
#SAT-Algorithms for Classes of Threshold
Circuits Based on Probabilistic Rank
Nutan Limaye #Ñ

IT University of Copenhagen, Denmark

Adarsh Srinivasan # Ñ

Rutgers University, Piscataway, NJ, USA

Srikanth Srinivasan #Ñ

University of Copenhagen, Denmark

Abstract
There is a large body of work that shows how to leverage lower bound techniques for circuit classes
to obtain satisfiability algorithms that run in better than brute-force time [24, 38]. For circuits with
threshold gates, there are several such algorithms based on either

Probabilistic Representations by low-degree polynomials, which allow for the use of fast polyno-
mial evaluation algorithms, or
Low rank, which allows for an efficient reduction to rectangular matrix multiplication.

In this paper, we use a related notion of probabilistic rank to obtain satisfiability algorithms for
circuit classes contained in ACC0 ◦ 3-PTF, i.e. constant-depth circuits with modular counting gates
and a single layer of degree-3 polynomial threshold functions.

Even for the special case of a single 3-PTF, it is not clear how to use either of the above
two strategies to get a non-trivial satisfiability algorithm. The best known algorithm in this case
previously was based on memoization and yields worse guarantees than our algorithm.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases probabilistic polynomials, probabilistic rank, circuit satisfiability, circuit
lower bounds, polynomial method, threshold circuits

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.67

Funding Nutan Limaye: Received funding from the Independent Research Fund Denmark (grant
agreement No. 10.46540/3103-00116B) and is also supported by the Basic Algorithms Research
Copenhagen (BARC), funded by VILLUM Foundation Grants 16582 and 54451, and Digital Research
Centre Denmark, project P40.
Adarsh Srinivasan: Supported by the National Science Foundation under Grants CCF-2313372 and
CCF-2443697. Part of this work was done during a visit to ITU Copenhagen and BARC funded by
Basic Algorithms Research Copenhagen(BARC), supported by VILLUM Foundation Grants 16582
and 54451, and while at INSAIT, Sofia University “St. Kliment Ohridski”, Bulgaria. This work was
partially funded from the Ministry of Education and Science of Bulgaria (support for INSAIT, part
of the Bulgarian National Roadmap for Research Infrastructure).
Srikanth Srinivasan: Funded by the European Research Council (ERC) under grant agreement no.
101125652 (ALBA).

1 Introduction

Satisfiability algorithms and lower bounds

Given a family of circuits C, a fundamental algorithmic question one can ask about it is
the satisfiability question: does a given C ∈ C have a satisfying assignment? This being a
canonical NP-complete problem even for very simple C, it is hard to imagine a polynomial-

© Nutan Limaye, Adarsh Srinivasan, and Srikanth Srinivasan;
licensed under Creative Commons License CC-BY 4.0

50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Paweł Gawrychowski, Filip Mazowiecki, and Michał Skrzypczak; Article No. 67; pp. 67:1–67:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nuli@itu.dk
https://www.itu.dk/~nuli/
https://orcid.org/0000-0002-0238-1674
mailto:adarsh.srinivasan@rutgers.edu
https://adarshsrinivasan.wordpress.com
https://orcid.org/0000-0003-0288-4818
mailto:srsr@di.ku.dk
https://srikanth-srinivasan.bitbucket.io
https://orcid.org/0000-0001-6491-124X
https://doi.org/10.4230/LIPIcs.MFCS.2025.67
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

67:2 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

time algorithm for this problem. However, it is still reasonable to try to obtain some speed-up
over brute-force search. Typically, and also in this paper, we aim for running times of 2n−s

where n denotes the number of variables and s is the “savings” over brute-force search.1
A long line of work has leveraged structural understanding from complexity-theoretic

research on circuit lower bounds to devise satisfiability algorithms for various families of
circuits. For example, these ideas have led to approaches to satisfiability algorithms for
constant-depth circuit classes [24, 17, 37, 25], Boolean formulas [29, 30] and Threshold
circuits of various kinds [34, 12, 18, 9, 7].

A profound result of Williams [36, 38] also makes a connection in the opposite direction,
by showing that satisfiability algorithms with savings ω(log n) for many “reasonable” circuit
classes implies lower bounds for these classes.2 This gives even more impetus to studying
the satisfiability problem in this regime.

Lower bound techniques in satisfiability algorithms

There are a handful of techniques from complexity-theoretic investigations that are useful in
devising satisfiability algorithms. These include

Memoization: In the setting of lower bounds, this idea goes back to the work of
Nechiporuk [22] who used it to show quadratic Boolean formula lower bounds. This idea
can also be used to obtain satisfiability algorithms in some settings (see e.g. [28, 7]).
To apply this technique to a circuit class C, one must be able to prove a strong upper
bound on the number of functions in C of a given size. Unfortunately, in most algorithmic
settings (e.g. CNF formulas of unbounded width), one cannot get a strong enough upper
bound of this form to get much out of this technique.
Restriction-based techniques: A popular family of techniques used to devise satisfi-
ability algorithms is the idea of restricting a subset of the variables (i.e. setting them
to Boolean assignments) in a way that simplifies the underlying circuit and allows us to
circumvent having to try all settings of the other variables. This leads to DPLL-style
algorithms for SAT and their extensions to AC0 circuits [17] and Boolean formulas [29]
based on results such as the Håstad Switching Lemma [15, 16]. Unfortunately, these
arguments do not extend to circuit classes where the gate set contains gates other than
the DeMorgan basis (e.g. XOR gates or Majority gates that count the number of 1s)
unless severe size restrictions are placed on the circuits [12, 18].

This brings us to the topic of this paper, where we study circuits with threshold gates.
For an integer d, a Polynomial Threshold Function (PTF) of degree d is defined to be a
Boolean function f : {0, 1}n → {0, 1} such that there exists a multilinear polynomial P of
degree ≤ d with integer coefficients such that for each x ∈ {0, 1}n, f(x) = 1 if and only if
P (x) > 0. We denote by d-PTF the class of polynomial threshold functions of degree d. The
special case d = 1 is denoted LTF.

Even the problem of checking if a given f ∈ 2-PTF is satisfiable is an NP-complete
problem.3 Further, the problem for d-PTF is a considerable generalization of the problem of
optimizing a MAX-d-CSP over Boolean variables. While we know algorithms for MAX-2-CSP
with savings Ω(n) [35], obtaining such a result even in the case of 3-CSPs remains an elusive
problem. For the best known result for d ≤ 4 see the work of Alman, Chan, and Williams [3].

1 The trivial algorithm evaluates the circuit on every input, which takes time at least 2n.
2 i.e. a superpolynomial improvement over brute-force
3 Here, the input is given as a polynomial P with integer coefficients that represents f in the sense

described above.

N. Limaye, A. Srinivasan, and S. Srinivasan 67:3

We will consider algorithms for classes of polynomial-sized circuits using PTF gates (and
also other counting gates). In such situations, neither memoization nor restriction-based
techniques seem to be useful in devising satisfiability algorithms, except in very special cases
(as we will explain below). However, there are some known algorithms that work for such
circuit classes. Mostly, they exploit the following ideas.

Polynomial representations: This is a powerful circuit-analysis technique going back
to a foundational circuit lower bound due to Razborov [26, 32] and follow-up results
of Yao [39] and Beigel and Tarui [8] which were aimed towards proving bounds for
constant-depth circuits with AND, OR, NOT and modular counting gates. Here, it is
shown that small circuits from this class can be represented by (sometimes randomized)
polynomials. By making this technique algorithmic and using fast polynomial evaluation
algorithms, Williams [38] devised the first satisfiability algorithms for these circuits with
non-trivial savings, leading also to his breakthrough circuit lower bound for the class
ACC0.

Rank techniques: Another powerful idea is to reduce the problem of checking sat-
isfiability to computing the entries of a low-rank matrix. Typically, this is done by
splitting the n variables into two subsets of size n/2 and showing that the 2n/2 × 2n/2-
sized matrix obtained by evaluating the given input circuit C on all pairs of inputs
(x, y) ∈ {0, 1}n/2 × {0, 1}n/2 is (a simple function of) a low-rank matrix. By using
fast algorithms for rectangular matrix multiplication [14, 34], this leads to satisfiability
algorithms for classes such as ACC0 ◦ LTF.

In this work, we show how to extend these ideas to polynomial threshold functions of
degree up to 3 and generalizations thereof. It is unclear if either of the above techniques can
be used directly to obtain non-trivial savings in this setting.4 More precisely, we obtain the
following results. See Section 2 for definitions.

▶ Theorem 1 (Informal). We have the following satisfiability algorithms.
For any fixed prime p, a deterministic algorithm for counting the number of satisfying
assignments of a given polynomial-sized AC0[MODp] ◦ 3-PTF circuit with savings Ω̃(

√
n)

over brute-force search.
A deterministic algorithm for counting the number of satisfying assignments of a given
polynomial-sized ACC0 ◦ 3-PTF circuit with savings Ω(nε) where ε depends on the depth
of the circuit.

Even in the case of a single 3-PTF, the running time of our algorithm beats the best-known
previous algorithm of [7], which was based on memoization and yielded savings of Ω̃(n1/3).
Moreover, as mentioned above, the technique of memoization does not seem to be useful
even for simple extensions of this class to, say, conjunctions of polynomially many 3-PTFs.

As a consequence of our theorem and the algorithmic method of Williams, extended
by Murray and Williams [38, 21], we also derive the first lower bound for the circuit class
ACC0 ◦ 3-PTF.

4 It should be noted that a PTF of degree d has a low-degree polynomial (sign) representation by
definition. However, this alone is not enough to devise a satisfiability algorithm. We also need a
low-degree polynomial representation for a disjunction of superpolynomially many PTFs, and whether
this stronger property holds is unclear. In fact, it seems unlikely [31].

MFCS 2025

67:4 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

Main idea

The main idea behind our algorithm is similar to the idea used in the work of Alman, Chan and
Williams [3] for MAX-4-CSPs. Specifically, we combine the two techniques mentioned above
into a probabilistic rank upper bound for the classes of circuits we consider. For simplicity,
consider the case when the input is a polynomial P (z1, . . . , zn) of degree 3 representing a
3-PTF f and we want to know if f is satisfiable.

As above, we split the n Boolean variables of P into two disjoint sets A = {1, . . . , n/2}
and B = {n/2 + 1, . . . , n} of size n/2 and consider the matrix Mf of size 2n/2 × 2n/2 where
the rows and columns are labelled by settings to variables indexed by A and B respectively
and

Mf (x, y) = f(x, y)

for each x, y ∈ {0, 1}n/2. Now, while we cannot argue that Mf is low-rank, we can argue
that there is a low-rank (roughly exp(Õ(

√
n) ≪ 2n/2) random matrix M that agrees with

Mf in each entry w.h.p. To do this, we write

P (x1, . . . , xn/2, y1, . . . , yn/2) =
n/2∑
i=1

xi·Qi(y1, . . . , yn/2)+
n/2∑
j=1

yj ·Rj(x1, . . . , xn/2)+Q(y)+R(x)

(1)

by noting that each monomial in P must have degree at most 1 either in the variables indexed
by A or by B. Partitioning the monomials that have variables in both parts according
to choice of this “special” variable gives the decomposition above (Q and R contain the
monomials that contain variables indexed by only one of B or A respectively). This type of
decomposition is exactly like that obtained by [3]. From this point on our proof outline is
also quite similar. The main place where we differ is that we need to handle weights which
are not necessarily polynomially bounded.

We continue as follows. Note that f(x, y) can be written as the sign of the above expression.
To express Mf as a low-rank matrix (probabilistically), we use constructions of probabilistic
polynomials (see definition in Section 2) for the Majority function5 and variants [6, 3] which
allows us to write the above as a random polynomial of degree at most Õ(

√
n) over the bits

of the numbers

x1, . . . , xn/2, R1(x), . . . , Rn/2(x), R(x), y1, . . . , yn/2, Q1(y), . . . , Qn/2(y), Q(y).

Each monomial in the polynomial defines a rank-1 matrix, as it is a product of the form
F (x) ·G(y) for some functions F and G. A polynomial of degree Õ(

√
n) thus defines a matrix

of rank exp(Õ(
√

n)).
To extend the above to (say) ACC0 ◦ 3-PTF, we compose the above construction with

standard low-degree polynomial representations of the class ACC0 [2, 8].
This structural result shows that the family of degree-3 PTFs has low probabilistic rank.

This may be of independent interest. Alman and Williams [5] proved such a result for
the inner product function, resulting in improved bounds on the rigidity of the Hadamard

5 This idea works when the coefficients of the underlying polynomial P are all polynomially small. Our
algorithm can also handle coefficients that are exponentially large. In this case, we need some additional
circuitry to simulate the sum efficiently. This can be converted to a low-degree polynomial using the
construction of Razborov [26, 25].

N. Limaye, A. Srinivasan, and S. Srinivasan 67:5

matrix. Follow-up results have used this idea to give better circuits for computing the
Walsh-Hadamard transform [4].

For the satisfiability algorithm, we need to combine this idea with the standard “blow-up
trick” of Williams. Returning to the case of a single 3-PTF f(z1, . . . , zn), we will apply the
above idea to

g(z1, . . . , zn−ℓ) =
∨

a∈{0,1}ℓ

f(z1, . . . , zn−ℓ, a1, . . . , aℓ).

(Note that g is satisfiable if and only if f is satisfiable.) For suitably small ℓ (roughly
√

n),
we will apply the above idea to g and show that the analogous matrix Mg has low-rank. By
using Coppersmith’s rectangular matrix multiplication algorithm [14, 34], it follows that Mg

can be computed in time approximately 2n−ℓ, leading to savings ℓ for our algorithm.
Finally, to count the number of satisfying assignments, we replace the OR above by a

sum and use similar ideas (as in [34, 25]).

▶ Remark 2. The algorithm for MAX-d-CSP (for the dense case) by [3] is closely related to
our algorithm. They are able to make it work for d = 4, whereas, we only obtain algorithms
for 3-PTF. The main bottleneck seems to be that we are dealing with arbitrary weights,
whereas they work with polynomially bounded weights. It is unclear how we can make their
ideas work even for a single 4-PTF with arbitrary weights.

Another reason our result does not work for d-PTFs for d ≥ 4 is that the analogous
decomposition to (1) yields a decomposition with m ≥ n2 terms, and the probabilistic degree
of the Majority function on m variables is Ω(

√
m) [26]. Thus, we only get a polynomial of

degree Ω(n), which does not yield a suitably non-trivial bound on the probabilistic rank of
these PTFs. It is an interesting open problem to see if any non-trivial upper bounds can be
obtained for the probabilistic rank of PTFs of larger degree.

Related work

Over the past decade, there have been many works studying satisfiability algorithms for
circuits using threshold gates and modular counting gates.

In the setting of ACC0, the class of constant-depth circuits using AND, OR, NOT
and modular counting gates, the first non-trivial satisfiability algorithms were given by
Williams [38] followed by improvements in [34], which also yields algorithms for the class
ACC0 ◦ LTF. Further extensions have been obtained by works of [3, 11] but neither of these
works allow us to replace the LTF gates by PTFs of higher degree.

For a single d-PTF, the best known algorithms use the memoization technique and have
savings Ω̃(n1/d). [27, 7] This technique is grounded in the fact that the number of degree-d
PTFs on n variables is 2O(nd+1) [13], and this does not extend even to simple combinations
of PTFs, such as conjunctions of polynomially many PTFs (or even LTFs).6

There are also restriction-based satisfiability algorithms for circuits made up of LTF and,
more generally, PTF gates [12, 18]. Unfortunately, though, these algorithms only work when
the size of the circuits (defined in terms of the number of wires) is slightly superlinear in the
number of variables.

6 For example, it is easy to show that the number of distinct functions that can be written as a conjunction
of s LTFs is always at least 2s as long as n > log s.

MFCS 2025

67:6 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

Paper organization

In Section 3, we upper bound the probabilistic rank of 3-PTFs (Lemma 14) and present a
deterministic #SAT algorithm for AC0[MODp] ◦ 3-PTF circuits (Theorem 17). In Section 4,
we present a #SAT algorithm for ACC0 ◦ 3-PTF circuits (Theorem 20).

2 Preliminaries

Computational model and asymptotic notation

All our algorithms can be implemented in the standard RAM model. The notations
poly(n), polylog(n) are used to denote arbitrary, but fixed polynomial and polylogarith-
mic factors in n respectively. We use the O∗(·) and Õ(·) notation to suppress polynomial
and logarithmic factors respectively.

The bit complexity of representing PTF’s

A polynomial threshold function can be defined using multiple polynomials. Hence, the
number of bits needed to represent a PTF depends on the bit complexity of the polynomial
used to define it.

▶ Definition 3 (Bit complexity of a polynomial). Given a multilinear polynomial
P (x1, x2, . . . , xn) =

∑
S⊆[n] cS ·

∏
j∈S xj, the bit complexity of P is defined to be w(P) =

log
(∑

S⊆[n] |cS |
)

.

It is known that any d-PTF can be represented using a polynomial with bit complexity upper
bounded by O(nd log n) [20]. However, given an arbitrary d-PTF, it is not clear how to
efficiently obtain such a low weight representation. Nevertheless, our algorithms in Section 3
can handle PTF’s represented by polynomials with bit complexity up to 2nδ , for some fixed
δ > 0. For the purpose of proving lower bounds, we can always assume that the bit complexity
of d-PTF functions is upper bounded by O(nd log n).

Boolean circuits

We use the standard definitions for boolean circuits and circuit classes. We refer the reader
to [33] for more details. The size of a circuit is defined to be the number of wires and its
depth is defined to be the total number of layers. The circuit class AC0 consists of constant
depth circuits with AND, OR, NOT gates of unbounded fan-in. For any m ∈ N, a MODm

gate with fan-in t outputs 1 if the sum (over N) of its inputs is divisible by m and outputs 0
otherwise. For any prime p, the class AC0[MODp] consists of circuits with AND, OR, NOT and
MODp gates with unbounded fan-in. The class ACC0 is defined as circuits of constant depth
consisting of AND, OR, NOT and MODm gates of unbounded fan-in, for any fixed composite
number m.

We define the following class of circuits, which can efficiently represent ACC0 circuits [1, 2, 8].

▶ Definition 4 (Symmetric functions and SYM+ circuits). A boolean function f : {0, 1}n →
{0, 1}n is called a symmetric function if there exists a function F : [n] → {0, 1} such that
f(x1, . . . , xn) = F (

∑n
i=1 xi). A SYM+ circuit is a depth two boolean circuit with an output

gate that computes any symmetric function, and AND gates at the second layer.

We also use modulus amplifying polynomials in our algorithms for ACC0 ◦ 3-PTF satisfiability.

N. Limaye, A. Srinivasan, and S. Srinivasan 67:7

▶ Definition 5 (Beigel-Tarui modulus amplifying polynomials [8]). Let p be any prime. For
any t ∈ N, the t-th Beigel Tarui modulus amplifying polynomial is defined as

Ft(z) = (−1)t(z − 1)t

(
t−1∑
i=0

(
t + i − 1

i

)
zi

)
+ 1 .

This polynomial has the property that for all z ≥ 0, p ≥ 2, Ft(z) ≡ 0 mod pt if z ≡ 0 mod p

and Ft(z) ≡ 1 mod pt if z ≡ 1 mod p.

Probabilistic matrices and polynomials

We review some facts on probabilistic matrices and probabilistic polynomials.

▶ Definition 6 (Probabilistic Polynomial). Let F be a field. A probabilistic polynomial over
n variables is a distribution of polynomials from F[x1, x2, . . . , xn]. An ε-error probabilistic
polynomial for a Boolean function f : {0, 1}n → {0, 1} is a probabilistic polynomial P such
that, for every z ∈ {0, 1}n, PrP ∼P[P (z) = f(z)] ≥ 1 − ε. A probabilistic polynomial P is said
to have degree D if PrP ∼P[deg(P) ≤ D] = 1.

To derandomize algorithms that use probabilistic polynomials, we will need to design
probabilistic polynomials that can be sampled using less randomness. To be precise, we say
that a probabilistic polynomial P can be sampled in time T (n) using r(n) bits of randomness if
there exists a deterministic algorithm A that takes as input a string σ ∈ {0, 1}r(n) and in time
T (n) outputs polynomials, such that for each polynomial P , Prσ∼{0,1}r(n) [A(σ) = P] = P(P).
We will also need to reduce the error of a probabilistic polynomial to any arbitrary ε > 0.

▶ Lemma 7 (Randomness efficient error reduction for probabilistic polynomials). Let f be any
boolean function on n variables with an 1/3-error probabilistic polynomial of degree D that
can be sampled using r bits of randomness in time T (n). Then, for any ε > 0 there exists a
probabilistic polynomial Q for f with error ε, and degree O(D log(1/ε)). Furthermore, Q is of
the form MAJ

(
P1, . . . , Pℓ

)
, where ℓ = O(log(1/ε)) P1, . . . , Pℓ are probabilistic polynomials

of degree D, and there exists an algorithm that uses O(r + log(1/ε)) bits of randomness and
outputs P1, . . . , Pℓ as sums of monomials in time O(ℓ · T (n)).

Proof. We refer the reader to the proof of [25, Lemma 16]. ◀

The notion of probabilistic matrices and probabilistic rank generalize the notion of
probabilistic polynomials and probabilistic degree.

▶ Definition 8 (Probabilistic matrix [5]). Let R be any ring. Consider any matrix M ∈ RN×N .
A probabilistic matrix for M with error ε is a distribution M over N × N matrices in RN×N

such that for each i, j ∈ [N]2, PrM ′∼M[M ′[i, j] = M [i, j]] ≥ 1 − ε. A probabilistic matrix
M has rank r if every matrix sampled from M has rank at most r. A matrix M has
ε-probabilistic rank r if there exists a probabilistic matrix M for M with error ε and rank r.

Fast rectangular matrix multiplication

All our satisfiability algorithms rely on the fact that we can rapidly multiply rectangular
matrices using Coppersmith’s algorithm.

▶ Lemma 9 (Coppersmith’s algorithm [14, 34]). For sufficiently large N and α ≤ 0.172
and any field F with 2polylog(N) elements, there exists an algorithm that takes matrices
A ∈ FN×Nα

, B ∈ FNα×N as inputs and outputs the matrix A · B in time N2 · polylog(N)

We refer the reader to the appendix of [34] for a proof.

MFCS 2025

67:8 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

3 The probabilistic rank of 3-PTFs

We start with recalling that there exist probabilistic polynomials for AC0 circuits with degree
polylogarithmic in the size of the circuit.

▶ Lemma 10 (Randomness efficient probabilistic polynomials for AC0 [25]). Let p be any prime.
Any AC0[MODp] circuit of depth d and size s on n variables has an ε-error probabilistic
polynomial P over the field Fp of degree O

(
(log s)d−1 log(1/ε)

)
, and a polynomial can be

sampled from the distribution in time nO(log s)d−1 log(1/ε) and using O (log(s) + log(1/ε))
random bits.

▶ Lemma 11. There exists a probabilistic polynomial for any symmetric boolean function of
error 1/3 and degree d = O (

√
n log(n)). A polynomial can be sampled from the distribution

in time O
((

n
d

)
poly(n)

)
using O

(
log2(n)

)
random bits.

Proof. Let S ⊆ [n] be the set of all k ∈ [n] such that f(x) = 1 if
∑n

i=1 xi = k. Hence, f(x) =∨
k∈S (

∑n
i=1 xi = k). The predicate (

∑n
i=1 xi = k) can be computed by a AND2 ◦MAJ circuit

with MAJ gates with O(n) fan-in. Now, MAJ has a 1/3-error probabilistic polynomial over any
field of degree O (

√
n), and a polynomial can be sampled from the probabilistic polynomial

using O(log2 n) random bits [3]. The AND2 gates can be converted into polynomials of degree
two trivially. Hence, using Lemma 7, we can sample a probabilistic polynomial of error ε

for the predicate (
∑n

i=1 xi = k) of degree
√

n log(1/ε) using O(log2(n) + log(1/ε)) random
bits. Finally, we can convert the top OR gate into a probabilistic polynomial of constant
degree and error 1/10 using O(log n) random bits (Lemma 10). Setting ε = 1

10n for the MAJ
gates and composing these polynomials, we get a probabilistic polynomial for the symmetric
function of degree O(

√
n log(n)) using O(log2 n) random bits and error 1/3. ◀

▶ Lemma 12. There exists an AC0 ◦ SYMn circuit with poly(n, M) gates that takes as input
n integers of M bits each and outputs their sum.

Proof. Suppose the M bit numbers are A1, A2, . . . , An, where Ai = Ai,M−1Ai,M−2 . . . Ai,0,
with Ai,j ∈ {0, 1}. Let ℓ = ⌈log n⌉. Let B = Bℓ+M−1Bℓ+M−2 . . . B0 =

∑n
i=1 Ai. For

each j = 1, 2, . . . , M , let yj = yj,ℓ−1yj,ℓ−2 . . . yj,0 =
∑n

i=1 Ai,j . There exist functions
f0, f1, . . . fℓ−1 : [n] → {0, 1} such that yj,k = fk (

∑n
i=1 Ai,j) for each k = 0, 2, . . . , ℓ − 1.

Then, we can rewrite the sum B as follows.

B =
M−1∑
j=0

2j ·
n∑

i=1
Ai,j =

M−1∑
j=0

2j · yj =
M−1∑
j=0

2j ·

(
ℓ−1∑
k=0

2kfk

(
n∑

i=1
Ai,j

))

=
M−1∑
j=0

ℓ−1∑
k=0

2j+k · fk

(
n∑

i=1
Ai,j

)
.

Switching the order of the summation, this is equal to
∑ℓ−1

k=0 2k
∑M−1

j=0 2j ·fk (
∑n

i=1 Ai,j). For
each k = 0, 2, . . . , ℓ−1 and j = 0, 1, . . . , M−1, the function fk (

∑n
i=1 Ai,j) can be implemented

using a single SYM gate with fan-in n. Hence, the numbers Ck = 2k
∑M−1

j=0 2j · fk (
∑n

i=1 Ai,j)
can be computed in parallel, for each k = 0, 1, . . . , ℓ − 1 as bit strings of length ℓ = ⌈log(n)⌉
using a layer of ℓM SYM gates of fan-in n. What remains is to compute B =

∑ℓ−1
k=0 Ck. It is

known that addition of log N numbers with N bits each can be implemented using constant
depth circuits of size poly(N) [33]. We can use these circuits with N = M + n to prove the
lemma. ◀

N. Limaye, A. Srinivasan, and S. Srinivasan 67:9

▶ Remark 13. A very similar AC0 ◦ MAJ-circuit for this problem was first constructed in [19].
However, their construction yields MAJ gates of fan-in n2. The results in this section require
circuits with MAJ gates with fan-in at most n.

▶ Lemma 14. Let p be any prime and F : {0, 1}n → {0, 1} be a 3-PTF defined by a
polynomial P ∈ Z[z1, z2, . . . , zn] and bit complexity upper bounded by M . Then there exist
functions f, g : {0, 1}n/2 → {0, 1}n′/2, with n′ = O(nM) and a probabilistic polynomial
Q ⊆ Fp[x1, . . . , xn′] of degree

√
n · polylog(n, M), such that for each x, y ∈ {0, 1}n/2,

Pr
Q∼Q

[Q(f(x), g(y)) = F (x, y)] ≥ 2/3 .

Given x, y, f(x) and g(y) can be computed in time poly(n, M) and a polynomial can be
sampled from Q using O(log M + log2 n) random bits in time 2

√
n·polylog(n,M).

▶ Remark 15. This implies that there exists an absolute constant δ > 0 such that 3-PTFs
defined using polynomials of bit complexity upper bounded by 2nδ have probabilistic degree
o(n). In several situations, it may also be reasonable to assume that M = poly(n), as noted
in Section 2.

Proof. Note that any cubic polynomial P (x, y) can be decomposed in the following fashion.

P (x, y) =
n/2∑
j=1

xjQj(y) +
n/2∑
j=1

yjRj(x) + Q̃(y) + R̃(x) ,

for quadratic polynomials Qj , Rj , Q̃, R̃. We can now define f(x) and g(y) to be the bits
of the integers Rj(x), R̃(x) and Qj(y), Q̃(y) (with an extra bit to store the sign) for each
j ∈ [n/2] respectively. The number of bits needed to express f(x) and g(y) is upper bounded
by O(log(R̃(x)) +

∑n/2
j=1 log(Rj(x))) and O(log(R̃(y)) +

∑n/2
j=1 log(Qj(y))) respectively. By

the definition of bit-complexity of a polynomial, the values of Rj(x), R̃j(x), Qj(y), Q̃j(y) are
upper bounded by 2w(P) and hence by 2M for each j ∈ [n/2], x ∈ {0, 1}n/2, which means
that f(x) and g(y) are bit strings of length O(nM).

Converting F into a poly(n, M) sized AC0[⊕] ◦ SYMn ◦ AND2 circuit. We can define a
circuit C, which is very similar to the circuit described in the proof of [34, Theorem 1.4] Let
SUMn,M denote a circuit that takes as input up to n natural numbers with bit complexity
M and outputs their t = O(M + log n) bit sum. Let LEQt denote a circuit that takes as
input two t bit integers a, b and outputs 1 if a ≤ b and 0 otherwise. The bottom-most
layer of the circuit consists of AND gates with fan-in two. This layer outputs the bits for
xjQj(y), yjRj(x). Now, given the bits of the integers xjQj(y), yjRj(x), Q̃(y), R̃(x) for all
j ∈ [m/2], we can compute the output of the 3-PTF using a LEQt ◦ SUMn,M circuit. This
can be accomplished by adding up all the negative and positive integers in parallel using two
SUMn,M subcircuits and then comparing the outputs of these two subcircuits using an LEQt

subcircuit. Now, we note that LEQt has poly(t) sized AC0 circuit of depth 4 (see [10] and [37,
Appendix A] 7) and SUMn,M has a AC0 ◦ SYMn circuit with poly(n, M) gates by Lemma 12.
Hence, C has poly(n, M) gates.

7 this follows from the following fact: LEQ(x, y) =
(∧t

i=1(1 + xi + yi)
)

∨∨t

i=1

(
(1 + xi) ∧ yi

∧i−1
j=1(1 + xj + yj)

)
, where LEQ(x, y) = 1 if and only if x ≤ y.

MFCS 2025

67:10 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

Converting C into a probabilistic polynomial. The next step is to convert C into a
probabilistic polynomial Q. Each of the AND2 gates at the bottom can be trivially represented
by a constant degree polynomial. Next, we convert each symmetric gate into a probabilistic
polynomial of error ε = 1

(nM)c for sufficiently large c ∈ R and degree O (
√

n log(1/ε) log n) =

O (
√

n log(M)polylog(n)) and 2O(√
n log(M)polylog(n)) monomials using Lemma 11. We can

use union bound to show that that the probability that any of the polynomials for the
symmetric gates err is upper bounded by 1/10. The remaining part of C is an AC0 circuit
with S = poly(n, M) gates. This can be converted into a probabilistic polynomial of degree
polylog(n, M), O(M log n) inputs and error 1/10. Hence, Q has degree

√
n · polylog(n, M).

We can then use Lemma 7 obtain a probabilistic polynomial with error ε and degree√
n · polylog(n, M) log(1/ε) for any ε > 0.

Randomness and time complexity. The amount of random bits needed for the probabilistic
polynomials for the symmetric gates is O(log2(n) + log(M)) (Lemma 11). Because we
are using the union bound, we can just reuse the same random bits for all the symmetric
gates. The probabilistic polynomials for the AC0 part of C can be constructed using
O(log(S)) = O(log M + log n) random bits (Lemma 10). ◀

Lemma 14 implies that all 3-PTF functions have low probabilistic rank.

▶ Corollary 16. 3-PTF functions over n variables have probabilistic rank 2Õ(
√

n).

Proof. Any 3-PTF function F : {0, 1}n → {0, 1} can be defined using a cubic polynomial
P with poly(n) bit complexity [20]. Hence, we can use Lemma 14 to define probabilistic
matrices A ⊆ F2n/2×r

p , B ⊆ Fr×2n/2

p for r = 2Õ(
√

n) such that for each x, y ∈ {0, 1}n/2,
PrA∼A,B∼B[(A ·B)x,y = F (x, y)] ≥ 2/3. We can sample matrices from the distributions A, B
as follows. We first sample a polynomial Q from the distribution Q defined in Lemma 14.
The columns of A (and the rows of B) are indexed by monomials in Q. Define the entry
of A defined by a monomial cS

∏
i∈S xi for a set S ⊆ [n] and an assignment x ∈ {0, 1}n/2

to be cS

∏
i∈S∩{1,...,n/2}(f(x))i, and the entry of B defined by the same monomial and an

assignment y ∈ {0, 1}n/2 to be
∏

i∈S∩{n/2+1,...,n}(g(y))i, where (f(x))i and (g(y))i denote
the i-th entry of the strings f(x) and g(y) respectively. Hence, (A · B)x,y = P (x, y), which is
equal to F (x, y) with probability at least 2/3. ◀

We use Lemma 14 to obtain a satisfiability algorithm for 3-PTF-SAT, as well as for more
expressive complexity classes involving 3-PTF gates. The following theorem follows directly
from combining Lemma 14 with Lemma 10 and derandomization techniques developed in [25]
to design a deterministic #SAT algorithm for AC0[MODp] ◦ 3-PTF circuits.

▶ Theorem 17. Let p be any prime number. There exists a deterministic algorithm that
counts the number of satisfying assignments to AC0[MODp] ◦ 3-PTF circuits of depth d in

time poly(n, M) · 2n−
√

n

polylog(n,M) logd−1(s) .

▶ Remark 18. This algorithm can handle circuits of size up to 2nδ′

, for some δ′ that depends
on d as well as circuits with 3-PTFs defined by polynomials with weights upper bounded by
2nδ , for the previously defined δ.

Proof. We start with designing a probabilistic polynomial for C. Let F1, F2, . . . , Fs1 be
the 3-PTF gates in C, for s1 ≤ s. Using Lemma 14, design probabilistic polynomials
Q1, . . . , Qs1 with 2

√
n·log(s)polylog(n,M) monomials and functions f1, g1, . . . fs1 , gs1 , such that

PrQi∼Qi [Qi(f i(x), gi(y)) = Fi(x, y)] ≥ 1 − 1
210s . The polynomials can be sampled using a

N. Limaye, A. Srinivasan, and S. Srinivasan 67:11

common set of O(log M + log2 n + log(s)) random bits, using Lemma 14 and Lemma 7. We
can sample a probabilistic polynomial of error 1/3 for the AC0 part of C of degree O(logd−2 s)
and O(log s) random bits using Lemma 10. Composing these polynomials and using
Lemma 7 again, we can obtain a probabilistic polynomial P with 2

√
n·polylog(n,M)·logd−1 s log(1/ε)

monomials using O(log M + log2 n + log s + log(1/ε)) bits of randomness and functions
f, g : {0, 1}n/2 → {0, 1}O(nMs) such that PrP ∼P[P (f(x), g(y)) = C(x, y)] ≥ 1 − ε. Fur-
thermore, P = MAJ(P1, P2, . . . , Pℓ), for probabilistic polynomials P1, P2, . . . , Pℓ with
2

√
n·polylog(n,M)·logd−1 s monomials and ℓ = O(log(1/ε)).
The satisfiability algorithm now follows from a standard approach to designing circuit

satisfiability algorithms, first used by Williams [38] for ACC0 satisfiability algorithms. Later
on, in [25], this algorithm was derandomized and extended to count the number of satisfying
assignments. Pick some n′ ≤ n/2, and let m := n − n′. For each x, y ∈ {0, 1}m/2, let
G(x, y) := |{z ∈ {0, 1}n′ : C(z, x, y) = 1}|. For each z ∈ {0, 1}n′ , let Cz denote the circuit
C, with the first n′ variables restricted according to the assignment z. By definition,

G(x, y) =
∑

z∈{0,1}n′

C(z, x, y) =
∑

z∈{0,1}n′

Cz(x, y) ,

and #SAT(C) =
∑

x,y∈{0,1}m/2 G(x, y). Now, for each z ∈ {0, 1}n′ , define functions fz, gz

and probabilistic polynomials Pz on O(mMs) variables such that PrP z∼Pz [P z(fz(z), gz(y)) =
Cz(x, y)] ≥ 1 − 1/210n′ using Lemma 14. These can be sampled using r = O(log M + log2 n +
log s + n′) common random bits. For each σ ∈ {0, 1}r, let P z,σ = MAJ(P z,σ

1 , . . . , P z,σ
ℓ) for

ℓ = O(n′) denote the polynomial sampled from Pz using the string σ as the random bits.
Hence,

∑
σ∈{0,1}r

P z,σ(f(x), g(y)) =

≥ 2r
(

1 − 1
210n′

)
if Cz(x, y) = 1

≤ 2r

210n′ if Cz(x, y) = 0

Summing over all z ∈ {0, 1}n′ ,

2r

(
1 − 1

29n′

)
G(x, y) ≤

∑
σ∈{0,1}r

∑
z∈{0,1}n′

(P z,σ(fz(x), gz(y)) mod p)

≤ 2r

(
1 + 1

29n′

)
G(x, y) (2)

where the sum is over Z, not Fp.

Fourier coefficients

Letting MAJ be a function from Zℓ
p → Zp

8, we can define coefficients ka ∈ C for each
a ∈ Fℓ

p, such that MAJ(z1, . . . , zℓ) =
∑

a∈Fℓ
p

ka ·
(∑ℓ

i=1 aizi mod p
)

. The quantity(∑ℓ
i=1 aizi mod p

)
is interpreted as a real number. The numbers ka can be computed for

each a ⊆ Fℓ
p in time 2O(ℓ) using the FFT algorithm. We refer the reader to [23] for more

details. Define the polynomials P z,σ
a :=

∑ℓ
i=1 aiP

z,σ
i , and let Ft denote the t-th Beigel-Tarui

modulus amplifying polynomial (Definition 5).

8 We just let MAJ be the standard majority function on z ∈ {0, 1}ℓ, and arbitrarily set it to (say) 0 on all
other z ∈ Fℓ

p

MFCS 2025

67:12 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

The parameters

Set n′ =
√

n
p(log M,log n) logd−1 s

for a suitable polynomial p. Let m := n − n′ We remind the
reader that ℓ = An′ and that r = B(log M + log2 n + log s + log(1/ε)) = O(log M + log2 n +
log s + log n′) for constants A, B. We choose t = n′/ log2(p) + ℓ + r/ log2(p) + 10. Now, we
can present the deterministic algorithm.

1. Calculate the coefficients ka for each a ∈ Fℓ
p for MAJ.

2. For each z ∈ {0, 1}n′
, σ ∈ {0, 1}r, a ∈ Fℓ

p, construct the polynomials P z,σ
a as sums of

monomials and functions fi, gi, using Lemma 14.
3. For each i ∈ {1, 2, . . . , 2n′}, construct as a sum of monomials, the polynomial

R :=
∑

z∈{0,1}n′

∑
σ∈{0,1}r

∑
a∈Fℓ

p

ka · Ft ◦ P z,σ
a .

4. For each x, y ∈ {0, 1}m/2, evaluate R(f(x), g(y)) using Coppersmith’s algorithm.
5. Output

∑
(x,y)∈{0,1}m/2×{0,1}m/2 [(R(f(x), g(y)) mod pt) /2r] (where [·] denotes the near-

est integer function).

Running time

Step 1 takes time 2O(ℓ) = 2O(n′), which can be upper bounded (very loosely) by 2n/10 ·
poly(n, M, s). Step 2 takes time 2n′+r+ℓ log2 p · 2

√
n logd−1 s·polylog(n,M), which can be upper

bounded by 2n/10 · poly(n, M, s) as well. To upper bound the complexity of Step 3, note
that R has 2n′+r+ℓ log2 p · 2t

√
n logd−1 s·poly(log n,log M) monomials. Choosing the polynomial p

appropriately, this can be upper bounded by 20.01n. Hence, we can construct the polynomial
for each a, z, σ in time poly(n, M, s) · 2n/10. Because the number of monomials in R is upper
bounded by 20.05m, Step 4 takes 2mpoly(m) time (Lemma 9). Step 5 runs in 2mpoly(m)
time as well.

Correctness

From the properties of the modulus amplifying polynomials (Definition 5),
Ft(P z,σ

a (f(x), g(y))) ≡ 0 mod pt if P z,σ
a (f(x), g(y)) ≡ 0 mod p, and Ft(P z,σ

a (f(x), g(y))) ≡
1 mod pt if P z,σ

a (f(x), g(y)) ≡ 1 mod p. Because we have chosen t such that pt > pℓ2r2n′ ,∑
z∈{0,1}n′

∑
σ∈{0,1}r

(P z,σ(f(x), g(y)) mod p)

=
∑

z∈{0,1}n′

∑
σ∈{0,1}r

(MAJ (P z,σ
1 (f(x), g(y)), . . . , P z,σ

ℓ (f(x), g(y)) mod p))

∑
z∈{0,1}n′

∑
σ∈{0,1}r

∑
a∈Fℓ

p

ka

(
ℓ∑

i=1
aiP

z,σ
i (f(x), g(y)) mod p

)

=
∑

z∈{0,1}n′

∑
σ∈{0,1}r

∑
a∈Fℓ

p

ka (P z,σ
a (f(x), g(y)) mod p)

∑
z∈{0,1}n′

∑
σ∈{0,1}r

∑
a∈Fℓ

p

ka

(
Ft(P z,σ

a (f(x), g(y))) mod pt
)

=
∑

z∈{0,1}n′

∑
σ∈{0,1}r

∑
a∈Fℓ

p

kaFt(P z,σ
a (f(x), g(y))) mod pt

= R(f(x), g(y)) mod pt .

N. Limaye, A. Srinivasan, and S. Srinivasan 67:13

Note that all summations above are over Z unless they are enclosed by brack-
ets. Now, consider the quantity

∑
z∈{0,1}n′

∑
σ∈{0,1}r (P z,σ(f(x), g(y)) mod p). Using

Equation (2), R(f(x), g(y)) mod pt =
∑

z∈{0,1}n′
∑

σ∈{0,1}r (P z,σ
a (f(x), g(y)) mod p) ∈[

2r(1 − 1/29n′)G(x, y), 2r(1 + 1/29n′)G(x, y)
]
. Hence,

[1
2r (R(f(x), g(y)) mod pt)

]
=

G(x, y). Because #SAT(C) =
∑

x,y G(x, y), the algorithm indeed outputs #SAT(C). ◀

4 #SAT algorithms for ACC0 ◦ 3-PTF circuits

In this section, we show that Lemma 14 an be combined with with well known techniques [1,
2, 38] for simplifying ACC0 ◦ 3-PTF circuits to design #SAT algorithms.

Notation

We say that a SYM ◦ ACC0 ◦ 3-PTF circuit has parameters (n, s, M) if it has n inputs, s wires,
and contains 3-PTF gates defined by polynomials with bit-complexity upper bounded by M .

We present a better than brute force algorithm to evaluate SYM ◦ ACC0 ◦ 3-PTF circuits on
all inputs.

▶ Theorem 19. There exists an absolute constant δ ∈ (0, 1) and a function ε : N → (0, 1)
such that the following holds. There exists a deterministic algorithm that takes as input a
SYM ◦ ACC0 ◦ 3-PTF circuit C with parameters (n, s, M) such that s ≤ 2nε(d)

, M ≤ 2nδ that
can enumerate all satisfying assignments to C in time O∗(2n).

Using the approach developed in [34] for reducing #SAT to rapid evaluation of large circuits
of all inputs, we can design a #SAT algorithm for ACC0 ◦ 3-PTF circuits. We refer the reader
to the proof of [34, Theorem 1.2].

▶ Theorem 20. There exists an absolute constant δ ∈ (0, 1) and a function ε : N → (0, 1)
such that the following holds. There exists a deterministic algorithm that takes as input an
ACC0 ◦ 3-PTF circuit C with parameters (n, s, M) such that s ≤ 2nε(d)

, M ≤ 2nδ that can
count the number of satisfying assignments to C in time O∗(2n−nε(d)).

Using [21, Theorem 1.2], we can infer the following circuit lower bound, which is an
extension of [21, Theorem 1.3].

▶ Corollary 21. For every constant k, d, m, there exists e ≥ 1 and a problem in
NTIME

(
2loge n

)
which does not have ACC0 ◦ 3-PTF circuits with MODm gates of depth

d and size 2logk n.

The rest of this section is devoted to the proof of Theorem 19. The first step is to convert
SYM ◦ ACC0 ◦ 3-PTF circuits into equivalent SYM+ circuits.

▶ Lemma 22. There exists a function c : N → N and an absolute constant e ∈ N such that
the following holds. Let C be any SYM ◦ ACC0 ◦ 3-PTF circuit with parameters (n, s, M).
Then, there exists a SYM+ circuit D and functions f, g such that for each x, y ∈ {0, 1}n/2,
C(x, y) = D(f(x), g(y)). The circuit D has size 2O(logc(d) s) + 2O(loge s2

√
n(log n log M)e), and

there exists a deterministic algorithm that takes C as input and outputs D in time 2O(logc(d) s)+
2O(loge s2

√
n(log n log M)e). The functions f and g output strings of length O(nMs) and are

computable in time O(s · poly(n, M)). The output of the symmetric gate can be computed in
time 2O(logc(d) s), given the number of input wires that evaluate to 1.

MFCS 2025

67:14 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

Proof. Let g denote the symmetric gate at the top, with fan-in h, and let H : [h] → {0, 1}
be the symmetric function it computes. Let Ci, for i ∈ [h] denote the subcircuits of C that
feed into the top SYM gate.

Step 1: Replace the 3-PTF gates with probabilistic polynomials. Suppose that C

has s1 3-PTF gates F 1, F 2, . . . , F s1 in the bottom layer, where s1 ≤ s. Let ε = 1
10hs , and

construct probabilistic polynomials P1, . . . , Ps1 with error ε for each of the 3-PTF gates, with
functions f1, f2, . . . , fs1 , g1, g2, . . . , gs1 such that for each j ∈ [s1], PrP ∼Pj [P (f j(x), gj(y)) =
F j(x, y)] ≥ 1 − 1

10hs using Lemma 14. Note that each polynomial can be represented as
an XOR ◦ AND circuit, of size at most 2O(√

n·log s·polylog(n,M)). Hence, we can replace the
SYM ◦ ACC0 ◦ 3-PTF circuit C with a probabilistic SYM ◦ ACC0 ◦ AND circuit C ′ of size
s′ = 2O(√

n·log s·polylog(n,M)), depth d + 1 such that for each x, y ∈ {0, 1}n/2, C(x, y) =
C ′(f1(x), . . . , fs1(x), g1(y), . . . , gs1(y)) with probability at least 9/10.9 The fan-in of the
AND gates at the bottom is upper bounded by O(

√
n log s · polylog(n, M)) and the number

of AND gates is upper bounded by 2O(
√

n·log s·polylog(n,M)). Note that if the wires from the
AND gates at the bottom layer to the rest of the ACC0 circuit are not counted, C ′ has size
O(s), and that the polynomials P1, . . . , Ps1 and hence the circuit C ′ can be sampled using
O(log2 n + log s) random bits.

Step 2: Replace the SYM ◦ ACC0 circuit C′ with a deterministic SYM+ circuit. We
use the ideas of Allender and Gore [1, 2]. We refer the reader to Williams [38, Appendix
A] for more details. Specifically, we will refer to transformations 1,2,3 and 4, as defined by
Williams. Here, we just demonstrate where our proof differs from theirs.

Step 2a. Apply transformation 1 to the circuit C ′. This transformation only acts on the
ACC0 part of C ′ and leaves the bottom layer of AND gates untouched. The MODm gates
for composite m are eliminated and replaced by subcircuits with prime modulo gates and
AND gates. Further, all the AND and OR gates are all replaced by fixed depth circuits with
only AND gates with polylog(n) fan-in and MODp gates (for some prime number p). All
these gates share a common set of polylog(s) probabilistic inputs. Let the new circuit be
C ′′, and let C ′′

1 , C ′′
2 , . . . , C ′′

h be the subcircuits that feed into the symmetric gate g. The
circuit C ′′ has size poly(s), without counting the bottom layer. Over the probabilistic inputs
as well as the O(log2 n + log s) random bits used to sample the probabilistic polynomials,
Pr[C ′′

i (f1(x), . . . , fs1(x), g1(y), . . . , gs1(y)) = Ci(x, y)] ≥ 1
10h . This step takes poly(s) time.

Step 2b. Let r = O(log2 n + polylog(s)) denote the number of random bits needed
in total to sample C ′′. For each σ ∈ {0, 1}r, let C ′′

σ denote the circuit C ′′ sam-
pled using the string σ as the random bits, and let C ′′

i,σ for i ∈ [h] denote the
corresponding subcircuits that feed into the top SYM gate. Now ,suppose that∑

i∈[h] Ci(x, y) = t. For each x, y ∈ {0, 1}n/2, 1
2r

∑
σ∈{0,1}r C ′′

i,σ(f(x), g(y)) ∈ [1 − 1/(10h), 1]
if Ci(x, y) = 1 and 2r

∑
σ∈{0,1}r C ′′

i,σ(f(x), g(y)) ∈ [0, 1/(10h)] if Ci(x, y) = 0, Hence,
1

2r

∑
i∈[h]

∑
σ∈{0,1}r C ′′

i,σ(f(x), g(y)) ∈ [t − 1/10, t + 1/10]. Now, we can make the circuit
C ′′ deterministic. Define the circuit C ′′′ as follows. The top symmetric gate g′ has fan-in
2r · h, and the symmetric function is H ′ : [2r · h] → {0, 1}, defined by H ′(z) = H

([1
2r z
])

,
where [·] denotes the closest integer function. The circuits Ci,σ feed into g′ for each
i ∈ [h], σ ∈ {0, 1}r. The size of the circuit C ′′′ is 2rpoly(s) = 2polylog(n)2polylog(s) without

9 Technically, this is not an ACC0 circuit as it contains MODm gates as well as MOD2 gates, but rest of
the transformations will work for this circuit as well.

N. Limaye, A. Srinivasan, and S. Srinivasan 67:15

counting the bottom layer and is 2r
(

poly(s) + 2
√

n log(s)polylog(n,M)
)

= 2polylog(s)2polylog(n) +
2polylog(s)2

√
n log(s)polylog(n,M) in total. Note that this step can also be completed in

2polylog(s)2polylog(n) + 2polylog(s)2
√

n log(s)polylog(n,M) time.

Step 2c. Now, we perform transformation 3 and transformation 4 on C ′′′ to get a new
deterministic circuit C ′′′′. As earlier, these transformations leave the bottom layer of AND
gates untouched. The AND gates of C ′′′ are pushed to the bottom layer, and the MODp

gates get absorbed into the symmetric function. Let s′′′ be the size of the ACC0 part of
C ′′′. There exists a function f : N → N such that the ACC0 part of C ′′′ is replaced with
a SYM+ circuit with size 2logf(d−1)(s′′′). This transformation takes 2logf(d−1)(s′′′) time and
given the number of input wires that evaluate to 1, the symmetric function itself can be
computed in time 2logf(d−1)(s′′′). As before, the bottom layer of AND gates remains untouched.
All the previously defined polynomial factors do not depend on the depth of the circuit.
Hence, we can define a function c : N → N such that the final circuit is a SYM+ circuit with
2logc(d) s + 2loge s2

√
n(log n log M)e wires, for a fixed absolute constant e ∈ N that can be chosen

to absorb all the polynomial factors. ◀

Using this lemma, we can efficiently evaluate a SYM ◦ ACC0 ◦ 3-PTF circuit C of size s

on all inputs:
1. Use Lemma 22 to convert C to a SYM+ circuit D of size S = 2logc(d) s +

2loge s2
√

n(log n log M)e) in time 2logc(d) s + 2loge s2
√

n(log n log M)e).
2. Define the matrices A ∈ {0, 1}2n/2×S , B ∈ {0, 1}S×2n/2 as follows. The rows of A and

the columns of B are indexed by partial assignments to the first half and second half of
the variables respectively. The columns of A and the rows of B are indexed by the AND
gates of D. For each AND gate g in the circuit D and partial assignment x to the first
n/2 coordinates, define A(x, g) to be 1 if x does not falsify g and 0 otherwise, and for
each partial assignment y to the second n/2 variables, define B(g, y) to be 1 if y does not
falsify g and 0 otherwise. The matrix M = A · B is a 2n/2 × 2n/2 matrix with rows and
columns indexed by partial assignments to the first and second halves of the variables
such that M(x, y) is the number of input wires to the top symmetric gate of D set to 1
by the assignment x, y.

3. Evaluate the symmetric function on each entry of the matrix M . This can be done in
time O (2n + S), by pre-evaluating the symmetric function H on all i ∈ [h], where h

is the fan-in of the top symmetric gate in D, and then using this as a lookup table to
compute H(M(x, y)) for each x, y ∈ {0, 1}n/2.

Choosing ε(d), δ

If s ≤ 2nε(d) and M ≤ 2nδ , then log S ≤ nε(d) and log M ≤ nδ, which implies that
S ≤ 2nε(d)c(d) + 2eε(d)2

√
n(nδ log n)e . Hence, if we pick δ = 1

10e and ε(d) = min{ 1
2c(d) , 1

10e },
then S < 20.05n, which implies that step 2 can be done in time O∗(2n) using Coppersmith’s
algorithm, and step 3 takes time O(2n). This proves Theorem 19.

References

1 Eric Allender and Vivek Gore. On strong separations from AC0. In International Sympo-
sium on Fundamentals of Computation Theory, pages 1–15. Springer, 1991. doi:10.1007/
3-540-54458-5_44.

2 Eric Allender and Vivek Gore. A uniform circuit lower bound for the permanent. SIAM J.
Comput., 23(5):1026–1049, 1994. doi:10.1137/S0097539792233907.

MFCS 2025

https://doi.org/10.1007/3-540-54458-5_44
https://doi.org/10.1007/3-540-54458-5_44
https://doi.org/10.1137/S0097539792233907

67:16 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

3 Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial representations of
threshold functions and algorithmic applications. In Irit Dinur, editor, IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 467–476. IEEE, IEEE Computer Society,
2016. doi:10.1109/FOCS.2016.57.

4 Josh Alman and Kevin Rao. Faster walsh-hadamard and discrete fourier transforms from
matrix non-rigidity. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June
20-23, 2023, pages 455–462. ACM, 2023. doi:10.1145/3564246.3585188.

5 Josh Alman and R. Ryan Williams. Probabilistic rank and matrix rigidity. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 641–652. ACM, 2017. doi:10.1145/3055399.3055484.

6 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors. In
Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 136–150. IEEE, IEEE
Computer Society, 2015. doi:10.1109/FOCS.2015.18.

7 Swapnam Bajpai, Vaibhav Krishan, Deepanshu Kush, Nutan Limaye, and Srikanth Srinivasan.
A #sat algorithm for small constant-depth circuits with PTF gates. Algorithmica, 84(4):1132–
1162, 2022. doi:10.1007/s00453-021-00915-7.

8 Richard Beigel and Jun Tarui. On ACC. Comput. Complex., 4:350–366, 1994. doi:10.1007/
BF01263423.

9 Timothy M. Chan. Orthogonal range searching in moderate dimensions: k-d trees and
range trees strike back. In Boris Aronov and Matthew J. Katz, editors, 33rd International
Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia,
volume 77 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.SoCG.2017.27.

10 Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
J. Comput., 13(2):423–439, 1984. doi:10.1137/0213028.

11 Lijie Chen and R. Ryan Williams. Stronger connections between circuit analysis and circuit
lower bounds, via pcps of proximity. In Amir Shpilka, editor, 34th Computational Complexity
Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs,
pages 19:1–19:43. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.CCC.2019.19.

12 R Chen, R Santhanam, and S Srinivasan. Average-case lower bounds and satisfiability
algorithms for small threshold circuits. Theory of Computing, 14, 2018. doi:10.4086/toc.
2018.v014a009.

13 Chao-Kong Chow. On the characterization of threshold functions. In 2nd Annual Symposium
on Switching Circuit Theory and Logical Design (SWCT 1961), pages 34–38. IEEE, 1961.
doi:10.1109/FOCS.1961.24.

14 Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput., 11(3):467–
471, 1982. doi:10.1137/0211037.

15 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,
editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 6–20. ACM, 1986. doi:10.1145/12130.12132.

16 Johan Håstad. Computational limitations for small depth circuits. PhD thesis, Massachusetts
Institute of Technology, 1986.

17 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm for
ac0. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 961–972.
SIAM, SIAM, 2012. doi:10.1137/1.9781611973099.77.

https://doi.org/10.1109/FOCS.2016.57
https://doi.org/10.1145/3564246.3585188
https://doi.org/10.1145/3055399.3055484
https://doi.org/10.1109/FOCS.2015.18
https://doi.org/10.1007/s00453-021-00915-7
https://doi.org/10.1007/BF01263423
https://doi.org/10.1007/BF01263423
https://doi.org/10.4230/LIPIcs.SoCG.2017.27
https://doi.org/10.1137/0213028
https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.4086/toc.2018.v014a009
https://doi.org/10.4086/toc.2018.v014a009
https://doi.org/10.1109/FOCS.1961.24
https://doi.org/10.1137/0211037
https://doi.org/10.1145/12130.12132
https://doi.org/10.1137/1.9781611973099.77

N. Limaye, A. Srinivasan, and S. Srinivasan 67:17

18 Valentine Kabanets and Zhenjian Lu. Satisfiability and derandomization for small polynomial
threshold circuits. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.46.

19 Alexis Maciel and Denis Thérien. Threshold circuits of small majority-depth. Inf. Comput.,
146(1):55–83, 1998. doi:10.1006/inco.1998.2732.

20 Saburo Muroga. Threshold logic and its applications. John Wiley & Sons, 1971.
21 Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:

an easy witness lemma for NP and NQP. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 890–901. ACM,
2018. doi:10.1145/3188745.3188910.

22 Eduard Ivanovich Nechiporuk. On a boolean function. In Dokl. Akad. Nauk SSSR, volume
169(4), pages 765–766. Russian Academy of Sciences, 1966.

23 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge Univer-
sity Press, 2014. URL: http://www.cambridge.org/de/academic/subjects/
computer-science/algorithmics-complexity-computer-algebra-and-computational-g/
analysis-boolean-functions.

24 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. In
38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997, pages 566–574. IEEE, IEEE Computer Society, 1997.
doi:10.1109/SFCS.1997.646146.

25 Ninad Rajgopal, Rahul Santhanam, and Srikanth Srinivasan. Deterministically counting
satisfying assignments for constant-depth circuits with parity gates, with implications for lower
bounds. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31,
2018, Liverpool, UK, volume 117 of LIPIcs, pages 78:1–78:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.MFCS.2018.78.

26 Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mat. Zametki, 41(4):598–607, 1987.

27 Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, and Junichi Teruyama. Improved exact
algorithms for mildly sparse instances of max SAT. Theor. Comput. Sci., 697:58–68, 2017.
doi:10.1016/j.tcs.2017.07.011.

28 Takayuki Sakai, Kazuhisa Seto, Suguru Tamaki, and Junichi Teruyama. Bounded depth
circuits with weighted symmetric gates: Satisfiability, lower bounds and compression. J.
Comput. Syst. Sci., 105:87–103, 2019. doi:10.1016/j.jcss.2019.04.004.

29 Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 183–192. IEEE, IEEE Computer
Society, 2010. doi:10.1109/FOCS.2010.25.

30 Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hardness for
formulas over the full binary basis. Comput. Complex., 22(2):245–274, 2013. doi:10.1007/
s00037-013-0067-7.

31 Alexander A. Sherstov. The intersection of two halfspaces has high threshold degree. SIAM J.
Comput., 42(6):2329–2374, 2013. doi:10.1137/100785260.

32 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pages 77–82. ACM, 1987. doi:
10.1145/28395.28404.

33 Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 1999. doi:10.1007/978-3-662-03927-4.

MFCS 2025

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.46
https://doi.org/10.1006/inco.1998.2732
https://doi.org/10.1145/3188745.3188910
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
https://doi.org/10.1109/SFCS.1997.646146
https://doi.org/10.4230/LIPIcs.MFCS.2018.78
https://doi.org/10.4230/LIPIcs.MFCS.2018.78
https://doi.org/10.1016/j.tcs.2017.07.011
https://doi.org/10.1016/j.jcss.2019.04.004
https://doi.org/10.1109/FOCS.2010.25
https://doi.org/10.1007/s00037-013-0067-7
https://doi.org/10.1007/s00037-013-0067-7
https://doi.org/10.1137/100785260
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1007/978-3-662-03927-4

67:18 #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

34 R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory Comput., 14(1):1–25, 2018. doi:10.4086/toc.2018.v014a017.

35 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

36 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X.

37 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 664–673. ACM, 2014. doi:10.1145/2591796.2591811.

38 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903.

39 Andrew Chi-Chih Yao. On ACC and threshold circuits. In 31st Annual Symposium on
Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II,
pages 619–627. IEEE, IEEE Computer Society, 1990. doi:10.1109/FSCS.1990.89583.

https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2591796.2591811
https://doi.org/10.1145/2559903
https://doi.org/10.1109/FSCS.1990.89583

	1 Introduction
	2 Preliminaries
	3 The probabilistic rank of 3-PTFs
	4 #SAT algorithms for ACC^{0} o 3-PTF circuits

