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Abstract
String diagrammatic calculi have become increasingly popular in fields such as quantum theory, circuit
theory, probabilistic programming, and machine learning, where they enable resource-sensitive and
compositional algebraic analysis. Traditionally, the equations of diagrammatic calculi only axiomatise
exact semantic equality. However, reasoning in these domains often involves approximations rather
than strict equivalences.

In this work, we develop a quantitative framework for diagrammatic calculi, where one may
axiomatise notions of distance between string diagrams. Unlike similar approaches, such as the
quantitative theories introduced by Mardare et al., this requires us to work in a monoidal rather
than a cartesian setting. We define a suitable notion of monoidal theory, the syntactic category it
freely generates, and its models, where the concept of distance is established via enrichment over a
quantale. To illustrate the framework, we provide examples from probabilistic and linear systems
analysis.
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1 Introduction

Traditionally, formal semantics models equivalence between programs as equality of their
interpretation in a certain mathematical domain. A fundamental question is the one of
axiomatisation: finding a set of equations between programs that hold precisely when they are
semantically equivalent. Such an axiomatisation allows reasoning about semantics purely by
syntactic manipulation of programs: this offers a structured, scalable approach to designing
protocols (such as refinement and optimisation), automatisation, and formal verification.

In the last few decades, increasingly prominent paradigms of computation such as quantum
theory, probabilistic programming, and deep learning have challenged formal semantics, as
they demand reasoning about systems that are partially defined, approximate, or sensitive to
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perturbations. This has led to a resource-sensitive enhancement of the above picture, along
two axes: quantitative semantics and monoidal syntax (string diagrams). In a sense, our
work is about reconciling both perspectives.

Quantitative Semantics. The limitations of “exact” semantics are particularly evident when
modelling probabilistic computation [42,55,66,67]: rather than asking if probabilistic programs
P and Q yield the same outputs with the same probabilities, it is more informative to ask how
far P s behaviour is from Qs behaviour, according to a certain metric. Similar considerations
apply to other research areas, such as differential privacy [26], and approximate computing [52].
To address this form of analysis, program semantics has embraced quantitative reasoning,
leading to advancements in areas like bisimulation metrics [24,68], coeffectful computation [54],
program distances [20, 22], and quantitative rewriting [31]. The focus of our contribution
is on axiomatising quantitative semantics, for which quantitative algebraic theories are
particularly relevant. In this line of work, initiated by Mardare et al. [49], equations of
the form s = t are replaced with judgments of the form s =ε t, which should be read as:
“s is at distance at most ε from t”. Among their examples, the authors show complete
axiomatisations of the total variation and Kantorovich–Wasserstein distances [69] between
probability distributions. Quantitative algebraic theories have been developed extensively,
including a variety theorem [50], sum and tensor of theories [7], higher-order extensions [23],
and the development of significant examples such as Markov processes [6]. They were also
generalised to the setting of categorical algebra in various ways [2, 36,51,60,61].

Cartesian vs. Monoidal Syntax. A fundamental feature of the aforementioned approaches
is that the syntax of programs (or, more generally, computational processes) is represented
by terms of a cartesian algebraic theory. The terminology is due to the usual categorical
perspective on abstract algebra, initiated by Lawvere [43]: the “syntactic” category freely
generated by an algebraic theory (Σ, E) is a cartesian category, and models are functors
preserving the cartesian structure. Whereas abstractly being cartesian just means to have
finite products, via Fox’s theorem [27] this is equivalent to each object X of the category
having a “copy” and a “discard” map. If we interpret these objects as variables of our
programs, or resources of our systems, the assumption of cartesianity means that these
entities may be duplicated or eliminated at will. In other words, the theory is insensitive to
such resources.

These assumptions are unsuitable in many contexts. A notable example is quantum
theory, with its “no-cloning” and “no-deleting” theorems [71]. Also probabilistic computation
is inherently non-cartesian: duplicating the outcome of a die roll is not the same as rolling that
die twice. There are many more instances in computer science where algebraic modelling needs
to be attentive to resource consumption, e.g. in concurrency theory [1] and cryptography [14].

These examples motivated the development of monoidal algebra. Processes are studied
in (symmetric) monoidal categories, which allow for algebraic reasoning but do not assume a
cartesian structure, meaning consumption of resources (variables) becomes explicit in the
theory. Because the fundamental operations of a monoidal category are sequential and parallel
composition, process syntax is depicted two-dimensionally, as string diagrams [58,63]. The
pictorial representation is not just aesthetically pleasing, but allows for a clearer understanding
of how information flows and is exchanged within the process components. For these reasons,
string diagrams have been applied in quantum theory [18], concurrency [10], probabilistic
programming [57], machine learning [21,70], cyber-physical systems [11,15], and even areas
further removed from computer science such as linguistics [16, 37], epidemiology [9, 45], and



G. Lobbia, W. Różowski, R. Sarkis, and F. Zanasi 68:3

chemistry [30, 47]. When it comes to axiomatising semantics of string diagrammatic calculi,
tools analogous to those of (non-quantitative) cartesian algebra are available, such as a notion
of freely generated “syntactic” category [8, 12,34] and of model [12].

Towards Quantitative Monoidal Algebra. Similarly to cartesian algebra, it has become
apparent that monoidal algebra urges for a quantitative extension. There is an increasing
body of work developing the theory of probabilistic processes and Bayesian reasoning in
symmetric monoidal categories called Markov categories, see e.g. [29,35,48]. Similarly, several
categorical models for machine learning algorithms are being proposed, in which string
diagrams play a major role, see e.g. the surveys [19, 64]. However, quantitative analysis has
received very limited attention so far – one such example is [56], which studies notions of
mutual information in Markov categories via relative entropy of string diagrams. In quantum
theory, the works [13,39] use distances between string diagrams to express noise tolerance
in quantum protocols, and [33] studies distances between (quantum) channels represented
within a monoidal theory. What all these instances are missing is an axiomatic framework
to reason about distance of string diagrams, playing a role analogous to the one served by
quantitative algebra for cartesian computation.

Our Contribution. In this work, we lay the mathematical foundations of quantitative
monoidal algebra. To capture a wider range of models, we develop our framework not just
for real-valued metric spaces, but for the more general notion of spaces with distances valued
in a quantale V [44]. Examples include preorders, pseudometric spaces, ultrametric spaces,
etc. We introduce the notion of (symmetric) V -quantitative monoidal theory U as a triple
(Σ, E,Eq), where (Σ, E) is a monoidal theory and Eq is a set of V -quantitative equations, for
which we use the same notation =ε introduced in [49]. We present the construction of the
freely generated syntactic category over U , as an enriched monoidal category SU . Morphisms
of SU are depicted as string diagrams, composable sequentially and in parallel. Distances
between string digrams, induced by Eq, are modelled in the enrichment of SU . Being a
“variable-free” approach, the interaction between the enrichment and the generating rules
of string diagrams in the syntactic category poses additional challenges compared to the
cartesian setting. The final piece of our foundations is a suitable notion of model, which is
defined à la Lawvere, as enriched functors from the syntactic category to “semantic” categories.
We are then able to conclude with an analogue of the completeness theorem of equational
logic, for the rules of quantitative diagrammatic reasoning. Our last contribution is a more
in-depth comparison with related work [12, 49, 59, 60, 62], which clarifies the relationship
between cartesian approaches and our monoidal framework.

We provide two basic examples for our framework, related to linear and probabilistic
computation respectively. The first is an axiomatisation for matrices over an ordered
semiring with entrywise ordering (Section 4.2). The theory of matrices appears ubiquitously
in monoidal algebra (see e.g. [8,10,11,18,72]), and the order enrichment naturally appears in
many such research threads. In particular, matrices on the Boolean semiring {0, 1} represent
relations, and the ordering is set-theoretic inclusion. Our second example (Section 5.3)
is an axiomatisation of discrete probabilistic processes with the total variation metric, a
distance fundamental in optimisation, learning theory, statistical inference, etc. Such an
example may be thought as the “monoidal version” of an analogous result in the cartesian
setting [49, Section 8].

MFCS 2025
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Synopsis. Section 2 provides background on quantales and enriched category theory. Sec-
tion 3 contains our main theoretical contributions. In Section 3.1, we recall monoidal theories
and string diagrams. In Section 3.2 we define quantitative monoidal theories and the construc-
tion of the freely generated syntactic categories. We prove the latter are monoidal enriched
in Section 3.3. In Section 3.4, we define enriched models and give a sufficient condition for
a (classical) model to be enriched. Sections 4 and 5 are devoted to the examples outlined
above. We compare formally to related work in Section 6, and conclude in Section 7 with
future work. The full version [46] contains an appendix with complete proofs for our results.

2 Preliminaries

Quantale-Valued Generalised Metric Spaces. Following Lawvere [44], we allow distances
to be valued not just in the positive reals, but in any quantale. We now recall quantales, as
well as hemimetric and pseudometric spaces.

▶ Definition 1. A quantale is a tuple (V,⊑,⊕, k), where (V,⊑) is a partial order that has
all joins and meets (supremums and infimums), i.e. a complete lattice, (V,⊕, k) is a monoid,
and ⊕ is join-continuous, that is, a⊕

⊔
S =

⊔
x∈S a⊕ x for any a ∈ V and subset S ⊆ V .

We write
⊔
S or

⊔
x∈S x for the join of a subset S ⊆ V . In particular, V has a bottom (⊥)

and a top (⊤) element that satisfy ⊥ =
⊔

∅ ⊑ x ⊑
⊔
V = ⊤ for any x ∈ V . We call a

quantale integral if the monoidal unit is the top element of the underlying lattice (i.e. k = ⊤).

Throughout the paper, we will make the assumption that quantales are integral. This is a
common requirement when studying quantales. In Section 4, we use the Boolean quantale
2⊓ consisting of two elements ⊥ ⊑ ⊤ with underlying monoid (2⊓,⊓,⊤). In Section 5, we
use the Lawvere quantale [0,∞]+ where the underlying lattice is the interval [0,∞) with the
reversed order extended with ∞ as a bottom element, and the monoid operation is addition.
▶ Remark 2. Let (V,⊑) be a complete lattice. If meets distribute over infinite joins, that
is, for any x ∈ V and family {xi}i∈I in V , x ⊓

⊔
i∈I xi =

⊔
i∈I (x ⊓ xi), then V is called

infinitely join distributive (IJD) (see e.g. [25, 32]).

▶ Definition 3. Let V be a quantale. A V -hemimetric space (X, d) consists of a set X
and a function d : X × X → V satisfying, for all x, y, z ∈ X, k ⊑ d(x, x) (reflexivity),
and d(x, y) ⊕ d(y, z) ⊑ d(x, z) (triangle inequality). We call (X, d) a V -pseudometric
space if it additionally satisfies, for all x, y ∈ X, d(x, y) = d(y, x) (symmetry). A function
f : X → Y between V -hemimetric spaces (X, dX) and (Y, dY ) is called nonexpansive if for
all x, x′ ∈ X, dX(x, x′) ⊑ dY (f(x), f(x′)).

▶ Example 4. In order to make better sense of Definition 3, note that when considering
V = [0,∞]+ we get back the standard definition of hemimetric and pseudometric spaces with
possibly infinite distances. Over other quantales, we recover well-known structures. Setting
V = 2⊓, 2⊓-hemimetrics are preorders, while 2⊓-pseudometrics are equivalence relations, and
nonexpansive maps are order/relation-preserving functions.

▶ Definition 5. We denote the category of V -hemimetric spaces and nonexpansive functions
with V HMet, and its full subcategory of V -pseudometric spaces with V PMet.

Our primary goal is to study categories where morphisms have a distance between them.
We will model this extra structure on hom-sets with enriched categories, and this requires us
to provide a (symmetric) monoidal product of V -hemi/pseudometric spaces. We consider
two monoidal products inspired from well-known products of real-valued metric spaces.
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▶ Example 6. Let (V,⊕, k) be a commutative quantale (i.e. ⊕ is commutative) and (X, dX),
(Y, dY ) be two V -hemimetric spaces. We define the sum hemimetric dX ⊠⊕ dY on the
cartesian product X × Y by (dX ⊠⊕ dY )((x, y), (x′, y′)) := dX(x, x′) ⊕ dY (y, y′). This yields
a monoidal product defined by (X, dX) ⊠⊕ (Y, dY ) := (X × Y, dX ⊠⊕ dY ) whose monoidal
unit is 1⊠ := ({•},⊤), where ⊤(•, •) = ⊤. The symmetries σX,Y := (x, y) 7→ (y, x) are
nonexpansive maps (X, dX) ⊠⊕ (Y, dY ) → (Y, dY ) ⊠⊕ (X, dX), and they make V HMet into
a symmetric monoidal category. Since ⊠⊕ preserves symmetry, V PMet is a full symmetric
monoidal subcategory of V HMet.

▶ Example 7. If (V,⊕, k) is a quantale and (V,⊑) is IJD (see Remark 2), then we can define
the max hemimetric. Given (X, dX), (Y, dY ) ∈ V HMet, we define (X, dX) ⊠⊓ (Y, dY ) :=
(X × Y, dX ⊠⊓ dY ), where (dX ⊠⊓ dY )((x, y), (x′, y′)) := dX(x, x′) ⊓ dY (y, y′). The monoidal
unit is given by 1⊠ := ({•},⊤). Once again, the evident symmetries are nonexpansive, and
we get another symmetric monoidal structure on V HMet. This definition also restricts to a
symmetric monoidal product on V PMet.

Categories Enriched over V HMet. In this paper, distances between morphisms of monoidal
categories will be cast in terms of enriched categories. We are only interested in categories
enriched over hemi/pseudometric spaces, so we defer to [38] for the general details.

We will work with categories enriched in (V HMet,⊠, 1⊠) or (V PMet,⊠, 1⊠), where ⊠ is
defined as ⊠⊕ in Example 6 or ⊠⊓ in Example 7. To be explicit but concise on which base
of enrichment we are considering, we will use the notations V HMet⊕, V HMet⊓, V PMet⊕,
and V PMet⊓. Enrichment over these categories boils down to equipping hom-sets with
hemi/pseudometrics and requiring a nonexpansiveness property of composition. In other
words, any V HMet-enriched category is determined by an underlying category C, where
every hom-set C(a, b) has a V -hemimetric space structure (C(a, b), da,b) such that for all
f, f ′ ∈ C(a, b) and g, g′ ∈ C(b, c), we have that (db,c ⊠da,b)((g, g′), (f, f ′)) ⊑ da,c(g ◦ f, g′ ◦ f ′).

Furthermore, any V HMet-functor F : C → D is determined by a functor between the
underlying categories, which is locally nonexpansive, in the sense that the assignment
f 7→ Ff is a nonexpansive map C(a, b) → D(Fa, Fb) for all a, b ∈ Ob(C). Similarly, an
enriched isomorphism F : C → D is an isomorphism between the underlying categories,
which in addition is locally an isometry, namely, the assignment f 7→ Ff is an isometry
C(a, b) → D(Fa, Fb) for all a, b ∈ Ob(C). We carefully develop these claims in the full version,
and we note that they can also be applied to enrichment over V PMet.

This concrete characterisation of enrichment allows us to give a convenient definition of
enriched monoidal categories for our purposes. It instantiates the more general definition
that appears in e.g. [53, Definition 2.1], [40, Definition 4.1]. Morally, we define enriched
monoidal categories to be monoidal (Set-)categories equipped with hemi/pseudometrics on
their hom-sets such that both composition and monoidal product are nonexpansive.

▶ Definition 8. A V HMet-enriched symmetric monoidal category C is a category that is
both symmetric monoidal and V HMet-enriched, and such that the bifunctor ⊗ : C × C → C
is a V HMet-functor. It is called strict if the underlying monoidal category is strict. A
V HMet-enriched symmetric strict monoidal functor F : C → D is a strict monoidal functor
between the underlying monoidal categories which is also V HMet-enriched (as a functor).

Unrolling this definition according to our discussion above, a V HMet-enriched symmetric
strict monoidal category (SMC) is just a V HMet-category whose underlying category C is
equipped with a symmetric strict monoidal product ⊗ : C × C → C that is nonexpansive with
respect to ⊠, in the sense that for all a, b, c, d ∈ Ob(C), f, f ′ ∈ C(a, b), g, g′ ∈ C(c, d), we have
(da,b ⊠ dc,d)((f, f ′), (g, g′)) ⊑ da⊗c,b⊗d(f ⊗ g, f ′ ⊗ g′). All the above also applies to V PMet.

MFCS 2025
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3 Quantitative Monoidal Algebra

In this section we fix a commutative integral quantale V and introduce the notion of
V -quantitative symmetric monoidal theory. We recall ordinary monoidal theories first,
following [12]. We omit the adjective “symmetric” for monoidal theories, as it will be
assumed.

3.1 Background: Monoidal Theories
▶ Definition 9. A monoidal signature Σ is a set of generators, each with an arity n ∈ N
and a coarity m ∈ N, which we often indicate simply with a type n → m. In preparation
to representing Σ-terms using string diagrams, we adopt a graphical representation for
generators, as boxes with dangling wires on the left and the right to indicate arity and coarity.
For instance, g has arity 2 and coarity 3. We write gn m for a generic generator
with arity n and coarity m. We use g when the type is irrelevant or clear from context.

The set of Σ-terms (and their (co)arities) is defined inductively as follows:
all generators gn m ∈ Σ, : 1 → 1, : 0 → 0, and : 2 → 2 are Σ-terms;
if s : n → m and t : m → ℓ are Σ-terms, then s; t : n → ℓ is a Σ-term;
if t : n → n′ and s : m → m′ are Σ-terms, then t⊗ s : n+m → n′ +m′ is a Σ-term.

A monoidal theory (Σ, E) consists of a signature Σ and a set E of pairs (s, t) of Σ-terms
of the same type, which we call equations and write s = t.

We represent Σ-terms graphically using the same conventions introduced for the generators.
Given Σ-terms s : n → m and t : m → ℓ, we write s; t as s t

n ℓm . Similarly, given
t : n → n′ and s : m → m′, we write t⊗ s as t

n n′

sm m′ . Arbitrary identities n : n → n and
symmetries m

n

n

m : m+ n → n+m may be defined as Σ-terms, by pasting together in the
expected way copies of the “basic” identity and symmetry .

When organised into a category (Definition 10 below), operations ; and ⊗ become
associative and obey the so-called “exchange law”, meaning we can paste together diagrams
without worrying about priority of application. Σ-terms modulo the axioms of symmetric
strict monoidal categories are called string diagrams, see e.g. [58, 63].

▶ Definition 10. The symmetric strict monoidal category (SMC) SΣ,E freely generated by
(Σ, E), called the syntactic category, is defined as follows. Its objects are natural numbers.
A morphism n → m is a Σ-term of arity n and coarity m modulo the equations in E and the
axioms of SMCs. Formally, two Σ-terms s and t are equal in SΣ,E if and only if they are in
the same equivalence class of the smallest congruence (with respect to ; and ⊗) that contains
the pairs in E and the axioms of SMCs. Monoidal product on objects is given by addition.
Regarding morphisms, composition, monoidal product, identities, and symmetries are defined
by their counterparts on Σ-terms.

3.2 Quantitative Monoidal Theories
In the envisioned applications of our work (and in Sections 4 and 5), the string diagrams
represent processes for which equality is too coarse a relation to be meaningful. To achieve
a finer comparison, we reuse a central idea in [49], that is to replace the “exact” equality
relation with equality “up to” some quantity ε in V . This new relation is denoted with =ε,
and s =ε t means that the processes represented by s and t are at distance at most ε. A
quantitative monoidal theory is a monoidal theory with additional axioms of this shape.
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▶ Definition 11. A V -quantitative (symmetric) monoidal theory is a triple (Σ, E,Eq), where
(Σ, E) is a monoidal theory, and Eq is a set of triples (s, t, ε) comprising two Σ-terms s and
t, and an element ε ∈ V , which we call quantitative equations and denote with s =ε t.

We want to construct a syntactic category associated to a V -quantitative monoidal theory
(Σ, E,Eq). It must have extra structure describing distance between morphisms, thus it will
be V HMet-enriched or V PMet-enriched. To this aim, we will start with SΣ,E , the SMC freely
generated by the underlying monoidal theory, and define a V -hemimetric (or pseudometric)
on all the hom-sets of SΣ,E making sequential and parallel compositions nonexpansive.

Just like equality between Σ-terms in SΣ,E was inferred from the equations in E and
the axioms of SMCs, the distance between Σ-terms will be inferred from the quantitative
equations in Eq and the axioms of enriched SMCs. This process is more involved than
building the smallest congruence, but similar in spirit. It is also inspired from quantitative
equational logic in [49]. Note the infinitary Join rule that mirrors the Arch rule of [49].

▶ Definition 12. Let (Σ, E,Eq) be a V -quantitative monoidal theory and SΣ,E be the SMC
generated by (Σ, E). We define the V HMet⊕-closure of Eq, denoted EH⊕⊕

q , as the smallest
set of quantitative equations containing Eq and closed under the following inference rules.

For any Σ-terms f, g, h : n → m, and ε, ε′ ∈ V , we have the following rules. They ensure
that the distances defined later in Lemma 16 are V -hemimetrics on the hom-sets of SΣ,E.

f = g is provable from E
Refl

f =⊤ g

f =ε g g =ε′ h
Triang

f =ε⊕ε′ h

Bot
f =⊥ g

f =ε g ε′ ⊑ ε
Mon

f =ε′ g

f =εi
g ∀i ∈ I

Join
f =⊔iεi

g

For any two pairs of composable Σ-terms (f0, g0) and (f1, g1) and any ε, ε′ ∈ V , the rule
Seq⊕ ensures that the syntactic category is V HMet⊕-enriched.
For any two pairs of Σ-terms (f0, f1) and (g0, g1) with matching arities and any ε, ε′ ∈ V ,
the rule Par⊕ ensures that the syntactic category is monoidal V HMet⊕-enriched.

f0 =ε f1 g0 =ε′ g1
Seq⊕

f0 g0 =ε⊕ε′ f1 g1

f0 =ε f1 g0 =ε′ g1
Par⊕

g0

f0
=ε⊕ε′

g1

f1

▶ Remark 13. If (V,⊑) is IJD (Remark 2), then we can consider enriching SΣ,E over V HMet
with the monoidal product ⊠⊓ from Example 7. This requires defining a different closure of
Eq, that we denote with EH⊓⊓

q . It is the smallest set of quantitative equations containing Eq

and closed under the inference rules above, but Seq⊕ and Par⊕ are replaced by Seq⊓ and
Par⊓ below. These ensure that the syntactic category is V HMet⊓-enriched monoidal.

f0 =ε f1 g0 =ε′ g1
Seq⊓

f0 g0 =ε⊓ε′ f1 g1

f0 =ε f1 g0 =ε′ g1
Par⊓

g0

f0 =ε⊓ε′
g1

f1

▶ Remark 14. There are two additional possible closures of Eq which we can consider,
motivated by the example in Section 5. Let EH⊓⊕

q be the closure of Eq under the same
inference rules as EH⊕⊕

q except Seq⊕ is replaced by Seq⊓. Similarly, let EH⊕⊓
q be the closure

of Eq under the same inference rules as EH⊕⊕
q except Par⊕ is replaced by Par⊓.

Since V is integral, ∀a, b ∈ V, a ⊕ b ⊑ a ⊓ b, so we can infer that the rules Seq⊓ and
Par⊓ are tighter than Seq⊕ and Par⊕ (respectively). Namely, any quantitative equation in
EH⊕⊕

q belongs to EH⊓⊕
q and EH⊕⊓

q , and any quantitative equation in EH⊓⊕
q or EH⊕⊓

q also
belongs to EH⊓⊓

q . Consequently, EH⊕⊓
q can be used to enrich SΣ,E over V HMet⊕, where the

MFCS 2025
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monoidal product satisfies an additional nonexpansiveness property. We make use of this in
Section 5.2. In the case of EH⊓⊕

q , SΣ,E will be enriched over V HMet⊓, but monoidal enriched
only over V HMet⊕.
▶ Remark 15. We can also enforce the distance between morphisms to satisfy the symmetry
property, so that SΣ,E will be enriched over V PMet. It suffices to add the following rule.

f =ε g

Symm
g =ε f

We write EP⊕⊕
q , EP⊓⊕

q , EP⊕⊓
q and EP⊓⊓

q the corresponding closures of Eq after adding Symm.
There is a total of eight possible closures depending on the choice of inference rules considered.
They are summarised in Table 1. Our logic offers this flexibility to allow axiomatisation of
various examples. We use the closures EH⊕⊕

q and EP⊕⊓
q respectively in Sections 4.2 and 5.3.

Table 1 Different choices of closures for Eq.

Rules IJD Enrichment
EH⊕⊕

q Seq⊕,Par⊕ No V HMet⊕
EP⊕⊕

q ” + Symm No V PMet⊕
EH⊓⊕

q Seq⊓,Par⊕ Yes V HMet⊕
EP⊓⊕

q ” + Symm Yes V PMet⊓
EH⊕⊓

q Seq⊕,Par⊓ Yes V HMet⊕
EP⊕⊓

q ” + Symm Yes V PMet⊕
EH⊓⊓

q Seq⊓,Par⊓ Yes V HMet⊓
EP⊓⊓

q ” + Symm Yes V PMet⊓

3.3 Enrichment of the Syntactic Category
In this section, we will show how to use the inference rules in Definition 12 (or more
precisely the different closures they induce) to define enrichments of the syntactic category
SΣ,E . We work with a generic closure Eq that can be instantiated with any closure in
Table 1. We explicitly mention what inference rules are needed to show each item. First,
we equip each hom-set of SΣ,E with a V -hemimetric, essentially mirroring the definition
of dU in [49, Section 5]. Note that Refl, Triang and Symm correspond, respectively, to
reflexivity, triangle inequality, and symmetry for dU

n,m.

▶ Lemma 16. Let U = (Σ, E,Eq) be a V -quantitative monoidal theory. For any n,m ∈ N
and Σ-terms f, g : n → m, let dU

n,m(f, g) :=
⊔

{ε | f =ε g ∈ Eq}. This defines a V -hemimetric
on SΣ,E(n,m), which is a V -pseudometric if Symm was used in the closure Eq.

Now that SΣ,E is equipped with V -hemimetrics (resp. pseudometrics) on its hom-sets, we
show it is monoidal enriched over V HMet (resp. V PMet). This relies on two lemmas showing
that sequential and parallel composition are nonexpansive.

▶ Lemma 17. Let f0, f1 : n → m and g0, g1 : m → ℓ be Σ-terms. When ∗ is ⊕ and Eq

is closed under Seq⊕, or when ∗ is ⊓ and Eq is closed under Seq⊓, the following holds:
dU

n,m(f0, f1) ∗ dU
m,ℓ(g0, g1) ⊑ dU

n,ℓ(f0; g0 , f1; g1).

▶ Lemma 18. Let f0, g0 : n → n′ and f1, g1 : m → m′ be Σ-terms. When ∗ is ⊕ and Eq

is closed under Par⊕, or when ∗ is ⊓ and Eq is closed under Par⊓, the following holds:
dU

n,n′(f0, f1) ∗ dU
m,m′(g0, g1) ⊑ dU

n+m,n′+m′(f0 ⊗ g0, f1 ⊗ g1).



G. Lobbia, W. Różowski, R. Sarkis, and F. Zanasi 68:9

By the characterisation of V HMet enrichment in Section 2, we conclude that the category
of string diagrams equipped with the distances dU

n,m is an enriched SMC.

▶ Proposition 19. Let U = (Σ, E,Eq) be a V -quantitative monoidal theory, and Eq be one of
the closures defined above. Then, SΣ,E equipped with the V -hemimetrics defined in Lemma 16
is a V-enriched SMC, where V is the base of enrichment corresponding to Eq in Table 1. We
denote this enriched category with SU to distinguish it from its underlying category SΣ,E.

The inference rules are central to the definition of the syntactic category, and it will be
convenient for us to reify them in other categories through the notion of validity.

▶ Definition 20. Let C be an SMC equipped with V -hemimetrics (C(a, b), dC
a,b) on each of its

hom-sets. The rules Refl, Bot, Triang, Mon, and Join are valid in C. Symm is valid
if all dC

a,b are V -pseudometrics. Seq⊕ is valid if ; : C(a, b) ⊠⊕ C(b, c) → C(a, c) (sequential
composition) is nonexpansive. Par⊕ is valid if ⊗ : C(a, a′) ⊠⊕ C(b, b′) → C(a ⊗ a′, b ⊗ b′)
(parallel composition) is nonexpansive. Seq⊓ is valid if ; : C(a, b) ⊠⊓ C(b, c) → C(a, c) is
nonexpansive. Par⊓ is valid if ⊗ : C(a, a′) ⊠⊓ C(b, b′) → C(a⊗ a′, b⊗ b′) is nonexpansive.

3.4 Models
Defining syntactic categories allows us to study models as functors à la Lawvere [43]. Recall
that a model of a monoidal theory (Σ, E) is a symmetric strict monoidal functor from SΣ,E

to another SMC C (cf. [12]). Central to this approach is the fact that because models must
preserve the structure used to generate SΣ,E , they are entirely determined by their action
on the generators. Also, one may check that an assignment of the generators from Σ into C
extends to a model simply by verifying that the equations in E are satisfied. Our goal in this
section is to define models of quantitative monoidal theories as functors from the syntactic
categories, prove that they are determined by their action on generators, and finally give
sufficient conditions for when a model of a monoidal theory can be enriched.

Because there are multiple syntactic categories that can be constructed from a quantitative
monoidal theory (depending on the inference rules that are invoked), there are different
notions of models. We can unify their definition using the notion of validity (Definition 20).

▶ Definition 21. Let U = (Σ, E,Eq) be a V -quantitative monoidal theory, and Eq be one of
the closures listed in Table 1. An Eq-model of U is a V HMet⊕-enriched SMC C wherein all the
inference rules used to generate Eq are valid, along with a strict monoidal V HMet⊕-functor
M : SU → C, where SU is constructed according to Proposition 19.

Independently of the choice of inference rules, the underlying category of SU is always
SΣ,E , where (Σ, E) is the underlying monoidal theory of U . Therefore, any model of U is
always built on top of a model of (Σ, E). The enrichment is merely a property on a strict
monoidal functor M : SΣ,E → C. In analogy to how assignments on the generators of Σ can
be extended to models of (Σ, E) when they satisfy E, we can give a sufficient condition, in
terms of the quantitative equations in Eq, for M to be an enriched model.

▶ Definition 22. Let U = (Σ, E,Eq) be a V -quantitative monoidal theory, SU be constructed
according to Proposition 19 with a closure Eq, and C be a V HMet⊕-enriched SMC wherein
all the inference rules used to generate Eq are valid. A quantitative equation f =ε g is true
in a model of (Σ, E), M : SΣ,E → C, if ε ⊑ dC(Mf,Mg), where dC is the V -hemimetric (or
pseudometric) on the hom-sets of C.

This definition allows us to define models of (Σ, E,Eq) from certain models of (Σ, E).
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▶ Theorem 23. Let M be a model of a monoidal theory (Σ, E). If all the quantitative
equations in Eq are true in M , then it is an Eq-model of (Σ, E,Eq). In particular, M is an
enriched functor.

The theorem below is an analogue of the completeness theorem of equational logic
adapted to the case of quantitative monoidal reasoning. It intuitively means that the rules of
quantitative monoidal reasoning suffice for proving all the quantitative equations that hold
generally in the semantics. The proof relies on the canonical model id : SU → SU .

▶ Theorem 24. Let U = (Σ, E,Eq) be a V -quantitative monoidal theory, Eq be a closure
from Table 1, and f, g : n → m ∈ SU . If f =ε g is true in all Eq-models M : SU → C of the
theory U , meaning that ε ⊑ dC(M(f),M(g)), then f =ε g is in the closure Eq.

4 Case Study I: Order on Matrices

Throughout the section we fix a semiring R (a ring without additive inverses) and write
1R and 0R respectively for its multiplicative and additive identities. Also, we write n for
{0, . . . , n−1}. We will show that, when R is ordered, the entrywise ordering of R-matrices can
be axiomatised using the framework of Section 3. A notable example is the Boolean semiring
R = {0, 1}, in which case R-matrices represent relations, and the order we axiomatise is
set-theoretic inclusion.

4.1 Background: (non-Quantitative) Axiomatisation of MatR

Before considering the quantitative theory, we recall the category of R-matrices and the
monoidal theory axiomatising it. The axiomatisation result seems to be folklore, see e.g. [34,41]
for the Boolean case. We follow the presentation of [72, Section 3.2], which is for a generic
ring, but is applicable for semirings as well.

▶ Definition 25. The SMC MatR has objects N, and morphisms n → m the m× n matrices
with entries in R. When n or m is 0, there is a unique empty m× n matrix []. Composition
is by matrix multiplication and the monoidal product is by direct sum: A⊕A′ =

[
A 0
0 A′

]
.

The monoidal theory HAR (Hopf Algebras) has generators : 1 → 0, : 1 → 2,
: 2 → 1, : 0 → 1, and k : 1 → 1, for each scalar k ∈ R, and equations

= = = =

= = = =

= = 1 = k1k2 k1 k2= k =
k

k

k = k =
k

k
k = 0 = =

k1

k2

k1 + k2

We write SHAR
for the SMC freely generated by HAR, defined according to Definition 10.

▶ Proposition 26. [72, Proposition 3.9] The following assignment of a matrix to each
generator of HAR, FR( ) = [], FR( ) =

[ 1R
1R

]
, FR( ) = [ 1R 1R ], FR( ) = [],

FR( k ) = [k], yields an identity-on-objects freely generated symmetric monoidal functor
FR : SHAR

→ MatR, which is furthermore an isomorphism of SMCs.

Showing that FR is faithful relies on a decomposition result for morphisms of SHAR
[72,

Lemma 3.10]. We prove a variant of this result that will be convenient to use later.



G. Lobbia, W. Różowski, R. Sarkis, and F. Zanasi 68:11

▶ Lemma 27. Given n,m ∈ N, there are two morphisms bn
m : n → nm and wn

m : nm → m

in SHAR
such that for any morphism f : n → m in SHAR

, there are scalars {fij ∈ R}i∈m,j∈n
such that f = bn

m; (
⊗

i∈m,j∈n fij);wn
m and the (i, j)-entry of the matrix F (f) is fij.

This decomposition is related to the “matrix canonical form” of [72, Lemma 3.10] because
it can be shown that bn

m is represented by a string diagram containing only the generators
and , while wn

m only contains , , and . For example, the morphism f satisfying

FR(f) =
[

a b
c d

]
decomposes as

a

c

b

d

.

4.2 Axiomatising the Preorder Relation for Matrices
When R is an ordered semiring, there is a simple preorder on matrices of the same size
defined by entrywise comparisons: A ≤ B if and only if, Aij ≤ Bij for all i, j.

In this section we consider the task of axiomatising this preorder. There are two main
steps. First, formulate the preorder as an enrichment on MatR. Second, identify a quantitative
extension of the theory HAR and show it axiomatises the enriched version of MatR. A key
property for the enrichment is not just the existence of an order on the semiring elements,
but also compatibility of this order with matrix multiplication.

▶ Assumption 28. Throughout this subsection we assume R to be an ordered semiring such
that, for each a, a′, b, b′ ∈ R, a ≤ a′ and b ≤ b′ implies a+ b ≤ a′ + b′ and ab ≤ a′b′.

For example, the Boolean semiring {0m1} and the semiring [0,∞) of nonnegative reals
satisfies this assumption, whereas R does not. As seen in Example 4, 2⊓-hemimetrics are
preorders and their nonexpansive maps are order-preserving functions. Thus, we seek to enrich
MatR in 2⊓HMet. Since ⊕ = ⊓ in 2⊓, the two monoidal products provided in Examples 6
and 7 coincide, and are defined as: (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′. Thanks
to Assumption 28, we can show that matrix multiplication and direct sum preserve this
order, and we obtain the following.

▶ Theorem 29. The category MatR equipped with the 2⊓-hemimetrics corresponding to
entrywise comparison on its hom-sets, denoted with Mat≤

R, is a 2⊓HMet-enriched SMC.

Next, we introduce a 2⊓-quantitative monoidal theory and show it axiomatises Mat≤
R.

▶ Definition 30. The 2⊓-quantitative monoidal theory POHAR is defined as the monoidal
theory HAR extended with the following family of quantitative equations: ∀k1 ≤ k2 ∈ R,

k1 =⊤ k2 . (1)

As a reason for (1), recall that, in a 2⊓-hemimetric space, two objects x, y having distance
⊤ corresponds to x ≤ y when seeing the space as a preorder.We may now form the syntactic
category SPOHAR

on POHAR (Proposition 19) using the closure EH⊕⊕
q , where Eq contains

the quantitative equations in (1). We may equivalently use any closure in Table 1 since
⊕ = ⊓ in 2⊓. Both SPOHAR

and Mat≤
R are 2⊓HMet-enriched monoidal, and we now prove

they are isomorphic as enriched SMCs.

▶ Theorem 31. The isomorphism FR : SHAR
→ MatR from Proposition 26 induces an

isomorphism of 2⊓HMet-enriched SMCs FR : SPOHAR
→ Mat≤

R.
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Proof. It suffices to prove FR is locally an isometry, which for 2⊓-hemimetrics means that
for any morphisms f and g in SHAR

, f ≤ g if and only if FR(f) ≤ FR(g).
The forward implication says that FR is enriched, and by Theorem 23, we can prove this

by checking the quantitative equations of POHAR are true in FR. The latter are of the form
(1) when k1 ≤ k2, and those are clearly true in FR because FR( k ) = [k].

It remains to prove the converse implication. By Lemma 27, we can decompose f and g as
bn

m; (
⊗

i∈m,j∈n fij);wn
m and bn

m; (
⊗

i∈m,j∈n gij);wn
m. Now, FR(f) ≤ FR(g) means that each

entry of FR(f) is less or equal than each corresponding entry of FR(g), so for any i and j,
FR(fij) ≤ FR(gij), hence fij ≤ gij by (1). Having established this relation between
scalars appearing in f and g, and exploiting the decompositions, we can conclude that f ≤ g

holds in SPOHAR
by repeated application of the inference rules Par⊓ and Seq⊓. ◀

5 Case Study II: Total Variation Distance

The total variation distance is one of the most widely studied metrics on probability distribu-
tions. It appears ubiquitously in various fields of applied mathematics, a prominent example
being optimal transport theory [69]. In [49], the authors axiomatise the total variation
distance on probability distributions as a quantitative (cartesian) algebraic theory.

In this section, we achieve a similar characterisation result, but in the language of
quantitative monoidal theories. Rather than just discrete probability distributions, we focus
more generally on stochastic matrices. These form a category FStoch, in which distributions
are the 1 → n morphisms.

Our first step is to recall FStoch and the (non-quantitative) monoidal theory axiomatising
it (Section 5.1). Second, we introduce the total variation distance and show that FStoch is
enriched over metric spaces, so that we can study total variation between its morphisms
meaningfully (Section 5.2). Thirdly, we expand the monoidal theory of Section 5.1 to a
quantitative monoidal theory, and show that it axiomatises FStoch as an enriched SMC.
Effectively, this means that two matrices in FStoch are at total variation distance ε if and
only if the corresponding string diagrams can be proven to be at distance ε in the theory.

This can be understood as an axiomatisation of the “metric theory” in [33, Example 3.2.7].

5.1 Background: (non-Quantitative) Axiomatisation of FStoch
Here, we recall the axiomatisation result of FStoch, only focusing on exact equality.

▶ Definition 32. The SMC FStoch is the subcategory of Mat[0,1] whose morphisms n → m

are the stochastic matrices, i.e. m× n matrices with entries in the interval [0, 1], such that
the sum of the entries in a column always equals 1.

In the sequel, we will often (implicitly) see columns of a stochastic matrix as probability
distributions and vice-versa. Recall that, given a set X, a (probability) distribution on X is a
function φ : X → [0, 1] satisfying

∑
x∈X φ(x) = 1. There is a monad mapping X to the set

D(X) of finitely supported probability distributions on X, and one may regard FStoch as a
full subcategory of the Kleisli category of such monad. The following axioms were originally
studied in [65], but we follow the more recent [28], casting it in the setting of monoidal
categories.

▶ Definition 33. The monoidal theory Conv (standing for convex algebras) has generators
: 0 → 1, : 2 → 1, and λ : 1 → 2 for each λ ∈ [0, 1], and equations as below

(λ̃ stands for λµ and µ̃ for λ−λµ
1−λµ (with 0

0 = 1)). We write SConv for the SMC freely generated
by Conv (recall Definition 10).
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= = =

λ =
µ̃

λ̃µ

λ
= λ = 1 − λ

λ = 0 = =
λ

λ
λ

▶ Proposition 34 ( [28, Theorem 3.14]). The following assignment of a stochastic matrix
to each generator of Conv, F ( ) = [], F ( ) = [ 1 1 ], F ( λ ) =

[
λ

1−λ

]
, yields an

identitity-on-objects freely generated symmetric monoidal functor F : SConv → FStoch, which
is furthermore an isomorphism of SMCs.

▶ Remark 35. A few caveats when comparing our presentation with the one of [28]: the
category FStoch is called FinStoMap; the author uses different graphical conventions for
reading sequential and parallel composition of diagrams (top-to-bottom instead of left-to-
right); the author has the symmetric structure as explicit part of the presentation, rather
than as something generated freely by the syntactic category of string diagrams. Furthermore,
note that there are other ways to present FStoch axiomatically, e.g. [12, Example 6.2(c)].
Showing that F is faithful relies on a decomposition for morphisms of SConv recalled below.

▶ Lemma 36 ( [28, Propositions 3.12 and 3.13]). Given n,m ∈ N, there is a morphism
pn

m : nm → m such that ∀f : n → m ∈ SConv, there are morphisms {fi : 1 → m}i∈n such that
f = (f1 ⊗ · · · ⊗ fn); pn

m and F (fi) is the ith column of F (f).

5.2 Enrichment of FStoch with the Total Variation Distance
In this section we define an enrichment on FStoch based on the total variation distance
tv : DX × DX → [0, 1], which is defined by tv(φ,ψ) := maxS⊆X |∑x∈Sφ(x) − ∑

x∈Sψ(x)|.
In the context of this paper, tv is a metric that can be defined on the set of morphisms

FStoch(1,m) for any positive m ∈ N. Now, in order to define an enrichment of FStoch over
[0,∞]+PMet, we still need pseudometrics on the other hom-sets. The following definition is
somewhat natural (see Remark 38): for every n,m ∈ N, the metric tv× on FStoch(n,m) is

tv×(A,B) = max
i∈n

tv(Ai, Bi), (2)

where Ai is the ith column of A, and tv(Ai, Bi) is the total variation distance between the
corresponding distributions.

We write FStochtv for FStoch equipped with the metric tv× on its hom-sets. After
showing that sequential and parallel composition are nonexpansive relative to the monoidal
product ⊠⊕ (from Example 6), we conclude the following.

▶ Theorem 37. FStochtv is a [0,∞]+PMet⊗-enriched SMC.

▶ Remark 38. The definition of FStochtv via tv× (2) and the fact that it is enriched can
be obtained more abstractly. First, we can show D lifts to an enriched relative monad on
[0,∞]+PMet⊗ with the total variation metric by adapting [4, Example 5.10] for the theory
of LIB algebras in [49, Section 8]. Then, we unroll the construction of the enriched relative
Kleisli category in [3, Proposition 8.21] to get the category (opposite to) FStochtv.
▶ Remark 39. The category FStochtv is not enriched over [0,∞]+PMet with the monoidal
product ⊠⊓ from Example 7, because sequential composition is not nonexpansive for this
monoidal product: with the matrices A = [ 1 0.5

0 0.5 ], B = A , C = [ 1
0 ], and C ′ = [ 0.5

0.5 ], we have
AC = [ 1

0 ] and BC ′ = [ 0.75
0.25 ], thus tv×(C;A,C ′;B) = 3

4 >
1
2 = max {tv×(C,C ′), tv×(A,B)}.
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5.3 Quantitative Axiomatisation of FStochtv

We introduce the quantitative monoidal theory that axiomatises FStochtv.

▶ Definition 40. The [0,∞]-quantitative monoidal theory Lib is defined as the tuple (Σ, E,Eq)
where (Σ, E) = Conv (Definition 33) and Eq contains, for each λ ∈ [0, 1],

λ =λ 1 − λ
(TV)

We write SLib for the [0,∞]+PMet⊗-enriched SMC generated by Lib using the inference rules
Seq⊕, Par⊓, and Symm, constructed according to Proposition 19.

Note that (TV) is adapted from the quantitative equations LI used in [49, Definition 8.1].
Both sides of (TV) will give weight 1 − λ to the second output, thus the parts where they
differ will have weight at most λ. Hence, the distance between the results is at most λ.
▶ Remark 41. The choice of inference rules used to generate SLib is motivated by our goal to
construct an enriched isomorphism SLib → FStochtv. Indeed, by Remark 39 the rule Seq⊓
would not be valid in FStochtv, and if we took the less strict Par⊕ over Par⊓, nothing would
guarantee validity of the latter in SU . But Par⊓ is valid in FStochtv.

Our axiomatisation result now amounts to showing that the functor F introduced in
Proposition 34 is an isomorphism of enriched categories between SLib and FStochtv. The
following lemma, along with Theorem 23, implies F is enriched.

▶ Lemma 42. The quantitative equations (TV) are true in F .

To conclude that F is actually an enriched isomorphism, it is enough to show it is locally
an isometry. We first focus on the case of morphisms 1 → m, that is, probability distributions,
and we recall a lemma used in the axiomatisation of Mardare et al.

▶ Lemma 43 ( [5, Lemma 10.12]). For any two distributions φ,ψ ∈ DX with λ = tv(φ,ψ),
there exist three distributions φ′, ψ′, τ ∈ DX such that φ = φ′ +λ τ and ψ = ψ′ +λ τ.

We also introduce thick wires that represent the tensor of multiple wires. For example,
for any morphism f : 1 → m in SLib, we can choose a representative diagram that we draw as

φ
m , where φ is the distribution corresponding to F (f) (we often omit the number on

top of the thick wire). Moreover, there are also thick versions of and drawn as
n and n

m

n+m respectively, which obey the same equations as their thin counterparts.
In particular, we can show the following equation is in SLib by induction.

φ
m = m (3)

Now, a convex combination φ+λ ψ can be represented diagrammatically with
ψ

φ

λ ,

which facilitates a diagrammatic proof of the following result.

▶ Lemma 44. The function f 7→ F (f) is a bijective isometry SLib(1,m) → FStochtv(1,m).

Proof sketch. Given two morphisms f, g : 1 → m, let their corresponding distributions be
φ,ψ ∈ Dm, and let φ′, ψ′, and τ be given by Lemma 43. We provide a derivation in Lib of
f =λ g, with λ = tv(φ,ψ) = tv×(F (f), F (g)).

φ =0

φ′

τ
λ

ψ′

by (TV)=λ

φ′

τ
1 − λ

ψ′

=0 ψ
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Both =0 steps follow from hypotheses φ = φ′ +λ τ , ψ = τ +1−λ ψ
′, and (3). This shows

dLib(f, g) ≤ tv(φ,ψ). The converse inequality holds because F is an enriched functor
(Lemma 42), hence F is an isometry on the hom-sets with domain 1. It is bijective by
Proposition 34. ◀

Lemma 36 allows us to extend our argument to arbitrary morphisms of FStochtv.

▶ Theorem 45. The functor F : SLib → FStochtv is an isomorphism of enriched categories.

As we mentioned, our axiomatisation of total variation distance between stochastic
matrices was inspired by Mardare et al.’s for distributions. We discuss the link between our
work and quantitative algebraic theories in the following section.

6 Comparison with Related Work: Cartesian vs Monoidal

The work [12] relates monoidal theories and (cartesian) algebraic theories, showing that
terms of an algebraic theory U correspond to string diagrams in a monoidal theory U ′,
where U ′ only adds a natural commutative monoid structure to U . This follows by an
isomorphism between the Lawvere category generated by U and the SMC freely generated by
U ′ [12, Theorem 6.1]. In this section, we establish an analogous link between the unconditional
quantitative algebraic theories of [49] and our quantitative monoidal theories (Definition 11),
via the discrete enriched Lawvere theories of [59].

Recasting [49] (and [62], which generalises [49] to quantales), an unconditional V -
quantitative algebraic theory U is a triple (Σ, E,Eq), where Σ is a signature of operations
with coarity 1, E is a set of equations between cartesian terms (the standard terms from
universal algebra), and Eq is a set of V -quantitative equations between cartesian terms.
Elements of Eq correspond to quantitative equations of [49] with no premises (∅ ⊢ s =ε t),
and they are called unconditional in loc. cit. Any such theory generates a discrete enriched
Lawvere theory [59, Definition 4] as follows.

▶ Definition 46. The discrete V HMet⊓-Lawvere theory generated by U is the V HMet-category
LU , where objects are natural numbers, and morphisms n → m are n-tuples of cartesian terms
with at most m variables, e.g. ⟨f(x1, x3), x3⟩ : 2 → 3, considered modulo the equations between
terms derived in quantitative equational logic from the axioms in E and Eq (see [46, Figure 2]).
Composition of morphisms is by substitution. The distance between morphisms is computed
between terms as the join of derivable distances, and between tuples as the coordinatewise
meet. Namely, if U ⊢ f =ε g denotes that f =ε g is derivable from the axioms in E and Eq,
then dLU (⟨fi⟩, ⟨gi⟩) = ⊓i

⊔
{ε | U ⊢ fi =ε gi}.

▶ Remark 47. Following [60], an equivalent description of LU is as the restriction of the
enriched Kleisli category for the free U-algebra monad to the discrete spaces on finite sets.
We will show LU can be freely generated from the theory that combines U with a natural
cocommutative comonoid structure.

▶ Definition 48. The V -quantitative monoidal theory U ′ = (Σ′, E′, E′
q) is defined by Σ′ :=

Σ ⊔ { , }, E′ := E ∪ Ec ∪ Ed, and E′
q := Eq, where Ec contains the equations making

{ , } into a cocommutative comonoid and Ed the naturality equations f =
f

f

and f = for each in f ∈ Σ.

Our constructions clearly treat the quantitative axioms and the distances separate from the
rest. In other words, the underlying categories of LU and SU ′ are, respectively, the Lawvere
category generated by (Σ, E) and the prop generated by (Σ′, E′). Hence, it readily follows
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from [12, Theorem 6.1] that the underlying categories are isomorphic. It remains to show
this isomorphism is an isometry. At this point, it is important to note the choice of inference
rules used to generate SU ′ : we take Seq⊕ and Par⊓. We also need to assume that V is IJD
at a technical point in the proof.

▶ Theorem 49. Let U be an unconditional V -quantitative algebraic theory and U ′ a V -
quantitative monoidal theory constructed as in Definition 48. There is an isomorphism of
V HMet-enriched categories between LU and SU ′ .

Proof sketch. We see the isomorphism between the underlying categories as a model of
(Σ′, E′) valued in LU . We apply Theorem 23 to show it is an enriched model. It remains to
prove that the distance between cartesian terms in LU is smaller than the distance between
the corresponding diagrams in SU ′ . We do this by simulating all the rules in quantitative
equational logic with the rules used to build the closure E′

q
H⊕⊓. ◀

In words, Theorem 49 shows that we can always extract the linear part of an unconditional
quantitative algebraic theory just as we can extract the linear part of an algebraic theory.

▶ Example 50. The theory of LIB algebras in [49, Definition 8.1] is an unconditional
quantitative algebraic theory, call it U . Unrolling Remarks 38 and 47, we find that the
enriched Lawvere theory generated by U is the opposite of FStochtv. Thus Theorem 49
provides a quantitative monoidal theory U ′ and an enriched isomorphism SU ′ ∼= FStochop

tv .
At first sight, this seems like another axiomatisation of the total variation distance

complementary to Theorem 45. Further investigation shows that U ′ and Lib are morally the
same. This situation exactly mirrors the differences between the axiomatisations of FStoch
in [12, Example 6.2(c)] and [28]. Namely, the latter avoids redundant equations.

7 Conclusions

Our work provides mathematical foundations to enhance monoidal algebra with quantitative
equations. We are motivated by the increasing relevance of string diagrammatic calculi in
areas such as quantum theory, machine learning, probabilistic programming, and circuit
theory, in which quantitative reasoning plays a fundamental role. Our basic examples
in Sections 4 and 5 are intended merely as a proof-of-concept for our framework. More
sophisticated examples, building on diagrammatic calculi for quantum [17,18,37], probability
theory [29,35,56, 57], and machine learning [21,70], deserve a separate development, which
we will explore in future work.

A notable aspect of this work is the flexibility we provide to generate a syntactic category
from a monoidal theory, where the different inference rules depend on which quantale
operations we pick. This is due to how monoidal terms are formed differently from cartesian
terms, and is motivated by the examples we developed. For instance, in Lib, sequential and
parallel composition are nonexpansive with respect to the sum and max metric respectively,
so the rules Seq⊕ and Par⊓ are used to generate SLib. To encompass more examples, one
could devise other rules corresponding to enrichment over other monoidal products. One
may also consider a logic whose judgments are inference rules (or implications) rather than
quantitative equations, so that Seq⊕ and Par⊓ become part of the theory Lib.

Other questions concern the relation between cartesian and monoidal theories. Can
Theorem 49 be obtained more abstractly via distributive laws like the non-quantitative result
in [12]? Also, in [49] and subsequent works, distances between complex terms depend on the
distances between variables used in those terms. For example, the construction of FStochtv in
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Remark 38 relies on the Kantorovich lifting of the distribution monad relative to the inclusion
FinSet ↪→ Met. If we use FinMet ↪→ Met instead, the distance between distributions
depends on the finite metric space considered. Axiomatising this category would require
the diagrammatic syntax to incorporate some quantitative information on the inputs and
outputs: it is an open question how to represent it in monoidal algebra.
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