
Deciding Termination of Simple Randomized Loops
Éléanore Meyer # Ñ

RWTH Aachen University, Germany

Jürgen Giesl #Ñ

RWTH Aachen University, Germany

Abstract
We show that universal positive almost sure termination (UPAST) is decidable for a class of simple
randomized programs, i.e., it is decidable whether the expected runtime of such a program is finite
for all inputs. Our class contains all programs that consist of a single loop, with a linear loop guard
and a loop body composed of two linear commuting and diagonalizable updates. In each iteration of
the loop, the update to be carried out is picked at random, according to a fixed probability. We
show the decidability of UPAST for this class of programs, where the program’s variables and inputs
may range over various sub-semirings of the real numbers. In this way, we extend a line of research
initiated by Tiwari in 2004 into the realm of randomized programs.

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory of
computation → Program analysis

Keywords and phrases decision procedures, randomized programs, linear loops, positive almost sure
termination

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.76

Related Version Full version, including all proofs: https://arxiv.org/abs/2506.18541 [26]

Supplementary Material
Software (Source Code): https://github.com/aprove-developers/SiRop [24]

archived at swh:1:dir:3ca664cebef79bfeb95ec944ddc8441d3b528bf6

Funding DFG Research Training Group 2236 UnRAVeL.

Acknowledgements We thank Sophia Greiwe for her help with the implementation of our decision
procedure in SiRop.

1 Introduction

We consider the problem of universal positive almost sure termination (UPAST), i.e., deciding
whether a given randomized program has finite expected runtime on all inputs [6, 34]. This
is a stronger property than universal almost sure termination (UAST) which requires that
the probability of termination is 1. Our programs are simple randomized loops of the form

while C #»x >
#»0 : #»x ← A #»x ⊕p B #»x (1)

Here, #»x = (x1, . . . , xn) denotes the vector of program variables that range over a semiring
S ⊆ R, and C ∈ Rm×n is a matrix representing the loop guard with m linear constraints
over the program variables. In each execution of the loop body, a matrix is chosen among
A, B ∈ Sn×n according to the probability p ∈ [0, 1] and the value #»x is updated accordingly.

© Éléanore Meyer and Jürgen Giesl;
licensed under Creative Commons License CC-BY 4.0

50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Paweł Gawrychowski, Filip Mazowiecki, and Michał Skrzypczak; Article No. 76; pp. 76:1–76:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eleanore.meyer@cs.rwth-aachen.de
https://verify.rwth-aachen.de/emeyer/
https://orcid.org/0000-0003-1038-4944
mailto:giesl@informatik.rwth-aachen.de
https://verify.rwth-aachen.de/giesl/
https://orcid.org/0000-0003-0283-8520
https://doi.org/10.4230/LIPIcs.MFCS.2025.76
https://arxiv.org/abs/2506.18541
https://github.com/aprove-developers/SiRop
https://archive.softwareheritage.org/swh:1:dir:3ca664cebef79bfeb95ec944ddc8441d3b528bf6;origin=https://github.com/aprove-developers/SiRop;visit=swh:1:snp:51bec07ab5b5061e7a0cf5e251adcc2ce0cc1986;anchor=swh:1:rev:d15dac241fed869ede4ad1c432f547a6c3c70b68
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

76:2 Deciding Termination of Simple Randomized Loops

Our Contribution. We show that UPAST is decidable for all S ∈ {Z,Q,A} when limited to
loops with diagonalizable commuting matrices A and B, where A is the set of algebraic real
numbers.1 Thus, we extend previous results on the termination of linear and affine2 non-
randomized loops to the randomized setting. In addition to deciding universal termination, our
approach can compute a non-termination witness #»x ∈ Sn, i.e., if the loop is non-terminating,
then #»x is an input leading to an infinite expected runtime.

Our programs go beyond single path loops as we might have A ̸= B. Thus, for every k ∈ N,
there is not just a single execution of length k but one has a “range” of possible executions of
length k where each execution occurs according to a known probability. To ensure tractability
of the resulting problem we require commutativity of both updates, so that we can focus on
how often each update has been selected in an execution, but we do not have to take the 2k

different orders into account in which the two updates might have been chosen. Moreover, we
require diagonalizability to obtain closed forms of a certain shape, which allows us to analyze
the behavior of a “range” of different executions at once. To demonstrate the practical
applicability of our decision procedure and the computation of non-termination witnesses,
we provide a prototype implementation for the case S = A with our tool SiRop.

Related Work. We continue a line of research started in 2004 by Tiwari [35] who showed
decidability of universal termination for loops with an affine guard and an affine update as
its body, where the guard, updates, and inputs range over the real numbers. In his proof,
Tiwari reduced the affine to the linear case. In 2006, Braverman [7] proved that the problem
remains decidable for loops and inputs ranging over the rational numbers Q, and if the guard
and update are linear, then he also showed decidability over the integers Z. Similar to Tiwari,
Braverman also reduced the affine case for Q to the linear case. In 2015, Ouaknine et al.
proved [31] that the affine case is decidable over the integers Z whenever the update is of
the form #»x ← A #»x + #»a , provided that A ∈ Zn×n is diagonalizable. This restriction was
removed by Hosseini et al. in 2019 [18]. In a related line of work, we proved decidability of
universal termination over the integers Z for triangular affine loops, i.e., where the matrix
A ∈ Zn×n is triangular [12]. Later, we extended these results to triangular weakly non-linear
loops which extend triangular loops by allowing certain non-linear updates [15, 16].

The only decidability results for termination of randomized programs that we are aware
of consider probabilistic vector addition systems [8] or constant probability programs [13],
i.e., loops whose guards consist of only one affine inequation and whose bodies consist of
several probabilistic branches (with fixed probabilities) that may increase or decrease the
program variables by fixed constants. The programs in [8, 13] are orthogonal to the ones
considered in our approach as they only allow to modify the program variables by adding
constants, but do not allow for multiplication. Another related area of research [4, 21, 28]
deals with prob-solvable loops and moment invariants. Given such a loop, these techniques
can compute closed forms for all moments of program variables for a given iteration of the loop
and, by taking a limit, also upon the loop’s termination. Thus, if restricted to almost surely
terminating programs, they can decide UPAST. However, in contrast to our method, these
techniques require that all variables in the loop guard may only take finitely many values.
Moreover, there are many automated approaches for tackling UPAST using so-called ranking
supermartingales (RSM), e.g., [1, 3, 5, 9, 10, 25, 27, 30, 36]. To generate a suitable RSM, one

1 Our approach only considers algebraic real p, A, B, and C, as it is not possible to represent arbitrary
real numbers on computers. However, in Sect. 6 we will see that such a loop terminates for all algebraic
real inputs iff it terminates for all real inputs.

2 In an affine (or non-homogeneous) loop, the guard may have the form C #»x > #»c and the update may
have the form #»x ← A #»x + #»a for arbitrary vectors #»c and #»a .

É. Meyer and J. Giesl 76:3

often uses techniques based on affine or polynomial templates, which renders the approach
incomplete. In [19], the authors showed that deciding UPAST is harder than deciding
universal termination for non-randomized programs in terms of the arithmetic hierarchy.

Outline of our Approach. We assume familiarity with basics from probability theory and
linear algebra (we recapitulate some main concepts in [26]). Sect. 2 formally introduces simple
randomized loops, gives their semantics in terms of a probability space, and presents most of
the definitions used throughout the paper. For a loop as in (1), we consider (finite) executions
f corresponding to words over the alphabet {A, B}, where the i-th symbol in f indicates
which update matrix was used in the i-th application of the assignment #»x ← A #»x ⊕p B #»x . For
such executions f , |f |A and |f |B denote the number of A- and B-symbols in f , respectively.
Moreover, we introduce the function Val #»x that maps finite executions f to the values
Val #»x (f) ∈ Rm of the constraints in the loop guard after executing f on a concrete input
#»x ∈ Rn, i.e., Val #»x (f) = C ·A|f |A ·B|f |B · #»x , since A and B commute. Our decision procedure
does not search for a non-terminating input directly, but for an eventually non-terminating
input #»x . An input #»x is eventually non-terminating if by repeated execution of the loop
body on #»x (while ignoring the guard), a non-terminating input can eventually be reached.
In Lemma 12, we show that a loop has an eventually non-terminating input iff it also has
a non-terminating input. Later (in Sect. 6) we will show how to lift such an eventually
non-terminating input to an actual non-terminating input.

In Sect. 3, we introduce a mapping U that maps executions f to the difference between
the relative number |f |A

|f | of times that the update matrix A has been chosen in f and the
probability p of choosing A, i.e., U(f) = |f |A

|f | − p. Moreover, we essentially partition the set
of indices {1, . . . , n} of all program variables into suitable sets D(i,o) with (i, o) ∈ I for some
finite set I ⊊ R2

>0. We will then show that for all c ∈ {1, . . . , m}, and all executions f with
|f |A, |f |B ≥ 1, the value (Val #»x (f))c of the c-th constraint after executing f on #»x is

(Val #»x (f))c =
∑

(i,o)∈I
(
i · oU(f))|f | ∑

i∈D(i,o)
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x). (2)

Here, all ζi,A, ζi,B are complex numbers of modulus 1, i.e., |ζi,A| = |ζi,B| = 1 for all i ∈ {1, . . . ,

n}, and the functions γc,i are linear maps Rn → C. The maps γc,i and the values ζi,A, ζi,B ∈ C
only depend on the matrices C, A, and B, but not on the specific input #»x . While weaker
requirements would suffice to ensure that (Val #»x (f))c has some closed form, diagonalizability
of A and B guarantees that it has the form (2), which is crucial for our procedure. Lemma 21
shows that by a lexicographic comparison of those (i, o) ∈ I for which the inner sum in (2)
is not 0 for all executions f , one can compute which of the pairs (i, o) is the “dominant”
one. Here, a pair (i, o) ∈ I is considered dominant whenever the value of the first factor(
i · oU(f))|f | of (2) grows the fastest if the execution of f is continued (i.e., if |f | → ∞) and

the corresponding inner sum is not 0 for all executions f . The dominant pair depends on the
specific input #»x and on whether U(f) is positive or negative, and correspondingly, one has to
use different lexicographic comparisons to determine the dominant pair. For d ∈ {n, p}, let
Dd,c, #»x denote the set D(i,o) where the pair (i, o) is dominant for input #»x and c ∈ {1, . . . , m}
(and positive U(f) if d = p or negative U(f) for d = n). Then, the sign of the “coefficient”
v(f) =

∑
i∈Dd,c, #»x

ζ
|f |A

i,A ζ
|f |B

i,B γc,i(#»x) of the dominant pair eventually determines the sign of
(Val #»x (f))c, provided that |v(f)| is large enough (Lemma 23).

In Sect. 4, we consider the rearrangement

v(f) =
∑

i∈Rd,c, #»x
γc,i(#»x)︸ ︷︷ ︸

=R

+
∑

i∈Cd,c, #»x
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) (3)

where Rd,c, #»x = {i ∈ Dd,c, #»x | ζi,A = ζi,B = 1} and Cd,c, #»x = {i ∈ Dd,c, #»x | {ζi,A, ζi,B} ≠ {1}}.

MFCS 2025

76:4 Deciding Termination of Simple Randomized Loops

Lemma 28 then gives a necessary condition for non-termination (and hence a sufficient
condition for universal termination): If #»x is an eventually non-terminating input, then there
must be a d ∈ {n, p} such that we have R > 0 for all constraints c, with R as in (3).

Sect. 5 turns this necessary condition for non-termination into a sufficient condition.
To that end, we define the set W of witnesses for eventual non-termination containing all
inputs #»x ∈ Sn for which there is some d ∈ {n, p} such that R >

∑
i∈Cd,c, #»x

|γc,i(#»x)| holds
for all constraints c. Lemma 31 shows that all #»x ∈ W are eventually non-terminating.
While this condition is only sufficient for non-termination, we show in Lemma 32 that if the
program is non-terminating, then there is also an input in W . So the considered program is
non-terminating iff W ̸= ∅, i.e., the program is universally terminating iff W = ∅ (Cor. 33).

Finally, our decision procedure for UPAST is presented in Sect. 6. Lemma 34 shows
that W is semialgebraic and thus the emptiness problem is decidable over the real algebraic
numbers, i.e., if S = A. Moreover, Lemma 36 shows that W can be represented as a finite
union of convex semialgebraic sets. Hence, emptiness of W can also be decided over the
rationals and integers [20]. Cor. 39 shows how witnesses for non-termination can be obtained
from eventually non-terminating inputs #»x ∈W . We discuss our implementation in the tool
SiRop in Sect. 7. For all proofs, we refer to [26]. Moreover, [26] also contains proof sketches
for our main results to help understanding the essential proof ideas.

2 Programs & Termination

As usual, let Q ⊆ C denote the set of algebraic numbers, i.e., the set of all roots of (univariate)
polynomials from Q[x]. As mentioned, A = Q ∩ R denotes the set of algebraic reals, and
[n] denotes the set of positive natural numbers below and including n for every n ∈ N with
N = N>0 ∪ {0}, i.e., [n] = {1, . . . , n− 1, n} for n ≥ 1 and [0] = ∅.

We now define our class of simple randomized loops. The program variables range over
a semiring S ⊆ A with a guard consisting of a conjunction of m strict linear inequations
over the program variables, represented by a matrix C ∈ Am×n, and two commuting linear
updates A, B ∈ Sn×n that are diagonalizable (over C). In each loop iteration, the applied
update is chosen among A, B according to the outcome of a (possibly biased) coin toss.

It is well known (e.g., [17, Thm. 1.3.12]) that two matrices A, B ∈ Cn×n for n ∈ N
are commuting and diagonalizable iff they are simultaneously diagonalizable, i.e., there
is a regular matrix S ∈ Cn×n such that A = SADS−1 and B = SBDS−1, where AD =
diag(a1, . . . , an) ∈ Cn×n and BD = diag(b1, . . . , bn) ∈ Cn×n are complex diagonal matrices,
and a1, . . . , an and b1, . . . , bn are the eigenvalues of A and B, respectively. Moreover, if
A, B ∈ Qn×n are algebraic, then S, AD, BD ∈ Qn×n can also be chosen to be algebraic.

▶ Definition 1 (Simple Randomized Loops). Let m, n ∈ N>0, C ∈ Am×n, p ∈ [0, 1] ∩ A, and
A, B ∈ Sn×n such that A and B are simultaneously diagonalizable.3 Then,

while C #»x >
#»0 : #»x ← A #»x ⊕p B #»x

is called a simple randomized loop (over S) of dimension n with m constraints. In the
remainder, we will omit “simple randomized” and just refer to these programs as “loops”.

The meaning of “ #»x ← A #»x ⊕p B #»x” is that #»x is updated to A #»x with probability p and
to B #»x with probability 1− p. The comparison C #»x >

#»0 is understood componentwise, i.e.,
C #»x >

#»0 iff (C #»x)c > 0 for all c ∈ [m], where (C #»x)c is the c-th entry of the vector C #»x . To

3 In the following, we assume N ⊆ S and exclude the trivial semiring S = {0} as every simple randomized
loop terminates for the input #»0 .

É. Meyer and J. Giesl 76:5

simplify the notation, from now on we will consider a fixed loop P of dimension n with m

constraints. Moreover, w.l.o.g. we assume p ∈ (0, 1), i.e., p ̸∈ {0, 1}, as otherwise one can set
A to B if p = 0 and B to A if p = 1, and then replace p by an arbitrary number from (0, 1).

A run r of the loop P is an infinite word r = r1r2 . . . ∈ {A, B}ω, where Runs denotes
the set of all runs. For a run r = r1 . . ., the value ri ∈ {A, B} indicates which of the
updates A or B was used in the i-th iteration of the loop. Here, A and B are distinct
markings even when A = B. To simplify the notation, we introduce random variables
ri : Runs → {A, B} for i ∈ N>0 that map a run to its i-th element. Note that all such
random variables ri are independent and identically distributed. A (finite) execution f ∈⋃

k∈N {A, B}k is a (possibly empty) prefix of a run. Let Path denote the (countable) set of
all such finite executions. Given a finite execution f = r1 . . . rk with ri ∈ {A, B}, let |f | = k

denote its length. Furthermore, for s ∈ {A, B}, |f |s = |{i ∈ [k] | ri = s}| denotes the number
of performed updates with update matrix A or B, respectively, during the execution of f .

Since the definition of runs is independent from the specific input of the loop, the semantics
of the loop P depend only on the value of p ∈ (0, 1). To obtain a probability measure P for
P, one first considers cylinder sets Pref = {fr1r2 . . . ∈ Runs | ri ∈ {A, B} for i ≥ 1} for all
f ∈ Path, i.e., Pref contains all runs with prefix f . By requiring P(Pref) = p|f |A · (1− p)|f |B

for all f ∈ Path, one obtains a (unique) probability measure P : F → (0, 1) on the σ-field F
generated by all cylinder sets Pref , see, e.g., [2, Thm. 2.7.2].

▶ Definition 2 (Semantics of Loops). The semantics of P is given as a probability space
(Runs,F ,P) where F = σ({Pref | f ∈ Path}) and P(Pref) = p|f |A · (1− p)|f |B .

To capture the behavior of P on some specific input #»x ∈ Sn, we introduce a function
Val #»x : Path → Am that associates finite executions f ∈ Path with the values of P’s guard
C #»x after the execution of f . Recall that A and B commute. Hence, we define

Val #»x (r1 . . . rk) = C
(∏k

i=1

{
A if fi = A

B otherwise

)
#»x = C ·A|r1...rk|A ·B|r1...rk|B · #»x

where for every matrix M ∈ Cn×n, M0 is the n-dimensional identity matrix.

▶ Lemma 3 (Values of Constraints). For any f ∈ Path and #»x = (x1, . . . , xn) ∈ An we have

Val #»x (f)=C · S · diag
(

a
|f |A

1 · b|f |B

1 , . . . , a
|f |A
n · b|f |B

n

)
· S−1 · #»x .

▶ Example 4. Consider the loop “while C #»x >
#»0 : #»x ← A #»x ⊕p B #»x” with

C =
(
1 1 1

)
A =

11 5 −8
9 15 8
7 −1 6

 B =

−7 5 16
17 5 −16
−9 7 −12


S =

−i i 3
i −i 7
1 1 1

 S−1 =

−1+7i
20

−1−3i
20

1
2

−1−7i
20

−1+3i
20

1
2

1
10

1
10 0


Then, for #»x ∈ A3 and all f ∈ Path, Val #»x (f) equals

C·S·diag((6− 8i)|f |A ·(−12 + 16i)|f |B , (6 + 8i)|f |A ·(−12− 16i)|f |B , 20|f |A ·10|f |B) ·S−1· #»x .

MFCS 2025

76:6 Deciding Termination of Simple Randomized Loops

The value of the c-th constraint after the execution of f ∈ Path on the initial value
#»x ∈ An is given by the expression

(Val #»x (f))c = (C ·A|f |A ·B|f |B · #»x)c

= (C · S ·AD
|f |A ·BD

|f |B · S−1 · #»x)c (Lemma 3)

=
∑

i∈[n] (C · S)c,i · a
|f |A

i · b|f |B

i · (S−1 · #»x)i

=
∑

i∈[n] a
|f |A

i · b|f |B

i · γc,i(#»x) (4)

for linear maps γc,i : An → C with

γc,i(#»x) = (C · S)c,i · (S
−1 · #»x)i. (5)

Here, (C ·S)c,i denotes the entry of C ·S at row c and column i. Moreover, since C ∈ Am×n,
A, B ∈ An×n, and #»x ∈ An, we have γc,i(#»x) ∈ Q for all (c, i) ∈ [m]× [n].4 In the following,
we refer to the addends a

|f |A

i · b|f |B

i · γc,i(#»x) of the sum in (4) as constraint terms.

▶ Example 5. Reconsider Ex. 4. Then, (Val #»x (f))1 =
∑

i∈[3] a
|f |A

i · b|f |B

i · γ1,i(#»x) with
eigenvalues a1 = 6− 8i, a2 = 6 + 8i, a3 = 20, b1 = −12 + 16i, b2 = −12− 16i, b3 = 10, and

γ1,1(#»x) =
(
− 1

20 + 7i
20
)

x1 −
(1

20 + 3i
20
)

x2 + 1
2 x3

γ1,2(#»x) =
(
− 1

20 −
7i
20
)

x1 −
(1

20 −
3i
20
)

x2 + 1
2 x3

γ1,3(#»x) = 11
10 x1 + 11

10 x2.

▶ Corollary 6. For all (c, i) ∈ [m]× [n] and all #»x , #»y ∈ An, due to the definition of γc,i we
have γc,i(A · #»x + #»y) = ai · γc,i(#»x) + γc,i(#»y) and γc,i(B · #»x + #»y) = bi · γc,i(#»x) + γc,i(#»y).

The following lemma shows that if one has two pairs of eigenvalues (a, b) and (a, b) where
a and b are the complex conjugates of a and b, then the sum of all linear maps γc,i(#»x)
where (ai, bi) = (a, b) is the complex conjugate of the sum of all linear maps γc,i(#»x) where
(ai, bi) = (a, b). For instance in Ex. 5, (a1, b1) are the complex conjugates of (a2, b2) and
indeed, we have γ1,2(#»x) = γ1,1(#»x). This lemma will later be needed to show that when
representing (Val #»x (f))c and summing up the coefficients of its addends in a suitable way, all
resulting coefficients are real numbers (see Remark 18).

▶ Lemma 7 (Sums of Conjugated Constraint Terms are Real-Valued). Let c ∈ [m], let a, b ∈ C,
and let γc,i be the linear map from (5). Then, for all inputs #»x ∈ An we have γ2 = γ1 where

γ1 =
∑

i ∈ [n], (ai,bi) = (a,b) γc,i(#»x) and γ2 =
∑

i ∈ [n], (ai,bi) = (a,b) γc,i(#»x).

In order to define the notion of termination for P, we first introduce the concept of a
run’s length by counting the number of iterations until the guard is violated for the first
time. Throughout the paper, we use the convention min∅ =∞.

▶ Definition 8 (Length Of Runs). For any #»x ∈ An, we define the random variable L #»x : Runs→
N ∪ {∞} as L #»x (r1r2 . . .) = min{k ∈ N | Val #»x (r1 . . . rk) ̸> #»0 }.

We now define the expected runtime of P for the input #»x as the expectation E(L #»x). If
E(L #»x) = ∞, we call the corresponding input #»x non-terminating. So we consider positive
almost sure termination [6, 34], where termination corresponds to a finite expected runtime.

4 This observation will be needed in the final SMT encoding for our decision procedure (see Lemma 34),
as we have to encode the coefficients γc,i(#»x) for a given #»x ∈ An.

É. Meyer and J. Giesl 76:7

▶ Definition 9 (Non-Terminating Inputs). The set of non-terminating inputs is NT = { #»x ∈
An | E(L #»x) =∞}.

Consequently, we call P terminating whenever NT = ∅ and non-terminating otherwise.
As in [7, 15, 16, 18, 31, 35], we focus on eventual non-termination instead of actual

non-termination as this allows us to ignore a finite number of initial updates of the loop. In
our setting, an input #»x is eventually non-terminating if a non-terminating input #»y can be
reached by repeated application of the updates in the loop body to #»x .

▶ Definition 10 (Eventual Non-Termination). We define the set of eventually non-terminating
inputs as ENT =

⋃
j,k∈N{

#»x ∈ An | AjBk #»x ∈ NT}.

The motivation behind considering ENT instead of NT is that it allows us to “jump” over
the first iterations of the loop (where the loop guard might be violated). In this way, we can
focus only on the longterm behavior of the loop on a given input.

▶ Example 11 (Difference Between NT & ENT). Consider the loop “while C #»x >
#»0 : #»x ←

A #»x ⊕0.5 B #»x” with C =
(
1 1

)
and A = B =

(
2 0
0 1

)
. Then, #»x =

(
1
−2

)
̸∈ NT as C #»x = −1

̸> 0, i.e., #»x violates the loop guard. While A #»x also violates the loop guard (since CA #»x = 0
̸> 0), we have CAj #»x > 0 for all j ≥ 2. Thus, A2 #»x ∈ NT and therefore, #»x ∈ ENT.

Considering ENT instead of NT is justified by the fact that NT = ∅ iff ENT = ∅, as
shown by Lemma 12.

▶ Lemma 12 (Correspondence of ENT & NT). For any semiring S ⊆ A, we have NT∩Sn = ∅
iff ENT ∩ Sn = ∅.

3 On Constraint Terms

In this section we consider the value Val #»x (f) for |f | → ∞, motivated by our interest in
eventual non-termination. In the first part of this section, we represent (Val #»x (f))c, for
c ∈ [m], as a sum over so-called “constraint term groups”, expressed using a quantity U(f)
corresponding to “how much f has deviated from the expected execution”. The section’s
second part then shows that for specific f ∈ Path it suffices to only consider certain addends
of this sum in order to decide whether (Val #»x (f))c > 0 as |f | → ∞. This observation will
lead to a necessary condition for eventual non-termination in Sect. 4, which will subsequently
be turned into a sufficient criterion in Sect. 5.

When executing the loop P, the relative number of times that update A is selected over
B will intuitively tend towards p with increasing number of iterations. We now consider this
relative quantity and additionally subtract p to center its distribution around 0.

▶ Definition 13 (Deviation From Equilibrium). The mapping U : Path→ [−p, 1− p] is defined
as U(f) = |f |A

|f | − p for every non-empty f ∈ Path and U(f) = 0 otherwise.

We will investigate which addends determine the sign of (Val #»x (f))c for |f | → ∞. To this
end, we want to express the value of the constraint terms after some finite execution f in
terms of U(f) and |f |. The advantage is that for sufficiently long paths f , we know how |f |
and U(f) “behave” (i.e., |f | “tends towards” ∞ and U(f) is “expected to tend towards” 0).

MFCS 2025

76:8 Deciding Termination of Simple Randomized Loops

▶ Lemma 14 (Normal Form of Constraint Terms). Let a|f |Ab|f |B γ be a constraint term
with a, b ≠ 0. We write a, b ∈ C in polar form as |a|ζA and |b|ζB, respectively, where
ζA = a

|a| , ζB = b
|b| ∈ C are complex units, i.e., |ζA| = |ζB| = 1. Then, for any (non-empty)

finite execution f ∈ Path with U(f) ∈ (−p, 1− p) we have

a|f |Ab|f |B γ = ζ
|f |A

A ζ
|f |B

B

(
|a|p

|b|p−1

(
|a|
|b|

)U(f)
)|f |

γ.

Note that in Lemma 14 we excluded all constraint terms with a = 0 or b = 0 in order to
avoid a division by zero. However, we additionally required5 U(f) ̸∈ {−p, 1− p} implying
0 < |f |A and 0 < |f |B , since |f | > 0. Hence, for all constraint terms a|f |Ab|f |B γ with a = 0 or
b = 0 and all considered f ∈ Path, we have a|f |Ab|f |B = 0 and thus the value of such constraint
terms can safely be ignored when computing (Val #»x (f))c. This leads to the equation

(Val #»x (f))c =
∑

i∈[n] a
|f |A

i b
|f |B

i γc,i(#»x)

=
∑

i∈[n], ai,bi ̸=0 ζ
|f |A

i,A ζ
|f |B

i,B

(
|ai|p

|bi|p−1

(
|ai|
|bi|

)U(f)
)|f |

γc,i(#»x), (6)

where ζi,A = ai

|ai| and ζi,B = bi

|bi| .

▶ Example 15. Transforming the sum from Ex. 5 into the form (6) and setting p = 1
2 yields

(Val #»x (f))1 = ζ
|f |A

1,A ζ
|f |B

1,B

(
10
√

2 · (1
2)U(f)

)|f |
γ1,1(#»x) + ζ

|f |A

2,A ζ
|f |B

2,B

(
10
√

2 · (1
2)U(f)

)|f |
γ1,2(#»x)

+ ζ
|f |A

3,A ζ
|f |B

3,B
(
10
√

2 · 2U(f))|f |
γ1,3(#»x)

with ζ1,A = e−i arctan(4/3), ζ2,A = ei arctan 4/3, ζ3,A = 1 and ζ1,B = ei(π−arctan(4/3)), ζ2,B =
ei(arctan(4/3)−π), ζ3,B = 1 for all f ∈ Path.

By inspecting the right-hand side of (6) it becomes clear that the subexpressions |ai|p

|bi|p−1

and |ai|
|bi| govern the overall asymptotic growth of (Val #»x (f))c as |f | increases. In the following,

we group all constraint terms into so-called constraint term groups which are sets of indices i

corresponding to constraint terms where |ai|p

|bi|p−1 and |ai|
|bi| have common values i and o. Here,

i = |ai|p

|bi|p−1 is the expression that is important in (6) if U(f) is in a region close to 0.6 If one
is outside such a region, then o = |ai|

|bi| is important as well.

▶ Definition 16 (Constraint Term Groups). For any (i, o) ∈ R2
>0, let

D(i,o) = {i ∈ [n] | 0 ̸∈ {ai, bi}, |ai|p

|bi|p−1 = i, |ai|
|bi| = o}.

Moreover, we define the finite set I of all pairs (i, o) ∈ R2
>0 with D(i,o) ̸= ∅. For c ∈ [m] and

#»x ∈ An, let D(i,o),c, #»x = ∅ whenever
∑

i∈D(i,o)
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) = 0 holds for all f ∈ Path.7
Otherwise let D(i,o),c, #»x = D(i,o). We refer to the sets D(i,o),c, #»x as constraint term groups.

5 The set of runs r where U(f) ∈ {−p, 1− p} for every prefix f of r has probability 0, as U(f) ∈ {p, 1− p}
means that only A or B has been selected in f . However, we had required 0 < p < 1.

6 Note that a
|f |A

i b
|f |B

i is the |f |-th power of the weighted geometric mean ap
i b1−p

i whenever U(f) = 0.
7 We will show how to check this in Lemma 24. Note that this is not implied by

∑
i∈D(i,o)

γc,i(#»x) = 0.
As a counterexample, consider γ1 = −1, γ2 = 1 (and thus, γ1 + γ2 = 0), and ζ1,A = −1, ζ1,B = ζ2,A =
ζ2,B = 1 (and hence, ζ1,Aζ1,Bγ1 + ζ2,Aζ2,Bγ2 = 2).

É. Meyer and J. Giesl 76:9

For c ∈ [m] and non-empty f ∈ Path with U(f) ∈ (−p, 1− p), (6) can be rearranged to

(Val #»x (f))c =
∑

(i,o)∈I
(
i · oU(f))|f | ∑

i∈D(i,o),c, #»x
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) (7)

with Def. 16.
Lemma 17 shows that for all a1, b1, a2, b2 ̸= 0 we have |a1|

|b1| = |a2|
|b2| and |a1|p

|b1|p−1 = |a2|p

|b2|p−1

iff |a1| = |a2| and |b1| = |b2|. Thus, if i, i′ ∈ D(i,o), then |ai| = |ai′ | and |bi| = |bi′ |. We
will first return to this result in Sect. 4, where we will use that for all i, i′ ∈ D(i,o) with
ai, bi, ai′ , bi′ ∈ R>0 we have (ai, bi) = (a′

i, b′
i). Later on, we will revisit it in Sect. 5.

▶ Lemma 17 (Equality of Eigenvalues). Let a1, b1, a2, b2 ∈ R>0 be positive reals such that
a1
b1

= a2
b2

and ap
1

bp−1
1

= ap
2

bp−1
2

. Then we have (a1, b1) = (a2, b2).

Due to (7), we have to consider sums
∑

i∈D(i,o),c, #»x
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) for #»x ∈ An and
c ∈ [m]. While ζi,A, ζi,B, and γc,i(#»x) are complex numbers in general, such sums are always
real-valued. The corresponding Remark 18 is an immediate consequence of Lemma 7. Later,
this remark will allow us to make statements about the signs of such sums, see Lemma 23.
▶ Remark 18 (Coefficients of Constraint Term Groups are Real-Valued). Let c ∈ [m] and
(i, o) ∈ I. Then, for all f ∈ Path we have

∑
i∈D(i,o),c, #»x

ζ
|f |A

i,A ζ
|f |B

i,B γc,i(#»x) ∈ A.

▶ Example 19. We continue Ex. 15. There are two different non-empty sets D(i,o), i.e.,
D(10

√
2,1/2) = {1, 2} and D(10

√
2,2) = {3}. As indicated by Lemma 17, this implies |a1| = |a2|

and |b1| = |b2|. Hence, ζ2,A = a2
|a2| = a2

|a1| = a1
|a1| = ζ1,A and similarly, ζ2,B = ζ1,B. Moreover,

recall that γ1,2(#»x) = γ1,1(#»x). Therefore, we have

D(10
√

2,1/2),1, #»x ̸= ∅
⇐⇒ there is a f ∈ Path with ζ

|f |A

1,A · ζ
|f |B

1,B · γ1,1(#»x) + ζ
|f |A

2,A · ζ
|f |B

2,B · γ1,2(#»x) ̸= 0
⇐⇒ there is a f ∈ Path with ζ

|f |A

1,A · ζ
|f |B

1,B · γ1,1(#»x) + ζ1,A
|f |A · ζ1,B

|f |B · γ1,1(#»x) ̸= 0
⇐⇒ there is a f ∈ Path with ζ

|f |A

1,A · ζ
|f |B

1,B · γ1,1(#»x) + ζ
|f |A

1,A · ζ
|f |B

1,B · γ1,1(#»x) ̸= 0
⇐⇒ there is a f ∈ Path with Re(ζ |f |A

1,A · ζ
|f |B

1,B · γ1,1(#»x)) ̸= 0
⇐⇒ there is a f ∈ Path with ζ

|f |A

1,A · ζ
|f |B

1,B · γ1,1(#»x) ̸= 0 (by Remark 18)
⇐⇒ γ1,1(#»x) ̸= 0

For the last step, the direction “=⇒” is clear, since γ1,1(#»x) = 0 implies ζ
|f |A

1,A ·ζ
|f |B

1,B ·γ1,1(#»x) = 0
for all f ∈ Path. The direction “⇐=” is also clear by choosing f to be the empty path.

Hence, D(10
√

2,1/2),1, #»x ̸= ∅ ⇐⇒ γ1,1(#»x) ̸= 0 ⇐⇒ 10x3 ̸= x1 +x2∨7x1 ̸= 3x2. Similarly,
D(10

√
2,2),1, #»x ̸= ∅ ⇐⇒ γ1,3(#»x) ̸= 0 ⇐⇒ x1 + x2 ̸= 0 for #»x ∈ A3.

By inspecting (7) again, one observes that if U(f) is sufficiently close to 0, then the
terms belonging to the non-empty constraint term group D(i,o),c, #»x with maximal (i, o) in the
lexicographic ordering will at some point (when |f | → ∞) outgrow all other terms whenever
U(f) · |f | > 0 is positive and sufficiently large. If U(f) · |f | < 0 is negative and sufficiently
small, then, however, we have to focus our attention on the non-empty group D(i,o),c, #»x for
which (i,−o) is maximal in the lexicographic ordering.8

8 Since i and o are always positive reals, the expressions
∑

i∈D(i,o),c, #»x
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) determine whether
(Val #»x (f))c is positive or negative. However, for |f | → ∞, this expression (and also U(f)) could alternate
between being positive, negative, or even 0. This will be regarded in Sect. 4 and 5.

MFCS 2025

76:10 Deciding Termination of Simple Randomized Loops

|f |

U(f) · |f |
U(f) · |f|

ε|f|

−ε|f|

r

−r

l

Figure 1 Illustration of the General Idea Using Safe Regions.

▶ Definition 20 (Eventually Dominating Constraint Term Group). Let ≤lex,p =
{((i1, o1), (i2, o2)) | i1 < i2 or both i1 = i2 and o1 ≤ o2} denote the usual lexicographic
ordering on R and let ≤lex,n = {((i1, o1), (i2, o2)) | i1 < i2 or both i1 = i2 and o2 ≤ o1} be the
lexicographic ordering where the comparison on the second component is flipped.

For all d ∈ {n, p}, c ∈ [m], and #»x ∈ An we define Dd,c, #»x = ∅ if D(i,o),c, #»x = ∅ for all
(i, o) ∈ I, and Dd,c, #»x = D(i,o),c, #»x for (i, o) = maxlex,d{(i, o) ∈ I | D(i,o),c, #»x ≠ ∅} otherwise,
where maxlex,d denotes the maximum w.r.t. the ordering ≤lex,d.

It is not a priori clear, how, for a constraint index c ∈ [m] and a given input #»x ∈ An,
the sets Dn,c, #»x ,Dp,c, #»x can be computed automatically since one has to decide whether

ap
1

bp−1
1

<
ap

2
bp−1

2
where a1, b1, a2, b2 ∈ A>0 are assumed to be positive algebraic reals, but ap

i and

bp−1
i are in general non-algebraic reals. This is due to the well-known Gelfond-Schneider

theorem (see, e.g., [29, Thm. 3.0.1]), which states that ap ̸∈ Q whenever a ∈ Q \ {0, 1} and
p ∈ Q is irrational. However, Lemma 21 ensures the decidability of such comparisons.

▶ Lemma 21 (Comparing Constraint Term Groups). Let T1 = ap
1

bp−1
1

and T2 = ap
2

bp−1
2

for positive
algebraic reals a1, b1, a2, b2 ∈ A>0 and p ∈ A∩(0, 1). Then the statement T1 < T2 is decidable.

▶ Example 22. Recall the two non-empty constraint term groups D(10
√

2,1/2),1, #»x and
D(10

√
2,2),1, #»x from Ex. 19. Then, for #»x ∈ A3, we have

Dn,1, #»x =


D(10

√
2,1/2) = {1, 2} if 10x3 ̸= x1 + x2 or 7x1 ̸= 3x2

D(10
√

2,2) = {3} if 10x3 = x1 + x2, 7x1 = 3x2, and x1 + x2 ̸= 0
∅ otherwise

Dp,1, #»x =


D(10

√
2,2) = {3} if x1 + x2 ̸= 0

D(10
√

2,1/2) = {1, 2} if x1 + x2 = 0 and (10x3 ̸= x1 + x2 or 7x1 ̸= 3x2)
∅ otherwise

Lemma 23 states the main property of the eventually dominating constraint term groups
Dn,c, #»x and Dp,c, #»x . Fig. 1 depicts this lemma (and also the following lemmas) graphically.
Here, the horizontal axis represents the length |f | of the path and the vertical axis represents
the value of the function U(f) · |f | = |f |A−p · |f |, which expresses the deviation of the number

É. Meyer and J. Giesl 76:11

of A-symbols in the execution f from the expected number of A-symbols. We depicted
U(f) · |f | by a gray line. The lemma essentially states that whenever U(f) · |f | reaches one
of the two “safe” regions marked in green, then the coefficient v(f) of the dominant addend
determines the sign of (Val #»x (f))c, provided that its absolute value |v(f)| is large enough.
The upper safe region is the one for d = p, i.e., here the path f is long enough (i.e., |f | ≥ l),
U(f) ∈ [0, ε] (i.e., 0 ≤ U(f) · |f | ≤ ε · |f |), and U(f) · |f | ≥ r. Similarly, the lower safe
region corresponds to the case d = n. This lemma also indicates why an extension of our
approach to programs with three instead of two update matrices would be problematic. Then
instead of U(f) we would need a vector to express how much an execution deviates from
the probabilities in the program. This would break our concepts of eventually dominating
constraint term groups and safe regions, since instead of d ∈ {n, p}, we would have to consider
the “direction” of this deviation.

▶ Lemma 23 (Domination of Eventually Dominating Constraint Term Groups). Let c ∈ [m],
d ∈ {n, p}, and #»x ∈ An. We define v : Path→ A (see Remark 18) as

v(f) =
∑

i∈Dd,c, #»x
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x)

Then for every ρ ∈ A>0, there exist constants ε ∈ A>0, r ∈ N, and l ∈ N>0 (for a bound on
the length of the path), such that for all f ∈ Path with |f | ≥ l, |v(f)| ≥ ρ, |U(f) · |f || ≥ r,
U(f) ∈ [−ε, 0] if d = n, and U(f) ∈ [0, ε] if d = p, we have sign((Val #»x (f))c) = sign(v(f)).

4 Positive Eigenvalues

Recall that we are interested in sign((Val #»x (f))c) as the execution progresses, i.e., for |f | → ∞.
By Lemma 23, to this end we have to consider the sign of v(f) =

∑
i∈Dd,c, #»x

ζ
|f |A

i,A ζ
|f |B

i,B γc,i(#»x),
where ζi,A = ai

|ai| and ζi,B = bi

|bi| . If both ai and bi are positive reals, then for |f | → ∞, the sign
of ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) does not change. Thus, we now investigate
∑

i∈Dd,c, #»x
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x)
restricted to all i ∈ Dd,c, #»x where ai or bi is not from A>0. In Lemma 24, we will show that
this sum is either always 0 (for all paths f) or it becomes negative for large enough |f |.

Assume that for some constraint c ∈ [m], d ∈ {n, p}, and input #»x , some eigenvalue of
each constraint term in the eventually dominating constraint term group is not positive
real, i.e., for all i ∈ Dd,c, #»x one has ζi,A ≠ 1 or ζi,B ≠ 1. Then, the sign of the real part
of this constraint term will change throughout the program’s execution (i.e., for |f | → ∞).
Lemma 24 shows that if the sum of these constraint terms is not always 0, then irrespective
of the updates that were already performed in previous iterations, this sum becomes smaller
than some negative constant C after a number of further iterations. This is expressed in
Lemma 24(b), where we have already performed j0 updates with the matrix A and k0
updates with the matrix B. Then by extending the run long enough, the real part of the
sum becomes smaller than a constant C that does not depend on j0 and k0. Our Lemma 24
is a generalization of a similar result by Braverman [7, Lemma 4] to products of orbits of
complex units, i.e., to products of ζj for |ζ| = 1.9

9 Note that Lemma 24 allows us to check whether ζ
|f |A

i,A ζ
|f |B

i,B γc,i(#»x) = 0 holds for all f ∈ Path, see
Footnote 7. By Remark 18, the sum

∑
i∈D(i,o)

ζ
|f |A

i,A ζ
|f |B

i,B γc,i(#»x) is a real number and thus, in the case

of (a),
∑

i∈D(i,o)
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) = 0 holds for all f ∈ Path. So given an actual input #»x , one just
has to check the condition of Lemma 24(a). If that condition does not hold, then by Lemma 24(b),∑

i∈D(i,o)
ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) = 0 does not hold for every f ∈ Path.

MFCS 2025

76:12 Deciding Termination of Simple Randomized Loops

▶ Lemma 24 (Coefficients of Complex Eigenvalues Become Negative). Let γ1, . . . , γl ∈ C be
complex numbers and let ζ1,1, . . . , ζ1,l, ζ2,1, . . . , ζ2,l ∈ {z ∈ C | |z| = 1} be complex units such
that ζ1,i ̸= 1 or ζ2,i ̸= 1 for all i ∈ {1, . . . , l}. For all j, k ∈ N, let zj,k =

∑l
i=1 ζj

1,iζ
k
2,iγi. If all

tuples (ζ1,i, ζ2,i) for i ∈ {1, . . . , l} are pairwise different, then there exist constants C ∈ A<0
and K ∈ N such that we either have (a) or (b):
(a) For all i ∈ [l] with γi ̸= 0 there is some i′ ∈ [l] with ζ1,i = ζ1,i′ , ζ2,i = ζ2,i′ , and γi = −γi′ ,

which implies Re(zj,k) = zj,k+zj,k

2 = 0 for all j, k ∈ N.
(b) For all j0, k0 ∈ N there exist j, k ∈ {0, . . . , K} such that Re(zj0+j,k0+k) ≤ C and there

are j, j′, k, k′ ∈ N such that zj,k ̸= zj′,k′ .

▶ Example 25. To illustrate Lemma 24, we continue Ex. 22 and consider the constraint
term group D(10

√
2,1/2) = {1, 2}. Let #»x ∈ A3. According to Ex. 15, the coefficient of this

constraint term group (for c = 1) and f ∈ Path is∑
i∈D(10

√
2,1/2)

ζ
|f |A

i,A ζ
|f |B

i,B γ1,i(#»x) = (e−i arctan(4/3))|f |A(ei(π−arctan(4/3)))|f |B
γ1,1(#»x)

+ (ei arctan 4/3)|f |A(ei(arctan(4/3)−π))|f |B
γ1,2(#»x)

As already explored in Ex. 19, this coefficient is 0 for all f ∈ Path whenever γ1,1(#»x) =
0 ⇐⇒ γ1,1(#»x) = −γ1,2(#»x) which corresponds to Lemma 24(a). On the other hand, (b) states
that whenever this is not the case, i.e., γ1,1(#»x) ̸= 0, then there are constants C ∈ A<0, K ∈ N
such that for every f ∈ Path there are f ′, f ′′ ∈ Path with |f ′|A, |f ′|B ≤ K where

0 > C ≥
∑

i∈D(10
√

2,1/2)
ζ

|ff ′|A

i,A ζ
|ff ′|B

i,B γ1,i(#»x) ̸=
∑

i∈D(10
√

2,1/2)
ζ

|ff ′′|A

i,A ζ
|ff ′′|B

i,B γ1,i(#»x),

which ends our example to illustrate Lemma 24.

Let R = {i ∈ [n] | ζi,A = ζi,B = 1} be the set of indices i such that both eigenvalues ai

and bi are positive reals and let C = [n]\R = {i ∈ [n] | ζi,A ̸= 1 or ζi,B ̸= 1} be the set where
at least one of the eigenvalues is not a positive real. To simplify the notation we also denote
Dd,c, #»x ∩R and Dd,c, #»x ∩C by Rd,c, #»x and Cd,c, #»x , respectively, for (d, c) ∈ {n, p}×[m]. So for all
i ∈ Rd,c, #»x , we have ζ

|f |A

i,A ζ
|f |B

i,B γc,i(#»x) = γc,i(#»x), i.e., the sign of the corresponding addend does
not change for |f | → ∞. For the other eigenvalues, by Lemma 24,

∑
i∈Cd,c, #»x

ζ
|f |A

i,A ζ
|f |B

i,B γc,i(#»x)
is either always 0 (for all paths f) or it becomes negative for suitable |f |A and |f |B .

When executing the loop P on input #»x , one expects that eventually (for |f | → ∞) the
constraint term group Dd,c, #»x for either d = n or d = p dominates the sign of constraint
c ∈ [m] (Lemma 23). Whenever

∑
i∈Rd,c, #»x

γc,i(#»x) ≤ 0 and U(f) · |f | has reached one of
the two “safe” regions marked in green in Fig. 1, by Lemma 24 one can extend the current
path f by a path gf such that the coefficient v(f gf) =

∑
i∈Dd,c, #»x

ζ
|f gf |A

i,A ζ
|f gf |B

i,B γc,i(#»x) of
the dominating constraint term group is negative. Thus, the execution f can be extended by
a path gf such that it leads to termination. This observation is captured in Lemma 26.

▶ Lemma 26 (Finite Execution leading to Termination). Let c ∈ [m], #»x ∈ An, and d ∈ {n, p},
such that

∑
i∈Rd,c, #»x

γc,i(#»x) ≤ 0. Then there are constants ε ∈ A>0, r, u ∈ N, and l ∈ N>0,
such that for all f ∈ Path with |f | ≥ l, |U(f) · |f || ≥ r, U(f) ∈ [−ε, 0] if d = n, and U(f) ∈
[0, ε] if d = p, there is a finite execution gf ∈ Path of length |gf | ≤ u with (Val #»x (f gf))c ≤ 0.

Finally, Lemma 28 builds upon Lemma 26 and gives a sufficient criterion for termination of
an input #»x ∈ An. The negation of this criterion is a necessary criterion for every input #»x ∈ An

that is eventually non-terminating. This necessary criterion states that if #»x is eventually
non-terminating, then for all constraints c, the sum

∑
i∈Rd,c, #»x

γc,i(#»x) of the addends for the
“dual positive eigenvalues” (where both ai and bi are positive reals) must be positive.

É. Meyer and J. Giesl 76:13

So whenever
∑

i∈Rd,c, #»x
γc,i(#»x) ≤ 0, Lemma 28 states that the expected number of steps

until U(f) · |f | reaches a “safe” (green) area in Fig. 1 and executes gf afterwards is finite. In
other words, the expected number of steps E(L #»x) until termination is finite.

▶ Example 27. To motivate Lemma 28 further, we continue Ex. 22. Let #»x ∈ A3. We have
R = {3}, as only a3 and b3 are positive real eigenvalues.

First, suppose Dn,1, #»x ≠ D(10
√

2,2) = {3} and Dp,1, #»x ̸= D(10
√

2,2) = {3}. Then, for all d ∈
{n, p} we have Rd,1, #»x = ∅ and hence

∑
i∈Rd,1, #»x

γ1,i(#»x) = 0. Thus, #»x ̸∈ ENT by Lemma 28.
On the other hand, if for some d ∈ {n, p} we have Dd,1, #»x = D(10

√
2,2) = {3}, i.e.,

Rd,1, #»x = {3}, then Lemma 28 states that γ1,3(#»x) ≤ 0 (i.e., 11
10 x1 + 11

10 x2 ≤ 0) implies
#»x ̸∈ ENT. However, if γ1,3(#»x) > 0, then Lemma 28 does not make any statement about
whether #»x ∈ ENT or #»x ̸∈ ENT.10

▶ Lemma 28 (Dual Positive Eigenvalues for Eventually Dominating Constraints). Let #»x ∈ An. If
for every d ∈ {n, p} there is a c ∈ [m] with

∑
i∈Rd,c, #»x

γi(#»x) ≤ 0, then #»x /∈ ENT. Thus, if #»x ∈
ENT, then there is some d ∈ {n, p} such that for all c ∈ [m] we have

∑
i∈Rd,c, #»x

γc,i(#»x) > 0.

5 Towards Non-Termination Witnesses

Lemma 28 provides a necessary condition that must hold for all #»x ∈ ENT. It requires that the
sum of the addends γc,i(#»x) for all positive real eigenvalues ai, bi must be > 0. This condition
is however not sufficient for #»x ∈ ENT. To turn this into a sufficient criterion, we now increase
the lower bound 0. More precisely, we replace 0 by the sum of the addends |γc,i(#»x)| for all those
eigenvalues where ai or bi are not a positive real number. In this way, we obtain a sufficient
(but no longer necessary) criterion for ENT. To turn this into a sufficient and necessary
criterion, we then introduce a “boosting lemma” (Lemma 32), which states that if there is an
input in ENT, then there is also a (possibly different) input in ENT that satisfies our sufficient
criterion. To prove this boosting lemma, we need the necessary condition of Lemma 28.

For our sufficient (but not necessary) condition for ENT, we define the set of witnesses
for eventual non-termination as those inputs meeting this criterion.

▶ Definition 29 (Witnesses for Eventual Non-Termination). We define the set W = Wn ∪Wp

of witnesses for eventual non-termination, where for d ∈ {n, p}, we have

Wd =
⋂

c∈[m]

{
#»x ∈ An |

∑
i∈Rd,c, #»x

γc,i(#»x) >
∑

i∈Cd,c, #»x
|γc,i(#»x)|

}
.

Note that the sum on the left-hand side in the definition of Wd is real-valued due to Lemma 7.
So Wd are all inputs #»x where for all constraints c, the sum of the dominating addends

γc,i(#»x) for positive real eigenvalues ai, bi is greater than the sum of the |γc,i(#»x)| for the other
eigenvalues ai, bi. Lemma 31 shows that the witness condition of Def. 29 is indeed a sufficient
criterion for ENT. Before presenting this lemma, we will apply it to our running example.

▶ Example 30. We continue Ex. 27. Let #»x ∈ A3 with γ1,3(#»x) > 0 such that for some
d ∈ {n, p} we have Dd,1, #»x = D(10

√
2,2). Then we have Dd,1, #»x = Rd,1, #»x ⊎ Cd,1, #»x = {3} ⊎ ∅

and thus
∑

i∈Rd,1, #»x
γ1,i(#»x) = γ1,3(#»x) > 0 =

∑
i∈Cd,1, #»x

|γ1,i(#»x)|. Hence, #»x ∈Wd ⊆W and
thus by the following Lemma 31, we obtain #»x ∈ ENT, answering the question from Ex. 27.

Hence, #»x ∈ ENT iff γ1,3(#»x) > 0 and there is d ∈ {n, p} with Dd,1, #»x = D(10
√

2,2). (The
“only if” direction is due to Lemma 28, see Ex. 27.)

10 Sect. 5 will show that in this case one indeed has #»x ∈ ENT, see Ex. 30.

MFCS 2025

76:14 Deciding Termination of Simple Randomized Loops

▶ Lemma 31 (Witness Criterion is Sufficient for Eventual Non-Termination). Let #»x ∈ An be
a witness for eventual non-termination, i.e., #»x ∈ W . Then we have #»x ∈ ENT, i.e., #»x is
indeed an eventually non-terminating input.

Def. 29 introduced a set W ⊆ An that, as shown by Lemma 31, under-approximates
the set of eventually non-terminating inputs ENT ⊇ W . While in general we may have
ENT ⊋ W , for the program from Ex. 30 we have ENT = W as for every d ∈ {n, p} one either
has Dd,1, #»x = Rd,1, #»x or Dd,1, #»x = Cd,1, #»x . So here, #»x ∈ ENT implies

∑
i∈Rd,1, #»x

γ1,i(#»x) > 0⇒
Rd,1, #»x ≠ ∅⇒ Cd,1, #»x = ∅ for some d ∈ {n, p} by Lemma 28 and hence

∑
i∈Rd,1, #»x

γ1,i(#»x) >∑
i∈Cd,1, #»x

|γ1,i(#»x)|, i.e., #»x ∈W .
As the set W is rather simple to characterize in contrast to ENT, our goal is to only check

for the existence of some #»x ∈W . This input then witnesses the eventual non-termination
of the loop P. The following Lemma 32 establishes that whenever P is eventually non-
terminating, then such a witness #»x ∈W does indeed exist. This then leads to our overall
decision procedure, because we have that P is non-terminating ⇐⇒ P is eventually non-
terminating ⇐⇒ W ̸= ∅, see Cor. 33. In Sect. 6, we will show that emptiness of W is
decidable (not only over the algebraic reals, but also over different sub-semirings S of A such
as the naturals, integers, or rationals) and if W ̸= ∅, then an element of W is computable.

The intuition behind Lemma 32 is as follows: Given an input #»x ∈ NT ∩ Sn, we want to
construct a non-terminating input in W ∩ Sn. Recall that for any constraint c ∈ [m] and
d ∈ {n, p}, the set Rd,c, #»x contains those indices i ∈ {1, . . . , n} from the dominant constraint
term group where the corresponding eigenvalues ai and bi of both update matrices A and
B are positive reals. On the other hand, Cd,c, #»x contains the remaining indices from the
dominant constraint term group. Moreover, the γc,i(#»x) help to determine the sign of the
corresponding dominant pair’s coefficient. If x /∈W , then∑

i∈Cd,c, #»x

|γc,i(#»x)| ≥
∑

i∈Rd,c, #»x

γc,i(#»x) (8)

for some c ∈ [m]. One can now modify #»x to make (8)’s left-hand side smaller. For every
i ∈ Cd,c, #»x , if ai is not positive real, then we multiply #»x by A, and otherwise by B. Since
we have γc,i(A #»x) = ai · γc,i(#»x) by Cor. 6, this “shifts” the phase of at least γc,i(#»x) on the
left-hand side, but not for the addends on the right-hand side of (8). By performing such
multiplications repeatedly and taking a linear combination of the obtained inputs, (8)’s
left-hand side becomes arbitrarily small since addends “cancel out”, whereas this is not the
case for the right-hand side. So one obtains a non-terminating input where (8) does not hold
for any c ∈ [m]. Thus, #»x ∈W .

▶ Lemma 32 (Boosting). Let P be a non-terminating loop over S, i.e., A, B ∈ Sn×n and
NT ∩ Sn ̸= ∅. Then there is a corresponding witness in W ∩ Sn.

The following corollary summarizes our results so far, i.e., it shows that non-termination
is equivalent to the existence of an element in W .

▶ Corollary 33 (Characterizing Termination). A loop is terminating over a semiring S iff
W ∩ Sn = ∅.

6 Deciding PAST

Finally, we present our novel technique for deciding whether a loop is (positively almost surely)
terminating, i.e., whether its expected runtime is finite for every input. As discussed in Sect. 5,
to this end we only have to show decidability of W ̸= ∅ for the set of witnesses W for eventual

É. Meyer and J. Giesl 76:15

non-termination from Def. 29. We now explain how to translate this emptiness problem into
an SMT problem. More precisely, we show that the witness set W is semialgebraic, i.e., it
corresponds to a formula over polynomial arithmetic (which is linear in the variables #»x). For
this we have to take into account that for different values of #»x , different addends may be
eventually dominating. Then, decidability over the algebraic reals is clear.

As before, R are those indices from [n] where both eigenvalues ai and bi are positive
reals, and C are the remaining indices.

▶ Lemma 34 (Semialgebraic Sets of Witnesses for Algebraic Loops). Let A, B ∈ Sn×n,
C ∈ Am×n. We define the sets C=0

c,(i,o), C
>0
c,(i,o) ⊆ An as

C=0
c,(i,o) =

{
#»x ∈ An |

∑
i∈D(i,o)∩R γc,i(#»x) = 0

}
∩
⋂

i∈D(i,o)∩C Hi,(i,o)

Hi,(i,o) =


#»x ∈ An |

∑
j∈D(i,o)

ζj,A=ζi,A
ζj,B=ζi,B

γc,j(#»x) +
∑

j∈D(i,o)

ζj,A=ζi,A

ζj,B=ζi,B

γc,j(#»x) = 0


C>0

c,(i,o) =
{

#»x ∈ An |
∑

i∈D(i,o)∩R γc,i(#»x) >
∑

i∈D(i,o)∩C |γc,i(#»x)|
}

for all (c, (i, o)) ∈ [m]× I. Then, for all d ∈ {n, p} and c = ((i1, o1), . . . , (im, om)) ∈ Im we
define Wd,c ⊆Wd as

Wd,c =
{

#»x ∈Wd

∣∣∣ ∧c∈[m] Dd,c, #»x = D(ic,oc),c, #»x

}
.

Then

Wd,c =
⋂

c∈[m]

C>0
c,(ic,oc) ∩

⋂
(i′,o′)∈I

(i′,o′)>lex,d(ic,oc)

C=0
c,(i′,o′)

 . (9)

Furthermore, we have W = Wn ∪Wp =
⊎

c∈Im Wn,c ∪
⊎

c∈Im Wp,c. The sets Wd,c and
the set W are moreover semialgebraic.

▶ Example 35. We continue Ex. 30 and consider #»x =
(
1 1 0

)T ∈ N3. By Ex. 30 we have
#»x ∈ C>0

1,(10
√

2,2). Moreover, there is no (i′, o′) ∈ I = {(10
√

2, 2), (10
√

2, 1/2)} with (i′, o′) >lex,p

(10
√

2, 2). For c = (10
√

2, 2) this implies #»x ∈Wp,c ⊆Wp ⊆W ⊆ ENT ̸= ∅⇒ NT ̸= ∅.
Thus, the loop initially introduced in Ex. 4 is non-terminating for all S ⊆ {Z,Q,A}.11

Note that while for (i, o) ∈ I the number i is not necessarily algebraic, the representation
of Wd ∩ An as a finite union/intersection of the semialgebraic sets C=0

(i,o),c, C>0
(i,o),c is still

computable by Lemma 21 as one simply has to determine the corresponding ordering >lex,d

on I. This is the reason why we restricted p to the set of algebraic reals.
To show that emptiness of W is also decidable over various sub-semirings S of the

algebraic reals, we prove the convexity of the sets Wd,c. Note that the set W as well as the
sets Wn, Wp themselves are in general not convex.

11 We did not consider S ∈ {N,Q≥0,A≥0} as for such a choice of S we do not have A, B ∈ Sn×n.

MFCS 2025

76:16 Deciding Termination of Simple Randomized Loops

▶ Lemma 36 (Wd as Finite Union of Convex Sets). For d ∈ {n, p} and c ∈ Im, the set Wd,c

is convex, i.e., t #»x + (1− t) #»y ∈Wd,c for all #»x , #»y ∈Wd,c and t ∈ (0, 1).

Note that Lemmas 34 and 36 imply that for d ∈ {n, p} the set W ∩ An is semialgebraic
and a finite union of convex sets.

▶ Theorem 37 (Deciding PAST). Let S ∈ {N,Z,Q≥0,Q,A≥0,A}. Then, the question whether
a loop is terminating on Sn is decidable, and if the loop is non-terminating, then a witness
#»x ∈W ∩ Sn for eventual non-termination can be computed.

▶ Remark 38. The theory of the reals and the algebraic reals are elementary equivalent
as both are real closed fields. Thus, Thm. 37 directly entails that the question whether
there exists a non-terminating non-negative real input #»x ∈ Rn

≥0 or real input #»x ∈ Rn for
an algebraic loop P is decidable as well, if one extends the set NT and the corresponding
definitions to real inputs #»x ∈ Rn. Note that in this case NT ̸= ∅ iff NT ∩ An ̸= ∅.

While the procedure outlined in the proof of Thm. 37 only allows for the computation of
a witness #»x ∈ ENT ∩ Sn for eventual non-termination, one can lift this to the computation
of a witness #»y ∈ NT ∩ Sn according to the constructive proofs of Lemmas 23 and 31.

▶ Corollary 39 (Computing Witnesses for Non-Termination). Let S ∈ {N,Z,Q≥0,Q,A≥0,A}.
If a loop is non-terminating, then a witness for non-termination from NT ∩ Sn can be
computed.

7 Implementation and Conclusion

Prototype Implementation. To demonstrate the practical applicability of our decision
procedure, we implemented it in our prototype tool SiRop (for “Simple Randomized Loops”).
The tool and a corresponding collection of exemplary programs can be obtained from

https://github.com/aprove-developers/SiRop

The tool is implemented in Python and uses the SageMath open-source mathematics software
system [33] in order to perform necessary computations such as simultaneous diagonalization
and determining the mappings γc,i. SiRop tries to compute a witness #»x ∈W for eventual
non-termination by creating a corresponding SMT problem which is then solved using the
SMT-RAT [11] solver. If the SMT problem is unsatisfiable, then the program is terminating.
In contrast, if such a witness #»x is found, then the program is non-terminating and the tool
computes a non-terminating input #»y ∈ NT from #»x . Currently, SiRop handles loops over the
algebraic reals only, i.e., S = A, as for all other considered sub-semirings of A, the decision
procedure relies on the technique presented in [20] which (to the best of our knowledge) has
not yet been implemented.

Conclusion. We have shown the decidability of universal positive almost sure termination
(UPAST) for the class of simple randomized loop ranging over numerous semirings S, thereby
transferring a line of research started in 2004 by Tiwari [35] on universal termination of
linear loops to the realm of randomized programs. To that end, we devised a corresponding
decision procedure and presented a prototype implementation for the case S = A, showing
the practical applicability of the presented approach. In particular, our tool managed to find
a non-terminating algebraic input for one12 of the only two problems from the category C

12 https://github.com/TermCOMP/TPDB/blob/11.3/C_Integer/Stroeder_15/
ChenFlurMukhopadhyay-SAS2012-Ex2.06_false-termination.c

https://github.com/aprove-developers/SiRop
https://github.com/TermCOMP/TPDB/blob/11.3/C_Integer/Stroeder_15/ChenFlurMukhopadhyay-SAS2012-Ex2.06_false-termination.c
https://github.com/TermCOMP/TPDB/blob/11.3/C_Integer/Stroeder_15/ChenFlurMukhopadhyay-SAS2012-Ex2.06_false-termination.c

É. Meyer and J. Giesl 76:17

Integer which were not solved by any tool at the 2023 Termination Competition [14],13 the
other one being the Collatz problem. While our tool only considers S = A (whereas the
problem is formulated over the integers), the constraints generated by SiRop are unsatisfiable
over Z, which implies universal termination of the program over the integers.

Future Work. While our procedure can decide positive almost sure termination for all
inputs, in the future we want to improve it such that it can also compute bounds on expected
runtimes. Moreover, decision procedures for termination or complexity of subclasses of
non-randomized programs (e.g., [12, 15, 16, 32]) have been integrated in (incomplete) tools
that analyze general programs [22, 23], and we would like to investigate such an integration
for randomized programs as well. Finally, we plan to adapt our approach to a decision
procedure for universal almost sure termination (UAST), i.e., whether a program terminates
with probability 1 on all inputs. Clearly, UPAST implies UAST but the converse does not
hold in general.

References
1 Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. Lexicographic ranking su-

permartingales: An efficient approach to termination of probabilistic programs. Proc. ACM
Program. Lang., 2(POPL):34:1–34:32, 2018. doi:10.1145/3158122.

2 Robert B. Ash and Catherine A. Doléans-Dade. Probability and Measure Theory. Academic
Press, 2nd ed. edition, 2000.

3 Martin Avanzini, Georg Moser, and Michael Schaper. A modular cost analysis for probabilistic
programs. Proc. ACM Program. Lang., 4(OOPSLA), 2020. doi:10.1145/3428240.

4 Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Automatic generation of moment-based
invariants for prob-solvable loops. In Proc. ATVA ’19, LNCS 11781, pages 255–276, 2019.
doi:10.1007/978-3-030-31784-3_15.

5 Kevin Batz, Mingshuai Chen, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter
Katoen, and Christoph Matheja. Probabilistic program verification via inductive synthesis
of inductive invariants. In Proc. TACAS ’23, LNCS 13994, pages 410–429, 2023. doi:
10.1007/978-3-031-30820-8_25.

6 Olivier Bournez and Florent Garnier. Proving positive almost-sure termination. In Proc.
RTA ’05, LNCS 3467, pages 323–337, 2005. doi:10.1007/978-3-540-32033-3_24.

7 Mark Braverman. Termination of integer linear programs. In Proc. CAV ’06, LNCS 4144,
pages 372–385, 2006. doi:10.1007/11817963_34.

8 Tomás Brázdil, Krishnendu Chatterjee, Antonín Kucera, Petr Novotný, and Dominik Velan.
Deciding fast termination for probabilistic VASS with nondeterminism. In Proc. ATVA ’19,
LNCS 11781, pages 462–478, 2019. doi:10.1007/978-3-030-31784-3_27.

9 Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic program analysis
with martingales. In Proc. CAV ’13, LNCS 8044, pages 511–526, 2013. doi:10.1007/
978-3-642-39799-8_34.

10 Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Termination analysis
of probabilistic programs through positivstellensatz’s. In Proc. CAV ’16, LNCS 9779, pages
3–22, 2016. doi:10.1007/978-3-319-41528-4_1.

11 Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika Ábrahám.
SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In Proc.
SAT ’15, LNCS 9340, pages 360–368, 2015. doi:10.1007/978-3-319-24318-4_26.

12 Florian Frohn and Jürgen Giesl. Termination of triangular integer loops is decidable. In Proc.
CAV ’19, LNCS 11562, pages 426–444, 2019. doi:10.1007/978-3-030-25543-5_24.

13 This category was not part of the 2024 competition.

MFCS 2025

https://doi.org/10.1145/3158122
https://doi.org/10.1145/3428240
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/978-3-030-31784-3_27
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-030-25543-5_24

76:18 Deciding Termination of Simple Randomized Loops

13 Jürgen Giesl, Peter Giesl, and Marcel Hark. Computing expected runtimes for constant
probability programs. In Proc. CADE ’19, LNCS 11716, pages 269–286, 2019. doi:10.1007/
978-3-030-29436-6_16.

14 Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada.
The termination and complexity competition. In Proc. TACAS ’19, LNCS 11429, pages 156–
166, 2019. Website of the Annual Termination Competition: https://termination-portal.
org/wiki/Termination_Competition. doi:10.1007/978-3-030-17502-3_10.

15 Marcel Hark, Florian Frohn, and Jürgen Giesl. Polynomial loops: Beyond termination. In
Proc. LPAR ’20, EPiC 73, pages 279–297, 2020. doi:10.29007/nxv1.

16 Marcel Hark, Florian Frohn, and Jürgen Giesl. Termination of triangular polynomial loops.
Formal Methods in Syst. Des., 65(1), 2025. doi:10.1007/s10703-023-00440-z.

17 Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2
edition, 2012. doi:10.1017/CBO9781139020411.

18 Mehran Hosseini, Joël Ouaknine, and James Worrell. Termination of linear loops over the
integers. In Proc. ICALP ’19, LIPIcs 132, 2019. doi:10.4230/LIPIcs.ICALP.2019.118.

19 Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. On the hardness
of analyzing probabilistic programs. Acta Informatica, 56(3):255–285, 2019. doi:10.1007/
S00236-018-0321-1.

20 Leonid Khachiyan and Lorant Porkolab. Computing integral points in convex semi-algebraic
sets. In Proc. FOCS ’97, pages 162–171, 1997. doi:10.1109/SFCS.1997.646105.

21 Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efstathia
Bura. Exact and approximate moment derivation for probabilistic loops with non-polynomial
assignments. ACM Trans. Model. Comput. Simul., 34(3):18:1–18:25, 2024. doi:10.1145/
3641545.

22 Nils Lommen and Jürgen Giesl. Targeting completeness: Using closed forms for size bounds
of integer programs. In Proc. FroCoS ’23, LNCS 14279, pages 3–22, 2023. doi:10.1007/
978-3-031-43369-6_1.

23 Nils Lommen, Fabian Meyer, and Jürgen Giesl. Automatic complexity analysis of integer
programs via triangular weakly non-linear loops. In Proc. IJCAR ’22, LNCS 13385, pages
734–754, 2022. doi:10.1007/978-3-031-10769-6_43.

24 Éléanore Meyer, Jürgen Giesl, and Sophia Greiwe. SiRop. Software, DFG-Research Train-
ing Group 2236 UnRAVeL, swhId: swh:1:dir:3ca664cebef79bfeb95ec944ddc8441d3b528bf6
(visited on 2025-08-05). URL: https://github.com/aprove-developers/SiRop, doi:10.
4230/artifacts.24333.

25 Fabian Meyer, Marcel Hark, and Jürgen Giesl. Inferring expected runtimes of probabilistic
integer programs using expected sizes. In Proc. TACAS ’21, LNCS 12651, pages 250–269,
2021. doi:10.1007/978-3-030-72016-2_14.

26 Éléanore Meyer and Jürgen Giesl. Deciding termination of simple randomized loops, 2025.
doi:10.48550/arXiv.2506.18541.

27 Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. The probabilistic
termination tool Amber. Formal Methods Syst. Des., 61(1):90–109, 2022. doi:10.1007/
S10703-023-00424-Z.

28 Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. This is the
moment for probabilistic loops. Proc. ACM Program. Lang., 6(OOPSLA2):1497–1525, 2022.
doi:10.1145/3563341.

29 Saradha Natarajan and Ravindranathan Thangadurai. Pillars of Transcendental Number
Theory. Springer, 2020. doi:10.1007/978-981-15-4155-1.

30 Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. Bounded expectations: Resource
analysis for probabilistic programs. In Proc. PLDI ’18, pages 496–512, 2018. doi:10.1145/
3192366.3192394.

31 Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of integer linear loops.
In Proc. SODA ’15, pages 957–969, 2015. doi:10.1137/1.9781611973730.65.

https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-29436-6_16
https://termination-portal.org/wiki/Termination_Competition
https://termination-portal.org/wiki/Termination_Competition
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.29007/nxv1
https://doi.org/10.1007/s10703-023-00440-z
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.1007/S00236-018-0321-1
https://doi.org/10.1007/S00236-018-0321-1
https://doi.org/10.1109/SFCS.1997.646105
https://doi.org/10.1145/3641545
https://doi.org/10.1145/3641545
https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.1007/978-3-031-10769-6_43
https://archive.softwareheritage.org/swh:1:dir:3ca664cebef79bfeb95ec944ddc8441d3b528bf6;origin=https://github.com/aprove-developers/SiRop;visit=swh:1:snp:51bec07ab5b5061e7a0cf5e251adcc2ce0cc1986;anchor=swh:1:rev:d15dac241fed869ede4ad1c432f547a6c3c70b68
https://github.com/aprove-developers/SiRop
https://doi.org/10.4230/artifacts.24333
https://doi.org/10.4230/artifacts.24333
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.48550/arXiv.2506.18541
https://doi.org/10.1007/S10703-023-00424-Z
https://doi.org/10.1007/S10703-023-00424-Z
https://doi.org/10.1145/3563341
https://doi.org/10.1007/978-981-15-4155-1
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1137/1.9781611973730.65

É. Meyer and J. Giesl 76:19

32 Enric Rodríguez-Carbonell and Deepak Kapur. Automatic generation of polynomial loop
invariants: Algebraic foundations. In Proc. ISSAC ’04, pages 266–273, 2004. doi:10.1145/
1005285.1005324.

33 SageMath, the Sage Mathematics Software System (Version 10.3), 2024. https://www.
sagemath.org.

34 Nasser Saheb-Djahromi. Probabilistic LCF. In Proc. MFCS ’78, LNCS 64, pages 442–451,
1978. doi:10.1007/3-540-08921-7_92.

35 Ashish Tiwari. Termination of linear programs. In Proc. CAV ’04, LNCS 3114, pages 70–82,
2004. doi:10.1007/978-3-540-27813-9_6.

36 Di Wang, David M. Kahn, and Jan Hoffmann. Raising expectations: Automating expected
cost analysis with types. Proc. ACM Program. Lang., 4(ICFP), 2020. doi:10.1145/3408992.

MFCS 2025

https://doi.org/10.1145/1005285.1005324
https://doi.org/10.1145/1005285.1005324
https://www.sagemath.org
https://www.sagemath.org
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1145/3408992

	1 Introduction
	2 Programs & Termination
	3 On Constraint Terms
	4 Positive Eigenvalues
	5 Towards Non-Termination Witnesses
	6 Deciding PAST
	7 Implementation and Conclusion

