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Abstract
We construct an algorithm that inputs an MSO-interpretation from finite words to graphs, and
decides if there exists a k ∈ N such that the class of graphs induced by the interpretation is not
well-quasi-ordered by the induced subgraph relation when vertices are freely labelled using {1, . . . , k}.
In case no such k exists, we also prove that the class of graphs is not well-quasi-ordered by the
induced subgraph relation when vertices are freely labelled using any well-quasi-ordered set of labels.
As a byproduct of our analysis, we prove that for classes of bounded linear clique-width, a weak
version of a conjecture by Pouzet holds.
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1 Introduction

A well-quasi-ordering (wqo) (X, ≤) is a quasi-order that contains no infinite antichains (i.e.,
sets of pairwise incomparable elements) nor infinite decreasing sequences. A cornerstone
result of structural graph theory is the Graph Minor Theorem of Robertson and Seymour [25],
which states that the class of all graphs is well-quasi-ordered by the graph minor relation.
This result has profound implications in graph theory, and algorithmic consequences such as
the polynomial-time solvability of whether a graph can be embedded into a given surface.

The class of all (finite, undirected) graphs is not well-quasi-ordered by the induced
subgraph relation, as witnessed by the antichain composed of finite (chordless) cycles, and
there has been considerable interest in characterizing classes C of finite graphs that are
well-quasi-ordered by the induced subgraph relation. It was proven by Ding that all classes
of bounded tree-depth are well-quasi-ordered for the induced subgraph relation [12, Theorem
2.2], and it is also the case for letter graphs [23]. In general, these theorems can be extended
to all classes admitting “well-behaved” tree decompositions, such as classes of bounded
shrub-depth [14, Corollary 3.9], or m-partite cographs [15, Theorem 5.5].

All the theorems mentioned above actually prove a stronger statement: the classes at
hand are well-quasi-ordered in the presence of any well-quasi-ordered labelling of the nodes.
Given a quasi-ordered set (X, ≤) and a class C of graphs, we call LabelX(C) the class of graphs
obtained by freely labelling vertices using elements of X, that is, graphs G ∈ C equipped
with a labelling lblG : V(G) → X. The notion of induced subgraph is naturally extended
to the one of induced labelled subgraph, and we defer its formal definition to Section 2.
For instance, it is shown in [12, Theorem 2.1] that a class of graphs of bounded tree-depth
is well-quasi-ordered by the induced labelled subgraph relation, assuming that the labels
are themselves well-quasi-ordered. We say that a class C of graphs is k-well-quasi-ordered
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Figure 1 Ellipses represent classes of graphs that are well-quasi-ordered, and the two cones
represent respectively the classes of graphs of bounded clique-width and bounded linear clique-width.
We chose to not represent the intermediate classes that are k-wqo for all 2 < k < +∞ for clarity.
The dots represent specific classes of graphs witnessing the non-emptiness of some intersections.
Pouzet’s conjecture states that all ellipses below 2-wqo collapse for hereditary classes of graphs, and
[9, Conjecture 5] states that the region obtained by removing the cone of bounded clique-width from
the 2-wqo ellipse is empty. The dashed region represents the classes of graphs that we study in this
paper, for which we prove the collapse to wqo-wqo in our Corollary 2.

(k-wqo) if LabelX(C) is well-quasi-ordered for all finite sets X of size at most k, and that
it is labelled-well-quasi-ordered (labelled-wqo) if it is well-quasi-ordered for all finite sets
X of labels. Finally, let us say that a class C is wqo-well-quasi-ordered (wqo-wqo) if it is
well-quasi-ordered for all well-quasi-ordered sets X of labels. Note that wqo-wqo implies
labelled-wqo, which implies k-wqo for all k ∈ N, and that k-wqo implies ℓ-wqo for all k ≥ ℓ.

For hereditary classes of graphs, the notion of 2-well-quasi-ordered is of particular interest,
as it implies the existence1 of a fixed-parameter tractable algorithm to decide the membership
of a graph in the class C, such as described in [15, Corollary 5.8], and more generally that
the class of graphs is described by finitely many forbidden induced subgraphs as shown by
[9, Proposition 3] and [24]. In 2010, Daligault, Rao and Thomassé studied classes of graphs
described by relabel functions, a generalization of m-partite cographs, and characterized those
that are 2-well-quasi-ordered [9, Theorem 3]. In this paper, they also provided a positive
answer to the Pouzet conjecture [24], which states that 2-wqo, labelled-wqo and wqo-wqo are
equivalent for classes described by relabel functions [9, p. 4].2 The classes of graphs studied
in [9] are all of bounded clique-width, and it was conjectured that all 2-well-quasi-ordered
classes of graphs are of bounded clique-width [9, Conjecture 5]. This started a series of works
on the relationship between clique-width and well-quasi-orderings: it was shown that 1-wqo
does not imply bounded clique-width [21, 8], that there are classes of graphs that are 1-wqo
and described by finitely many forbidden (induced) subgraphs but are not 2-wqo [3], and
that there exists (minimal) classes of unbounded clique width described by finitely many
forbidden induced subgraphs [2]. We summarize the various properties of classes of graphs
in Figure 1.

1 The existence is non-constructive, and building a constructive algorithm requires non-trivial work, see
for instance [1] in the case of letter graphs.

2 The Pouzet conjecture states the same collapse for all classes of graphs.
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Contributions. Our first contribution is a decision procedure, that allows us to recognize
classes of graphs that are labelled-wqo, provided that they are described using an MSO-
interpretation from (finite) words to graphs, the definition of which we defer to Section 2.

▶ Theorem 1. Let I be an MSO-interpretation from words to graphs, and let C be its image.
There exists a computable k ∈ N≥1 such that the following are equivalent:
1. C is k-well-quasi-ordered,
2. C is labelled-well-quasi-ordered,
3. C is wqo-well-quasi-ordered.
Furthermore, these properties are decidable.

We also prove that all hereditary classes of graphs that are 2-wqo and of bounded linear
clique-width can be described by such an MSO-interpretation, which justifies their use as
an input to our decision procedure. As a corollary, we answer positively to part of Pouzet’s
conjecture in the case of classes of graphs having bounded linear clique-width, a subset of
classes of bounded clique-width, that is incomparable with the classes studied in [9].

▶ Corollary 2 (Collapse for Bounded Linear Clique-Width). For all classes of graphs of bounded
linear clique-width, the following are equivalent:
1. The class is labelled-well-quasi-ordered,
2. The class is wqo-well-quasi-ordered.

The novelty of our approach is to leverage classical tools from automata theory (namely,
the factorization forest theorem of Simon [26]), and avoid the use of complex minimal
bad sequence arguments [22] that were used in [9]. We strongly believe that these results
generalize to the case of classes of bounded clique-width. To justify this claim, we derive a
self-contained proof of [9, Theorem 3] for classes having bounded linear clique-width. Our
algebraic approach provides a new perspective on the statements of [9] by connecting it to
the class of totally ordered monoids, that were already investigated in the context of regular
languages for completely different reasons [18, 20].

Outline. We provide in Section 2 basic definitions and explain how to deduce Corollary 2
from Theorem 1. In Section 3, we prove our main Theorem 1. Then, in Section 4, we
discuss the relationship between our characterization and the previous work of [9], proving
in Theorem 24 that their characterization can be seen as a coarser version of ours in the
case of bounded linear clique-width.

2 Preliminaries

Graphs. In this paper, graphs are all finite, simple and undirected unless otherwise explicitly
stated. We denote by V(G) the set of vertices of a graph G, and by E(G) the set of edges. A
map h : G → H between two graphs G and H is an embedding if it is injective and satisfies
{h(u), h(v)} ∈ E(H) if and only if {u, v} ∈ E(G), for all (u, v) ∈ V(G). We write G ⊆i H if
there exists an embedding h : G → H, which means that G is an induced subgraph of H, or
equivalently that H is an induced extension of G. A class of graph is hereditary when it is
closed under taking induced subgraphs. We denote by ↓⊆i

C the hereditary closure of a class C,
obtained by considering all induced subgraphs of graphs in C. The notion of induced subgraph
is extended to labelled graphs as follows: a function f : V(G) → V(H) is an embedding of
G into H whenever f is injective, (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H), and
lblG(u) ≤ lblH(f(u)) for all (u, v) ∈ V(G)2.

MFCS 2025
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▶ Example 3. The class of all finite paths is well-quasi-ordered (because a path of length n

is an induced subgraph of all paths of length m ≥ n) but not 2-well-quasi-ordered (which
can be seen by coloring the endpoints of the paths). The class of all finite cycles is not
well-quasi-ordered (since a cycle of length n is never an induced subgraph of a cycle of length
m ≠ n). The class of all cliques is wqo-wqo, which can be seen by representing colored
cliques as finite multisets of colors, and leveraging the fact that these finite multisets are
well-quasi-ordered when the colors themselves are well-quasi-ordered (see for instance [10]).

Automata Theory. We assume that the reader is familiar with the basics of automata
theory, in particular the notions of monoid morphisms, idempotents in monoids, monadic
second-order (MSO) logic and first-order (FO) logic over finite words (see e.g. [27]). We use
symbols Σ, Γ to denote finite non-empty alphabets, and letters u, v, w for finite words. The
symbol ε is used to denote the empty word, and given a word w ∈ Σ∗, we write wi for the
letter at position 1 ≤ i ≤ |w|, and w≤i (resp. w≥i) for the prefix of w of length i (resp. the
suffix of w starting at position i), note that these can be empty words. Similarly, we write
w(i,j) for the factor of w between positions i + 1 and j − 1, which is empty if j ≤ i + 1.

Let us recall that a monoid M is a set endowed with a binary operation that is associative,
has an identity element 1M . Inside a monoid M , an element e ∈ M is called idempotent
if e2 = e. A morphism of monoids µ : M → N is a map that preserves the multiplication
and the identity element, i.e., µ(1M ) = 1N and µ(ab) = µ(a)µ(b) for all a, b ∈ M . The finite
words Σ∗ is a monoid under concatenation, with the empty word ε as neutral element.

MSO Interpretations. A (simple) MSO-interpretation from finite words (Σ∗) to finite graphs
is given by an MSO formula φedge(x, y) that defines the edge relation of a graph, a domain
formula φdom(x) that defines the domain of the output graph, and a selection formula φ∆
without free variables, used to restrict the domain of the interpretation.

Let I := (φedge, φdom, φ∆) be an MSO-interpretation from finite words to graphs. The
image of a word w ∈ Σ∗ is the graph G with vertices {1 ≤ i ≤ |w| | w |= φdom(i)}, and edges
{i, j} for each pair (i, j) such that i < j and w satisfies φedge(i, j). The image of I is the
collection of I(w) where w ranges over the words in Σ∗ that satisfy φ∆, we write this image
Im(I). We provide examples of interpretations in Examples 4 and 5, the first example is a
class that is wqo-wqo, while the second one is not even 2-wqo.

▶ Example 4. The class of all cliques can be obtained as the image of the following MSO-
interpretation: φdom(x) := ⊤, φedge(x, y) := x ̸= y, and φ∆ := ⊤.

▶ Example 5. The class of all finite paths can be obtained as the image of the following MSO-
interpretation: φdom(x) := ⊤, φedge(x, y) := (x ≤ y) ∧ ∀z.(x ≤ z ≤ y) =⇒ z = x ∨ z = y,
and φ∆ := ⊤.

A class of graphs has bounded linear clique-width if there exists a finite alphabet Σ, and
an MSO-interpretation I such that C ⊆ Im(I) [7, 6]. The notion of bounded clique-width is
defined similarly, using trees instead of words as input of the interpretation. We remark
that there are uncountably many classes of graphs that have bounded linear clique-width,
and only countably many MSO-interpretations. This discrepancy vanishes when considering
hereditary classes of graphs that are 2-well-quasi-ordered (Lemma 6), and we can use this to
bridge the gap between the algorithm of Theorem 1 that considers MSO-interpretations and
our Corollary 2, by leveraging the interaction between hereditary closure and labelling of a
class (Lemma 7).
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▶ Lemma 6 (Sandwich Lemma). Let C be a class of graphs that has bounded linear clique-
width and is 2-well-quasi-ordered. Then, there exists an MSO-interpretation I such that
C ⊆ Im(I) ⊆ ↓⊆i

C. In particular, C = Im(I) when C is hereditary.

▶ Lemma 7 (Hereditary Closure Lemma). Let k ∈ N≥1, and C be a class of graphs that is
(k + 1)-well-quasi-ordered. Then the hereditary closure of C is k-well-quasi-ordered.

▶ Corollary 2 (Collapse for Bounded Linear Clique-Width). For all classes of graphs of bounded
linear clique-width, the following are equivalent:
1. The class is labelled-well-quasi-ordered,
2. The class is wqo-well-quasi-ordered.

Proof. Let C be a class of graphs that has bounded linear clique-width, and is labelled-well-
quasi-ordered. By Lemma 6, there exists an MSO-interpretation I such that C ⊆ Im(I) ⊆
↓⊆i

C. Since C is labelled-well-quasi-ordered, so is ↓⊆i
C by Lemma 7. As a consequence,

Im(I) is labelled-wqo (as a subset), and using Theorem 1, we conclude that Im(I) is wqo-wqo.
Because C ⊆ Im(I), it means that C is wqo-wqo too. ◀ ▷ Back to Corollary 2

on page 3

3 MSO-Interpretations and Monoids

In this section, we will develop an automata theoretic approach to the problem of charac-
terizing images of MSO-interpretations that are labelled-well-quasi-ordered by the induced
subgraph relation. The key ingredient is to use the notion of factorization forests [26] to
provide an alternative syntax of such classes of graphs where words (linear trees of unbounded
depth) are replaced by forests (branching trees of bounded depth). Let us first justify that in
the upcoming analysis, the domain formula φdom and the universe formula φ∆ can be safely
ignored (i.e., set to be constantly true). Beware that, contrary to Lemma 6, the following
construction is effective which is essential for the algorithm of Theorem 1.

▶ Lemma 8 (Simple Interpretations). Let I be an MSO-interpretation. There exists an
MSO-interpretation I ′ that does not use φ∆ and φdom, and such that for all sets (Q, ≤),
LabelQ(Im(I)) is well-quasi-ordered if and only if LabelQ(Im(I ′)) is.

Furthermore, I ′ is effectively computable from I.

Monoid Interpretations. The equivalence between regular languages, finite automata,
languages recognized by finite monoids and MSO formulas ([13]) provides the existence (and
computability), for every formula φ(x, y) ∈ MSO, of a finite monoid M , together with a
surjective morphism µ : Σ∗ ↠ M , and a subset P ⊆ M3, such that, for all words w ∈ Σ∗, for
all couples i < j of positions in w, we have:

w |= φ(i, j) ⇐⇒ (µ(w≤i), µ(w(i,j)), µ(w≥j)) ∈ P .

As a consequence, given a finite alphabet Σ and an edge formula φedge(x, y) defining an
MSO-interpretation, one can construct a monoid interpretation: it is described by a finite
monoid M , a morphism µ : Σ∗ → M , and a subset P ⊆ M3 that we call an edge selector. To
a word w ∈ Σ∗, it associates a graph G with vertices V(G) defined as the set of positions of
w, and creates an edge (i, j) ∈ E(G) if (µ(w≤i), µ(w(i,j)), µ(w≥j)) ∈ P . We provide hereafter
two examples of monoid interpretations that will be used to illustrate our constructions.

▶ Example 9. Let Σ := {a}, M := ({0, 1, 2} , +2) where a +2 b := min(2, a + b), µ(a) := 1,
and P := {(x, y, z) ∈ M3 | y = 0}. Then, the image of the monoid interpretation Ipaths is
the class of finite paths.

MFCS 2025
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▶ Example 10. Let Σ := {a}, M := (Z/2Z, +), µ(a) := 1, and P := {(x, y, z) ∈ M3 | y = 0}.
Then, the image of the monoid interpretation Ibp is included in the class of bipartite cliques.

Although Examples 9 and 10 share the same alphabet, similar morphisms and similar
edge selectors, their behavior is drastically different. The image of Ipaths is 1-wqo but not
2-wqo, while the image of Ibp is wqo-wqo.

3.1 Factorisation Forests
Let us now introduce one of the key ingredients of our proof, which is the notion of factorization
forest of a finite word over a finite monoid M . Initially introduced by Simon in [26], they
provide a way to efficiently compute the product of factors of a word in M∗, by grouping
computations using a tree of bounded depth, as restated in Theorem 11. The main idea of
this paper is to leverage the factorization forest theorem of Simon to provide a (bounded
depth) tree-decomposition of the graphs in the image of a monoid interpretation. We will
equip these tree-decompositions with a well-quasi-ordering (Lemma 12), which will induce a
(new) well-quasi-ordered relation on the image of our monoid interpretation. At the level of
graphs, this new relation will be a restriction of the induced subgraph relation, obtained by
only considering embeddings that are compatible with the tree-decompositions of the graphs.

▶ Theorem 11 ([26]). Let Σ be a finite alphabet, and µ : Σ∗ → M be a morphism to a
finite monoid. There exists3 a computable depth d ∈ N such that every word w ∈ Σ∗ can be
factorized as a tree of depth at most d built using:

Leaves: a ∈ Σ, that evaluate to µ(a),
Binary nodes: t1 t2, that evaluate to a · b if t1 evaluates to a and t2 evaluates to b,
Idempotent nodes: (t1, . . . , tn), if n ≥ 2 and t1, . . . , tn are subtrees that evaluate to the
same idempotent element e ∈ M . The idempotent nodes evaluate to their corresponding
idempotent e.

We call such a tree a factorization forest of w. We write Fd(M) for the set of factorization
forests of depth at most d for the monoid M , leaving Σ implicit.

As the name suggests, the factorization theorem provides a factorization of a word w into
a tree, and its subtrees correspond to factors of w. Let us illustrate in Figure 2 a factorization
of a word for the monoid used in Example 9. For the interpretation Ibp of Example 10, a
similar picture is obtained by replacing all 2’s from Figure 2 by 0’s.

Ordering Factorisation Forests. By definition, factorization forests are nested words over
the alphabet Σ∗. It has been proven by Higman that if a set (X, ≤) is well-quasi-ordered,
then the set of finite words (X∗, ≤⋆) is also well-quasi-ordered [17], where u ≤⋆ v if there
exists an increasing map f : {1, . . . , |u|} → {1, . . . , |v|} such that ui ≤ vf(i) for all i. When
u ≤⋆ v we say that u is a (scattered) subword of v.

Given a finite alphabet Σ, a finite monoid M and a surjective morphism µ : Σ∗ ↠ M , we
define by induction on d ∈ N a well-quasi-ordering ⪯d on the set of factorization forests of
depth at most d. For d = 0, the forests are all leaves, and we equip them with the equality
quasi-order. For the inductive case, we let t ⪯d+1 t′ if one of the following holds:

t ⪯d t′ (hence, both are of depth at most d),
t = t1 t2, t′ = t′

1 t′
2, t1 ⪯d t′

1 and t2 ⪯d t′
2,

t = (t1, . . . , tn) and t′ = (t′
1, . . . , t′

n) and t1 · · · tn ⪯d
⋆ t′

1 · · · t′
n for the subword embedding

relation over (Fd(M))∗.

3 It can be proven that this depth is at most 3|M | [5], but we will not use this fact.
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Figure 2 We represent a factorization forest for the word w = a9 using the monoid of the
interpretation Ipaths of Example 9. Gray nodes are leaves, blue nodes are binary (or unary), and
yellow nodes are idempotent nodes. For every node, we used as a label the evaluation of the subtree
rooted at this node. We depicted the factors w≤i, w(i,j), and w≥j , where i = 2 and j = 7.

Let us briefly remark that this definition of ordering using “nested subword embeddings”
was used to verify priority channel systems in [16], and is a specialization of the notion of the
gap-embedding relation on trees of [11]. Furthermore, the definition of the well-quasi-ordering
⪯d can be extended to the case where nodes of the forests are labelled by elements from
a quasi-ordered set (Q, ≤) as follows: whenever we compare two nodes t and t′, we also
check if their labels are comparable. The following lemma states that (Fd(M), ⪯d) is a
well-quasi-order for every d, and follows immediately from Higman’s lemma [17].

▶ Lemma 12 (Factorization Forests are Well-Quasi-Ordered). Let M be a finite monoid, Σ be
a finite alphabet, µ : Σ∗ → M be a morphism, (Q, ≤) be a well-quasi-ordered set, and d ∈ N.
The set of Q-labelled factorization forests of depth at most d is a well-quasi-order for ⪯d.

Let us fix for the rest of this section a monoid interpretation I = (Σ, M, µ, P ), and a
constant d such that every word in w ∈ Σ∗ has a factorization forest of depth at most d

(using Theorem 11). Because factorization forests are an additional structure over a finite
word w, the interpretation I can be extended to a map from factorization forests to graphs
(ignoring the factorization of the underlying word). If this map I : Fd(M) → I(Σ∗) was
order-preserving, i.e., if t ⪯d t′ implies I(t) ⊆i I(t′) for every t, t′ ∈ Fd(M), then we could
immediately conclude that I(Σ∗) is well-quasi-ordered: the image of a well-quasi-ordered set
by an order-preserving map is well-quasi-ordered [10]. Let us argue that it is almost the case.

By construction, if t ⪯d t′, then t can be obtained from t′ by inserting new children to
idempotent nodes. In particular, it induces a map f from nodes of t to nodes of t′ that
respects: the least common ancestor relation, the evaluation of subtrees, the type of nodes
(binary node, leaf, idempotent node). Now, if t and t′ are factorization forests of words u

and v respectively, then f can be seen as a map from positions of u to positions of v, hence
a map from vertices of I(u) to vertices of I(v), which is almost an embedding.

▶ Lemma 13. Let u ∈ Σ∗ be a word, tu ∈ Fd(M) be a factorization of u, e be an idempotent
element of M , x be an idempotent node that evaluates to e in tu, and tw be a factorization
of a word w that evaluates to e. Let tv be obtained by inserting tw as a new child of the node
x in u, and f : {1, . . . , |u|} → {1, . . . , |v|} be the corresponding map at the level of words.
Then, for every pair of positions i < j that are not in the factor of u described by x, we have:
µ(u≤i) = µ(v≤f(i)), µ(u≥j) = µ(v≥f(j)), and µ(u(i,j)) = µ(v(f(i),f(j))).

As a consequence, for such pairs, (i, j) ∈ E(I(u)) if and only if (f(i), f(j)) ∈ E(I(v)).

Proof. Let us consider two positions i < j of the word u. Assume that the insertion
of tw is done between i and j (the other cases are similar). Then, one can write u =
u≤iu

left
(i,j)x

leftxrighturight
(i,j)u≥j , where xleftxright is the factor of u corresponding to the idem-

potent node x, split where the insertion of the word w happens. By construction, v =

MFCS 2025
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v≤k v(k,ℓ) v≥ℓ
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Figure 3 We represent factorization forest for the words u = a7 and v = a9, using the monoid of
the interpretation Ipaths of Example 9, following the same coloring conventions as in Figure 2. The
forest for v is obtained by inserting the purple subtree in the forest for u. The map f : {1, . . . , 7} →
{1, . . . , 9} derived from this embedding is such that f(x) = x if x ≤ 2 and f(x) = x + 2 otherwise.
In this drawing, k = f(i) = 2, j = 3, and ℓ = f(j) = 5. The pair (i, j) belongs to E(I(u))
because µ(u(i,j)) = µ(ε) = 0, but the pair (f(i), f(j)) = (k, ℓ) does not belong to E(I(v)) because
µ(v(k,ℓ)) = µ(a2) = 2.

u≤iu
left
(i,j)x

leftwxrighturight
(i,j)u≥j . Because u≤i = v≤f(i) and u≥j = v≥f(j), we immediately obtain

the first and third desired equalities.

µ(v(f(i),f(j))) = µ(uleft
(i,j))µ(xleft)µ(w)µ(xright)µ(uright

(i,j))

= µ(uleft
(i,j))e2µ(uright

(i,j)) x is an idempotent node

= µ(uleft
(i,j))eµ(uright

(i,j)) e is idempotent

= µ(uleft
(i,j))µ(xleftxright)µ(uright

(i,j)) x is an idempotent node

= µ(u(i,j))

Which concludes the proof. ◀

Let us illustrate why considering positions that are “too close” to the inserted forest
is problematic in Figure 3. This is not surprising as the class of graphs described by the
interpretation Ipaths of Figure 3 is not 2-wqo, hence it is impossible for the interpretation
Ipaths to transport embeddings between forests to embeddings between their images.

3.2 Characterizing Labelled Well-Quasi-Ordered Classes
Generalizing the example of Figure 3, we can now define what are the formal obstructions
inside the factorization forests for the map I to be order-preserving. We will call them
bad forest paths. To that end, let us first generalize the notion of evaluation of a monoid
interpretation from factorization forests to account for a context (ml, mr) ∈ M2: I(ml · t ·mr)
is the graph obtained by evaluating the factorization forest t with the morphism µ and the
edge selector Pml,mr

, where (x, y, z) ∈ Pml,mr
⇐⇒ (ml · x, y, z · mr) ∈ P . This will allow
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us to reason about the image of a subtree t′ of a factorization forest t, which corresponds to
an induced subgraph I(ml · t′ · mr) of the generated graph I(t), where ml and mr are the
monoid elements obtained by evaluating the word to the left and to the right of the selected
subtree. Let us also define the type of a leaf i in a factorization tree t ∈ Fd(M) of a word
u ∈ Σ∗, as the triple (µ(u<i), µ(ui), µ(u>i) ∈ M3, that we denote as tpt(i).

▶ Definition 14. Let (ti)1≤i≤k be a sequence of elements in Fd(M), all evaluating to the
same idempotent element e ∈ M and t = (ti)1≤i≤k. The sequence is a good forest path if for
all (ml, mr) ∈ M2, there exists another sequence (hi)1≤i≤ℓ of elements of Fd(M) evaluating
to e, a tree h = (hi)1≤i≤ℓ, and an embedding f : V(T ) → V(H) where T = I(ml · t · mr) and
H = I(ml · h · mr), such that:
1. for every element x ∈ V(T ), originating from a leaf of some ti, that is sent to a vertex

originating from hj via f , we have tpti
(x) = tphj

(f(x)),
2. the vertices originating from t1 are mapped to vertices originating from h1,
3. the vertices originating from tk are mapped to vertices originating from hℓ,
4. there exists 1 ≤ i ≤ ℓ such that the image of f does not intersect the vertices originating

from hi.
We say that a good forest path is split by the sequence (hi)1≤i≤ℓ and embedding f in the
context (ml, mr). A bad forest path is a sequence of factorization forests (ti)1≤i≤k, that is
not a good forest path.

By definition, good forest paths can be split into smaller independent parts. Beware that
the split can reorder the nodes in some arbitrary fashion, and may not respect the order of
the leaves in the original forest. Our first result is to prove that the existence of arbitrarily
long bad forest paths is sufficient to conclude that the class I(Σ∗) is not labelled-wqo. In
fact, the number of colors used will be related to the size of the monoid M .

▶ Lemma 15. Assume that bad forest paths of arbitrarily large length in Fd(M). Then,
I(Σ∗) is not k-wqo, where k = |M |2 × 3.

Proof. Assume that there exists arbitrarily long bad forest paths in Fd(M). Then, there
exists a sequence of forests (ti)i∈N such that for all i, ti = (hi,k)1≤j≤ni

, where (hi,k)1≤k≤ni

is a bad forest path, and ni is increasing with respect to i. Since these are bad forest paths,
there exists (ai, bi) ∈ M2 such that ti cannot be split in the context (ai, bi).

Because the monoid M is finite, we can assume that all the forests ti evaluate to the
same idempotent element e ∈ M , and that there exists (a, b) ∈ M2 such that ai = a and
bi = b for all i ∈ N. Extracting a subsequence also allows us to assume that for all i ∈ N,
ni+1 is greater than the number of leaves in ti.

Let us now consider the sequence of graphs Gi := I(a · ti · b), that we color as follows:
every vertex is colored by its leaf type in its original factorization forest hi,k, 1 ≤ k ≤ ni. We
furthermore add three new colors, distinguishing vertices originating from the first and last
factorization forest of the bad forest path hi,1 and hi,ni

from the rest of the vertices. The
final coloring corresponds to |M |3 × 3 labels. We now prove that the sequence (Gi)i∈N is an
infinite antichain with the provided coloring, which concludes the proof.

Assume towards a contradiction that there exists i < j and a labelled embedding
f : V(Gi) → V(Gj). Because of the coloring chosen on Gi and Gj , the map f respects the
types of the leaves (Item 1), sends the vertices originating from hi,1 to the vertices originating
from hj,1 (Item 2), and the vertices originating from hi,ni

to the vertices originating from
hj,nj

(Item 3). Furthermore, the image of f must not intersect the vertices originating from
some hj,k, 1 ≤ k ≤ nj (Item 4), because nj is greater than the number of leaves in ti, hence
the number of vertices in Gi. We conclude that (hi,k)1≤k≤ni

is a good forest path, which
can be split in the context (a, b), contradicting our initial assumption. ◀
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Let us now prove that the absence of arbitrarily long bad forest paths is sufficient to
conclude that the class I(Σ∗) is wqo-well-quasi-ordered. The key ingredient of the proof
is to split the good forest paths, which has the effect of adding dummy idempotent nodes
separating the leaves of our factorization forests. Adding these nodes will prevent the issues
encountered in generalizing Lemma 13 to nodes that are “too close” to the inserted forest,
ensuring that the case of Figure 3 never happens. A first observation is that to split a good
forest path, one only needs to repeat it three times.

▶ Lemma 16. Let (ti)1≤i≤n be a good forest path. Then, for all contexts (a, b) ∈ M2,
there exists an embedding f : V(T ) → V(T 3) satisfying Items 1–4 of Definition 14, where
T = I(a · (t1, . . . , tn) · b), and T 3 = I(a · (t1, . . . , tn, t1, . . . , tn, t1, . . . , tn) · b). Furthermore,
the embedding f can be chosen such that for all x, f(x) is either x in the first copy of the
sequence, or x in the third copy of the sequence, i.e., f is uniquely determined by a map from
the vertices of T to {first, third}.

Proof. Let (hi)1≤i≤ℓ be a sequence of factorization forests that splits the good forest path
in the context (a, b) using an embedding g : V(T ) → V(H), where H = I(a · (h1, . . . , hℓ) · b).
Let us write 1 < N0 < ℓ for the smallest index such that the image of g does not intersect the
vertices originating from hN0 . Let us also write ρ : V(T ) → {1, . . . , ℓ} the map that assigns
to every vertex x of T the index of the factorization forest from which g(x) originates in H.

Recall that every vertex of T exists in three copies in T 3 (one for each repetition of the
sequence of forests). We define the map f : V(T ) → V(T 3) as follows, given a vertex i ∈ V(T ):

If i originates from t1, then it is mapped to its first copy in T 3,
If i originates from tn, then it is mapped to its last copy in T 3,
If i originates from tj , 1 < j < n, and ρ(i) < N0, then it is mapped to its first copy in T 3,
If i originates from tj , 1 < j < n, and ρ(i) > N0, then it is mapped to its last copy in T 3.

It is clear that f satisfies Items 1–4. What remains to be shown is that f is an embedding of
T into T 3, which will follow from the fact that g was itself an embedding. Given two vertices
x, y ∈ V(T ) four cases can be considered:

If x and y both originate from t1. Then, (x, y) ∈ E(T ) if and only if (x, y) ∈ E(I(a ·
(t1, . . . , tn) · b)), if and only if (x, y) ∈ E(I(a · t1 ·eb)), because n ≥ 2 for every idempotent

nodes. Therefore, (x, y) ∈ E(T ) if and only if (f(x), f(y)) ∈ E(T 3).
If x and y both originate from tn, the same argument applies but with the last copy of t.
If x and y originate from a tree tj , 1 < j < n, and are sent to the same copy of t by f .
Then a similar argument applies too.
If x and y originate from a tree tj , 1 < j < n, and are sent to different copies of t by f .
Then, one idempotent element e is inserted when computing the edge relation between
f(x) and f(y), which may change the result (as in Figure 3). However, (x, y) ∈ E(T ) if
and only if (g(x), g(y)) ∈ E(H) because g is an embedding. It follows from the same proof
scheme as for Lemma 13 that (g(x), g(y)) ∈ E(H) if and only if (f(x), f(y)) ∈ E(T 3), as
they share the same leaf types, and are both separated by the same idempotent e.

We have proven that f is an embedding of T into T 3. ◀

We are now ready to upgrade the forests in Fd(M), assuming the existence of a bound
N0 on the length of bad forest paths. Let us overload notations for the binary nodes so that

(t1, . . . , tk) := (t1, (t2, . . . , tk)), (t1, t2) := t1 t2, and (t1) := t1. Note that the depth
of (t1, . . . , tk) is bounded by k + dmax, where dmax is the maximal depth of the trees ti.

Let us illustrate our construction on an example. Let t = (t1, t2, t3, t4), where ti are
factorization forests evaluating to some idempotent element e ∈ M , and assuming that
N0 = 1. The first step is to group the children of t into buckets of size N0 + 1 (that is,
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2): b1 := (t1, t2) and b2 := (t3, t4). Now, because b1 and b2 are of length N0 + 1, they are
good forest paths, and can be split by repeating their sequence three times (Lemma 16).
We obtain new buckets b′

1 := (t1, t2, t1, t2, t1, t2) and b′
2 := (t3, t4, t3, t4, t3, t4). We label the

leaves of the trees in the sequences b′
1 and b′

2 as valid if they are in the image of the split,
and dummy otherwise. The resulting forest is obtained as follows:

t′ := ( (t1, t2))︸ ︷︷ ︸
Leftmost

( ( t1, t2︸︷︷︸
padding

, (t1, t2, t3, t4)︸ ︷︷ ︸
Group

, t3, t4︸︷︷︸
padding

)) ( (t3, t4))︸ ︷︷ ︸
Rightmost

. (1)

Where the padding elements have all their leaves labelled with dummy. The induced subgraph
of I(t′) obtained by removing all the vertices labelled by dummy is isomorphic to I(t).
Furthermore, every pair of leaves (x, y) of I(t′) that are labelled by valid have the following
property: either x and y belong to the same child of t′ (for instance, (t1, t2), or
(t1, t2, t3, t4)), or they are separated by a child of t′ whose leaves are all labelled by dummy.
In particular, for the tree t′, inserting new children to the idempotent node does not modify
the induced subgraph of the leaves labelled by valid.

The following technical lemma states that this construction can be applied inductively to
obtain a function τ : Fd(M) → Fd′(M), for some bounded d′ ∈ N that depends on N0 and d.

▶ Lemma 17. Assume that there exists a bound N0 ∈ N on the length of bad forest paths
in Fd(M). Then, there exists a d′ ≥ d and a function τ : Fd(M) → Fd′(M) that maps a
factorization forest t to a forest τ(t) that is labelled using {valid, dummy}, and such that:

Every graph G ∈ I(Σ∗) is obtained as the restriction of a graph I(t) to its valid vertices
for some t ∈ F ,
For every t, t′ ∈ Fd(M), for every function f witnessing that τ(t) ⪯d′ τ(t′) (as labelled
forests), the restriction of f to the induced subgraph of valid vertices of I(t) is an embedding
into the induced subgraph of valid vertices of I(t′).

From Lemma 17, we immediately conclude that the class I(Σ∗) is wqo-well-quasi-ordered.
To simplify the proof, let us recall an equivalent characterization of well-quasi-ordered sets
(X, ≤). A sequence (xi)i∈N is good if there exists i < j such that xi ≤ xj . A set (X, ≤) is
well-quasi-ordered if and only if every infinite sequence of elements of X is good.

▶ Corollary 18. Assume that there exists a bound N0 ∈ N on the length of bad forest paths
in Fd(M). Then, I(Σ∗) is wqo-well-quasi-ordered.

Proof. Consider an infinite sequence of graphs Gi ∈ I(Σ∗), with labellings lblGi : V(Gi) → Q,
where (Q, ≤) is a well-quasi-ordered set. Let us equip the set {valid, dummy} with the equality
relation, and remark that Q × {valid, dummy} is also well-quasi-ordered when endowed with
the product ordering.

By definition, every graph Gi is the image of a word ui ∈ Σ∗ through I. Because we
chose the value of d according to Simon’s factorization theorem (Theorem 11), every word
ui has a factorization forest ti ∈ Fd(M). We can construct build the sequence hi := τ(ti),
where τ is the function provided by Lemma 17.

Because the set of (Q × {valid, dummy})-labelled factorization forests of depth at most
d′ is well-quasi-ordered for ⪯d′ (Lemma 12), there exists an increasing pair i < j of indices
such that hi ⪯d′ hj . This defines a function f : V(I(hi)) → V(I(hj)) that is an embedding
when restricted to the induced subgraph of valid vertices, and respects the labelling Q ×
{valid, dummy}. Because the induced subgraph of valid vertices of I(hi) is precisely I(ti) =
I(ui) = Gi, and the same holds for I(hj) = Gj , this provides a function f : V(Gi) → V(Gj)
that is a labelled embedding of Gi into Gj .
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The sequence (Gi)i∈N is therefore a good sequence. and we have proven that I(Σ∗) is
wqo-well-quasi-ordered. ◀

We have proven that the existence of a bound on the length of bad forest paths charcterizes
whether I(Σ∗) is wqo-well-quasi-ordered. To finalize the proof of our Theorem 1, we only
need to show that the existence of such a bound is decidable. This is because the language
of bad forest paths of depth at most d is a regular language, and one can decide whether a
regular language is unbounded.

▶ Lemma 19. Let d ∈ N. It is decidable whether Fd(M) contains bad forest paths of
unbounded length.

Proof of Theorem 1 page 3. Let I be an MSO-interpretation from Σ∗ to graphs. Using
Lemma 8, we can compute an MSO-interpretation I ′ that only uses the formula φedge, such
that I ′(Σ∗) is k-wqo if and only if I(Σ∗) is k-wqo for all k ∈ N. From I ′, we can compute
a monoid interpretation I ′′ = (Σ, M, µ, P ) by standard techniques. Applying Theorem 11,
we compute a number d such that every word u ∈ Σ∗ has a factorization forest t ∈ Fd(M).
We then use Lemma 19 to decide whether Fd(M) has bad forest paths of unbounded length.
If it does, then I ′′(Σ∗) is not k-well-quasi-ordered, where k = |M |3 × 3 (Lemma 15), hence
I(Σ∗) is not k-wqo. If it does not, then I ′′(Σ∗) is wqo-well-quasi-ordered (Corollary 18), and
therefore so is I(Σ∗).

In particular, we have computed a number k = |M |3 × 3 such that I(Σ∗) is k-well-quasi-
ordered if and only if I ′(Σ∗) is wqo-well-quasi-ordered. ◀▷ Back to Theorem 1 on

page 3

4 A Semigroup Approach to Well-Quasi-Orders of Relabel Functions

Classes that are labelled-well-quasi-ordered and of bounded clique-width had already been
studied by [9], which leveraged the notion of k-node labelled controlled graphs, a notion
introduced by [28]. The class NLCF

k of k-node labelled controlled graphs with relabel functions
F from {1, . . . , k} to {1, . . . , k} is defined inductively on k-labelled graphs as follows: one
can create a single vertex graph with label i ∈ {1, . . . , k}, one can relabel a k-labelled
graph G with a function f ∈ F (applying f to every vertex label of G), and one can
combine two k-labelled graphs G and H using a set S ⊆ {1, . . . , k}2 by creating the disjoint
union of G and H, and adding edges between vertices x and y in G and H respectively if
(lblG(x), lblH(y)) ∈ S.

It is a folklore result that every class of graphs C that has bounded linear clique-width
is a subset of some NLCF

k for some k and some F , and [9] completely characterized the
pairs (k, F) such that NLCF

k is 2-well-quasi-ordered or labelled-well-quasi-ordered, showing
the equivalence of these two properties [9, Theorem 3]. The theorem relies on the notion
of totally ordered sets of relabel functions: given two functions f, g : {1, . . . , k} → {1, . . . k},
they define a relation f ≼ g as Img(f) ⊆ Img(f ◦ g), and study families of functions F that
are closed under composition, contain the identity function, and totally ordered for this
relation [9, Section 2].

▶ Theorem 20 ([9, Theorem 3, Corollary 1, Corollary 2]). For all k, for all monoids F of
endofunctions of {1, . . . , k}, the following are equivalent and decidable properties:
1. F is totally ordered by the relation ≼,
2. The class of graphs NLCF

k is 2-well-quasi-ordered.
3. The class of graphs NLCF

k is labelled-well-quasi-ordered.
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Let us mention that Theorem 20 does not allow us to decide whether a class of bounded
linear clique-width is 2-well-quasi-ordered or not, nor does it solve the Pouzet Conjecture in
that case. While it is true that every class of graphs of bounded linear clique-width is a subset
of NLCF

k for some k and some F [7], no analogues of Lemma 6 exist for this representation
of classes of graphs: it may be that the class of graphs is 2-well-quasi-ordered while the class
NLCF

k that contains it is not. This mismatch was conjectured to never happen [9, Conjecture
4], but it remains an open question. Informally, one can state that the difference between
Theorem 20 and the results of the present paper is akin to the difference between analyzing
properties of transition monoids and properties of regular languages: in our case, the set
of accepting states (the edge selector) is fixed, which leads to more precise results, and in
particular allows us to transfer our results from images of monoid interpretations to all
classes of bounded linear clique-width. We will make this intuition precise in our Theorem 24
and Lemma 25, by showing that the condition of being ordered is equivalent to the fact that
there are no long bad forest paths for every choice of edge selector.

4.1 Totally Ordered Monoids
In this section, we argue that the seemingly arbitrary notion of ordering between relabel
functions ≼ can be naturally understood in the language of semigroup theory, namely that
they are related to the classical Green Relations [5]. The connection can be made because
the sets F of functions studied by [9] are closed under compositions and contain the identity
function, and therefore form a (finite) monoid M .

Let M be a finite monoid and m ∈ M be an element. We denote by (m)J the bilateral
ideal of m, i.e., the set of elements xmy where x, y ranges in M . Similarly, we define the left
ideal (m)L and the right ideal (m)R respectively as the sets of elements xm and my where
x, y ranges in M .

▶ Lemma 21 (Green Formulations of Total Orderings). Let M be a finite monoid. The
following are equivalent:
1. M is totally ordered by the relation defined by x ≤ y if and only if (x)R ⊆ (xy)R,
2. M is totally ordered by the relation defined by x ≤ y if and only if (x)L ⊆ (yx)L,
3. M is totally ordered by the relation defined by x ≤ y if and only if (x)J = (xy)J = (yx)J,
4. The bilateral ideals of M are totally ordered for inclusion, and for all x, y ∈ M , (xy)J =

(x)J ∩ (y)J.
Whenever one of these conditions is satisfied, all the defined preorders coincide. Furthermore,
if M is a monoid of relabel functions F , then the above conditions are equivalent to the
condition that F is totally ordered by the relation ≼.

Let us now introduce a definition for so-called “totally ordered monoids” that is based on
Item 3. Examples of such totally ordered monoids are: all groups, and all band monoids, i.e.,
the monoids M such that for all a, b ∈ M , there exists c ∈ M such that a = cbc.

▶ Definition 22. A monoid M is totally ordered if for all a, b ∈ M , either (ab)J = (a)J or
(ab)J = (b)J. We write a ≤J b if (a)J ⊆ (b)J, and a ≡J b if (a)J = (b)J.

Let us mention that totally ordered monoids are exactly those that only recognize
languages L having the finite power property, i.e., such that languages such that there exists
n ∈ N such that L∗ =

⋃
i≤n Li [18, 20]. Furthermore, totally ordered monoids enjoy the

following cancellation property, that was noticed by [9], and powers their combinatorial results.
We will leverage this property to prove the upcoming Lemma 25, that these cancellations
prevent the existence of long bad forest paths.

▶ Lemma 23 (Cancellation Property). Let M be a totally ordered finite monoid. Then for all
a, b, c ∈ M , if b ≤J a and abc = ab then bc = b. Similarly, if cba = ba then cb = b.
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4.2 Bad Forest Paths in Totally Ordered Monoids
Let us now relate our characterization of classes of bounded linear clique-width that are
labelled-well-quasi-ordered to the one introduced by [9]. This is done by showing that totally
ordered monoids (i.e., the families F studied in [9]), are precisely those for which the edge
selector of our monoid interpretations (as defined in Section 3) does not matter: every choice
leads to a wqo-well-quasi-ordered class of graphs.

▶ Theorem 24. Let Σ be a finite alphabet, M be a finite monoid, and µ : Σ∗ ↠ M be a
surjective morphism. Let k := |M | be the size of M , and F be the set of functions from
{1, . . . , k} to itself obtained by considering the action of M on itself. Then, the following are
equivalent:
1. The monoid M is totally ordered,
2. The union

⋃
P ⊆M3 Im(IP ) is 2-well-quasi-ordered, where IP := (Σ, M, µ, P ).

3. The union
⋃

P ⊆M3 Im(IP ) is wqo-well-quasi-ordered, where IP := (Σ, M, µ, P ).
4. The class NLCF

k is wqo-well-quasi-ordered.
5. The class NLCF

k is 2-well-quasi-ordered.

Notice that Theorem 24 also proves that not considering the edge selector from our
interpretations (by taking the union over all possible choices) smooths the combinatorial
properties of Theorem 1: from a computable k such that the class is k-well-quasi-ordered
if and only if it is wqo-well-quasi-ordered, we drop to the constant 2, answering positively
to the Pouzet Conjecture in this case. The proof of Theorem 24 follows straightforwardly
from the following lemma that characterizes the absence of bad forest paths in the case of
totally ordered monoids, regardless of the choice of the edge selector. The lemma itself uses
the cancellation properties of totally ordered monoids (Lemma 23).

▶ Lemma 25 (Bad Forest Paths in Totally Ordered Monoids). Let Σ be a finite alphabet, let
M be a totally ordered finite monoid, P ⊆ M3 be an edge selector, µ : Σ ↠ M be a surjective
morphism, and I = (Σ, M, µ, P ) be a monoid interpretation. Then, there are no bad forest
paths in Fd(M), for all d ∈ N.

Proof. Let t ∈ Fd(M) be factorization forest of a word u ∈ Σ∗. Assume that t evaluates
to an idempotent element e ∈ M . Because µ(u) = e, and M is totally ordered, there must
exist a factorization u = vaw such that µ(v) = m1, µ(a) = m2, and µ(w) = m3 and m2 ≡J e.
This is proven by induction on the size of u, using the fact that (xy)J = (x)J or (xy)J = (y)J.

Let us now construct a function from the leaves of t into the leaves of t3 := (t, t, t). To
that end, let us remark that the leaves of t3 are the positions of the word u3, and let us
define the function f as follows:

For every position i that belongs to va, we f(i) = i, i.e., its corresponding position in the
first copy of u in u3.
For every position i that belongs to w, we f(i) = i + 2|u|, i.e., its corresponding position
in the third copy of u in u3.

This function satisfies all requirements of the definition of a split (Definition 14), and we
only have to prove that it is an embedding of I(t) into I(t3). To that end, it suffices to
prove that for every decomposition u = u≤iu(i,j)u≥j , we have µ(u(i,j)) = µ((uuu)(f(i),f(j))),
µ(u≤i) = µ((uuu)≤f(i)), and µ(u≥j) = µ((uuu)≥f(j)).4 Let us only deal with the case of
u(i,j), as the other cases are similar.

4 This works regardless of the choice of P , that can only use the values of these factors to determine the
presence of an edge.
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If the factor u(i,j) is contained in va or in w, then the result is immediate. Let us now
assume that the range (i, j) intersects both va and w. We can write u = v1v2aw1w2, such
that u(i,j) = v2aw1, v = v1v2, and w = w1w2. One can then compute (uuu)(f(i),f(j)) =
(v2aw)(vaw)(vaw1). Our goal is to prove that µ(v2aw1) = µ((v2aw)(vaw)(vaw1)). To that
end, let us remark that µ(u) = e = e3 = µ(uuu). Let us also remark that e ≡J µ(v2aw1) ≤J

µ(v1), and e ≡J µ(v2aw1) ≤J µ(w2), and that one can therefore apply the cancellation
property of Lemma 23 to obtain the following equalities:

µ(u) = µ(uuu)
µ(v1)µ(v2aw1)µ(w2) = µ(v1)µ((v2aw)(vaw)(vaw1))µ(w2)

µ(v2aw1)µ(w2) = µ((v2aw)(vaw)(vaw1))µ(w2) left cancellation
µ(v2aw1) = µ((v2aw)(vaw)(vaw1)) right cancellation

We have proven that there exists no bad forest path in Fd(M). ◀

Proof of Theorem 24 page 14. First, the equivalence between Item 1 and Items 4 and 5
follows from Theorem 20. Furthermore, it is clear that Item 3 implies Item 2.

To prove that Item 1 implies Item 3, let us assume that M is totally ordered. Then
by Lemma 25, we know that for all P ⊆ M3, there are no bad forest paths in Fd(M) for
all d ∈ N, and using Corollary 18 we conclude that Im(IP ) is wqo-well-quasi-ordered. As a
consequence, the finite union of these classes is also wqo-well-quasi-ordered.

To prove that Item 2 implies Item 1, let us assume that that the monoid M is not totally
ordered, then there exists m1, m2 ∈ M such that (m1m2)J ̸= (m1)J and (m1m2)J ̸= (m2)J.
Because the morphism µ : Σ∗ ↠ M is surjective, there exists words u, v ∈ Σ∗ such that
µ(u) = m1 and µ(v) = m2. In particular, both u and v must be non-empty words. Let us
define the edge selector P := M × (M \ (m1m2)J) × M , and consider the sequence of words
wn := a(uv)na, for some letter a ∈ Σ and for all n ∈ N. If there is an edge between the i-th
and j-th letter of wn, then |i − j| ≤ 2(|u| + |v|). As a consequence, the distance between
the first and last positions of wn in the graph IP (wn) is at least n/2(|u| + |v|), which tends
to +∞ as n increases. Furthermore, there exists a path from the first to the last position
of wn, because for every factor u′ of u, µ(u′) /∈ (m1m2)J (and similarly for v). Hence, the
distance between the vertices originating from the first and last positions in wn is at most
|wn|. By coloring the vertices of the graphs IP (wn) to distinguish the first and last positions
of wn, and extracting a subsequence of wn such that the distance between the first and last
positions in wn+1 is greater than |wn|, we obtain an infinite antichain of 2-labelled graphs.
Therefore, Im(IP ) is not 2-well-quasi-ordered, which completes the proof. ◀ ▷ Back to Theorem 24 on

page 14

5 Outlook

The automata based approach. We believe that the results presented in this paper strongly
advocate for an automata based approach to the characterization of graph classes that are
labelled-well-quasi-ordered. In particular, there are two main directions that naturally emerge
from our work. The first one is to investigate the case of classes of bounded clique-width, that
is, moving from words to trees as input of our MSO-interpretations. The second direction is
to investigate whether the bound k of our main Theorem 1 can be improved to 2, as it is the
case in Theorem 24.

We strongly believe that our proof technique can be adapted to trees, as it is fundamentally
based on two key theorems for words that are already known to be adaptable to trees: the
fact that finite words are equipped with a well-quasi-ordering by Higman’s lemma [17], for
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which the generalization to trees is known as Kruskal’s tree embedding theorem [19]; and
the fact that finite words over a finite monoids can be factored into bounded height trees, i.e.
Simon’s factorization theorem [26], which has been adapted to trees by Colcombet [4].

As to the bound k in Theorem 1, we conjecture that it can be improved to 2, based on
a finer analysis of bad forest paths (Lemma 15), which would bridge the gap between our
analysis and the previous results from [9], and prove that the Pouzet conjecture holds for
classes of graphs of bounded linear clique width.

New decompositions. Let us also remark that the proof of Theorem 1 actually provides
a tree-decomposition of graphs that is, in some sense, successor-free: adding new nodes
between two nodes in the tree does not change the semantics of the tree. We believe it is
worth investigating whether these decompositions could be exploited in other contexts than
labelled-well-quasi-orderings.

Interpreting paths. Finally, we conjecture that paths are the only obstruction to being
labelled-well-quasi-ordered, as all (currently known by the authors) proofs that some classes
are not labelled-wqo end up extracting finite paths from the graph classes we consider (see
for instance Lemma 15 and Theorem 24, [9, Theorem 3], [12]). This leads us to formulate
the following Conjecture 26.

▶ Conjecture 26. Let C be a class of graphs. Then, C is not labelled-well-quasi-ordered if
and only if there exists a finite set Q of labels, and an order-preserving MSO-interpretation
from LabelQ(C) to the class of all finite paths.
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