
Minimization of Deterministic Finite Automata
Modulo the Edit Distance
Jakub Michaliszyn #

University of Wrocław, Poland

Jan Otop #

University of Wrocław, Poland

Abstract
We propose a novel approach to minimization of deterministic finite automata (DFA), in which the
DFA is further minimized at the expense of relaxing equality of languages to merely a similarity. As
the notion of similarity of languages, we consider the edit distance between languages L, L′, i.e., the
minimal number of edits necessary to transform any word from L to some word from L′ and vice
versa.

In this paper we address two problems: minimization up to a predetermined edit distance
given in the input, and minimization up to a bounded edit distance, in which there has to be an
upper bound on the number of edits, but it is not specified. We show the first problem to be
PSpace-complete and that the second problem is in Σp

2, and both NP-hard and coNP-hard. We
show that if we limit how many strongly connected components can be visited by a single run (i.e.,
bounded SCC-depth), the problem becomes NP-complete. We also establish maximal subclasses of
DFA over which minimization up to a bounded edit distance can be performed in polynomial time.

Additionally, we provide a succinct overview of alternative metrics for assessing language
similarity.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases automata theory, automata minimization, edit distance

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.77

Funding This work was supported by the National Science Centre (NCN), Poland under grant
2020/39/B/ST6/00521.

1 Introduction

Finite automata are one of the most fundamental models of computation, playing a central
role in theoretical computer science and numerous practical applications, including pattern
recognition [27, 4], rule-based systems [9], planning [1], language recognition [24] or multi-
agent systems [6, 23]. Among finite automata, Deterministic Finite Automata (DFA) provide
one of the simplest formalisms for representing and reasoning about structured systems,
patterns, rules, and processes.

Minimization of DFA is crucial for two reasons: complexity and interpretability. First,
in applications involving DFA, it is often advantageous performance-wise to minimize DFA
before proceeding with the actual algorithm.

Second, DFA are used as a formalism to approximate more complex models such as neural
networks [26, 15]. Such applications operate in environments where inputs are inherently
noisy or incomplete. In such cases, it is often sufficient to approximate the behavior of a
system rather than achieving perfect fidelity. In this scenario the exact language equivalence
is neither feasible nor necessary, and furthermore DFA of smaller size are typically easier to
comprehend, which leads to better interpretability of the underlying model.

© Jakub Michaliszyn and Jan Otop;
licensed under Creative Commons License CC-BY 4.0

50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Paweł Gawrychowski, Filip Mazowiecki, and Michał Skrzypczak; Article No. 77; pp. 77:1–77:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jmi@cs.uni.wroc.pl
https://orcid.org/0000-0002-5053-0347
mailto:jotop@cs.uni.wroc.pl
https://orcid.org/0000-0002-8804-8011
https://doi.org/10.4230/LIPIcs.MFCS.2025.77
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

77:2 Minimization of Deterministic Finite Automata Modulo the Edit Distance

Furthermore, as DFA already approximate the underlying models, preserving the exact
language of a given DFA in the minimization process is not imperative anymore. Instead, to
boost state reduction, we can settle for a similarity notion between languages rather than
the rigid language equivalence.

Various notions of similarity between languages have been considered. For instance, two
languages are similar if their symmetric difference is finite. Minimization of DFA under this
similarity notion is called hyper-minimization of DFA [10, 18]. However, this is a rather
generic notion as it applies to any set of objects.

Another idea, which relies on the fact that languages are sets of words, is to take a
distance d(w, u) on words and lift it to languages in the canonical way: the distance between
a word w and a language L, denoted by d(w,L), is the minimal d(w, u) over all u ∈ L.
Then, the distance between L and L′ is the maximum of numbers d(w,L′), d(w′,L) over
all w ∈ L, w′ ∈ L′. This approach allows infinitely many words to be slightly changed,
and is more specialized than the finite symmetric difference. We follow the latter approach
employing the edit distance as the distance d.

The edit distance [17], also called the Levenshtein distance, between words w, w′ is the
minimal number of single letter insertions, deletions and substitutions necessary to transform
w into w′. It is one of the fundamental string metrics used in natural language processing [14],
DNA analysis [7] or analysis of neural networks [26]. Furthermore, it is closely related to
dynamic time warping, which is a basic measure of similarity between timed series [14].
As a similarity measure between languages, edit distance has been considered on regular
languages [3] and context-free languages [8].

1.1 Contributions

This paper aims to provide a fresh perspective to the field of DFA minimization, which
balances the conflicting objectives of state reduction and similarity of languages.

We introduce the problem of minimization of DFA modulo the edit distance, a novel
approach that balances compactness with approximation flexibility. Unlike classical minimiz-
ation, which focuses on preserving exact language equivalence, this approach allows for slight
deviations between the original and minimized automata, measured by the edit distance,
which enables significant state reduction while maintaining practical usability.

The problem is considered in two variants. In the fixed threshold variant (MIN-ED[k]),
the goal is to find a DFA B with the minimal number of states such that the edit distance
between the languages of the original DFA A and B is bounded by a given threshold k ∈ N.

In the bounded threshold variant (MIN-BED), the objective is to find a minimal DFA B
such that the edit distance between the languages of A and B is finite. This variant further
loosens the constraints, allowing for more aggressive state reduction while still capturing the
core structure of the original language.

These two perspectives provide a flexible framework for tailoring DFA minimization to
the needs of specific applications, particularly in noisy or approximate environments.

Our main technical results are for the bounded threshold variant MIN-BED. We show
that this problem is in general ΣP

2 and both NP-hard and coNP-hard, but we identify
subclasses of DFA, which enjoy better complexity. We consider automata with a bounded
depth of strongly connected components. We prove that for any c, restricting the problem
to automata whose accepting runs visit at most c different (maximal) strongly connected
components reduces the complexity to NP. For cases c ∈ {1, 2}, we provide polynomial-time
algorithms and show NP-hardness for c = 3.

J. Michaliszyn and J. Otop 77:3

For the fixed threshold variant MIN-ED[k], we prove that the problem is robustly PSpace-
complete, in the sense that it is unclear how to restrict the class of DFA to gain better
complexity results. In particular, we discuss that the hardness proof can be adapted to
automata in which accepting runs visit at most one (maximal) strongly connected component.

1.2 Related work
Minimization of finite automata has been extensively studied [22, Chapter 10]. The founda-
tional algorithms in this area were designed to reduce the state complexity of DFA while
preserving their exact language equivalence. Notable among these are the algorithms pro-
posed by Hopcroft [11], which works in O(n log n), the algorithm by Moore [20], which is
quadratic in the worst case but enjoys better average-case complexity, and the algorithm by
Brzozowski [5], which is exponential in the worst case, but often outperforms other algorithms
in practice [2].

Building on these foundational methods, researchers have explored extensions and general-
izations of DFA minimization. One significant direction is hyper-minimization, which allows
for a relaxation of exact language equivalence by permitting finite differences between the
languages of the original and minimized DFA. This approach has been studied extensively,
with algorithms achieving O(n log n) complexity [10, 18]. Hyper-minimization has also been
adapted to other automata models, such as deterministic tree automata [13] and deterministic
weighted tree automata [19].

Language inclusion modulo the edit distance has been studied between regular languages
represented by DFA and NFA [3], and regular and context-free languages represented by
DFA, NFA, and DPDA [8].

Despite extensive research on DFA minimization, the problem of minimization modulo
the edit distance has not been addressed in the literature. Our work fills this gap.

2 Preliminaries

A word w over a finite alphabet Σ of letters is a finite sequence of letters. The set of all finite
words over Σ is denoted by Σ∗.

A deterministic finite-state automaton (DFA) is a tuple ⟨Σ, Q, q0, F, δ⟩ consisting of the
alphabet Σ, a finite set of states Q, the initial state q0 ∈ Q, a subset F ⊆ Q of accepting
states, and a transition function δ : Q× Σ→ Q. The size of an automaton A, denoted by
|A|, is its number of states.

Given a word w1 . . . wn, the run of a DFA A on w is a sequence of states q0q1 . . . qn such
that q0 is the initial state and for each i we have δ(qi−1, wi) = qi. The run on w is accepting
if its last state belongs to F . The language of A, denoted by L(A), is the set of words whose
runs are accepting. DFA A and B are equivalent if and only if L(A) = L(B).

Let A be a DFA and q be its state. We denote by Aq the DFA obtained from A by
changing the initial state to q. The DFA A is minimal if and only if (a) all states of A are
reachable from the initial state, and (b) for all states q, q′ of A, if q ̸= q′, then L(Aq) ̸= L(Aq′).
Due to Myhill-Nerode theorem [12], every regular language is recognized by a minimal DFA
A, which is unique (up to state names), and every DFA language equivalent to A other than
A has more states than A. Furthermore, given a DFA A, we can compute a minimal DFA
equivalent to A in time O(|A| log |A|).

For convenience, throughout the paper, we assume that input DFAs are already minimal
– the minimization can be done in polynomial time if needed. This in particular means that
all the states are reachable.

MFCS 2025

77:4 Minimization of Deterministic Finite Automata Modulo the Edit Distance

A state s of DFA is a sink if it is not accepting and all the transitions from s lead to s.
In a minimal DFA there is at most one sink, which is the only state from which no accepting
state is reachable.

We extend δ to all words by defining δ(q, ϵ) = q (where ϵ is the empty string) and
δ(q, wx) := δ(δ(q, w), x) for each state q, word w and letter x. A subset of states C of a
DFA A is a (maximal) strongly connected component (SCC) if for any two states s1, s2 ∈ C,
there is a non-empty word w such that δ(s1, w) = s2, and there is no C ′ ⊃ C with this
property. We say that A has the SCC-depth c if c is the maximal number such that there is
an accepting run visiting c different (maximal) SCC of A. Importantly, we only consider
accepting runs and hence the sink state does not influence the SCC-depth; for example, both
automata presented in Figure 2 (page 8) have the SCC-depth 3.

For convenience, we use regular expressions defined in the usual manner, i.e., expressions
defined using the BNF e := ϵ | x | ee | e + e | e∗ | e+, where x is a letter and ϵ stands for
the empty word. The language L(e) of e is defined inductively: L(ϵ)={ϵ}, for each letter x,
L(x) = {x}; L(e1e2) = {vw | v ∈ L(e1), w ∈ L(e2)}; L(e1 +e2) = {v | v ∈ L(e1)∨v ∈ L(e2)};
L(e∗) = {v1 . . . vn | ∀i vi ∈ L(e)}, and L(e+) = L(ee∗).

2.1 Distance between languages and decision problems
The edit distance between words w, w′, denoted by ed(w, w′), is the minimal number of
operations: insertions of a letter, deletions of a letter, and substitutions of a letter, necessary
to transform w into w′. For example, ed(ab, acd) = 2 (one substitution and one insertion).

For a natural number k, we say that a language L is contained in a language L′ up to
the edit distance k, denoted as L ⊆k

ed L′, if and only if for each w ∈ L there is w′ ∈ L′ such
that ed(w, w′) ≤ k. We extend this notion to ⊆∞

ed by stating that L ⊆∞
ed L′ if and only if for

some k ∈ N we have L ⊆k
ed L′. The relation ⊆k

ed is transitive only for k =∞.
We say that DFA A,B are equivalent up to the edit distance k ∈ N ∪ {∞}, denoted as

A ≡k
ed B, if and only if L(A) ⊆k

ed L(B) and L(B) ⊆k
ed L(A). Notice that A ≡k

ed B is an
equivalence relation if and only if k =∞; in other cases, it is symmetric and reflexive, but
not necessarily transitive.

We study decision problems called MIN-ED[k] for k ∈ N and MIN-BED defined as follows:

MIN-ED[k]: minimization modulo a fixed edit distance k

Input: A DFA A and a number m.
Output: Is there a DFA B with at most m states such that A ≡k

ed B?

MIN-BED: minimization modulo a bounded edit distance
Input: A DFA A and a number m.
Output: Is there a DFA B with at most m states such that A ≡∞

ed B?

2.2 Containment modulo a bounded edit distance
We recall a condition for checking containment modulo a bounded edit distance presented
in [3, Theorem 4.1]. This condition is used in Sections 3 and 4.

Following [3], we consider minimal DFA, which recognize infinite languages. Note that
all DFA that recognize finite non-empty languages are equivalent modulo a bounded edit
distance, while the DFA that recognizes the empty language is only equivalent to itself.
Conversely, a DFA that recognizes an infinite language can be equivalent modulo a bounded
edit distance only to a DFA recognizing infinite language. Therefore, considering only DFA
that recognize infinite languages removes only trivial cases.

J. Michaliszyn and J. Otop 77:5

For a DFA A (minimal and recognizing an infinite language), let SCC(A) be the set of
all (maximal) strongly connected components of A containing an accepting state or from
which an accepting state is reachable.

We define dag(A) as a directed acyclic graph whose set of nodes is SCC(A), and there is
an edge from C1 to C2 if and only if C1 ̸= C2 and there is a transition from some state of C1
to some state in C2. Let dag∗(A) be the reflexive and transitive closure of dag(A).

For C ∈ SCC(A), we define L(A|C) as the language of words such that w ∈ L(A|C) if,
starting from some state in C, the automaton can read the whole word w without leaving
C. More precisely, it is the language of words w1 . . . wn such that there are q0 . . . qn ∈ C

satisfying, for all i, δ(qi−1, wi) = qi.
Now, consider two DFA A and B. We say that a path π = C1 . . . Cn in dag(A) is covered

by a path π′ = D1 . . . Dm in dag∗(B) if and only if n = m and for every 1 ≤ i ≤ n we
have L(A|Ci) ⊆ L(B|Di). Checking whether a path is covered by a path can be decided in
polynomial time [3, Lemma 4.4].

It has been shown in [3, Theorem 4.1] that L(A) ⊆∞
ed L(B) if and only if every path

in dag(A) is covered by some path in dag∗(B) (the result from [3, Theorem 4.1] holds
even for non-deterministic finite automata). Furthermore, due to [3, Theorem 4.1], we have
L(A) ⊆∞

ed L(B) if and only if L(A) ⊆k
ed L(B) for any k ≥ (|A|+ 1) · (|B|+ 1).

▶ Remark 1. The upper bound on the edit distance threshold in MIN-BED is (|A|+ 1) ·m,
i.e., an instance (A, m) of MIN-BED is positive if and only if it is a positive instance of
MIN-ED[(|A|+ 1) ·m].

Note that a DFA A may contain a rejecting sink state, which has no counterpart in
dag(A). Furthermore, some states of A may not belong to any SCC (for example, the initial
state of A if it is not reachable from any other state). In particular, if dag(A) has no root,
i.e., the node from which all other nodes are reachable, then the initial state of A does not
belong to any SCC. We will use this fact further on.

▶ Fact 2. Let A be a DFA such that (1) its language is non-empty, (2) for some word w, its
language does not contain any extension of w (L(A) ∩ L(wΣ∗) = ∅), and (3) dag(A) does
not have a root, i.e., a node from which all other nodes are reachable. Then, |A| is at least
the number of nodes of dag(A) plus 2.

2.3 Example
Consider a program that receives some data, computes something and sends the response,
after which it can start over or terminate. Traces of such a program can be represented over
the alphabet {r, c, s, t} as depicted in Figure 1 (left).

Observe that s is a sink state; the sink state is present in all automata, but we do not
draw it or discuss it for better clarity.

Assume that we want to learn the (target) automaton AT depicted in Figure 1 (left) from
noisy data, which contains as a positive example the word rcsrcsrcs instead of rcsrcsrcst. It
is possible that the learning procedure produces the automaton that is depicted in Figure 1
(right).

Observe that the automaton AL from Figure 1 (right) is minimal in the classical sense,
and also minimal w.r.t. hyper-minimization [10, 18] as there is no language that differ from
the language of AL on some finite set of words whose automaton has less states.

Observe that AT ≡1
ed AL. Clearly L(AT) ⊆1

ed L(AL) because L(AT) ⊆ L(AL). To see
L(AL) ⊆1

ed L(AT), observe that any word accepted by AL but not by AT is of the form
(rcs)4k+3 for some k, and it can be modified to be accepted by AT by appending t. In this
case, the automaton AL is the minimal automaton equivalent to AT up to edit distance 1.
Therefore, minimizing AT allows to overcome the problem introduced by the noised data.

MFCS 2025

77:6 Minimization of Deterministic Finite Automata Modulo the Edit Distance

q1

AT

q2 q3

qA s

r c

s

t

∗

c, s r, s, t c, r, t

∗

q1

AL

q2 q3 q4 q5 q6

q7q8q9q10q11q12

qA

r c s r c

s

rcsrc

s
t

t

t
t

∗

Figure 1 An example automaton AT (left) and the automaton AL (right) constructed from
noised data. The remaining transitions of the right automaton lead to the sink state, which is also
present in the automaton but not drawn here for better clarity.

Now consider an automaton AK which is a copy of AL, but with the state q2 accepting.
In this case, this automaton accepts the word rc, which cannot be transformed into any word
accepted by AT with edit distance 1. Therefore, AT ̸≡1

ed AK . It can be checked, however,
that AT ≡2

ed AK and AT ≡∞
ed AK .

3 Bounded edit distance

In this section, we study the minimization problem for DFA modulo a bounded edit distance.
We show that the MIN-BED problem is in ΣP

2 and it is both coNP-hard and NP-hard. We
also identify a class of DFA for which the problem is NP-complete.

3.1 Membership in ΣP
2 and coNP-hardness

We first show that the MIN-BED problem is in ΣP
2 . Recall that a language P is in ΣP

2 if
there is a language P ′ in coNP such that x ∈ P if and only if there exists y of polynomial
size in |x| such that (x, y) ∈ P ′.

Given two DFA A,B, checking whether A ≡∞
ed B amounts to checking two inclusions:

L(A) ⊆∞
ed L(B) and L(B) ⊆∞

ed L(A). Since the inclusions can be checked in coNP [3,
Theorem 5.2], checking equivalence can also be done in coNP.

To solve MIN-BED for an instance (A, m), assume that m < |A| (otherwise the answer
is yes with B = A). Then, non-deterministically pick a DFA B of the size at most m and
return whether A ≡∞

ed B. It follows that the problem is in ΣP
2 .

▶ Proposition 3. The MIN-BED problem is in ΣP
2 .

Recall the condition for checking containment modulo a bounded edit distance (Sec-
tion 2.2), which involves checking coverage of all paths in dag(A). As we strive for better
complexity results, we will restrict the class of DFA to those with polynomially many paths
in dag. Later on, we consider DFA A such that dag(A) has bounded depth.

It has been shown in [3] that deciding language containment up to a bounded edit
distance is coNP-complete. This does not directly imply that the MIN-BED problem or
even deciding the equivalence up to a bounded edit distance is coNP-hard. For instance the
language inclusion on languages represented by deterministic pushdown automata (DPDA)
is undecidable [12], while the equivalence problem for DPDA is decidable [25]. Still, we show
coNP-hardness of MIN-BED by adapting the reduction from [3].

J. Michaliszyn and J. Otop 77:7

▶ Theorem 4. The MIN-BED problem is coNP-hard.

3.2 MIN-ED[∞] over DFA of a bounded SCC-depth is NP-complete
We now restrict the class of DFA to those with polynomially many paths in dag and show
an improved complexity results.

▶ Lemma 5. Fix l ∈ N. Deciding A ≡∞
ed B over DFA A such that the number of paths of

dag(A) is at most |A|l, is in NP.

Notice that we do not require dag(B) to have polynomially many paths.

Proof. To check whether A ⊆∞
ed B, for each path of dag(A), non-deterministically pick a

path of dag∗(B) that covers it. Checking B ⊆∞
ed A is more complicated, as B may have

exponentially many paths. Let Π be the set of all the paths of dag(A). We employ the
following algorithm.

For each node C of dag(B), non-deterministically pick a non-empty subset covers(C) of
paths from Π such that for all π ∈ covers(C), the last node D of π satisfies L(B|C) ⊆ L(A|D).
For nodes C, C ′ such that C ′ is a successor of C in dag(B) and π ∈ covers(C), we say that
π′ is a continuation of π in C ′ if π′ ∈ covers(C ′) and π is a prefix of π′ or π = π′. The
algorithm accepts if for all nodes C, C ′ such that C ′ is a successor of C in dag(B), each
π ∈ covers(C) has a continuation in covers(C ′).

The algorithm works in polynomial time, as the size of Π is polynomial. If the algorithm
accepts, each path is covered. Indeed, consider a path C1 . . . Cn in dag(B). Consider π1
in covers(C1), which exists as the subsets are non-empty. Then, inductively, let πi+1 be a
continuation of πi in Ci. From πn in dag(A), we can extract a path in dag∗(A) that covers
the path C1 . . . Cn.

Now we prove that if every path is covered, then the algorithm accepts. To do so,
construct covers(·) starting with covers(C) = ∅ for each node. Then, for each path C1 . . . Cn

of dag(B), which is covered by a path D1 . . . Dn of dag∗(A), and for each i we construct a
path πi for covers(Ci) as follows. First, remove repeating nodes from D1, . . . , Di, obtaining
π′

i. Since π′
i is a path of dag∗(A), one can compute a path πi of dag(A) such that πi can be

obtained from π′
i by possibly inserting some nodes. We add πi to covers(Ci). Then covers(·)

is as required. ◀

▶ Lemma 6. For every c, the MIN-BED problem over DFA of SCC-depth at most c is in NP.

Proof. Given a DFA A and m ∈ N, the algorithm first non-deterministically picks a DFA B
with at most m states (if m > |A| then the algorithm accepts straight away). Notice that
dag(A) has at most |A|c paths as the length of a path is bounded by c. Then, the algorithm
returns whether A ≡∞

ed B using the algorithm from Lemma 5. ◀

We now show NP-hardness of MIN-BED over DFA of SCC-depth 3. For a (directed)
bipartite graph G, let RB(G) be the minimal number of complete bipartite graphs contained
in G (not necessarily disjoint), which together cover all edges of G. The following problem is
NP-complete [21, Theorem 8.1].

R-bicontent covering
Input: a bipartite graph G without isolated nodes and m∈N
Output: whether RB(G) ≤ m

We employ the R-bicontent covering problem to prove the following hardness result.

MFCS 2025

77:8 Minimization of Deterministic Finite Automata Modulo the Edit Distance

v1 v2

v3 v4 v5

v1 v2

v3 v4 v4 v5

s0start

vT
1 vT

2

vM
3 vM

4 vM
5

vB
3 vB

4 vB
5

v1 v2

v1 v2

e e e

v3 v4 v5

v3 v4 v4 v5

v3 v4 v5

s0start

vT
1 vT

2

s1 s2

vB
3 vB

4 vB
5

v1 v2

v1 v2

e e

v3 v4 v5

v3 v4 v4 v5

v3 v4 v4 v5

Figure 2 A bipartite graph G (bottom left), the corresponding automaton AG (top left) and a
minimal automaton equivalent modulo a bounded edit distance (top right) and the corresponding
cover of G (bottom right). For readability, we omit sinks and the transitions leading to the sinks.
Notice that the SCC-depth of both automata is 3, as the initial state is not in an SCC, and the sink
does not count.

▶ Lemma 7. The MIN-BED problem over DFA of SCC-depth at most 3 is NP-hard.

Proof. Let G = (Vin, Vout, E), where E ⊆ Vin × Vout, be a bipartite graph without isolated
nodes, and m ∈ N. Consider a DFA AG over the alphabet Vin ∪ Vout ∪ {e} accepting exactly
words of the form v+ue∗u+ such that (v, u) ∈ E.

The DFA AG has the following states: an initial state s0, a sink sr, a state vT for each
node v ∈ Vin, and two states vM, vB for each node v ∈ Vout.

For each (v, u) ∈ E, AG has the following transitions:
From s0 to vT over v.
From vT, a loop over v and a transition to uM over u.
From uM, a loop over e and a transition to uB over u.
A loop in uB over u.

All the remaining transitions lead to the sink. The states vB are accepting, while all other
states are rejecting. Figure 2 contains an example of this reduction with a corresponding
minimal automaton.

Assume that l = RB(G). We claim that the minimal size of a DFA equivalent modulo a
bounded edit distance to AG is |Vin|+ |Vout|+ l + 2.

Let S = {(C1
in, C1

out, E1), . . . , (Cl
in, Cl

out, El)} be a minimal R-bicontent covering of G.
Each element of S is a complete bipartite subgraph of G. We construct a DFA AS from AG

by removing all states vM and introducing states s1, . . . , sl. For each i, the state si has a
loop over e and for all u ∈ Ci

out, a transition over u to uB. Moreover, for each (v, u) ∈ E, we
pick one i such that (v, u) ∈ Ei and we add a transition from vT to si over u. The remaining
transitions lead to the sink.

J. Michaliszyn and J. Otop 77:9

For L(AG) ⊆∞
ed L(AS) observe that L(AG) ⊆ L(AS); each word vxueyuz ∈ L(AG) is

accepted by AS as there is a transition from vT to some si such that (v, u) ∈ Ei, and from
si there is a transition to uB.

For L(AS) ⊆∞
ed L(AG), observe that AS accepts words of the form w = vxu′eyuz such

that (v, u) ∈ E. For each such a word, there is w = vxueyuz accepted by AG such that
ed(w, w′) ≤ 1.

We now show that if for some l there is a DFA B ≡∞
ed AS of the size |Vin|+ |Vout|+ l + 2,

then RB(G) is at most l. Due to Fact 2, dag(B) has at most |Vin|+ |Vout|+ l nodes.
Consider dag(B). Since B is equivalent modulo a bounded edit distance to AG, every

path in dag(B) is covered in dag∗(AG) and vice versa. Therefore, dag(B) contains three
sets of nodes V1 = {D | L(B|D) = L(v∗) for some v ∈ Vin}, V2 = {D | L(B|D) = L(e∗)}, and
V3 = {D | L(B|D) = L(u∗) for some u ∈ Vout}. Observe that |V1| ≥ |Vin| and |V3| ≥ |Vout|,
as otherwise some paths of dag(AG) would not be covered. Hence |V2| ≤ l.

We claim that each node in V2 corresponds to a (possibly empty) complete bipartite
subgraph of G. For D ∈ V2, let Din ⊆ Vin be the labels of the predecessors of D from
V1, and Dout ⊆ Vout be the labels of the successors of D from V3. Observe that for
any v ∈ Din, u ∈ Dout we have (v, u) ∈ E, because every path in dag(B) is covered in
dag∗(AG), which in turn encodes edges of G, and hence the complete bipartite graph
(Din, Dout, Din × Dout) is a subgraph of G. Furthermore, since every path in dag(AG)
is covered by dag∗(B), every edge of G is contained in some complete subgraph. Thus,
X = {(Din, Dout, Din ×Dout) | D ∈ V2} is a set of complete bipartite graphs which together
cover all edges of G. Finally, RB(G) ≤ |X| ≤ |V2| ≤ l. ◀

By combining the containment in NP from Lemma 6 and the hardness from Lemma 7,
we have the following.

▶ Theorem 8. For any c ≥ 3, the MIN-BED problem restricted to DFA of SCC-depth at
most c is NP-complete.

4 Effective algorithms for bounded edit distance

In this section, we show that the MIN-BED problem restricted to DFA of SCC-depth at most
2 can be solved in polynomial time. In order to avoid technicalities, we allow the minimized
automaton to operate over an extended alphabet with additional fresh letters. We use up to
|A| fresh letters and the number of occurrences of each fresh letter is bounded among all
accepted words.

We first investigate automata, for which the minimization problem is trivial. There are
two reasons for that: either L(A) is finite or (conversely) the language is equivalent modulo
bounded edit distance to Σ∗. In the former case, the DFA has only sink and possibly some
transient states, i.e., the states that do not belong to any SCC and hence can be visited
at most once along any run. In the latter case, the DFA has a state from which no sink is
reachable. We argue that such automata are equivalent either to a single-state automaton
accepting/rejecting all the words or to a two-state automaton recognizing the language {ϵ}.
All finite non-empty languages are equivalent modulo bounded edit distance, but {ϵ} has the
DFA with the least number of states.

▶ Proposition 9. Consider a DFA A. (a) If L(A) is finite, then either L(A) = ∅ or
L(A) ≡∞

ed {ϵ}. (b) If A has a state from which no sink is reachable, then L(A) ≡∞
ed Σ∗.

To see (a), observe that the empty language is equivalent modulo bounded edit distance
only to the empty language, and all finite non-empty languages are equivalent.

MFCS 2025

77:10 Minimization of Deterministic Finite Automata Modulo the Edit Distance

To see (b), observe that if there is a state from which no sink is reachable, then there is a
state q in some bottom SCC C of A from which no sink is reachable. Observe that since A
is minimal, C has an accepting state qf – otherwise C would be reduced to a sink. Let w0
be a shortest word such that A reading w0 from q0 ends in q. For each word w ∈ Σ∗, we
now consider the word w0w. Let q′ be the state of A after reading w0w, and let wf be a
shortest word such that the state of A after reading wf from q′ is qf .

Clearly, A accepts w0wwf . Moreover, the sizes of w0 and wf can be bounded by the
number of states of A (using a pumping argument). This shows that Σ∗ ⊆2|A|

ed L(A).
Obviously L(A) ⊆0

ed Σ∗, and thus A is equivalent modulo a bounded edit distance to a single
state DFA, which accepts every word.

Due to Proposition 9, in the remainder of this section we assume that a given DFA A
recognizes an infinite language (which can be easily checked) and from every state of A the
rejecting sink state is reachable. We call such DFA non-trivial. Observe that for a non-trivial
DFA A, the DAG SCC(A) is non-empty.

4.1 Single SCC with a sink
We now focus on the case of DFA A such that A is non-trivial and SCC(A) is a singleton
{C}. This means that A may contain states that are not in any SCC and the sink {sr}.

▶ Theorem 10. For any non-trivial DFA A with dag(A) consisting of a single node, min-
scc(A) returns an automaton equivalent to A modulo a bounded edit distance such that
any DFA equivalent to A modulo a bounded edit distance has at least as many states as
min-scc(A).

Proof sketch. The automaton A can be minimized using the following steps: (1) remove all
that states except for C and sr, (2) make all states of C accepting, (3) pick any state of C

as initial, and (4) minimize the resulting automaton using standard DFA minimization.
The automaton A′ obtained this way is equivalent modulo a bounded edit distance to A,

and by construction A′ and min-scc(A) are language equivalent.
We argue that min-scc(A) is minimal. Let B = min-scc(A) and assume that C is a

minimal automaton such that C ≡∞
ed A. Recall that Aq stands for A with the initial state

changed to q. One can show that there is a state s such that L(B) = L(Cs). Since B is by
construction a minimal automaton recognizing L(Bq0), we have |B| ≤ |C|, and since C is
minimal, B = min-scc(A) is minimal as well. ◀

A heuristic for the general case

The described algorithm gives us a polynomial-time procedure to minimize SCCs in non-
trivial DFA with multiple SCCs. The idea is that one can minimize each SCC independently
and then connect the results according to the connections in dag(A), as described below.

Consider A whose dag(A) consists of nodes C1, . . . Cn. For each Ci, consider a DFA Ai

which is a restriction of A to the states Ci and the sink, where the initial state is any state of
Ci and each transition from state of Ci that in A does not lead to a state in Ci is diverted
to the sink. Moreover, let A0 be a two-state automaton where all the transitions from the
accepting initial state lead to the sink. We now consider the DFA AS obtained by taking
the disjoint union of automata A0,A1, . . . ,An and unifying the sinks. Consider fresh letters
c1, . . . , cn. Now for each Ci that has no predecessor in dag(A), we add a transition from all
the states of A0 (except the sink) to all the states of Ai (except the sink). Moreover, for
each edge (Ci, Cj) of dag(A), we add a transition from all the states of Ai (except the sink)
to all the states of Aj (except the sink). The remaining edges are to the sink.

J. Michaliszyn and J. Otop 77:11

The procedure described above constructs in polynomial time a DFA AS that is equivalent
modulo a bounded edit distance to the initial one.

▶ Corollary 11. Let A be a non-trivial DFA. Then, the DFA AS is equivalent modulo a
bounded edit distance to A and can be constructed in polynomial time.

This gives us a possible heuristic to reduce the size of a given automaton. The procedure
described above does not guarantee that the constructed automaton is minimal – for example,
it may be possible to eliminate some SCCs. This comes as no surprise as that the minimization
problem is both NP-hard and coNP-hard, and the above algorithm works in polynomial
time. Nevertheless, this procedure is optimal whenever the SCC structure of the input
automaton matches that of any minimal automaton; in particular, this holds if each SCC
recognizes a distinct language.

4.2 DFA of SCC-depth 2
For DFA of SCC-depth 3, the MIN-BED problem is NP-hard. We present a complementary
result that for DFA of SCC-depth at most 2, minimization modulo a bounded edit distance
can be computed in polynomial time.

Recall the example in Figure 2: the main idea there is to have many SCCs in the “middle
layer” of the automaton – SCCs that have predecessors and successors in the corresponding
DAG. Because of that, the states (being single-state maximal SCCs) s1 and s2, that have
the same language (L(e∗)), cannot be merged. However, for SCCs with no successors, it
holds that they can be merged if they have the same language – and the same holds for
SCCs with no predecessors. We build on this idea to solve the minimization modulo a
bounded edit distance for DFA of SCC-depth 2, where each SCC has either no successors or
no predecessors. One needs to be careful though; even if the input automaton has the SCC
depth 2, it might happen that the minimal equivalent one has SCC depth 3, as we will show
later on (Example 13).

For a path π, by π[i] we denote the ith element of π (starting from 1). We say that a
path π is weakly covered by π′ if there is a sequence i1 ≤ · · · ≤ ik such that π′[i1] . . . π′[ik]
covers π. For example, the path CCC is weakly covered by CC ′ because of the sequence
1, 1, 1.

Let A be a DFA of SCC-depth at most 2. A subset E of paths of dag(A) is:
noncollapsible if for each path C, D in dag(A) of length 2 we have L(A|C) ̸⊆ L(A|D)
and L(A|C) ̸⊇ L(A|D).
irredundant if there is no proper subset E′ of E such that every path in E is weakly
covered by a path in E′.
a minimal cover if it is noncollapsible, irredundant, and paths from E weakly cover all
paths in dag(A).

Let A,B be DFA. A path C1, . . . , Ck is tightly covered by a path D1, . . . , Dk if for every
i we have L(A|Ci) = L(B|Di).

We show that if A,B are equivalent modulo a bounded edit distance, then every path
in a minimal cover of paths in dag(A) is tightly covered by some path from dag∗(B). The
intuition is that each paths in the minimal cover defines a “maximal” possible language, that
has to be covered by some path of dag∗(B), which in turn has to be covered by some path
of dag∗(A). The language maximality then guarantees the equality of the languages.

MFCS 2025

77:12 Minimization of Deterministic Finite Automata Modulo the Edit Distance

Algorithm 1 Function min-depth-2(A) computing a minimal equivalent automaton in the 2
SCC-depth case. All transitions that are not explicitly defined lead to the sink.

1: Input: A DFA A = ⟨Σ, Q, q0, F, δ⟩.
2: P ← a minimal cover of paths in dag(A)
3: L1 ← {C | (C) ∈ P ∨ ∃C ′.(C, C ′) ∈ P}
4: L2 ← {C | ∃C ′.(C ′, C) ∈ P}
5: L′

i ← a minimal subset of Li s.t. for every C ∈ Li there is C ′ ∈ Li with L(A|C) =
L(A|C ′), for i ∈ {1, 2}

6: L̃i ← {min-scc(A|C) | C ∈ L′
i} for i ∈ {1, 2}

7: Ã ← the disjoin union of DFA L̃1 ∪ L̃2
8: for every C ∈ L′

1, D ∈ L′
2 such that the path (C, D) is tightly covered by some path

from P do
9: connect all states of min-scc(A|C) to all states

of min-scc(A|D)
10: add a sink to Ã, set all states but sink as accepting
11: for each state of L̃1 do
12: Ãq ← Ã with q as the initial state
13: add transitions from q to all the states of L̃1

that are in a different SCC than q
14: if A ≡∞

ed Ãq then Ã ← Ãq

15: if Ã still has no initial state then
16: q′

0 ← a fresh state (accepting)
17: add q′

0 to Ã
18: add transitions from q′

0 to all states of L̃1

19: return Ã

▶ Lemma 12. Let DFA A,B be equivalent modulo a bounded edit distance, SCC depth of A
be 2, and P be a minimal cover of paths in dag(A). Then, every path in P is tightly covered
by some path from dag∗(B).

Now, we construct a DFA equivalent modulo a bounded edit distance to A with the
minimal number of states. To do so, we first compute a minimal cover of paths in dag(A).
This is done iteratively in polynomial time, by starting from all the noncollapsible paths of
dag(A), and removing paths that can be covered by other paths. Then, we split the SCCs
of the minimal cover into two categories: starters, which are the first SCCs of the paths
(including paths of length 1), and finishers, which are the second SCCs of the paths of lengths
2. We remove duplicates in each category, minimize each SCC, and construct the target
automaton Ã that consists of a disjoint union of all the remaining starters and finishers.

For each path of length 2 in the minimal cover, we find a corresponding starter and a
finisher, and connect all the states of the starter to all the states of the finisher (connecting
any state from the starter to any state of the finisher would also work). This may require
extending the alphabet with additional letters; we need at most |P | such letters.

If it is possible to pick a state of some starter as an initial state, then we do; otherwise
we add one additional starting state. We connect the initial state to all the starters.

▶ Example 13. Consider the automaton A depicted in Figure 3. Without the red dashed
edge, this automaton is minimal, and a separate initial state q0 is needed. However, if we
consider A with with the red dashed edge, then it is not minimal – one can remove q0, make
q1 initial and connect q1 to q3 over c, obtaining a smaller equivalent automaton. Interestingly,
in this case the SCC-depth of the minimal automaton is 3.

J. Michaliszyn and J. Otop 77:13

q0

start

q1q2 q3 q4
b ab a

ab c
a

d

Figure 3 Example of the initial state selection process. For readability, the sink and the transitions
that lead to sinks are omitted.

We add transitions from the initial state to all the starters (possibly using another letter).
The detailed algorithm is presented in Algorithm 1. A quick check shows that it works in
polynomial time.

The DFA min-depth-2(A) is constructed in such a way that dag(min-depth-2(A))
consists of nodes from L1 ∪ L2 with edges from C to D if and only if C ∈ L′

1, D ∈ L′
2 and

the path C, D is tightly covered by some path from P .
The automaton min-depth-2(A) is not unique as the transitions between different SCCs

may use different letters; the choice of letters is irrelevant as it can be fixed with a bounded
edit distance.

▶ Theorem 14. Given a non-trivial DFA A of SCC-depth at most 2, we can construct in
polynomial time a DFA min-depth-2(A) equivalent to A modulo bounded edit distance such
that any DFA equivalent to A modulo a bounded edit distance has at least as many states as
min-depth-2(A).

Proof. Observe that dag(min-depth-2(A)) consists of nodes from L′
1 ∪L′

2 with edges from
C to D if and only if C ∈ L′

1, D ∈ L′
2 and the path C, D is tightly covered by some path

from P . Hence each path in dag(min-depth-2(A)) is tightly covered by some path in P

and hence it is covered by some path in dag∗(A). Conversely, every path in P is exactly
covered by a path in dag(B) and hence every path in dag(A) is covered by a path in
dag∗(min-depth-2(A)). It follows that A and min-depth-2(A) are equivalent modulo a
bounded edit distance.

Minimality of min-depth-2(A) follows from Lemma 12. Indeed, if B is a DFA, which
is equivalent modulo a bounded edit distance to A, then Lemma 12 implies that for each
SCC C from L′

1 ∪ L′
2, the DFA B contains an SCC D with L(A|C) = L(B|D). Therefore,

all SCCs present in min-depth-2(A) need to have their counterparts in B with the same
language. It follows that B has at least as many states as min-depth-2(A). ◀

5 Fixed threshold edit distance

In this section we show that for any fixed k the MIN-ED[k] problem is PSpace-complete.
The hardness result is robust in the sense that the subclasses of DFA discussed earlier do
not admit a better complexity of the MIN-ED[k] problem, and it is not clear how to restrict
the class of DFA to obtain better complexity results.

For membership, one can non-deterministically pick a target automaton and verify its
equivalence modulo the edit distance k in polynomial space using the algorithm presented
in [3, Theorem 5.12]. For PSpace-hardness we reduce the following problem.

Automata universality
Input: DFA A1, . . . ,An over an alphabet Σ, such that A1 contains one sink state and it
accepts all words of length at most 1, and for all i we have that L(Ai) ̸= Σ∗.
Output: whether L(A1) ∪ · · · ∪ L(An) = Σ∗

MFCS 2025

77:14 Minimization of Deterministic Finite Automata Modulo the Edit Distance

This problem is PSpace-complete, which follows from the classic result [16] by adding
an appropriate automaton A1.

▶ Theorem 15. For each k, the MIN-ED[k] problem is PSpace-hard.

Proof. Fix k ≥ 1. We reduce the automata universality problem. Let Σ′ = {b1, . . . , bn, ▷}
be disjoint from Σ. We construct a DFA A over the alphabet Σ ∪ Σ′ that accepts exactly
words of the form (bi)k ▷ w such that w ∈ L(Ai).

The automaton A over the alphabet Σ∪Σ′ consists of the disjoint union of the automata
A1, . . . ,An and fresh non-accepting states q0 (initial) and qj

i for i, j ∈ {1, . . . , k}.
The automaton A has the following additional transitions:

1. δ(q0, bi) = q1
i for any i;

2. δ(qj
i , bi) = qj+1

i for any j < k;
3. δ(qk

i , ▷) is the initial state of Ai, for any j.

The remaining transitions, including transitions over Σ′ from the states of A1, . . . ,An,
are to the sink state of A1. Figure 4 contains an example of such an automaton.

q0A

q1
1

q1
2

q1
3

q2
1

q2
2

q2
3

q3
1

q3
2

q3
3

A1

A2

A3

b1

b2

b3

b1

b2

b3

b1

b2

b3

▷

▷

▷

Figure 4 Example of the reduction in Theorem 15 for k = 3. For readability, sinks and the
transitions that lead to sinks are omitted.

We conclude the reduction by fixing m = 3, i.e., we ask whether the input DFA is
equivalent modulo the edit distance k to some automaton with at most 3 states.

Let B be the minimal automaton over Σ ∪ Σ′ recognizing the language {▷w | w ∈ Σ∗}. It
has three states: q0 (initial), q (accepting) and s (sink). From q0 the transition over ▷ is to q,
for each x ∈ Σ the transition from q over x is to q, and all the remaining transitions are to s.

▶ Lemma 16. For all three-state automata C such that A ≡k
ed C we have C = B (up to state

renaming).

▶ Lemma 17. A ≡k
ed B if and only if L(A1) ∪ · · · ∪ L(An) = Σ∗.

Proof. Assume A ≡k
ed B and let w ∈ Σ∗. Since B accepts ▷w, for some i, A accepts bk

i ▷ w,
which means that Ai accepts w. Thus L(A1) ∪ · · · ∪ L(An) = Σ∗.

Now assume L(A1) ∪ · · · ∪ L(An) = Σ∗. Each word accepted by A is of the form bk
i ▷ w,

where w ∈ Σ∗. Then, B accepts ▷w and ed(bk
i ▷ w, ▷w) ≤ k.

On the other hand, each word accepted by B is of the form ▷w, where w ∈ Σ∗. Since
L(A1) ∪ · · · ∪ L(An) = Σ∗, there is i such that w ∈ L(Ai). Therefore, for w′ = bk

i ▷ w we
have that A accepts w′ and ed(w, w′) ≤ k. Thus A ≡k

ed B . ◀

Lemmas 16 and 17 together imply that the instance (A, 3) of the MIN-ED[k] problem
is positive iff we have L(A1) ∪ · · · ∪ L(An) = Σ∗. This concludes the proof of PSpace-
hardness. ◀

J. Michaliszyn and J. Otop 77:15

▶ Remark 18. One can assume that the input automata of the automata universality problem
consists of one SCC, for example, by adding an additional reset letter to each automaton
(i.e., a letter such that the transition from each state over this letter leads to the initial state).
This shows that the problem is PSpace-hard even for automata of SCC-depth 1.

6 Other metrics

The paper focuses on minimizing DFA modulo similarity of languages, where the similarity
measure is based on the edit distance between words. We briefly discuss alternative approaches
to define similarity of languages: the Hamming distance and asymmetric relations.

6.1 Minimization modulo the Hamming distance
Hamming distance calculates the minimum number of single-character substitutions required
to transform one word into another, assuming both words are of the same length. In contrast,
edit distance also allows insertions and deletions of characters, making it applicable to words
of different lengths. Hamming distance could be more advantageous in scenarios where
fixed-length words are present, or situations where insertions and deletions are unrealistic,
like comparing fixed-length DNA sequences. However, its limitation to equal-length words
makes it less suitable than edit distance in cases where inputs may vary in length or include
additional elements.

We now briefly discuss how our results could be adapted for the Hamming distance
metrics. For fixed k ∈ N, the PSpace-hardness result from Theorem 15 can be easily adapted
to the Hamming distance. For the bounded Hamming distance case, i.e, k =∞, the result
would be different from those obtained for equivalence modulo a bounded edit distance. First,
our results for a bounded edit distance rely on the condition from [3, Theorem 4.1] presented
in Section 2.2 for DFA to be equivalent modulo a bounded edit distance. Up to our best
knowledge, there is no counterpart of this condition for the Hamming distance. Second, due
to Proposition 9, we have focused on non-universal DFA, for which a rejecting sink state is
reachable from every state, as all universal DFA are equivalent modulo finite edit distance
to a single-state DFA. Proposition 9 does not extend to language equivalence modulo a
bounded Hamming distance. For example, the language consisting of words of even length is
equivalent modulo a bounded edit distance to the language of all words, whereas it is not
equivalent modulo a bounded Hamming distance. For these reasons, we leave the study of
minimization modulo a bounded Hamming distance as future work.

6.2 Asymmetric similarity relations
While we have discussed symmetric similarity measure, in some applications only one-sided
errors are allowed. For instance, in formal verification, abstraction methods reduce a given
model size by constructing an over-approximation, which is verified against a specification.
In such a case, there are no false positives, i.e., the answers that the specification is met are
correct, while there may be false negatives due to over-approximation. Over-approximation
should balance the size of the minimized model and the false-negatives rate. We can address
it with similarity relations.

Consider the following relation: L ⪯k
ed L′ if L ⊆ L′ and L′ ⊆k

ed L. For k =∞, this is a
transitive relation. This leads to the following minimization problem: given a DFA A, find a
minimal B such that L(A) ⪯∞

ed L(B). This approach gives us a close over-approximation; an
automaton that accepts all the words that A accepts and perhaps some additional words,
but only if the additional words are close (w.r.t. the edit distance) to some accepted words.

MFCS 2025

77:16 Minimization of Deterministic Finite Automata Modulo the Edit Distance

Again, for fixed k ∈ N, the PSpace-hardness result from Theorem 15 can be easily
adapted to the asymmetric distance ⪯∞

ed. For k = ∞, most results can be easily adapted
to the asymmetric distance ⪯∞

ed: containment in ΣP
2 (Proposition 3), coNP-hardness

(Theorem 4), NP-completeness (Theorem 8), triviality of minimization with unrachable
sink state (Proposition 9), and minimization of a DFA being a single SCC with a sink
(Theorem 10). However, minimization of DFA of SCC-depth 2 does not extend easily to the
asymmetric distance ⪯∞

ed.
While potentially useful in applications like formal verification, these asymmetric relations

exhibit challenges such as counter-intuitive behaviour, and require further investigation into
their properties and practical applications.

7 Conclusions

We investigated the problem of minimizing DFA modulo the edit distance. We proved
that this problem is PSpace-complete for fixed edit distance and in ΣP

2 for a bounded
edit distance. Then, we proposed a restriction of the latter problem which improves the
complexity: we showed that for a fixed SCC-depth, the minimization problem is in NP, and
for SCC-depth at most 2 the problem can be solved in polynomial time.

An interesting future work are possible heuristics and approximations for the fixed-edit-
distance case. In particular, if the edit distance is fixed, but it is not strictly enforced (for
example, it can be slightly violated by some fraction of words).

The bounded edit distance minimization is at least as good as hyperminimization in
terms of the number of states (except in some corner cases of finite languages). In practice,
we observed that it sometimes minimize too much (see, e.g., Proposition 9). To mitigate this,
and also preserve the modular structure of the automata, one could restrict the minimization
algorithm to work at some subsets of automata states. In our future work we want to explore
algorithms for this scenario.

References
1 Diego Aineto, Sergio Jimenez, and Eva Onaindia. Generalized Temporal Inference via Planning.

In Proceedings of the 18th International Conference on Principles of Knowledge Representation
and Reasoning, pages 22–31, November 2021. doi:10.24963/kr.2021/3.

2 Marco Almeida, Nelma Moreira, and Rogério Reis. On the performance of automata minimiz-
ation algorithms. In Proceedings of the 4th Conference on Computation in Europe: Logic and
Theory of Algorithms, pages 3–14, 2007.

3 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Bounded repairability of word
languages. J. Comput. Syst. Sci., 79(8):1302–1321, 2013. doi:10.1016/j.jcss.2013.06.001.

4 Anat Bremler-Barr, David Hay, and Yaron Koral. Compactdfa: Scalable pattern matching
using longest prefix match solutions. IEEE/Acm Transactions On Networking, 22(2):415–428,
2013. doi:10.1109/TNET.2013.2253119.

5 Janusz A Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. In Proc. Symposium of Mathematical Theory of Automata, pages 529–561, 1962.

6 David Carmel and Shaul Markovitch. Opponent modeling in multi-agent systems. In In-
ternational Joint Conference on Artificial Intelligence, pages 40–52. Springer, 1995. doi:
10.1007/3-540-60923-7_18.

7 William I. Chang and Eugene L. Lawler. Sublinear approximate string matching and biological
applications. Algorithmica, 12(4/5):327–344, 1994. doi:10.1007/BF01185431.

8 Krishnendu Chatterjee, Thomas A. Henzinger, Rasmus Ibsen-Jensen, and Jan Otop. Edit
distance for pushdown automata. Log. Methods Comput. Sci., 13(3), 2017. doi:10.23638/
LMCS-13(3:23)2017.

https://doi.org/10.24963/kr.2021/3
https://doi.org/10.1016/j.jcss.2013.06.001
https://doi.org/10.1109/TNET.2013.2253119
https://doi.org/10.1007/3-540-60923-7_18
https://doi.org/10.1007/3-540-60923-7_18
https://doi.org/10.1007/BF01185431
https://doi.org/10.23638/LMCS-13(3:23)2017
https://doi.org/10.23638/LMCS-13(3:23)2017

J. Michaliszyn and J. Otop 77:17

9 Massimiliano de Leoni, Paolo Felli, and Marco Montali. Strategy Synthesis for Data-Aware
Dynamic Systems with Multiple Actors. In Proceedings of the 17th International Conference
on Principles of Knowledge Representation and Reasoning, pages 315–325, September 2020.
doi:10.24963/kr.2020/32.

10 Pawel Gawrychowski and Artur Jeż. Hyper-minimisation made efficient. In MFCS 2009, pages
356–368, 2009. doi:10.1007/978-3-642-03816-7_31.

11 John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Theory
of machines and computations, pages 189–196. Elsevier, 1971.

12 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation, Second Edition. Addison-Wesley, 2000.

13 Artur Jeż and Andreas Maletti. Hyper-minimization for deterministic tree automata. In CIAA
2012, pages 217–228, 2012. doi:10.1007/978-3-642-31606-7_19.

14 Dan Jurafsky and James H. Martin. Speech and language processing: an introduction to
natural language processing, computational linguistics, and speech recognition, 2nd Edition.
Prentice Hall series in artificial intelligence. Prentice Hall, Pearson Education International,
2009. URL: https://www.worldcat.org/oclc/315913020.

15 Igor Khmelnitsky, Daniel Neider, Rajarshi Roy, Xuan Xie, Benoît Barbot, Benedikt Bollig,
Alain Finkel, Serge Haddad, Martin Leucker, and Lina Ye. Analysis of recurrent neural networks
via property-directed verification of surrogate models. International Journal on Software Tools
for Technology Transfer, 25(3):341–354, 2023. doi:10.1007/s10009-022-00684-w.

16 Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 254–266. IEEE, 1977. doi:10.1109/SFCS.
1977.16.

17 Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet physics doklady, 10(8):707–710, 1966.

18 Andreas Maletti and Daniel Quernheim. Optimal hyper-minimization. Int. J. Found. Comput.
Sci., 22(8):1877–1891, 2011. doi:10.1142/S0129054111009094.

19 Andreas Maletti and Daniel Quernheim. Hyper-minimization for deterministic weighted tree
automata. In AFL 2014, pages 314–326, 2014. doi:10.4204/EPTCS.151.22.

20 Edward F Moore et al. Gedanken-experiments on sequential machines. Automata studies,
34:129–153, 1956.

21 James Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes
Mathematicae (Proceedings), 80(5):406–424, 1977. URL: https://www.sciencedirect.com/
science/article/pii/1385725877900555.

22 Jean-Éric Pin, editor. Handbook of Automata Theory. European Mathematical Society
Publishing House, Zürich, Switzerland, 2021. doi:10.4171/Automata.

23 Senthil Rajasekaran and Moshe Y. Vardi. Verification and Realizability in Finite-Horizon
Multiagent Systems. In Proceedings of the 19th International Conference on Principles of
Knowledge Representation and Reasoning, pages 278–287, August 2022. doi:10.24963/kr.
2022/28.

24 Emmanuel Roche and Yves Schabes. Deterministic part-of-speech tagging with finite state
transducers. Computational linguistics, 21(2):227–253, 1995.

25 Géraud Sénizergues. The equivalence problem for deterministic pushdown automata is decidable.
In Automata, Languages and Programming, 24th International Colloquium, ICALP’97, Bologna,
Italy, 7-11 July 1997, Proceedings, pages 671–681, 1997. doi:10.1007/3-540-63165-8_221.

26 Qinglong Wang, Kaixuan Zhang, Xue Liu, and C Lee Giles. Verification of recurrent neural
networks through rule extraction. arXiv preprint arXiv:1811.06029, 2018. doi:10.48550/
arXiv.1811.06029.

27 Erkang Zhu, Silu Huang, and Surajit Chaudhuri. High-performance row pattern recognition
using joins. Proc. VLDB Endow., 16(5):1181–1195, January 2023. doi:10.14778/3579075.
3579090.

MFCS 2025

https://doi.org/10.24963/kr.2020/32
https://doi.org/10.1007/978-3-642-03816-7_31
https://doi.org/10.1007/978-3-642-31606-7_19
https://www.worldcat.org/oclc/315913020
https://doi.org/10.1007/s10009-022-00684-w
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1142/S0129054111009094
https://doi.org/10.4204/EPTCS.151.22
https://www.sciencedirect.com/science/article/pii/1385725877900555
https://www.sciencedirect.com/science/article/pii/1385725877900555
https://doi.org/10.4171/Automata
https://doi.org/10.24963/kr.2022/28
https://doi.org/10.24963/kr.2022/28
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.48550/arXiv.1811.06029
https://doi.org/10.48550/arXiv.1811.06029
https://doi.org/10.14778/3579075.3579090
https://doi.org/10.14778/3579075.3579090

	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 Preliminaries
	2.1 Distance between languages and decision problems
	2.2 Containment modulo a bounded edit distance
	2.3 Example

	3 Bounded edit distance
	3.1 Membership in Sigma_2^P and coNP-hardness
	3.2 MIN-ED[infinity] over DFA of a bounded SCC-depth is NP-complete

	4 Effective algorithms for bounded edit distance
	4.1 Single SCC with a sink
	4.2 DFA of SCC-depth 2

	5 Fixed threshold edit distance
	6 Other metrics
	6.1 Minimization modulo the Hamming distance
	6.2 Asymmetric similarity relations

	7 Conclusions

