fully
wins the game; without this assumption, Part 2 does not hold true.



Z. Liang, B. Khoussainov, and M. Xiao 66:9

3 Recursive algorithms for deciding regular games

In this short section, our goal is to provide recursive algorithms that solve regular games.
To do so we utilize Lemma 8. Naturally, we first start with a generic recursive algorithm
that decides colored Muller games, see Figure 1. Lemma 8 guarantees correctness of the
algorithm. Initially, the algorithm memorizes G globally. Then the function SolveCMG(V")
is called. The algorithm returns (Wing(G(V")), Wini(G(V"))).

Global Storage: A colored Muller game G = (A, ¢, (Fo, F1))
Function: SolveCMG(V")
Input: A vertex set V' with A(V’) is an arena
Output: (Wino(G(V")), Win1(G(V")))
Let o€ {0, 1} such that ¢(V') € Fo;
for ¢’ € ¢(V') do
(W§, WY) + SolveCMG(V \Attra( L, A(V)))
if W, # V’\Attro( (), A(V")) then
X <+ Attrs (Wi, A(V"));
(Wy', W{') < SolveCMG(V" \ X);
Wy W), W5 < V'\ Wy;
return (Wy, W1)
end
end
W V', Wi + 0;
return (Wy, Wh)

Figure 1 The recursive algorithm for colored Muller games.

A standard analysis of this algorithm produces running time O(|C|I€! - [V|IV]), see [16].
Our analysis below improves this by showing that the multiplicative factors |C|I¢! and [V|IV]
in this estimate can be replaced with |C|! and (I C‘) respectively.

» Lemma 11. During the call of SolveCMG(V'), the function SolveCMG is recursively called

at most |C|'(‘|g{)|V| times.

Proof. If |¢(V')] = 0, then no SolveCMG function is recursively called. Because A(V’) is
an arena, if SolveCMG(V”) is called then |V'| # 1. If |[V'| = 2 then for all non-empty sets
V" C V' and o € {0,1}, Attr,(V", A(V')) = V’; hence, SolveCMG is recursively called
le(V")] times. If |e(V')| = 1 then SolveCMG is recursively called for |¢(V')| times.

Assume that |V'| > 2, |e(V')| > 1, and for all V" with |V"| < |V’|, during the call of
SolveCMG(V"), the function SolveCMG is recursively called at most \c(V”)\!(lc‘(‘g:,‘)l) V"
times. For each ¢’ € c¢(V'), the set V' \ Attry(c=1(c’), A(V')) has at most |V'| — 1 ver-
tices and |e(V')] — 1 colours. For ¢ € ¢(V') with Win,(G(V'\ Attr,(c=1(c'), A(V")))) #
V'\ Attr, (c=1(c"), A(V")), we have W. = Wing(G(V'\ Attry(c=1(c'), A(V")))). Let X =
Attrs (WL, A(V'")). Since |W.| > 2, the set V' \ X contains at most |V’| — 2 vertices and
|e(V")| colours. By hypothesis, during the call of SolveCMG(V”), the function SolveCMG is

recursively called at most
(V)] + 1+ [e(V) (V)] = DU LOS LD AV = 1) + eI (L) (V'] = 2)
times. This value is bounded from above by

V)4 141V )0V = )

Now there are 2 cases:

MFCS 2025



66:10

Deciding Regular Games: a Playground for Exponential Time Algorithms

1. |e(V')| = 2: Then

N I N | & I W
V) IV = Q7)1+ 1+ e (e )0V = 1)

=c(V’)|!(|C|(VV/,|)|) — (V)] =12 2!(2) ~3=3

2. |¢(V')] > 2: Then

’ 14 N (le(V! (V! 14 no_
V) IV = Qe+ 1+ e (o )0V = 1)

eV ) = VO = 12 V)l = V)] = 10

Therefore, during the call of SolveCMG(V”), the function SolveCMG is recursively called at

most |C(V/)|!(‘CI(‘C,‘)|) |[V'] times. By hypothesis, the proof is done. <

» Theorem 12. There is an algorithm that, given colored Muller game G computes Wing(G)

and Win1(G) in time O(\C’\'(l‘gl‘)|V||E|) and space O(|G| + |C|V]).

Proof. Consider the algorithm in Figure 1. Apply SolveCMG(V') to compute Wing(G) and
Wini(G). The recursive depth of the algorithm is at most |C| and G is memorized globally.
In each iteration, only O(|V]) space is applied to memorize the vertex set. Therefore, the
algorithm takes O(|G| + |C||V|) space. By Lemma 11, the function SolveCMG is recursively
called for at most |C|'(|‘g‘|) |V| times. We need to estimate the running time in two parts of
the algorithm:
Part 1: The running time within the loop “for ¢’ € ¢(V') do”. In each enumeration of
the color ¢, there is a corresponding recursive call on SolveCMG. Every time when we
have W, # V' \ Attr,(c ('), A(V")), there is also a corresponding recursive call on
SolveCMG. Since the function SolveCMG is recursively called for at most |C|!(‘V|) V|

IC|
times, this part takes O(\C|’(|‘g|‘)|V||E\) time.
Part 2: The running time outside the loop “for ¢’ € ¢(V') do”. As SolveCMG is recursively

called for at most |C'|! (‘Ig\l) |V| times, the running time bound for this part of the algorithm
is also O((|CI! (|2 [V + DIV
Therefore, the algorithm takes O(\C’|'(|‘g‘|) |[V]|E|) time. Note that the correctness of the
algorithm is provided by Lemma 8. |

3.1 Application to Muller, Rabin and Streett games

Since Muller games are colored Muller games in which each vertex has its own color, there
is also a recursive algorithm for computing winning regions of Muller games. In this case,
Lemma 11 shows that the function SolveCMG is recursively called at most |V|!|V] times.
Hence, Theorem 12 implies the next corollary:

» Corollary 13. There is a recurisve algorithm that, given Muller game G computes Wing(G)
and Winy(G) in time O(|V|Y|V||E|) and space O(|G| + |V |?).

Through this corollary, by transforming Rabin conditions into Muller conditions, we can
also provide a recursive algorithm for deciding Rabin games. The algorithm is presented in
Figure 2.



Z. Liang, B. Khoussainov, and M. Xiao

» Theorem 14. We have the following:

1. There exists an algorithm that, given Rabin or Streett game G, computes Wing(G) and
Winy(G) in time O(|V|!|V|(|E| + k|V|)) and space O(|G| + |V |?).

2. There exists an algorithm that, given KL game G computes Wing(G) and Wini(G) in
time O(|V|!|VI(|E| +t|V])) and space O(|G| + |V]?).

Proof. Consider the algorithm above for Rabin games. We apply SolveRG(V') to compute
Wing(G) and Winy(G). Compared with the recursive algorithm of Muller games, the
algorithm only changes the computing of o. Therefore, the function SolveRG is recursively
called at most |V|!|[V] times. Also each computation of o takes O(|k||V|) time. By Corollary
13, the algorithm takes time O(|V|!'|V|(|E| + k|V|)) and space O(|G| + |V'|?). For Streett
games and KL games, similar arguments are applied. <

Global Storage: A Rabin game G = (A, (U1, Vi),..., (Uk, Vi))
Function: SolveRG(V")
Input: A vertex set V' with A(V’) is an arena
Output: (Wing(G(V")), Win1(G(V")))
If for all s € {1,...,k} we have VNU; #0 = VNV, # () then o = 1, otherwise o = 0.
for v e V' do
(Wg, W1) < SolveRG(V" \ Attro({v}, A(V")))
if W, £ V'\ Attrs({v}, A(V’)) then
X + Attrs (W, A(V")), Wy, Wi') < SolveRG(V' \ X);
Wo W), W5+ V'\ W,;
return (Wy, Wh)
end
end
Wg < V/, Wa— < @7
return (Wy, W1)

Figure 2 The recursive algorithm for Rabin games.

4 Dynamic programming algorithms for deciding regular games

In this section, we provide dynamic programming algorithms for all regular games. First, in
Section 4.1 we provide a dynamic version of the recursive algorithm in Figure 3. Then in
Sections 4.2-4.5, the next set of all dynamic algorithms for solving the regular games will
utilize both Lemma 8 and Lemma 10.

Let G = (A, ¢, (Fo, F1)) be a colored Muller game where V' = {vy,va,...,v,}. We need
to code subsets of V' as binary strings. Therefore, we assign a n-bit binary number i to each
non-empty pseudo-arena A(S;) in G so that S; = {v; | the jth bit of ¢ is 1}. We will use this
notation for all our algorithms in this section.

4.1 Algorithm 1 for Colored Muller Games

Consider the algorithm in Figure 3. This is a dynamic programming version of the recursive
algorithm in Figure 1. The algorithm, given a colored Muller game G as input, returns the
collections Wing(G) and Wini(G). The correctness of the algorithm is guaranteed by both
Lemma 8 and Lemma 10. Thus, we have the following theorem:

» Theorem 15. There is an algorithm that solves colored Muller games in time O(2!V!|C||E|)
and space O(|G| + 2IVI|V]).

66:11

MFCS 2025



66:12

Deciding Regular Games: a Playground for Exponential Time Algorithms

Proof. We use the Algorithm 1 in Figure 3. Note that we apply the binary trees to maintain
Fos, Wy and Wi. For each S;, the algorithm takes O(|C||E|) time to compute Wy(S;) and
W1 (S;). Therefore, this algorithm runs in O(2IV!|C||E|) time. Since F,s, W, and W are
encoded by binary trees, the algorithm takes O(|G| + 2IV!|V|) space. <

Input: A colored Muller game G = (A, ¢, (Fo, F1))
Output: Wing(G), Wini1(G)
Wo «+ @, Wi« @7 WO(@) — @, W1(@) — @;
for i =1to 2" —1do
S; < {v; | the jth bit of ¢ is 1};
if A(S;) is not an arena then
break;
Let o € {0,1} such that ¢(S;) € Fo;
1s__win =true;
for ¢’ € ¢(S;) do
Y « Attr,(c7 (<), A(S:))
lfY#SZ and WJ(SZ'\ ) :
is_win =false, X < Attrsz(Wz(S;

; \Y), A(S:));
K[f%(aﬁé) %WO(SZ\X), W*(S»L <—SZ\W0(SZ),
gnd '

if is_win =true then
WU(S'L) < Si, W{;(Sz) < (D;
end
return Wy (V) and W1 (V)

Figure 3 Algorithm 1 for colored Muller games.

4.2 Algorithm 2 for Colored Muller Games

In this section, we utilize the concept of full win for the players, see Definition 7. The new
dynamic algorithm, Algorithm 2, is presented in Figure 4. The algorithm takes colored
Muller game G = (A, ¢, (Fo, F1)) as input. Lemma 10 guarantees correctness of the algorithm.
During the running process, this dynamic algorithm partitions all subgames G(S;) into the
following three collections of subsets of V:

Py ={S;|i€[1,2" — 1] and Player 0 fully wins G(S;)},

P ={S;|i€e[1,2" — 1] and Player 1 fully wins G(S;)}, and

Q = {S; |ie€[1,2" — 1] and no player fully wins G(S;)}.
Now we provide analysis of Algorithm 2 presented in Figure 4.

» Lemma 16. Algorithm 2 computes Py, Py and Q for a colored Muller game in O(2IV!|V||E|)
time and O(|G| + 2IV'1) space.

Proof. We use the Algorithm 2 in Figure 4. Note that we apply the binary trees to maintain
Fss, Py, Py and Q. For each S;, the algorithm takes O(|V||E]) time to determine the set
to add S;. Therefore, this algorithm runs in O(2!V!|V||E|) time. Since Py, P, and Q are
encoded by binary trees, the algorithm takes O(|G| + 2!/V'l) space. <

» Lemma 17. Let A(X) and A(Y) be 1-traps. If Player 0 fully wins G(X) and G(Y') then
Player 0 fully wins G(X UY).

Proof. We construct a winning strategy for Player 0 in G(X UY') as follows. If the token
is in Attro(X, A(X UY)), Player 0 forces the token into X and once the token arrives at
X, Player 0 follows the winning strategy in G(X). Otherwise, Player 0 follows the winning
strategy in G(Y'). <



Z. Liang, B. Khoussainov, and M. Xiao 66:13

» Lemma 18. If for all S; € Py, the arena A(S;) is not a I-trap in G, then Wing(G) = 0
and Win,(G) = V. Otherwise, let A(Smaz) be the mazimal 1-trap in G so that Spa. € FPo.
Then Wing(G) = Spaz and Winy(G) =V \ Snax-

Proof. For the first part of the lemma, assume that Wing(G) # 0. Now note that A(Wing(G))
is 1-trap such that Player 0 fully wins G(Wing(G)). This contradicts with the assumption of
the first part. For the second part, consider all 1-traps A(X) with X € P. Player 0 fully
wins the games G(X) in each of these 1-traps by definition of Py. By Lemma 17, Player 0
fully wins the union of these 1-traps. Clearly, this union is Sy,q. € Py. Consider V' \ S04
This set determines a 0-trap. Suppose Player 1 does not win G(V'\ Spqz) fully. Then there
exists a 1-trap A(Y) in game G(V \ Spaz) such that Player 0 fully wins G(Y'). For every
Player 1 position in y € Y and outgoing edge (y, x) we have either x € Y or & € Sy This
implies A(Spq: UY') is 1-trap such that Player 0 fully wins G(Siaz UY). S0, Spax UY must
be in Py. This contradicts with the choice of S,,4z- <

By Lemmas 16 and 18, we have proved the following theorem.

» Theorem 19. There exists an algorithm that decides the colored Muller games G in time
O2VIWV||E|) and space O(|G| + 2!V1). N

Input: A colored Muller game G = (A, ¢, (Fo, F1))
Output: The partitioned sets Py, P1 and Q.
Py 0, P+ 0, Q + 0
fori=1to2" —1do
Si < {v; | the jth bit of ¢ is 1};
if A(S;) is not an arena then
break;
Let o € {0,1} such that ¢(S;) € Fo;
AllAttro =true, AllAttr; =true;
for ¢’ € ¢(S;) do
if Attr,(c71(c), A(S;)) # S; and S; \ Attre(c7(c'), A(S;)) ¢ P, then
All Attr, =false;
break
end
if AllAttr, =true then
P, P, U {Sz},
else
for v € S; do
if Attrs({v}, A(S:)) # Si and S; \ Attrs({v}, A(S:)) ¢ Ps then
AllAttrz =false;
break
end
if AllAttrz = true then
Ps + P5 U {Sz},
else
Q+ QU{Si}
end
end

end
return Py, P, and Q

Figure 4 Algorithm 2 for partitioning subgames of a colored Muller game.

4.3 Applications to Muller and McNaughton games

It is not too hard to see that for Muller games and McNaughton games, we can easily recast
the algorithms presented in Sections 4.1 and 4.2. Indeed, the transformation of Muller games
to colored Muller games is obvious. Hence, by applying Theorem 19 to Muller games we get
the following result:

MFCS 2025



66:14

Deciding Regular Games: a Playground for Exponential Time Algorithms

» Theorem 20. There exists an algorithm that decides Muller game G in time O(2VI|V||E))
and space O(|G| + 2IV'1). N

The transformation of McNaughton games into colored Muller games is also easy. Each
position v in W gets its own color, and all positions outside of W get the same new colour.
Hence, we can apply both Theorems 15 and 19 to McNaughton games:

» Theorem 21. Fach of the following is true:

1. There exists an algorithm that decides McNaughton games G in O(2IVW||E|) time and
O(IG] + 21|V |) space.

2. There exists an algorithm that decides McNaughton games G in O(2IVI|V||E|) time and
O(|G] + 21y space. a

4.4 Enumeration Lemma

This is an auxiliary section that will provide us with an enumeration technique. This
technique will then be used in designing an algorithm to decide Rabin and Streett games by
transforming these games into Muller games in a more efficient manner.

Let n be a natural number and S = {b1, ..., b:} be a set of n-bit binary integers, where n is
the size of the vertex set V = {vy1,...,v,} of the arena. Each b; represents the characteristic
function of the set V; C V: b;(v) = 1 iff v € V;. We want to efficiently enumerate the
collection 2" U ... U2"¢. Note that

ViU U2t ={zxe0,2")| ISz &b=1)},

where x is the binary integer of length at most n, and the operation & is the bitwise and
operation. Later we will use our enumeration of the collection

X={z€[0,2") | BbeS(z&b=1x)}
to transform the KL condition into Muller condition.

Function: Enumerate(S,n).
Input: S and n where S is a set of n-bit binary integers.
Output: X ={z €[0,2") |3 € S(z & b=1z)}.
if S =0 then

return ()
if n =0 then

return {0}
S+ 0,8« 0
for b e S do

if b mod 2 =0 then

8o+ Shu{s}
else
She SyU{EL), S e SU {5

end
end
X} + Enumerate(S),n — 1), X{ < Enumerate(Si,n — 1), X < 0
for 2’ € Xj do

X« XxuU{2z'}
for 2’ € X do

X —XxU{2s' +1}
return X

Figure 5 Algorithm for Enumerate(S,n).

Note that the brute-force algorithm that enumerates the collection X = 2" U ... U 2%
runs in time O(2" - t). In our enumeration we want to remove the dependence on ¢ as ¢ can
be exponential on n. We apply the function Enumerate(S, n) shown in Figure 5 and obtain
the next lemma.



Z. Liang, B. Khoussainov, and M. Xiao

» Lemma 22 (Enumeration Lemma). Given the set S = {b1,...,b.} of n-bit binary integers,
we can enumerate the collection X = {x €[0,2") | Ib € S(x & b= z)} in time O(2"n) and
space O(2"). J

4.5 Applications to Rabin and Streett games

We can naturally transform Rabin games, Streett games, and KL games into Muller games,
and then apply our dynamic algorithms from Section 4.3 to thus obtained Muller games.
These transformations are the following:
For Rabin games and X C V, iffori € {1,...,k} wehave XNU; 20 = XNV, #£0
then X € F;, otherwise X € Fy.
For Streett games and X C V, if there is an 7 € {1,...,k} such that X N U; # () and
XNV, =0, then X € Fi, otherwise X € Fy.
For KL games and X C V, if for ¢ € {1,...,t} we have u; € X = X ¢ S; then
X € F1, otherwise X € Fy.

In these transformations one needs to be careful with the parameters k£ and ¢ for Rabin
and Streett games and KL games, respectively. They add additional running time costs,
especially k and ¢ can have exponential values in |V|. For instance, the direct translation of
Rabin games to Muller games requires, for each pair (U;, V;) in the Rabin winning condition,
to build the collection of sets X such that X NU; # ® and X NV; = (). The collection of all
these sets X form the Muller condition set (Fy, F1). As the index k is O(22IV1), the direct
transformation above is expensive. Our goal is to analyze the transformations of Rabin
games to Muller games.

We start with transforming KL games G = (A, (u1,51), ..., (ut,St)) to Muller games.

So, for the given G, we define the Muller game G’ with (Fy, F1) as follows:
X € Fy if for some pair (u;,S;) we have u; € X and X C S;, otherwise X € F;

» Lemma 23. The transformation from KL games G to Muller games G' takes O(2IV!|V|?)
time and O(|G| + 2IV'1) space.

Proof. We apply the binary encoding so that for ¢ € [1,t], we have u; € [0,n) and S; € [0,2™).

In the following, we apply binary trees to maintain sets of binary integers. We transform G
into the Muller game G’ = (A, (Fo, F1)) where we also apply the binary encoding so that Fy =
{X €[0,2") | there exists an i € [1,1] so that the u;-th bit of X is 1 and X & S; = X} and
Fi1={0,1,...,2"=1}\Fo. Thenlet S; = {S; | j € [1,t] and u; = ¢} fori € [0,n). By Lemma
22, for each i € [0,n), we compute {X € [0,2") | Jges, X & S = X} in time O(2" - n) and
space O(2"), and then compute {X € [0,2") | the i-th bit of X is 1 and Jges, X & S = X}
in time O(2") by traversing the binary trees, checking and deleting subtrees at depth 4. Since
Uieo,m{X € [0,27) | the i-th bit of X is 1 and Jges, X & S = X} = Fo, we reuse O(2")
space for each ¢ € [0,n) and use another O(2™) space to record the prefix union results. Since
JF1 is computed from Fy in time O(2‘V|) by computing the complement of the tree, this is a
transformation from KL games to Muller games and the transformation takes O(2!V!|V]?)
time and O(|G| + 2IV'1) space. <

As an immediate corollary we get the following complexity-theoretic result for KL, games.

» Theorem 24. There exists an algorithm that, given a KL game G, decides G in O(2IVI|V||E|)
time and O(|G| + 2!V1) space. J

66:15

MFCS 2025



66:16

Deciding Regular Games: a Playground for Exponential Time Algorithms

Now we transform Rabin games G to Muller games. As we mentioned above, the direct
translation to Muller games is costly. Our goal is to avoid this cost through KL games. The
following lemma is easy:

» Lemma 25. Let X CV and let (U;,V;) be a winning pair in Rabin game G. SetY; = U;\V;
and Z; =V \V;. Then XNU; 20 and XNV, =0 if and only if X NY; #0 and X C Z,.

Thus, we can replace the winning condition (U, V1), ... (Uk, Vi) in Rabin games with the
equivalent winning condition (Y1, Z1),..., (Yx, Zr). We still have Rabin winning condition
but we use this new winning condition (Y7, Z1),..., (Yx, Zk) to build the desired KL game:

» Lemma 26. The transformation from Rabin games G to KL games takes time O(k|V|?)
and space O(|G| + 2IVI|V]).

Proof. Enumerate all pairs (U;, V;), compute Y; = U; \'V;, Z; = V \ V; and add all pairs
(uj,S;) with u; € Y; and S; = Z; into KL conditions. By applying binary trees, the
transformation takes O(k|V|?) time and O(|G| + 2!V!|V]) space. This preserves the winning
sets Wy and Wh. <

Thus, the transformed KL games can be viewed as a compressed version of Rabin games.

» Corollary 27. The transformation from Rabin games G to Muller games G’ takes O((k +
2V|V|2) time and O(|G| + 2IVI|V]) space. )

Note that deciding Rabin games is equivalent to deciding Streett games. Thus, combining
the arguments above, we get the following complexity-theoretic result:

» Theorem 28. Rabin and Streett games G can be decided in O((k|V|+ 2IVI|E|)|V|) time
and O(|G] + 2VI|V|) space. N

5 Conclusion

The algorithms presented in this work give rise to numerous questions that warrant further
exploration. For instance, we know that explicitly given Muller games can be decided in
polynomial time. Yet, we do not know if there are polynomial time algorithms that decide
explicitly given McNaughton games. Another intriguing line of research is to investigate if
there are exponential time algorithms that decide colored Muller games when the parameter
|C| ranges in the interval [/|V],|V|/a], where a > 1. Tt could also be very interesting to
replace the factor 2!Vl with 2/W! in the running time that decides McNaughton games. If
this can be done, then one implies that the ETH is not applicable to McNaughton games as
opposed to colored Muller games and Rabin games. In addition, this work could be extended
to dynamic settings or experimental studies, as in [17, 25]. Its dynamic programming-style
approach may also inspire new advances, akin to DP-assisted methods in games on graphs
[29, 30, 31]. These all may uncover new insights and lead to even more efficient algorithms.

—— References

1  Henrik Bjorklund, Sven Sandberg, and Sergei Vorobyov. On fixed-parameter complexity of
infinite games. In The Nordic Workshop on Programming Theory (NWPT 20083), volume 34,
pages 29-31. Citeseer, 2003.

2  Hans L Bodlaender, Michael J Dinneen, and Bakhadyr Khoussainov. On game-theoretic
models of networks. In International Symposium on Algorithms and Computation, pages
550-561. Springer, 2001. doi:10.1007/3-540-45678-3_A7.

3 Udi Boker. Why these automata types? In LPAR, volume 18, pages 143-163, 2018. doi:
10.29007/C3BJ.


https://doi.org/10.1007/3-540-45678-3_47
https://doi.org/10.29007/C3BJ
https://doi.org/10.29007/C3BJ

Z. Liang, B. Khoussainov, and M. Xiao

10

11

12

13

14

15

16

17

18

19

20

21

Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, pages 252-263, 2017. STOC 2017 Best Paper Award.

doi:10.1145/3055399.3055409.
Antonio Casares, Thomas Colcombet, Nathanaél Fijalkow, and Karoliina Lehtinen. From muller

to parity and rabin automata: Optimal transformations preserving (history) determinism.

TheoretiCS, 3, 2024. doi:10.46298/THEORETICS.24.12.

Antonio Casares, Marcin Pilipczuk, Michal Pilipczuk, Uéverton S Souza, and KS Thejaswini.

Simple and tight complexity lower bounds for solving rabin games. In 2024 Symposium on
Simplicity in Algorithms (SOSA), pages 160-167. SIAM, 2024.

Laure Daviaud, Marcin Jurdzifiski, and KS Thejaswini. The strahler number of a parity game.

In 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
page 123. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, 2020.
Daniele Dell’Erba and Sven Schewe. Smaller progress measures and separating automata

for parity games. Frontiers in Computer Science, 4:936903, 2022. doi:10.3389/FCOMP.2022.

936903.

Michael J Dinneen and Bakhadyr Khoussainov. Update networks and their routing strategies.
In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 127-136.

Springer, 2000. doi:10.1007/3-540-40064-8_13.

Michael J Dinneen and Bakhadyr Khoussainov. Update games and update networks. Journal
of discrete Algorithms, 1(1):53—65, 2003. doi:10.1016/S1570-8667 (03)00006-6.

Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed
to win infinite games? In Proceedings of Twelfth Annual IEEE Symposium on Logic in
Computer Science, pages 99-110. IEEE, 1997. doi:10.1109/LICS.1997.614939.

E Allen Emerson and Charanjit S Jutla. The complexity of tree automata and logics of
programs. In FoCS, volume 88, pages 328-337, 1988.

E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy. In
FoCS, volume 91, pages 368-377. Citeseer, 1991.

E Allen Emerson and Charanjit S Jutla. The complexity of tree automata and logics of programs.

SIAM Journal on Computing, 29(1):132-158, 1999. doi:10.1137/50097539793304741.

John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wojtczak. An ordered
approach to solving parity games in quasi polynomial time and quasi linear space. In Proceedings
of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software,
pages 112-121, 2017. doi:10.1145/3092282.3092286.

Nathanaél Fijalkow, Nathalie Bertrand, Patricia Bouyer-Decitre, Romain Brenguier, Arnaud
Carayol, John Fearnley, Hugo Gimbert, Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey,
Benjamin Monmege, Petr Novotny, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier
Serre, and Mateusz Skomra. Games on graphs, 2023. To be published by Cambridge University
Press. Editor: Nathanaél Fijalkow. doi:10.48550/arXiv.2305.10546.

Aniruddh Gandhi, Bakhadyr Khoussainov, and Jiamou Liu. Efficient algorithms for games
played on trees with back-edges. Fundamenta Informaticae, 111(4):391-412, 2011. doi:
10.3233/FI-2011-569.

Erich Gradel, Wolfgang Thomas, and Thomas Wilke. Automata, logics, and infinite games.

Incs, vol. 2500, 2002.

Florian Horn. Streett games on finite graphs. In Proc. 2nd Workshop Games in Design
Verification (GDV). Citeseer, 2005.

Florian Horn. Explicit muller games are ptime. In JARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science. Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, 2008.

Paul Hunter and Anuj Dawar. Complexity bounds for muller games. Theoretical Computer
Science (TCS), 2008.

66:17

MFCS 2025


https://doi.org/10.1145/3055399.3055409
https://doi.org/10.46298/THEORETICS.24.12
https://doi.org/10.3389/FCOMP.2022.936903
https://doi.org/10.3389/FCOMP.2022.936903
https://doi.org/10.1007/3-540-40064-8_13
https://doi.org/10.1016/S1570-8667(03)00006-6
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1145/3092282.3092286
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.3233/FI-2011-569
https://doi.org/10.3233/FI-2011-569

66:18

Deciding Regular Games: a Playground for Exponential Time Algorithms

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Hajime Ishihara and Bakhadyr Khoussainov. Complexity of some infinite games played on
finite graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 270-281. Springer, 2002. doi:10.1007/3-540-36379-3_24.

Marcin Jurdzinski and Ranko Lazi¢. Succinct progress measures for solving parity games. In
2017 82nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-9.
IEEE, 2017.

Bakhadyr Khoussainov. Finite state strategies in one player mcnaughton games. In Interna-
tional Conference on Discrete Mathematics and Theoretical Computer Science, pages 203-214.
Springer, 2003. doi:10.1007/3-540-45066-1_16.

Bakhadyr Khoussainov, Jiamou Liu, and Imran Khaligq. A dynamic algorithm for reachability
games played on trees. In Mathematical Foundations of Computer Science 2009: 34th Interna-
tional Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009.
Proceedings 34, pages 477-488. Springer, 2009. doi:10.1007/978-3-642-03816-7_41.
Bakhadyr Khoussainov and Anil Nerode. Automata theory and its applications, volume 21.
Springer Science & Business Media, 2012.

Karoliina Lehtinen. A modal p perspective on solving parity games in quasi-polynomial time.
In Proceedings of the 83rd Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 639648, 2018. doi:10.1145/3209108.3209115.

Zihui Liang, Bakh Khoussainov, Toru Takisaka, and Mingyu Xiao. Connectivity in the presence
of an opponent. In 81st Annual European Symposium on Algorithms (ESA 20283). Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023.

Zihui Liang, Bakh Khoussainov, and Mingyu Xiao. Network control games played on graphs.
Theoretical Computer Science, page 115123, 2025. doi:10.1016/J.TCS.2025.115123.

Zihui Liang, Bakh Khoussainov, and Haidong Yang. Topological network-control games.
In International Computing and Combinatorics Conference, pages 144-156. Springer, 2023.
doi:10.1007/978-3-031-49193-1_11.

Zihui Liang, Bakh Khoussainov, and Haidong Yang. Topological network-control games played
on graphs. In International Computing and Combinatorics Conference, pages 15-26. Springer,
2024. doi:10.1007/978-981-96-1093-8_2.

Rupak Majumdar, Irmak Saglam, and KS Thejaswini. Rabin games and colourful universal
trees. In International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 213-231. Springer, 2024.

Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149-184, 1993. doi:10.1016/0168-0072(93)90036-D.

Daniel Neider, Roman Rabinovich, and Martin Zimmermann. Down the borel hierarchy:
Solving muller games via safety games. Theoretical Computer Science, 560:219-234, 2014.
doi:10.1016/J.TCS.2014.01.017.

Anil Nerode, Jeffrey B Remmel, and Alexander Yakhnis. Mcnaughton games and extracting
strategies for concurrent programs. Annals of Pure and Applied Logic, 78(1-3):203-242, 1996.
d0i:10.1016/0168-0072(95)00032-1.

Pawel Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In 44th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik, 2019. MFCS 2019 Best Paper Award.

Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett games. In 21st Annual
IEEFE Symposium on Logic in Computer Science (LICS’06), pages 275-284. IEEE, 2006.
doi:10.1109/LICS.2006.23.

Michael Oser Rabin. Automata on infinite objects and Church’s problem, volume 13. American
Mathematical Soc., 1972.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135-183, 1998. doi:10.1016/
50304-3975(98) 00009-7.


https://doi.org/10.1007/3-540-36379-3_24
https://doi.org/10.1007/3-540-45066-1_16
https://doi.org/10.1007/978-3-642-03816-7_41
https://doi.org/10.1145/3209108.3209115
https://doi.org/10.1016/J.TCS.2025.115123
https://doi.org/10.1007/978-3-031-49193-1_11
https://doi.org/10.1007/978-981-96-1093-8_2
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1016/J.TCS.2014.01.017
https://doi.org/10.1016/0168-0072(95)00032-1
https://doi.org/10.1109/LICS.2006.23
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

	1 Introduction
	1.1 Arenas, regular games, subarenas, and traps
	1.2 Our contributions in light of known algorithms

	2 The notion of full win and characterization of winning regions
	3 Recursive algorithms for deciding regular games
	3.1 Application to Muller, Rabin and Streett games

	4 Dynamic programming algorithms for deciding regular games
	4.1 Algorithm 1 for Colored Muller Games
	4.2 Algorithm 2 for Colored Muller Games
	4.3 Applications to Muller and McNaughton games
	4.4 Enumeration Lemma
	4.5 Applications to Rabin and Streett games

	5 Conclusion

