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Abstract
We give a quantifier elimination procedure for one-parametric Presburger arithmetic, the extension
of Presburger arithmetic with the function x 7→ t · x, where t is a fixed free variable ranging over the
integers. This resolves an open problem proposed in [Bogart et al., Discrete Analysis, 2017]. As
conjectured in [Goodrick, Arch. Math. Logic, 2018], quantifier elimination is obtained for the extended
structure featuring all integer division functions x 7→

⌊
x

f(t)

⌋
, one for each integer polynomial f .

Our algorithm works by iteratively eliminating blocks of existential quantifiers. The elimination
of a block builds on two sub-procedures, both running in non-deterministic polynomial time. The
first one is an adaptation of a recently developed and efficient quantifier elimination procedure for
Presburger arithmetic, modified to handle formulae with coefficients over the ring Z[t] of univariate
polynomials. The second is reminiscent of the so-called “base t division method” used by Bogart et al.
As a result, we deduce that the satisfiability problem for the existential fragment of one-parametric
Presburger arithmetic (which encompasses a broad class of non-linear integer programs) is in NP,
and that the smallest solution to a satisfiable formula in this fragment is of polynomial bit size.
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1 Introduction

The first-order theory of the integers Z with addition and order, which is also known as
Presburger arithmetic (PrA) or linear integer arithmetic, has been intensively studied during
almost a century [26]. It is a textbook fact that Presburger arithmetic admits quantifier
elimination when the structure ⟨Z; 0, 1, +, ≤⟩ is extended with the predicates (d | (·))d∈Z
for divisibilities by fixed integers d: in the theory of this extended structure, for every
quantifier-free formula φ(x,y) there is a quantifier-free formula ψ(y) that is equivalent to
∃x : φ(x,y). The construction of ψ is effective, which implies the decidability of Presburger
arithmetic. The algorithm to decide PrA is the canonical example for the notion of quantifier
elimination procedure. The computational complexity of the many variants of this procedure
has a long history, beginning with Oppen’s proof [25] that Cooper’s procedure [12] runs in
triply exponential time, and followed by refinements from Reddy and Loveland [27], and
later Weispfenning [30], which enable handling formulae with fixed quantifier alternations in
doubly exponential time. Recent research on quantifier elimination aims at narrowing the
complexity gap for the existential fragment (only last year it was discovered that quantifier
elimination can be performed in exponential time in this case [11, 20]) and on extending
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the procedure to handle additional predicates and functions [3, 11, 22, 28], or other forms
of quantification [4, 10, 21]. The reader can find an extensive bibliography on Presburger
arithmetic, and quantifier elimination, in the survey papers by Haase [19] and Chistikov [9].

This paper addresses the open problem raised in the papers [6] and [15] regarding the
existence of a quantifier elimination procedure for the theory Th⟨Z; 0, 1, +, x 7→ t · x, ≤⟩,
known as one-parametric Presburger arithmetic (PrA[t]). In this theory, the structure of
Presburger arithmetic is extended with the function x 7→ t · x for multiplication by a single
parameter t ranging over Z. Every PrA[t] formula φ(x) defines a parametric Presburger
family S(φ) :=

{
JφKk : k ∈ Z

}
, where JφKk is the set of (integer) solutions of the Presburger

arithmetic formula obtained from φ by replacing the parameter t with the integer k.

▶ Example 1. Consider the statement “for every two successive positive integers t and t+ 1,
and for all integers a and b, there is an integer x in the interval [0, t(t + 1) − 1] that is
congruent to a modulo t, and to b modulo t+ 1”. The truth of this sentence follows from the
Chinese remainder theorem together with the fact that successive positive integers are always
coprime. We can encode this statement in PrA[t] with the formula ∀a∀b : χ(a, b), where

χ := t ≥ 1 =⇒ ∃x : 0 ≤ x∧x ≤ t2 + t− 1∧ (∃y : x−a = t · y)∧ (∃z : x− b = (t+ 1) · z).

From the validity of the statement, we find JχKk = Z2 for every k ∈ Z. That is to say, for
every instantiation of t, both φ and χ are tautologies of PrA. ◀

There are many natural decision problems regarding PrA[t] (all taking a formula φ as input):

satisfiability: Is φ satisfiable for an instantiation of the parameter (i.e., S(φ) ̸= {∅}) ?
universality: Is φ satisfiable for all instantiations of the parameter (i.e., ∅ ̸∈ S(φ)) ?
finiteness: Is φ satisfiable for only finitely many instantiations of the parameter t ?

In [6], Bogart, Goodrick, and Woods consider a search problem that generalises all the
problems above: they show how to compute, from an input formula φ, a closed expression
for the function f(k) := #JφKk, where #S stands for the cardinality of a set S. By relying
on properties of this function, one can solve satisfiability, universality, and finiteness. In their
proof, the first ingredient is given by Goodrick’s bounded quantifier elimination procedure [15].
In contrast to the quantifier elimination procedures for PrA, in this procedure every quantified
variable x is not completely eliminated from the formula φ, but acquires instead a bound
0 ≤ x ≤ f(t), for some univariate polynomial f(t). An example of this is given by the
variable x in Example 1, which is bounded in [0, t(t + 1) − 1]. Closely related bounded
quantifier elimination procedures were also developed in [23,31]. The second ingredient of
the construction is given by a method developed by Chen, Li, and Sam for the study of
parametric polytopes [8], and dubbed “base t division method” in [6]. This method produces
a quantifier-free PrA[t] formula ψ satisfying #JψKk = #JφKk for every k ∈ Z.

The combination of the two ingredients has a drawback: the equivalence of the initial
formula φ with the quantifier-free formula ψ over Z is not preserved. In [6, p. 13], the authors
ask whether this issue can be fixed: “one might try to show that any formula [ of PrA[t] ] is
logically equivalent to a quantifier-free formula in a slightly larger language with additional
“well-behaved” function and relation symbols [ . . . ] But we already know that quantifier
elimination in the original language [ of the structure ⟨Z; 0, 1, +, x 7→ t ·x, ≤⟩ ] is impossible,
and finding a reasonable language for quantifier elimination seems difficult”. A candidate for
the extended structure was suggested by Goodrick in [15, Conjecture 2.6]: PrA[t] must be
extended with all integer division functions x 7→

⌊
x

|f(t)|
⌋
, one for each integer polynomial f(t)



A. Mansutti and M. R. Starchak 72:3

(these functions are assumed to occur in a formula only under the proviso that f(t) ̸= 0).
This is a rather tight conjecture, as all added functions are trivially definable in PrA[t]: the
equality y =

⌊
x

|f(t)|
⌋

holds if and only if f(t) ̸= 0 ∧ |f(t)| · y ≤ x ∧ x < |f(t)| · y + |f(t)|.
We give a positive answer to Goodrick’s conjecture:

▶ Theorem 2. One-parametric Presburger arithmetic admits effective quantifier elimination
in the extended structure ⟨Z; 0, 1, +, x 7→ t · x, x 7→

⌊
x

|f(t)|
⌋
, ≤⟩.

Above, the adjective “effective” reflects the fact that there is a quantifier elimination
procedure for constructing, given an input formula φ, an equivalent quantifier-free formula ψ.
The main contribution towards the proof of Theorem 2 is a procedure for removing bounded
quantifiers while preserving formula equivalence; hence obtaining JψKk = JφKk for all k ∈ Z,
instead of the weaker #JψKk = #JφKk obtained with the “base t division method” from [6].

As mentioned above, an active area of research in quantifier elimination focuses on
existential Presburger arithmetic (∃PrA) and its extensions. This interest is motivated, on the
one hand, by the goal of improving both the performance and expressiveness of SMT solvers,
mostly targeting existential theories [2, 14]. On the other hand, recent work has revisited
the computational complexity of quantifier elimination procedures. For many years, these
procedures were regarded as inefficient when applied to ∃PrA. Notably, Weispfenning’s classic
approach [30] yields only a NExpTime upper bound for satisfiability, despite fundamental
results from integer programming [7,29] establishing that ∃PrA is in NP. It was not until
2024 that two independent works [11, 20] provided quantifier elimination procedures with
matching NP upper bounds. The approach in [20] builds on the geometric ideas from [29],
while [11] adapts Bareiss’ fraction-free Gaussian elimination procedure [1] to ∃PrA. Starting
from the fact that Bareiss’ algorithm works in any integral domain, we show that the second
approach extends naturally to PrA[t]. By analysing the runtime of our procedure, we derive:

▶ Theorem 3. For the class of all existential formulae of PrA[t], the following holds:

Satisfiability Universality Finiteness
NP-complete coNExp-complete coNP-complete

Our result on the satisfiability problem generalises the feasibility in NP of non-linear integer
programs A ·x ≤ b(t), where b(t) is a vector of quotients of integer polynomials in t, proved
by Gurari and Ibarra [17]. We remark that both problems are NP-hard in fixed dimension:
solvability of systems x ≥ 0 ∧ a · t2 + b · x = c is a well-known NP-complete problem [24].

Future work. This paper does not provide a complexity analysis for full PrA[t]. A back-of-
the-envelope calculation of the runtime of the procedures in [6] and [15] suggests that the
satisfiability problem for PrA[t] is in elementary time (potentially in 3ExpTime). However,
these procedures do not yield an NP upper bound for the existential fragment. In contrast, the
procedure we introduce shows ∃PrA[t] in NP, but it may in principle run in non-elementary
time on arbitrary formulae. Unifying these procedures into a single “optimal” one seems
possible and will be addressed in a forthcoming extended version of this paper. This would
also provide an extension to the 3ExpTime quantifier-elimination procedure for almost linear
arithmetic proposed by Weispfenning in [30].

Most of the literature on PrA[t] focuses on computing the function f(k) := #JφKk, as
introduced in [6]. Not much is known regarding the complexity of computing this function.
To our knowledge, the most significant result in this direction is the one in [5], where Bogart,
Goodrick, Nguyen, and Woods show that f(k) can be computed in polynomial time (in the
bit-length of k given as part of the input) whenever φ is a fixed PrA[t]-formula. We believe
Theorem 3 to be a good starting point for further research in this direction.

MFCS 2025
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While our work shows that the feasibility problem for integer programs in which a
single variable occurs non-linearly is in NP, the paper does not discuss related optimisation
problems of minimisation/maximisation. From our quantifier elimination procedure, we can
show that if there are optimal solutions to a linear polynomial with coefficients in Z[t] subject
to a formula in ∃PrA[t], then one is of polynomial bit size. Generalising this result to other
non-convex objectives is an interesting avenue for future research.

2 Preliminaries

We write N for the non-negative integers, and Z[t] for the set of univariate polynomials
f(t) =

∑d
i=0 ai · ti, where the coefficients a1, . . . , ad and the constant a0 are over the integers Z.

The height h(f), degree deg(f) and bit size ⟨f⟩ of f are defined as h(f) := max{|ai| : i ∈ [0, d]},
deg(f) := max{0, i ∈ [0, d] : ai ̸= 0}, and ⟨f⟩ := (deg(f) + 1) · (⌈log2(h(f) + 1)⌉ + 1),
respectively. For example, f(t) = 2 · t2 − 3 has degree 2, height 3 and bit size 9. Vectors of
variables are denoted by x,y, z, etc.; we write ⌊·⌋ for the floor function.

On extending the structure of PrA[t]. As discussed in Section 1, the paper concerns the
extension of the first-order theory of ⟨Z; 0, 1, +, x 7→ t · x, ≤⟩ by all integer division functions
x 7→

⌊
x

| f |
⌋
, where f ∈ Z[t]. However, in the context of our quantifier elimination procedure,

it is more natural to work within the (equivalent) first-order theory of the structure:〈
Z; 0, 1, +, x 7→ t · x,

{
x 7→

⌊
x
td

⌋ }
d∈N,

{
x 7→ (x mod f)

}
f∈Z[t],

{
f | x

}
f∈Z[t], =, ≤

〉
where:

The integer division x 7→
⌊

x
td

⌋
is only defined for t ̸= 0, with the obvious interpretation.

The integer remainder function x 7→ (x mod f(t)) is defined following the equivalence

(x mod f(t) = y) ⇐⇒ (f(t) = 0 ∧ y = x) ∨ (f(t) ̸= 0 ∧ y = x− |f(t)| ·
⌊

x
|f(t)|

⌋
).

We remark that whenever f(t) ̸= 0 the result of (x mod f(t)) belongs to [0, |f(t)| − 1].
(Also note that the absolute value function |.| is easily definable in Presburger arithmetic.)
The divisibility relation f(t) | x is a unary relation, and is defined following the equivalence

(f(t) | x) ⇐⇒ (f(t) = 0 ∧ x = 0) ∨ (f(t) ̸= 0 ∧ (x mod f(t) = 0)).

We remark that the divisibility relations and integer remainder functions are defined to
satisfy the equivalence f(t) | x ⇐⇒ f(t) | (x mod f(t)) also when f(t) evaluates to 0.

For simplicity, we still denote this first-order theory with PrA[t]. Observe that we have
ultimately defined (f(t) | ·) and x 7→ (x mod f(t)) in terms of x 7→

⌊
x

| f |
⌋
. As a result,

every formula in this first-order theory can be translated into a formula from the theory
in Theorem 2. This translation can be performed in polynomial time by introducing new
existential quantifiers, or in exponential time without adding quantifiers (the blow-up is only
due to the disjunctions in the definitions of (f(t) | ·) and x 7→ (x mod f(t))).

The terms of PrA[t] are built from the constants 0, 1, integer variables, and the functions
of the structure. Without loss of generality, we restrict ourselves to (finite) terms of the form

τ := f0(t) +
∑n

i=1 fi(t) ·xi +
∑m

i=n+1 fi(t) ·
⌊

τi

tdi

⌋
+

∑k
i=m+1 fi(t) · (τi mod gi(t)), (1)

where all fi and gi belong to Z[t], all di belong to N, and each τi is another term of this form.
The term τ is said to be linear, if fi(t) = 0 for i ∈ [n+ 1, k] (i.e., it does not contain integer
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division, nor integer remainder functions), and non-shifted whenever f0(t) = 0. Above, the
terms

⌊
τi

tdi

⌋
and (τi mod gi(t)) are linear occurrences of the integer division functions and

integer remainder functions, and are said to occur linearly in τ . When every fi is an integer
(a degree 0 polynomial), we define 1-norm of τ as ∥τ∥1 :=

∑k
i=0 |fi|.

Moving to the atomic formulae of the theory, it is easy to see that equalities, inequalities
and divisibility relations can be rewritten (in polynomial time) to be of the form τ = 0, τ ≤ 0
and f(t) | τ , respectively, where τ is a term of the form given in Equation (1). Syntactically,
we will only work with atomic formulae of these forms, which we call PrA[t] constraints.
However, for readability, we will still sometimes write (in)equalities featuring non-zero terms
on both sides (i.e., τ1 ≤ τ2), and strict inequalities τ1 < τ2 and τ2 > τ1; both are short for
τ1 − τ2 + 1 ≤ 0. A PrA[t] constraint is said to be linear if the term τ featured in it is linear.

We restrict ourselves to formulae in prenex normal form ∃x1∀x2 . . . ∃xn : φ where φ is a
positive Boolean combination of PrA[t] constraints; that is, the only Boolean connectives
featured in φ are conjunctions ∧ and disjunctions ∨. This restriction is without loss of
generality, as De Morgan’s laws allow to push all negations at the level of literals, which can
then be removed with the equivalences ¬(τ = 0) ⇐⇒ τ < 0 ∨ τ > 0, ¬(τ ≤ 0) ⇐⇒ τ > 0
and ¬(f(t) | τ) ⇐⇒ (f(t) = 0 ∧ (τ < 0 ∨ τ > 0)) ∨ (τ mod f(t) > 0).

For two terms τ1 and τ2, we write [τ2 / τ1] for a term substitution. We see these substitu-
tions as functions from terms to terms or from formulae to formulae: τ [τ2 / τ1] is the term
obtained by replacing, in the term τ , every occurrence of τ1 with τ2. Analogously, φ[τ2 / τ1] is
the formula obtained from φ by replacing the term τ with τ [τ2 / τ1] in every atomic formula
τ = 0, τ ≤ 0, or f(t) | τ . In Section 4 we will also need a stronger notion of substitution,
called vigorous substitution in [11]; we defer its definition to that section.

3 Outline of the quantifier elimination procedure

In this section, we provide a high-level overview of our quantifier elimination procedure,
highlighting the interactions among its various components. A detailed analysis of the two
main components will be provided in the subsequent sections of the paper.

Let us consider a formula ψ(x0) := ∃x1∀x2 . . . ∃xn : φ(x0, . . . ,xn), where φ is a positive
Boolean combination of PrA[t] constraints. Our quantifier elimination procedure will work
under the assumption that the parameter t is greater than or equal to 2. This simplifying
assumption is without loss of generality, as the general problem is then solved as follows:

For every k ∈ {−1, 0, 1}, call a quantifier elimination procedure for Presburger arithmetic
(e.g., the one in [30]) on the formula ψ[k / t], obtaining ψ′

k. Let ψk := ψ′
k ∧ (t = k).

Call our procedure on ψ, obtaining a formula ψ+. Let ψ≥2 := ψ+ ∧ t ≥ 2.
Call our procedure on ψ[−t / t], obtaining ψ−. Let ψ≤−2 := ψ−[−t / t] ∧ t ≤ −2.

Then, the formula ψ≤−2 ∨ ψ−1 ∨ ψ0 ∨ ψ1 ∨ ψ≥2 is quantifier-free, and equivalent to ψ.
As a second assumption, we only consider the case where ψ has a single block of existential

quantifiers: ψ(x0) = ∃x1 : φ(x0,x1). A procedure for this type of formulae can be iterated
bottom-up to eliminate arbitrarily many blocks of quantifiers (rewriting ∀x as ¬∃x¬).

The pseudocode of our procedure is given in Algorithm 1 (PrA[t]-QE). It describes a non-
deterministic algorithm: for an input ∃x : φ, each non-deterministic execution of PrA[t]-QE
returns a positive Boolean combination of PrA[t] constraints ψ(z). The disjunction obtained
by aggregating all output formulae is equivalent to ∃x : φ; so it is this disjunction that must
ultimately be used to perform quantifier elimination. The choice to present the procedure
in this manner is not merely stylistic: it automatically implements Reddy and Loveland’s
optimisation for Presburger arithmetic [27]. In quantifier elimination procedures for PrA,

MFCS 2025
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Algorithm 1 PrA[t]-QE: A quantifier elimination procedure for PrA[t].

Input: ∃x : φ(x, z) where φ is a positive Boolean combination of PrA[t] constraints.
Output of each branch (β): positive Boolean combination ψβ(z) of PrA[t] constraints.
Ensuring:

∨
β ψβ is equivalent to ∃x : φ.

1: while φ contains a subterm of the form
⌊

τ
td

⌋
do

2: append a fresh variable x to x

3: φ← φ[x /
⌊

τ
td

⌋
] ∧ (td · x ≤ τ) ∧ (τ < td · x+ td)

4: y ← ∅; B ← ∅ ▷ variables and map used to remove occurrences of (· mod f(t))
5: while φ contains a subterm of the form (τ mod f(t)) do
6: if ∗ then ▷ non-deterministic choice: skip or execute
7: φ← φ[τ / τ mod f(t)] ∧ f(t) = 0
8: continue
9: guess ± ← symbol in {+,−}

10: append a fresh variable y to y and update B : add the key-value pair (y, ±f(t)− 1)
11: φ← φ[y / τ mod f(t)] ∧ (f(t) | τ − y)
12: return ElimBounded(ElimDiv(∃y ≤ B : BoundedQE(∃x : φ(x,y, z))))

eliminating a single variable x from an existential block ∃y∃x produces a formula
∨

i γi with
a DNF-like structure. Reddy and Loveland observed that pushing the remaining existential
quantifiers ∃y inside the scope of the disjunctions, i.e., rewriting ∃y

∨
i γi into

∨
i ∃yγi, and

then performing quantifier elimination locally to each disjunct leads to a faster procedure.
By keeping variables local to a non-deterministic branch, one achieves the same effect.

We now describe the four components that make up PrA[t]-QE, which can be summarized
under the following titles: pre-processing (lines 1–11), bounded quantifier elimination (call
to BoundedQE), elimination of divisibility constraints (call to ElimDiv), and elimination of
all bounded quantifiers (call to ElimBounded). For the rest of the section, let ∃x : φ(x, z)
be the input to PrA[t]-QE, where φ is a positive Boolean combination of PrA[t] constraints.

Pre-processing (lines 1–11). These lines remove all occurrences of the integer division
functions x 7→

⌊
x
td

⌋
and of the integer remainder functions x 7→ (x mod f(t)), at the expense

of adding new existentially quantified variables that are later eliminated. After this step,
the formula is a positive Boolean combination of linear constraints. For the integer division
function, the algorithm simply adds to the sequence of variables x to be eliminated a fresh
variable x to proxy a term

⌊
τ
td

⌋
(line 2). It then relies on the equivalence x =

⌊
τ
td

⌋
⇐⇒

td · x ≤ τ ∧ τ < td · (x+ 1) to replace
⌊

τ
td

⌋
with x (line 3). The removal of integer remainder

functions is performed differently. First, let us observe that the following equivalence holds:

y = (τ mod f(t)) ⇐⇒ (f(t) = 0 ∧ y = τ) ∨ (0 ≤ y ∧ y < |f(t)| − 1 ∧ f(t) | τ − y).

The formula f(t) = 0 ∧ y = τ on the right-hand side of the equivalence is considered in
line 8. This line is executed conditionally to a non-deterministic branching (line 6). If
it is not executed, then lines 9–11 are executed instead; these correspond to the formula
0 ≤ y ∧ y < |f(t)| − 1 ∧ f(t) | τ − y. The interesting property of this formula is that the
variable y appears bounded by 0 from below, and by either f(t)− 1 or −f(t)− 1 from above
(following the sign of f(t)). Instead of quantifying y using standard existential quantifiers
(as done for the variables replacing

⌊
τ
td

⌋
), in line 10 we use a bounded quantifier:
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Algorithm 2 ElimDiv: Elimination of divisibility constraints.

Input: ∃w ≤ B : ψ(w, z), with ψ positive Boolean combination of linear PrA[t] constraints.
Output of each branch (β): a formula ∃wβ ≤ Bβ : ψβ(wβ , z) in PrA[t], where ψβ is a

positive Boolean combination of linear equalities and inequalities, and equalities of the
form σ(w) + (τ(z) mod f(t)) = 0, with σ linear, and τ linear and non-shifted.

Ensuring:
∨

β(∃wβ ≤ Bβ : ψβ) is equivalent to ∃w ≤ B : ψ.
1: foreach divisibility f(t) | σ(w) + τ(z) in ψ, where τ is non-shifted do
2: let σ(w) be the term f0(t) +

∑n
i=1 fi(t) · wi, where w = (w1, . . . , wn)

3: d← (n+ 3) ·max{⟨f⟩, ⟨f0⟩, ⟨fi⟩ · ⟨B(wi)⟩ : i ∈ [1, n]}
4: append a fresh variable y to w and update B : add the key-value pair (y, td)
5: guess ± ← symbol in {+,−}
6: update ψ : replace (f(t) | σ(w) + τ(z)) with ±f(t) · y + σ(w) + (τ mod f(t)) = 0
7: return ∃w ≤ B : ψ

▶ Definition 4. A block of bounded quantifiers ∃w ≤ B is given by a sequence of variables
w = (w1, . . . , wm) and a map B assigning to each variable in w a polynomial in Z[t]. Its
semantics is given by the equivalence ∃w ≤ B : ψ ⇐⇒ ∃w :

∧m
i=1(0 ≤ wi ≤ B(wi)) ∧ ψ.

Let us write xβ ,yβ , Bβ and φβ for the values taken by x, y, B and φ in the non-
deterministic branch β, when the control flow of the program reaches line 12. The following
equivalence holds, where the disjunction

∨
β ranges across all non-deterministic branches:

∃x : φ(x, z) ⇐⇒
∨

β ∃yβ ≤ Bβ ∃xβ : φβ(xβ ,yβ , z). (2)

Bounded quantifier elimination. Once reaching line 12, the algorithm proceeds by calling
the procedure BoundedQE. We will discuss this procedure in Section 4. In a nutshell, its
role is to replace the quantifiers ∃xβ on the right-hand side of Equation (2) with bounded
quantifiers, that are merged with the already existing block of bounded quantifiers ∃yβ ≤ Bβ .
The formal specification of BoundedQE is given in the next lemma.

▶ Lemma 5. There is a non-deterministic procedure with the following specification:
Input: ∃x : φ(x, z), with φ positive Boolean combination of linear PrA[t] constraints.
Output of each branch (β): a formula ∃wβ ≤ Bβ : ψβ(wβ , z), where ψβ is a positive

Boolean combination of linear PrA[t] constraints.

The algorithm ensures that the disjunction
∨

β ∃wβ ≤ Bβ : ψβ of output formulae ranging
over all non-deterministic branches is equivalent to ∃x : φ.

As stated, the lemma above is also proved by Goodrick in [15], who introduced the
first bounded quantifier elimination procedure specifically for PrA[t]. When applied to
existential formulae, that procedure requires doubly-exponential time, making it unsuitable for
establishing Theorem 3. In contrast, BoundedQE runs in non-deterministic polynomial time.
Due to this difference, we cannot rely directly on [15] and must thus re-establish Lemma 5.

Removing divisibility constraints: more bounded quantifiers. BoundedQE introduces
divisibility constraints f(t) | τ . The next step, detailed in Algorithm 2 (ElimDiv), eliminates
all divisibility constraints in favour, once more, of bounded quantifiers.

The idea behind Algorithm 2 is as follows. Let f(t) | σ(w)+τ(z) be a constraint from the
input formula, where w are the variables in the block of bounded quantifiers (these correspond
to the variables yβ from Equation (2) and those introduced by BoundedQE), and z are
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the free variables. Notice that this constraint is equivalent to f(t) | σ(w) + (τ(z) mod f(t)),
which is in turn equivalent to the existential formula ∃y : f(t) ·y+σ(w)+(τ(z) mod f(t)) = 0,
where y is a fresh variable ranging over Z. Since w is constrained by bounded quantifiers,
we can upper-bound the number of digits in the base t encoding of the linear term σ(w)
(recall: t ≥ 2). When f(t) ̸= 0, the same applies to (τ(z) mod f(t)), which ranges between
0 and f(t)− 1; and this in turn imposes a bound on the base t representation of y. When
f(t) = 0 instead, the truth of f(t) · y+ σ(w) + (τ(z) mod f(t)) = 0 only depends on whether
σ(w) + (τ(z) mod f(t)) = 0, and we can thus restrict y to any non-empty interval. This
allows us to replace the quantifier ∃y with a bounded quantifier (lines 3 and 4). Since y
ranges over Z, whereas bounded quantifiers use non-negative ranges, the algorithm explicitly
guesses the sign of y in line 5, allowing y to only range over N instead. Formalising these
arguments yields the following lemma.

▶ Lemma 6. Algorithm 2 (ElimDiv) complies with its specification.

Elimination of all bounded quantifiers. From the output of ElimDiv, the final operation
by PrA[t]-QE is a call to ElimBounded, which removes all bounded quantifiers. This
algorithm is detailed in Section 5. Its specification is given in the next lemma.

▶ Lemma 7. There is a non-deterministic procedure with the following specification:
Input: ∃w ≤ B : φ(w,z), with φ positive Boolean combination of linear PrA[t] (in)equalities

and constraints σ(w) + (τ(z) mod f(t)) = 0, with σ linear, and τ linear and non-shifted.
Output of each branch (β): a positive Boolean combination ψβ(z) of PrA[t] constraints.

In all divisibility constraints f(t) | τ , the divisor f(t) is an integer.

The algorithm ensures that the disjunction
∨

β ψβ of output formulae ranging over all non-
deterministic branches is equivalent to ∃w ≤ B : φ.

Together, Equation (2) and Lemmas 5–7 show that PrA[t]-QE meets its specification; thus
showing Theorem 2 conditionally to the correctness of BoundedQE and ElimBounded.

4 Efficient bounded quantifier elimination in PrA[t]

This section outlines the arguments leading to the procedure BoundedQE. Its pseudocode is
given in Algorithm 3. We start with an example demonstrating the key idea used to develop
a version of bounded quantifier elimination in PrA[t]. These arguments are sufficient for
establishing Lemma 5; although they do not result in an optimal procedure complexity-wise.
We will then recall the main arguments used in [11] to obtain an optimal procedure, which,
when implemented, yield BoundedQE.

Let us consider a formula ∃x : φ(x, z) where, for simplicity, φ is of the form:

τ(z) ≤ a · x ∧ b · x ≤ ρ(z) ∧
(
m | c · x+ σ(z)

)
∧ a > 0 ∧ b > 0 ∧ m > 0,

where a, b, c and m are polynomials from Z[t], and τ , ρ and σ are linear PrA[t] terms. For
the time being, we invite the reader to pick some values for t and the free variables z, so
that the formula φ becomes a formula from Presburger arithmetic in a single variable x. The
standard argument for eliminating x in PrA goes as follows (see, e.g., [30]). We first update
the inequalities to ensure that all coefficients of x are equal; this results in the inequalities
b · τ ≤ a · b ·x and a · b ·x ≤ a ·ρ. The quantification ∃x expresses that there is g ∈ Z such that
(i) g is a multiple of a · b that belongs to the interval [b · τ, a · ρ]; and (ii) m divides c · g

a·b + σ.
The key observation is that such an integer (if it exists) can be found by only looking at
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elements of [b · τ, a · ρ] that are “close” to b · τ . More precisely, the properties (i) and (ii)
must be simultaneously satisfied by b · τ + r, for some r ∈ [0, a · b ·m]. We can thus restrict x
to satisfy an additional constraint a · b · x = b · τ + r. A small refinement: since this equality
is unsatisfiable when the shift r is not a multiple of b > 0, we can rewrite it as a · x = τ + s,
where the shift s now ranges in [0, a ·m]. Observe that s lies in an interval that is independent
of the values picked for z; as a and m were originally polynomials in t.

Let us keep assigning a value to the parameter t (so, a and m are still integers), but
reinstate the variables z. From the above argument, the formula ∃x : φ(x, z) is equivalent to∨a·m

s=0 ∃x (φ(x, z) ∧ a ·x = τ + s). It is now straightforward to eliminate x from each disjunct
∃x (φ(x, z) ∧ a · x = τ + s): we simply “apply” the equality a · x = τ + s, substituting x
for τ+r

a , and add a divisibility constraint forcing τ + s to be a multiple of a. After this
substitution, both a · x = τ + s and τ(z) ≤ a · x become ⊤. The resulting disjunct is

ψ(s, z) := b ·(τ+s) ≤ a ·ρ ∧ (m ·a | c ·(τ+s)+a ·σ) ∧ (a | τ+s) ∧ a > 0 ∧ b > 0 ∧ m > 0,

and
∨a·m

s=0 ψ(s, z) is equivalent to ∃x : φ(x, z). (For PrA, this concludes the quantifier
elimination procedure.) When restoring the parameter t, these two formulae are still
equivalent, but the number of disjunctions

∨a·m
s=0 now depends on t. We replace them with

a bounded quantifier, rewriting
∨a·m

s=0 ψ(s, z) as ∃s ≤ B : ψ(s, z), where B(s) := a(t) ·m(t).
This is, in a nutshell, the bounded quantifier elimination procedure from [15,31].

When the signs of a, b, and m are unknown (i.e., φ does not feature the constraints a > 0,
b > 0 and m > 0), we must perform a “sign analysis”: we write a disjunction (or guess) over
all possible signs of the three polynomials. In Algorithm 3, the lines marked in yellow are
related to this analysis; e.g., line 16 guesses the sign of the (non-zero) coefficient a of x.

Taming the complexity of the procedure. Problems arise when looking at the complex-
ity of the procedure outlined above. To understand this point, consider the inequality
b · (τ + s) ≤ a · ρ, which was derived by substituting τ+s

a for x in b · x ≤ ρ, and suppose
τ = c · y + τ ′ and ρ = d · y + ρ′, for some variable y. This inequality can be rewritten as
(b · c − a · d) · y + b · τ ′ − a · ρ′ + b · s ≤ 0. When looking at the coefficient (b · c − a · d)
of y one deduces that, if quantifier elimination is performed carelessly on a block ∃x of
multiple existential quantifiers, the coefficients of the variables in the formula will grow
quadratically with each eliminated variable. Then, by the end of the procedure, their binary
bit size will be exponential in the number of variables in x. However, this explosion can be
avoided by noticing that coefficients are updated following the same pattern as in Bareiss’
polynomial-time Gaussian elimination procedure [1]. This insight was highlighted in [11],
building upon an earlier observation from [31]. In Bareiss’ algorithm, the key to keeping coef-
ficients polynomially bounded is given by the Desnanot–Jacobi identity. Consider an m× d
matrix A. Let us write A[i1, . . . , ir; j1, . . . , jℓ] for the r× ℓ sub-matrix of A made of the rows
with indices i1, . . . , ir ∈ [1,m] and columns with indices j1, . . . , jℓ ∈ [1, d]. For i, j, ℓ ∈ N with
0 ≤ ℓ ≤ min(m, d), 1 ≤ i ≤ m and 1 ≤ j ≤ d, we define a(ℓ)

i,j := detA[1, . . . , ℓ, i; 1, . . . , ℓ, j].

▶ Proposition 8 (Desnanot–Jacobi identity). For every i, j, ℓ ∈ N with ℓ ≥ 2, ℓ < i ≤ m and
ℓ < j ≤ d, we have (a(ℓ−1)

ℓ,ℓ · a(ℓ−1)
i,j − a(ℓ−1)

ℓ,j · a(ℓ−1)
i,ℓ ) = a

(ℓ−2)
ℓ,ℓ · a(ℓ)

i,j .

The Desnanot–Jacobi identity is true for all matrices with entries over an integral domain
(a non-zero commutative ring in which the product of non-zero elements is non-zero), and
therefore we can take the entries of A to be polynomials in Z[t].

Returning to our informal discussion, we now see that the coefficient (b · c− a · d) of y is
oddly similar to the left-hand side of the Desnanot–Jacobi identity. Suppose that the elements
a

(ℓ−1)
i,j are the coefficients of the variables in the formula currently being processed by the
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Algorithm 3 BoundedQE: A bounded quantifier elimination procedure for PrA[t].

Input: ∃x : φ(x, z) where φ is a positive Boolean combination of linear PrA[t] constraints.
Output of each branch (β): a formula ∃wβ ≤ Bβ : ψβ(wβ , z) where ψβ is a positive

Boolean combination of linear PrA[t] constraints.
Ensuring:

∨
β ∃wβ ≤ Bβ : ψβ is equivalent to ∃x : φ.

1: guess Z ← subset of {f(t) : the relation (f(t) | ·) occurs in φ}
2: foreach f(t) in Z do
3: update φ : replace each divisibility f(t) | τ with τ = 0
4: φ← φ ∧ (f(t) = 0)
5: guess ± ← symbol in {−,+} ▷ sign required to make m(t) below positive
6: m(t)← ±

∏
{f(t) : the relation (f(t) | ·) occurs in φ}

7: χ← (m(t) > 0)
8: (±, ℓ(t))← (+, 1); B ← ∅ ▷ B: map from variables to upper bounds
9: update φ : replace each inequality τ ≤ 0 with τ + y = 0, where y is a fresh slack variable
10: foreach x in x do
11: if ∗ then ▷ non-deterministic choice: skip or execute
12: update B : add the key-value pair (x,m(t)− 1)
13: continue
14: guess f(t) · x+ τ = 0 ← equality in φ that contains x
15: p(t)← ℓ(t); ℓ(t)← f(t) ▷ previous and current leading coefficients
16: ± ← guess a symbol in {−,+} ▷ sign of f(t)
17: χ← χ ∧ (±f(t) > 0)
18: m(t)← ±f(t) ·m(t)
19: if τ contains a slack variable y such that B(y) is undefined then
20: update B : add the key-value pair (y, m(t)− 1)
21: φ← φ[[ −τ

f(t) / x]]
22: update φ : divide all constraints by p(t) ▷ both sides for divisibility constraints
23: φ← φ ∧ (f(t) | τ)
24: foreach equality η = 0 of φ with a slack variable y such that B(y) is undefined do
25: update φ : replace η = 0 with η[0/y] ≤ 0 if the sign ± is plus else with η[0/y] ≥ 0
26: return ∃w ≤ B : φ ∧ χ where w is the sequence of keys of the map B

quantifier elimination procedure, and we are eliminating the ℓ-th quantifier. Proposition 8
tells us that all coefficients produced by the naïve elimination (left-hand side of the identity)
have a(ℓ−2)

ℓ,ℓ as a common factor. By dividing through by this common factor, we obtain
smaller coefficients for the next step of variable elimination – namely, a(ℓ)

i,j . When eliminating
the first variable (ℓ = 1), the common factor is 1. Otherwise, it is the coefficient a that the
(ℓ − 1)-th eliminated variable x has in the equality a · x = τ + s used for the elimination.
In Algorithm 3, the lines marked in blue implement Bareiss’ optimisation: line 8 initialises
the common factor ℓ(t) and its sign, line 15 updates it, and line 22 performs the division.

Some details on BoundedQE. Lines 1–4 handle the divisibility constraints f(t) | τ with
the divisor f(t) equal to 0. Such constraints are equalities in disguise, and the procedure
replaces them with τ = 0. When the procedure reaches line 5, all divisors in the divisibility
constraints are assumed non-zero. Following the example from the previous paragraph, recall
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that the shifts s belong to intervals that depend on these divisors; when multiple divisors
occur, the procedure for PrA takes their lcm (instead of just m as in our example). For
simplicity, instead of lcm, BoundedQE considers the absolute value m(t) of their product
(line 6). After guessing the sign ± of this product, the procedure enforces m(t) > 0 in line 7.
This information is stored in the formula χ, which accumulates all sign guesses made by the
algorithm; these are conjoined to φ when the procedure returns.

Line 9 replaces all inequalities with equalities by introducing slack variables ranging
over N. (This step is inherited from [11].) Slack variables represent the shifts s from the
quantifier elimination procedure for PrA. Line 12 covers the corner cases of x not appearing
in equalities, or t being such that all the coefficients f(t) of x evaluate to zero. After guessing
an equality f(t) · x+ τ = 0 to perform the substitution (line 14), line 19 checks whether τ
features a slack variable y (i.e., the equality was originally an inequality). If so, the procedure
generates a bounded quantifier for y. The elimination of x (line 21) is performed with the
vigorous substitution φ[[ −τ

f(t) / x]] which works as follows: 1: Replace every equality ρ = 0
with f(t) · ρ = 0, and every divisibility g(t) | ρ with f(t) · g(t) | f(t) · ρ; this is done also for
constraints where x does not occur. 2: Replace every occurrence of f(t) · x with τ (from
step 1, each coefficient of x in the system can be factored as f(t) · h(t) for some h ∈ Z[t]).

After applying the vigorous substitution, the procedure divides all coefficients of the
inequalities and divisibility constraints in φ by the common factor of the Bareiss’ optimisation
(line 22). In the case of divisibility constraints, divisors are also affected. Proposition 8
ensures that these divisions are all without remainder. In practice, the traditional Euclidean
algorithm for polynomial division can be used to construct the quotient in polynomial time.
As a result of these divisions, throughout the procedure all polynomials f(t) guessed in
line 14 have polynomial bit sizes in the size of the input formula.

After the foreach loop of line 10 completes, all variables from x have been eliminated
(line 21) or bounded (line 12). A benefit of translating inequalities into equalities in line 9 is
that x can be eliminated independently of the sign of its coefficient f(t); inequalities would
need to flip for f(t) negative instead. The final step (lines 24 and 25) drops all slack variables
for which no bound was assigned in line 20, reintroducing the inequalities (the sign stored
in ± tells us the direction of these inequalities). This step is also inherited from [11].

By fully developing the arguments above, one shows that BoundedQE is correct:

▶ Lemma 9. Algorithm 3 (BoundedQE) complies with its specification.

This lemma implies Lemma 5. In the sequel we will also need the next lemma, discussing
properties of the outputs of BoundedQE for “Presburger-arithmetic-like” inputs.

▶ Lemma 10. Let ∃x : φ(x, z) be a formula input of Algorithm 3, in which all coefficients
of the variables in x, and all divisors f(t) in relations (f(t) | ·), are integers. The map Bβ

in the output of each non-deterministic branch β ranges over the integers.

5 Elimination of polynomially bounded quantifiers

We move to Algorithm 4 (ElimBounded), which eliminates the bounded quantifiers in three
steps: replacement of bounded variables by their t-ary expansions; “ divisions by t” until
all t-digits have integer coefficients; elimination of t-digits via BoundedQE.

Base t expansion (lines 1–6). Following the semantics of bounded quantifiers, line 1 adds
to φ the bounds 0 ≤ w ∧ w ≤ B(w), for each bounded variable w. The subsequent lines “bit
blast” w into its t-ary expansion tM · yM + · · ·+ t · y1 + y0, where M is the largest bit size of
the bounds in B (line 2). All added variables y are t-digits, i.e., they range in [0, t− 1].
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Algorithm 4 ElimBounded: Elimination of polynomially bounded quantifiers.

Input: ∃w ≤ B : φ(w, z), with φ positive Boolean combination of linear PrA[t] (in)equalities,
and constraints σ(w) + (τ(z) mod f(t)) = 0, with σ linear, and τ linear and non-shifted.

Output of each branch (β): a positive Boolean combination ψβ(z) of PrA[t] constraints.
Ensuring:

∨
β ψβ is equivalent to ∃w ≤ B : φ.

1: φ← φ ∧
∧

w∈w(0 ≤ w) ∧ (w ≤ B(w))
2: M ← max{⟨B(w)⟩ : w ∈ w}
3: y ← ∅ ▷ y is a vector of variables used to “bit blast” bounded variables
4: foreach w in w do
5: append fresh variables y0, . . . , yM to y

6: φ← φ[(tM · yM + · · ·+ t · y1 + y0) /w] ∧
∧M

i=0((0 ≤ yi) ∧ (yi ≤ t− 1))
7: while a variable from y has a non-integer coefficient in a constraint (η ∼ 0) of φ do
8: if the symbol ∼ is ≤ then η ← η − 1 ▷ we work with η − 1 < 0; else ∼ is =
9: let η be (σ(y) · t+ ρ(y) + τ(z)), where ρ does not contain t, and τ is non-shifted
10: ρ← ρ(y) + (τ(z) mod t) ▷ add to ρ the unbounded part modulo t
11: guess r ← integer in [−∥ρ∥1, ∥ρ∥1] ▷ quotient of the division of ρ by t
12: if the symbol ∼ is = then
13: γ ← (t · r = ρ)
14: else
15: γ ← (t · r ≤ ρ) ∧ (ρ ≤ t · (r + 1)− 1)
16: r ← r + 1
17: update φ : replace (η ∼ 0) with γ ∧ (σ + r +

⌊
τ
t

⌋
∼ 0

)
18: z′ ← ∅; S ← ∅ ▷ z′ are used to rewrite φ as a combination of linear constraints
19: foreach constraint (ρ(y) + τ(z) ∼ 0) of φ, where τ is non-shifted do
20: append a fresh variable z′ to z′ and update S : add the key-value pair (z′, τ(z))
21: φ← φ[z′ / τ(z)]
22: ∃w′ ≤ B′ : ψ(w′, z′)← BoundedQE(y, φ(y, z′))
23: foreach w in w′ do ▷ now every B′(w) is an integer
24: guess g ← integer in [0, B′(w)]
25: ψ ← ψ[g /w]
26: return ψ[[S(z′) / z′] : z′ ∈ z′]

▶ Example 11. Let us see this step in action on a bounded version of the formula in Example 1:

∃(x, y, z) ≤ B :
(
t · y = x+ (−a mod t)

)
∧

(
(t+ 1) · z = x+ (−b mod t+ 1)

)
,

where B(x) = t2 + t− 1, and B(y) = B(z) = t+ 2. By “bit blasting” the bounded variables
into t-digits x = (x0, x1, x2), y = (y0, y1, y2), and z = (z0, z1, z2), we obtain the formula

∃x,y, z :
∧

w∈{x,y,z}

(
0 ≤ (w2 · t2 + w1 · t+ w0) ≤ B(w) ∧

∧
i∈{0,1,2}

0 ≤ wi < t
)

∧ t · (y2 · t2 + y1 · t+ y0) = (x2 · t2 + x1 · t+ x0) + (−a mod t)
∧ (t+ 1) · (z2 · t2 + z1 · t+ z0) = (x2 · t2 + x1 · t+ x0) + (−b mod t+ 1). ◀

▶ Lemma 12. Let φ∅(y, z) be the formula obtained from φ by performing lines 1–6 of
Algorithm 4. Then, the input formula ∃w ≤ B : φ(w, z) is equivalent to ∃y : φ∅(y, z) and
every (t-digit) variable in y has only linear occurrences in φ∅.
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The coefficients of the t-digits become integers (lines 7–17). This step is defined by the
while loop of line 7, whose goal is to transform the formula φ∅ into an equivalent positive
Boolean combination of equalities and inequalities in which all coefficients of y are integers.

▶ Example 13. Before delving into the details, let us illustrate the transformation on the
equality (t+ 1) · (z2 · t2 + z1 · t+ z0) = (x2 · t2 +x1 · t+x0) + (−b mod t+ 1) from Example 11.
Grouping terms according to powers of t, we obtain:

−z2 · t3 + (x2 − z1 − z2) · t2 + (x1 − z0 − z1) · t+ (x0 − z0) + (−b mod t+ 1) = 0.

We symbolically perform a division with remainder on the sub-term (−b mod t+1) concerning
the free variables, rewriting it as

⌊ −b mod t+1
t

⌋
· t+ ((−b mod t+ 1) mod t). In the resulting

equality, we notice that (x0− z0) + ((−b mod t+ 1) mod t) must be divisible by t. Since both
x0 and z0 belong to [0, t−1], only two multiples of t are possible: 0 and t. Consider the latter
case: we can rewrite the equality as the conjunction of t = (x0− z0) + ((−b mod t+ 1) mod t)
and −z2 · t3 + (x2 − z1 − z2) · t2 + (x1 − z0 − z1) · t+

⌊ −b mod t+1
t

⌋
· t+ t = 0. By dividing the

second equality by t, the variables x0, x1 and z0 end up appearing with integer coefficients
only. Repeating this process guarantees that all quantified variables satisfy this property:
the second iteration “frees” x2 and z1, and the third iteration handles the variable z2. ◀

The while loop guesses some integers in line 11. Let Ri be the (finite) set of all sequences s

of guesses from the first i iterations of the loop (so, s has length i), and let φs be the unique
formula obtained from φ∅ after iterating the loop i times, using s as the sequence of guesses.
(The subscript ∅ corresponds to the empty sequence of guesses; the only element in R0.)

Together with proving that the while loop preserves formula equivalence (across non-
deterministic branches), the critical parameter to track during the execution of the loop is
the degrees of all coefficients of the t-digits y. Showing that this parameter reaches 0 implies
loop termination, and correctness of this step of the procedure. More formally, we inductively
define the y-degree deg(y, φ) of a positive Boolean combination of PrA[t] constraints φ(y, z),
where the variables y = (y1, ..., yℓ) occur only linearly, as follows (below, ∼ ∈ {≤,=}):

deg(y, φ) = max{deg(fi) : i ∈ [1, ℓ]} if φ is an (in)equality
∑ℓ

i=1 fi(t)·yi+τ(z) ∼ 0;
deg(y, φ) = deg(y, φ1) + deg(y, φ2) if φ is either (φ1 ∧ φ2) or (φ1 ∨ φ2).

Then, the defining property of the while loop of line 7 can be stated as follows:

▶ Lemma 14. Consider s ∈ Ri with deg(y, φs) > 0, and the set G := {sr ∈ Ri+1 : r ∈ Z}.
Then, (i) φs is equivalent to

∨
r∈G φr, and (ii) deg(y, φs) > deg(y, φr) for every r ∈ G.

Proof sketch. The while loop considers an (in)equality η ∼ 0 from φs (line 7); inequalities
are transformed into strict inequalities η− 1 < 0 in line 8, as in this case the latter are easier
to work with. Line 9 represents the term of the (in)equality as σ(y) · t+ ρ(y) + τ(z), where
σ is linear, ρ is a linear term with coefficients in Z, and τ(z) is non-shifted.
▶ Remark. Observe that line 17 will later replace η ∼ 0 with σ + r +

⌊
τ
t

⌋
∼ 0. If the latter

(in)equality is considered again by the while loop at a later iteration, this replacement

will produce the term
⌊⌊

τ
t

⌋
t

⌋
, which can be rewritten as

⌊
τ
t2

⌋
. We assume the algorithm to

implicitly perform this rewriting, so that the term above can in fact be written as

σ(y) · t+ ρ(y) +
⌊ τ(z)

tk

⌋
, where k ≥ 0, such that

⌊
τ
t0

⌋
:= τ . (3)

Let us define η′ = σ(y) +
⌊ τ(z)

tk+1

⌋
and ρ′ = ρ(y) +

(⌊ τ(z)
tk

⌋
mod t

)
, so that the term in Equa-

tion (3) is then equal to η′ · t+ρ′. (Note: ρ′ is exactly the term in line 10.) We are now ready
to perform the symbolic division by t. Indeed, since all variables in y, as well as the term
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(⌊ τ(z)
tk

⌋
mod t

)
, belong to [0, t− 1], we conclude that ρ′ ∈

[
−t ·N, t ·N ] where N := ∥ρ′∥1.

Line 11 guesses an integer r from the segment [−N,N ], which stands for the quotient of the
division of ρ′ by t. Each guess corresponds to a disjunct from the following two equivalences:

η′ · t+ ρ′ = 0 ⇐⇒
∨N

r=−N

(
η′ + r = 0 ∧ r · t = ρ′ )

,

η′ · t+ ρ′ < 0 ⇐⇒
∨N

r=−N

(
η′ + r + 1 ≤ 0 ∧ t · r ≤ ρ′ ∧ ρ′ < t · (r + 1)

)
.

quotient of the division formula γ in the pseudocode

These equivalences “perform” the symbolic division by t. In line 17, the algorithm substitutes
the constraint η ∼ 0 with the result of the division, that is, the conjunction of the quotient
and the remaining part that is stored the formula γ (lines 12–16). Observe a key property
of γ: in it, all the coefficients of the t-digits y only have integer coefficients, i.e., deg(y, γ) = 0.

Let χr be the formula obtained from φ by performing the replacement in line 17. This for-
mula belongs to Ri+1 and, moreover, φs ⇐⇒

∨N
r=−N χr. We have G = {sr : r ∈ [−N,N ]},

and Item (i) is proved. To prove Item (ii), observe that

deg(y, χr) = deg(y, φs)− deg(y, η ∼ 0) + deg(y, η′ ∼ 0) + deg(y, γ)
= deg(y, φs)− deg(y, σ · t ∼ 0) + deg(y, σ ∼ 0) = deg(y, φs)− 1. ◀

Elimination of t-digits (lines 18–26). By inductively applying Lemma 14, we deduce that
the while loop performs at most deg(y, φ∅) iterations, and that the disjunction (over all
non-deterministic branches) of formulae φr obtained at the end of this loop is equivalent
to φ∅. The constraints in each φr are (in)equalities f(t) + τ(z) +

∑ℓ
i=1 ai · yi ∼ 0, where

a1, . . . , aℓ ∈ Z, f ∈ Z[t], all y1, . . . , yℓ are t-digits, and τ is a non-shifted term of PrA[t].
The last step is to remove the t-digits y by appealing to BoundedQE (line 22). Recall

that this algorithm requires all PrA[t] constraints in the input to be linear, while terms τ(z)
in φr may contain (nested) occurrences of the functions

⌊ ·
td

⌋
and (· mod f(t)). In order to

respect this specification, ElimBounded first replaces each non-shifted term τ(z) in φr

with a fresh variable z′, storing the substitution [τ(z)/z′] in the map S (line 20). These
terms are restored at the end of the procedure (line 26). Since the variables z′ occur free
in the formula in input to BoundedQE, and this procedure preserves formula equivalence
(Lemma 9), the overall process remains sound.

The formula in input of BoundedQE has no divisibility constraints, and the eliminated
variables y have integer coefficients. By Lemma 10 the output of each non-deterministic
branch is a formula ∃w′ ≤ B′ : ψ(w′, z′) where, for every variable w in w′, the bound B′(w) is
an integer. We can thus replace w with a (guessed) integer g ∈ [0, B′(w)] (lines 23–25). After
restoring the terms stored in S, the resulting formula is quantifier-free and the disjunction
over all outputs of ElimBounded is equivalent to the input formula.

▶ Lemma 15. Algorithm 4 (ElimBounded) complies with its specification.

This lemma implies Lemma 7, which was the last missing piece required to complete the
proof of Theorem 2. To simplify the complexity arguments in the next section, we make use
of the two observations in the following lemma, concerning the output of ElimBounded.

▶ Lemma 16. In every output of ElimBounded, all functions
⌊ ·

td

⌋
and (· mod f(t)) are

applied to non-shifted terms. In divisibility relations (f(t) | ·), the divisor f(t) is an integer.

6 Solving satisfiability, universality and finiteness

Now that we have established that PrA[t] admits quantifier elimination, let us discuss the
decision problems of satisfiability, universality and finiteness defined in Section 1. Without
loss of generality, we add to the formula φ in input to these problems a prefix of existential
quantifiers over all its free variables; thus assuming that φ is a sentence.
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Applying our quantifier elimination procedure to the sentence φ results in a variable-free
formula ψ whose truth only depends on the value taken by the parameter t. Furthermore,
from Lemma 16, all occurrences of the functions

⌊ ·
td

⌋
and (· mod f(t)) are applied to the

constant 0 (the only variable-free non-shifted term) and can thus be replaced with 0; and all
divisibility relations (f(t) | ·) are such that f(t) is an integer. That is to say, ψ is a positive
Boolean combination of univariate polynomial inequalities g(t) ≤ 0, equalities g(t) = 0 and
divisibility constraints d | g(t), where g ∈ Z[t] and d ∈ Z.

We study the solutions to such a univariate formula ψ(t). First, recall that computing
the set of all integer roots of a polynomial in Z[t] can be done in polynomial time:

▶ Theorem 17 ([13, Theorem 1]). There is a polynomial time algorithm that returns the set
of integer roots of an input polynomial f ∈ Z[t].

This theorem implies that the every integer root of f ∈ Z[t] has bit size polynomial in ⟨f⟩. Let
r1 < · · · < rn be the roots of all the polynomials occurring in (in)equalities of ψ. These roots
partition Z in 2n + 1 regions (−∞, r1 − 1], {r1}, [r1 + 1, r2 − 1], {r2}, . . . , {rn}, [rn + 1,∞).
The truth of all (in)equalities in ψ remains invariant for integers within the same region.
Furthermore, the solutions to the divisibility constraints in ψ are periodic with period
p := lcm{d : (d | ·) occurs in ψ} > 0, i.e., setting t = b satisfies the same divisibility con-
straints as t = b+ p, for every integer b. Then, a solution to ψ (if it exists) can be found
in the interval [r1 − p, rn + p]. Moreover, ψ has infinitely many solutions if and only if one
solution lies in intervals [r1 − p, r1 − 1] or [rn + 1, rn + p]. To recap:

▶ Lemma 18. Let ψ be a positive Boolean combination of polynomial inequalities g ≤ 0,
equalities g = 0 and divisibility constraints d | g, where g ∈ Z[t] and d ∈ Z. Then,
1. If ψ has a solution, then it has one of bit size polynomial in the size of ψ.
2. If ψ has a polynomial bit size solution that is either larger or smaller than all roots of the

polynomials in (in)equalities of ψ, then ψ has infinitely many solutions, and vice versa.

The complexity of the existential fragment. Lemma 18 implies decidability of all the
decision problems of satisfiability, universality and finiteness. We now analyse their complexity
for the existential fragment of PrA[t], establishing Theorem 3. For simplicity of the exposition,
we keep assuming t ≥ 2. Our reasoning can be extended in a straightforward way to all
t ∈ Z, following the discussion given at the beginning of Section 3.

First and foremost, we study the complexity of our quantifier elimination procedure.

▶ Lemma 19. Algorithm 1 (PrA[t]-QE) runs in non-deterministic polynomial time.

Proof idea. For the proof we track the evolution of the following parameters as Algorithm 1
executes, where φ is a formula, and B is a map used for the bounded quantification:

atom(φ) :=
(
number of occurrences of atomic formulae in φ

)
,

vars(φ) :=
(
number of variables in φ

)
,

func(φ) :=
(
number of occurrences of

⌊ ·
td

⌋
and (· mod f(t)) in an atomic formula of φ

)
,

⟨const⟩(φ) := max{⟨f⟩ : f ∈ Z[t] occurs in φ},
⟨B⟩ := max{0, ⟨B(w)⟩ : w is in the domain of B}.

For example, for the formula γ := (g | f1 · x+
⌊ f2·x+f3·

⌊
y
t

⌋
+f4

t

⌋
+ f5), we have atom(γ) = 1,

vars(γ) = 2, func(γ) = 2 (two occurrences of
⌊ ·

t

⌋
), ⟨const⟩(γ) = max{⟨g⟩, ⟨f1⟩, . . . , ⟨f5⟩, ⟨t⟩}.

The bit size of φ is polynomial in the values of these parameters.
One can show that throughout the procedure each of these parameters remain polynomially

bounded with respect to all the parameters of the input formula. For instance, during the
first two steps of ElimBounded, the number of variables in the manipulated formulae (φ

MFCS 2025
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and γ) increases at most polynomially in ⟨B⟩, due to the bit blasting of the bounded variables.
However, by the end of the procedure, it reduces to the number of free variables – as expected
by a quantifier elimination procedure.

While tedious, this proof is not dissimilar to the other complexity analyses of quantifier
elimination procedures for PrA; see, e.g., [30]. Once the evolution of the parameters is known,
it is simple to show that Algorithm 1 runs in non-deterministic polynomial time. ◀

Our results on decision problems for existential formulae of PrA[t] follow.

Proof of Theorem 3. Satisfiability. By Lemma 19 and Lemma 18.1, if the input sentence
γ := ∃x : φ(x) is satisfiable (equivalently, valid), then JγKk ̸= ∅ for some k of bit size
polynomial in the size of γ. Observe that replacing t for k in γ yields an existential
sentence of Presburger arithmetic of size polynomial in the size of γ. Checking satisfiability
for ∃PrA is a well-known NP-complete problem [29]. We conclude that the satisfiability
problem for existential formulae of PrA[t] is also NP-complete.

Universality. By Lemma 19, Algorithm 1 can be implemented by a deterministic exponential
time Turing machine T : given an input sentence γ, T computes an equivalent disjunc-
tion ψ :=

∨
β ψβ of exponentially many polynomial-size formulae ψβ . By Lemma 16,

each ψβ is a positive Boolean combination of (in)equalities g(t) ∼ 0 and divisibility con-
straints d | g(t), with g ∈ Z[t] and d ∈ N \ {0}. From Theorem 17, all roots r1 < · · · < rn

of polynomials in (in)equalities of ψ are of bit size polynomial in the size of γ. However,
the period p := lcm{d : (d | ·) occurs in ψ} may be of exponential bit size.
As a certificate asserting that γ is a negative instance, we can take ψ, the sequence of
configurations reached by T when computing ψ from γ, and a number k ∈ [r1− p, rn + p].
The certificate is verified in polynomial time (in its size) by checking that the sequence of
configurations is a valid run of T computing ψ from γ, and that k is not a solution to ψ(t).
Since the certificate has exponential size, universality is in coNExp. (coNExp-hardness
follows from the coNExp-hardness of the ∀∃∗ fragment of PrA [16,18].)

Finiteness. Equivalently, we show that the problem of checking whether a sentence γ is sat-
isfiable for infinitely many instantiations of t is NP-complete. The proof of NP-hardness
is trivial: for sentences without t, this problem is equivalent to the satisfiability problem
for ∃PrA. For the NP membership, let us consider the formula

∨
β ψβ computed from an

input sentence γ via Algorithm 1. If γ is satisfied by infinitely many values of t, then
the same holds for least one of the formulae ψβ . By Lemma 18.2, ψβ has infinitely many
solutions if and only if it has a solution k of bit size polynomial in the size of γ, such that k
is either larger or smaller than all roots of polynomials appearing in (in)equalities of ψβ .
Then, as a certificate asserting that γ has infinitely many solutions we can provide ψβ ,
the sequence of non-deterministic guesses made by Algorithm 1 to compute ψβ from γ,
and the value k. This certificate can be verified in polynomial time: first, run Algorithm 1
using the provided sequence of guesses, and check that the output is ψβ . Then, compute
(in polynomial time) all roots of the polynomials appearing in the (in)equalities of ψβ ,
and verify that k is a solution to ψβ that is either larger or smaller than all of them. ◀
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