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—— Abstract

We study the possibility of scaling down algorithmic information quantities in tuples of corre-
lated strings. In particular, we address a question raised by Alexander Shen: whether, for any
triple of strings (a, b, ¢), there exists a string z such that each conditional Kolmogorov complexity
C(a|z),C(blz),C(c|z) is approximately half of the corresponding unconditional Kolmogorov com-
plexity. We provide a negative answer to this question by constructing a triple (a, b, ¢) for which no
such string z exists. Our construction is based on combinatorial properties of incidences in finite
projective planes and relies on recent bounds for point-line incidences over prime fields, obtained using
tools from additive combinatorics and algebraic methods, notably results by Bourgain—Katz—Tao
and Stevens—De Zeeuw. As an application, we show that this impossibility yields lower bounds
on the communication complexity of secret key agreement protocols in certain settings. These
results reveal algebraic obstructions to efficient information exchange and highlight a separation in
information-theoretic behavior between fields with and without proper subfields.
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1 Introduction

Algorithmic information theory (AIT) (introduced and developed in the 1960s by Solomonoff
[23-25], Kolmogorov [13] and Chaitin [4]) aims to define the amount of information in
a discrete object and to quantify the information shared by several objects. The crucial
difference with Shannon’s information theory is that AIT is interested not in an average
compression rate (for some distribution of probabilities) but in the optimal compression of
some specific individual object. Speaking informally, the information content of an individual
object (e.g., of a string, a text, and so on) is defined as the minimal length of a program
that produces that object. The length of the shortest program producing a string x is
called Kolmogorov complexity of 2 and denoted C(z). Similarly, conditional Kolmogorov
complexity of z given y, denoted C(z|y), is the length of an optimal program producing a
string x given y as an input. A string « is called random or incompressible if C(x) = |z|.
The value of Kolmogorov complexity depends on the chosen programming language.
However, it is known that there exist optimal programming languages that make the
complexity function minimal up to bounded additive terms. An extensive introduction to
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AIT and the theory of Kolmogorov complexity can be found, for example, in the classical
paper [30] and in the textbooks [14,22].

AIT is tightly connected with the classical Shannon’s information theory. The technique
of Kolmogorov complexity is used in various problems of theoretical computer science and
discrete mathematics. Time-bounded Kolmogorov complexity has deep and interesting
links with computational complexity and theoretical cryptography, see., e.g., the surveys [6]
and [15].

One of the fundamental questions of the AIT is a characterization of the possible values of
Kolmogorov complexity of a tuple of strings. For example, for any triple of strings x,y, z, we
have seven values of Kolmogorov complexity (sometimes called complexity profile of (z,y, 2)):

C(z), C(y), C(z), C(z,y), C(z,2), Cly,2), Clz,y,2).

Which vectors of seven positive numbers can be realized as Kolmogorov complexity of some
x,y, 2?7 What are the universal constraints connecting different components in such vectors
of complexities? There are, for example, classical inequalities

C(z,y) < C(z) + C(y) + O(log C(x,y))
(subadditivity, or non-negativity of the mutual information) and
Clz,y,2) + C(z) < C(z,2) + Cly, 2) + O(log C(x, y, 2))

(submodularity, or non-negativity of the conditional mutual information). It is known that
for triples of strings there are no substantially different linear inequalities for Kolmogorov
complexity: any linear inequality for Kolmogorov complexity of z,y,z (valid up to an
additive term o(C(z,y, z))) is necessarily a positive linear combination of several instances
of subadditivity and submodularity, [9]. However, when four or more strings are involved (so
we have > 2% — 1 = 15 quantities of Kolmogorov complexity), there also exist different linear
inequalities (usually called non Shannon type inequalities) that are less intuitive in appearance
and cannot be represented as linear combinations of subadditivity and submodularity, see
e.g. the survey [29]. It is known that exactly the same linear inequalities that are valid for
Kolmogorov complexity and for Shannon entropy, but the problem of precise characterization
of these inequalities for n > 4 objects remains widely open.

While the questions on linear inequalities for Kolmogorov complexity and for Shannon’s
entropy are known to be equivalent, from some other perspectives, questions about Kol-
mogorov complexity appear more difficult than similar questions about Shannon’s entropy.
It is not known, for example, whether the complexity profiles can be scaled with any factor
A > 0 (let us say, up to a logarithmic additive term). More specifically, the following question
is open:

» Question 1. Let A be a positive real number. Is it true that for every k-tuple of strings
(@1,...,x1) there exists another k-tuple («1,...,z}) such that

C(xf afy, - w;) = ANC(@iy, @iy, .., xi,) + O(log Clx1, ..., 2y))
for all tuples of indices (i1,...,1s), 1 <i1 <ig <...<is<k?

The answer to this question is known to be positive for k¥ < 3 and any A and for any k
and integer \. For non-integer factors, e.g., for A = 1/2, the question is open for all k > 4,
see [20]. Alexander Shen posed another question (see a comment to Question 1 in [20]):
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» Question 2. Let A < 1 be a positive real number. Is it true that for every k-tuple of
strings (21, ...,2) there exists a string z such that

C(zi]z) = AC(x;) + O(log C (21, . . .y xy))
fori=1,...,k?

The positive answer to Question 2 would imply the positive answer to Question 1. Besides,
Question 2 is interesting in its own right as a special case of the problem of extension
of complexity profiles, generalizing the classical notions of common information (by Gécs-
Korner [7] and Wyner [28]):

» Question 3 (informal). For each given k-tuple of strings (x1,...,zx), what can we say
about possible values

{C(@iys Tigs -+ @iy, 2) J1<in <. <in <k
achievable with various strings z?

It is know that the answer to Question 2 is positive for &k = 1 and for k¥ = 2 (see Section 2).
The main result of this paper is the negative answer to this question for k = 3, even for
A = 1/2. We show there exists a triple of strings (a, b, ¢) such that there is no z which “halves”
the complexities of each of them,

1

C(a), C(blz) = -C(b), C(c|z) =

Cla|z) ~ 5 %C(c)

N | =

We provide an example of a triple (a,b,c¢) such that for every z such that C(a | z) =~
1C(a), C(b|z) ~ 3C(b), the value of C(c|z) must be much smaller than $C(c). We prove
this result in Section 3.

1.1 The main construction

To prove our main result, we propose an explicit construction of a tuple that provides the
negative answer to Question 2. This construction is based on incidences in a finite projective
plane. We fix a finite field I, take the projective plane over this field, and consider pairs
(x,y), where z is a line in this plane and y is a projective line passing through a point. We
call such pairs incidences. An incidence in a projective plane is a classical combinatorial
object, and its properties were extensively studied in different contexts. Incidences were
considered in AIT, see, e.g., [5,17].

In a projective plane over F there are O(|F|?) points, O(|F|?) lines, and O(|F|?) incidences.
For the vast majority of incidences (z,y) we have

C(z) = 2logF|, C(y) = 2log [F|, C(z,y) ~ 3log [F|. (1)

The upper bounds are trivial: to specify a point or a line in a projective plane, it is enough
to provide two elements of IF; to specify together a point and a line incident to this point, it
is enough to provide three elements of F. The lower bound follows from a simple counting
argument: the number of programs (descriptions) shorter than k is less than 2¥; therefore,
for most incidences (z,y) there is no short description, and C(z,y) =~ 3log|F|. A similar
argument implies C(z) ~ 2log |[F| and C(y) ~ 2log |F|. We call an incidence (z,y) typical if
it satisfies (1).
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Thus, for a typical incidence (z,y) the mutual information between = and y is
I(z:y) == C(x) + C(y) — C(z,y) = log [F|.

An. Muchnik observed in [17] that the mutual information of an incidence is hard to
“materialize,” i.e., we cannot find a z that “embodies” this amount of information shared by
x and y. More formally, Muchnik proved that

there is no z such that C(z|z) = 0, C(z|y) =0, C(z) =~ I(x : y).

This insight did not close the question completely: the optimal trade-off between C(z|x),
C(z|y), C(z) is still not fully understood. Our work follows this direction of research. We
prove that for prime fields F, some specific values of C(z|z), C(z|z), and C(z) are forbidden:

For a prime F, for a typical incidence (z,y) there is no z such that @)
C(z) = 1.5log|F|, C(z|z) = 0.5log|F|, C(z|y) =~ 0.51og |F|, C(z|x,y) = 0,

see a more precise statement in Theorem 3.8 on p. 11. This result contrasts with a much
simpler fact proven in [19]:

If F contains a subfield of size /|F|, then for a typical incidence (z,y) there exists

3
a z such that C(z) = 1.5log|F|, C(z|z) = C(z|y) =~ 0.5log|F|, C(z|z,y) =~ 0, 3)

see Theorem 3.7 on p. 10.

Our proof of (2) uses a remarkable result by Sophie Stevens and Frank De Zeeuw, which
gives a non-trivial upper bound on the number of incidences between points and lines in a
plane over a prime field [26]. The first theorem of this type was proven by Bourgain, Katz,
and Tao, [2]. This result has been improved further in [10-12]. We use the bound from [26],
the strongest to date.

Typical incidences in the projective plane over a prime field imply the negative answer to
Question 2: if (x,y) is a typical incidence, we let

a:=x, b:=vy, c:={x,y)
and prove that for every string z satisfying the conditions C(a|z) ~ 3C(a) and C(b|z) =~

~ 2
1C(b), the value of C(c|z) must be much smaller than $C(c), see Corollary 3.9.

1.2 Application: impossibility results for secret key agreement

The main result (2) can be interpreted as a partial (very limited in scope) answer to Question 3,
as it claims that for some specific pairs (z,y) (typical incidences) there exist limitations for
realizable complexity profiles of triples (z,y, z). It is no surprise that this fact can be used to
prove certain no-go results in communication complexity, for settings where the participants
of the protocol are given such = and y as their inputs. We present an example of such result
— a theorem on secret key agreement protocols, as we explain below.

Unconditional secret key agreement is one of the basic primitive in information-theoretic
cryptography, [27]. In the simplest setting, this is a protocol for two parties, Alice and Bob.
At the beginning of the communication, Alice and Bob are given some input data, x and y
respectively. It is assumed that x and y are strongly correlated, i.e., the mutual information
between x and y is non-negligible. Further, Alice and Bob exchange messages over a public
channel and obtain (on both sides) some string w that is incompressible (i.e., C'(w) is close
to its length) and has negligible mutual information with the transcript of the protocol, i.e.,

C'(w | concatenation of all messages sent by Alice and Bob) = |w|.
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Thus, Alice and Bob transform the mutual information between z and y into a common secret
key (which can later be used, for example, into a one-time-pad or some other unconditionally
secure cryptographic scheme). The secrecy of the key means that an eavesdropper should
get (virtually) no information about this key, even having intercepted all communication
between Alice and Bob. For a more detailed discussion of the secret key agreement in the
framework of AIT we refer the reader to [8,21].

» Remark 1.1. In this paper, we assume that the communication protocol is uniformly
computable; that is, Alice and Bob exchange messages and compute the final result according
to a single algorithmically defined rule that applies uniformly to inputs of all lengths. We also
assume that the protocol is public (i.e., known to an eavesdropper), so no secret information
can be hardwired into the protocol description; see [8, Remark 1] and [21, Remarks 2, 4, 13]
for a more detailed discussion of the communication model.

The challenges in secret key agreement are to (i) maximize the size of the secret key and
(ii) to minimize the communication complexity of the protocol (the total length of messages
sent to each other by Alice and Bob). It is known that the maximum size of the secret key
is equal to the mutual information between x and y, i.e., I(z : y) = C(x) + C(y) — C(z,y)
(see [21] for the proof in the framework of AIT and [1,16] for the original result in the classical
Shannon’s settings). There exists a communication protocol that allows to produce a secret
of optimal size with communication complexity

max{C(z|y), Cy|2)}, (4)

see [21], and this communication complexity is tight, at least for some “hard” pairs of inputs
(z,y), see [8]. Moreover, subtler facts are known:
the standard protocol achieving (4) (the construction dates back to [1,16]; see [21] for
the AIT version) is highly asymmetric: all messages are sent by only one party (Alice or
Bob);
for some pairs of inputs (z,y), if we want to agree on a secret key of maximal possible size
I(x : y), not only the total communication complexity must be equal to (4), but actually
one of the parties (Alice or Bob) must send max{C(z|y), C(y|x)} bits of information, [3];
for some pairs of inputs (z, y), the total communication complexity max{C(z|y), C(y|z)}
cannot be reduced even if the parties need to agree on a sub-optimal secret key of size dn
(for any constant § > 0), see [8].
It remains unknown whether we can always organize a protocol of secret key agreement
where the communication complexity (4) is shared evenly by the parties (both Alice and
Bob send 1C/(x|y) bits) if they need to agree on a key of sub-optimal size, e.g., $1(x : y).
When we claim that communication complexity of a protocol is large in the worst case,
i.e., Alice and Bob must send to each other quite a lot of bits at least for some pairs of
inputs, it is enough to prove this statement of some specific pair of data sets (z,y). Such
a proof may become simpler when we use (z,y) with nice combinatorial properties, even
though these inputs may look artificial and unusual for practical applications. Such is the
case with the mentioned lower bounds for communication complexity proven in [8] and [3].
Both these arguments employ as an instance of a “hard” input (z,y) a typical incidence in
a finite projective plane. Thus, it is natural to ask whether, for these specific (z,y), it is
possible to agree on a secret key of sub-optimal size using a balanced communication load —
that is, when Alice and Bob each send approximately the same number of bits, roughly half
the total communication complexity. We show, quite surprisingly, that the answer to this
question depends on whether the field admits a proper subfield:
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» Positive result. If the field F, contains a subfield of size \/q, then there erists a balanced
communication protocol with communication complexity logq where

Alice sends to Bob ~ 0.5log q bits,
Bob sends to Alice ~ 0.5log q bits,

and the parties agree on a secret key of length ~ 0.5logq, which is incompressible even
conditional on the transcript of the communication between Alice and Bob.

» Negative result. If the field F, is prime, then in every balanced communication protocol
with communication complexity logq such that

Alice sends to Bob = 0.5log q bits,
Bob sends to Alice =~ 0.5log q bits,
the parties cannot agree on a secret key of length ~ 0.5log q or even of any length > %logq

(the secrecy of the key means that the key must remain incompressible even conditional on
the transcript of the communication between Alice and Bob).

For a more precise statements see Theorem 4.3 and Theorem 4.1 respectively.

1.3 Techniques

A projective plane is a classical geometric object, and combinatorial properties of discrete
projective planes have been studied with a large variety of mathematical techniques. It is
no surprise that, in the context of AIT, the information-theoretic properties of incidences
in discrete projective planes have been studied using many different mathematical tools.
In this paper we bring to AIT another (rather recent) mathematical technique that helps
distinguish information-theoretic properties of projective planes over prime fields and over
fields containing proper subfields.

As we mentioned above, we apply the new approach to the problem of secret key agreement:
we consider the setting where Alice and Bob receive as inputs data sets = and y such that
(z,y) is a “typical” incidence in a projective plane (x is a line and y is a point incident to
this line) over a finite field F with n = [log |F|]. We summarize in Table 1 below several
technical results concerning this communication problem, and the techniques in the core of
these results.

Table 1 Bounds for secret key agreement in the framework of AIT.

for any protocol of secret key agreement, information-theoretic techniques:

the size of the secret key < I(x : y) = n [21] intern.inform.cost < extern.inform.cost
(not specific for lines and points)

|Alice’s messages| + |Bob’s messages| £ n, spectral method,

even for a secret key of size en [8] expander mixing lemma (applies to all

fast-mixing graphs, including the
incidence graph of a projective plane)

|Alice’s messages| Z n or |Bob’s messages| 2 n if combinatorics of a projective plane
the parties agree on a secret key of size = n, [3] (applies to all projective planes)
for incidences in a plane over a prime field if additive combinatorics, algebraic

|Alice’s messages| ~ 0.5n and |Bob’s messages| ~ 0.5n | and geometric methods [2,10-12, 26]
then the size of the secret key <« 0.5n, [this paper] (applies to only projective planes

over prime fields)
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One of the motivations for writing this paper was to promote the notable results of
[2,10-12,26], which presumably can find interesting applications in AIT and communication
complexity.

1.4 Organization

The rest of the paper is structured as follows. In Section 2 we briefly discuss (3) (known
from [19]). In Section 3 we formally prove our main result (2). In Section 4 we discuss an
application of the main result: we show that the performance of the secret key agreement
for Alice and Bob given as inputs an incident pair (z,y) (from a projective plane) differs
between fields that do and do not contain proper subfields.

1.5 Notation

|S| stands for the cardinality of a finite set S

we write F(n) < G(n) if G(n) — F(n) = Q(n) (e.g., 2 < )

for a bit string x we denote by x.,, a factor of x that consists of m — k + 1 bits at the

positions between k and m (in particular, (1., is a prefix of = of length m);

we denote FIP the projective plane over a finite field F;

G = (R, L; E) stands for a bipartite graph where L U R (disjoint union) is the set of

vertices and £ C L x R is the set of edges;

C(z) and C(z | y) stand for Kolmogorov complexity of a string x and, respectively,

conditional Kolmogorov complexity of  conditional on y, see [14,22]. We use a similar

notation for more involved expressions, e.g., C(x,y|v, w) denotes Kolmogorov complexity

of the code of the pair (z,y) conditional on the code of another pair (v, w)

we also talk about Kolmogorov complexity of more complex combinatorial objects (el-

ements of finite fields, graphs, points and lines in a discrete projective plane, and so

on) assuming that each combinatorial object is represented by its code (for some fixed

computable encoding rule)

I(z:y):=C(x)+ C(y) — C(x,y) and I(z : y|2) := C(z|z) + C(y|z) — C(x,y|2) stand

for information in x on y and, respectively, information in = on y conditional on z
Many natural equalities and inequalities for Kolmogorov complexity are valid only up to a
logarithmic additive term, e.g., C(z,y) = C(z) + C(y|z) £ O(logn), where n is the sum of
lengths of z and y (this is the chain rule a.k.a. Kolmogorov-Levin theorem, see [30]). To

log
simplify the notation, we write A < B instead of A < B+ O(log N), where N is the sum
log
of lengths of all strings involved in the expressions A and B. Similarly we define A > B

lo, ° lo, lo,
(which means B §g A) and A % p (which means A §g B and B §g A). For example, the
chain rule can be expressed as

Cla.y) E C(x) + Cly|2);

the well known fact of symmetry of the mutual information can be expressed as
lo,
I(w )% Cx) + Cly) - Cla,y).
2 Halving complexities of two strings

In this section we discuss the positive answer to Question 2 for £ = 1,2 and A = 1/2. These
results were proven in [19]. Here we recall the main ideas and technical tools behind this
argument.

MFCS 2025
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First of all, we observe that Question 2 for £k =1 and A = 1/2 is pretty trivial. Given a
string = of length N, we can try z = z[14) for K =0,... N. It is clear that for £ = 0 we have
C(z|zp.k) = C(x) + O(1), and for k = N we obtain C(x|zp.4) = O(1). At the same time,
when we add to the condition z one bit, the conditional complexity C(x|z) changes by only
O(1). It follows immediately that for some intermediate value of k we obtain z = ;.5 such
that C(z|z) = 3C(z) + O(1).

This argument employ (in a very naive from) the same intuition as the intermediate value
theorem for continuous functions. The case k = 2 is more involved, but it also can be proven
with “topological” considerations.

» Theorem 2.1. For all strings a,b of complexity at most n there exists a string z such that
1 1
Clalz) — 50(@) = O(logn) and ‘C(b|z) - 20(1))’ = O(logn).

In fact, [19] proved a tighter and more general statement:

» Theorem 2.2. [19, Theorem 4] For some constant k the following statement holds: for
every two strings a,b of complexity at most n and for every integers «, B such that

a < C(a) — klogn,
B < C(b) — klogn,
—C(a|b)+ klogn < g —a < C(bla) — klogn,
there exists a string y such that |C(a|z) — a| <k and |C(b]z) — B| < k.

With a = £C(a) and 8 = $C(b), this theorem implies the following corollary, which is (for
non-degenerate parameters) a stronger version of Theorem 2.1:

» Corollary 2.3. For some constant k the following statement holds: for every two strings
a,b such that C(a|b) > klogn and C(b|a) > klogn there exists a string z such that

Cla]2) - 3C(a)

<k and ‘C(b|z) - ;C(b)‘ < k.

The proof of Theorems 2.2 proposed by A. Shen involves topological ideas. The argument in
a nutshell: we build z by combining two parts, a piece extracted from a and a piece extracted
from b; the only challenge is to choose the sizes of these two parts in a suitable way. It turns
out that suitable sizes of these pieces can be chosen using the topological statement known
as the drum theorem, [18], which is equivalent to the fact that a circle is not a retract of a
closed disk, see [19] and the arXiv version of this paper for the complete proof.

3 Typical incidences in a projective plane

In this section we discuss typical pairs (line, point) in a finite projective plane; we study their
information-theoretic properties, focusing on distinctions that arise depending on whether
the underlying field contains a proper subfield.

3.1 Typical pairs: interface between the combinatorial language and AIT

In this section we introduce the framework that helps to translated information-theoretic
questions in the combinatorial language.
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» Definition 3.1. Let G = (L,R; E) with E C L X R be a simple non-directed bipartite
graph. This graph is bi-regular if all vertices in L have the same degree (the same number of
neighbors in L) and all vertices in R have the same degree (the same number of neighbors
in L).

To specify the quantitative characteristics of G we will use a triple of parameters (o, 8,7)
such that

Ll =27 |R|=2° |B|=2".

If G is bi-regular, then the degrees of vertices in L are equal to |E|/|L] = 27~* and the
degrees of vertices in R are equal to |E|/|R| = 2775,

» Proposition 3.2. Let G = (L, R; E) be a bi-regular with parameters («, B,7), as defined
above. If the graph is given explicitly (the complete list of vertices and edges of the graph can
be found algorithmically given the value of the parameters n), then the vast majority (let us
say, for 99%) of pairs (z,y) € E we have

log

C(z) = a+ 0O(logn),
Cly) % B+ O(logn), (5)
C(z,y) %8 v+ O(logn).

Proof. This proposition follows from a standard counting, see e.g. [22]. <

» Definition 3.3. For a graph G = (L, R; E) with parameters («, 8,7) we say that an edge
(u,v) € E is typical if it satisfies (5).

» Proposition 3.4. Let G = (L, R; E) be an explicitly given bi-reqular bipartite graph with
parameters («, 8,7), as in Definition 3.1. Let (x,y) € E be a typical edge in this graph, as
in Definition 3.3. And let z be a string satisfying:

Clx|z)<d, Clylz)<p, Clz,y|z) >+,

for some integers (o/,3',7") with o < a, ' < B, and v' <. Then there exists an induced
subgraph H = (L', R'; E') of G,

L'CL RCR, E=(xR)NE,
such that |L'| = 2“/i0(1°g"), |R'| = 25/i0(1°g"), |E'| > 27'~O(logn)
Sketch of the proof. We let

L'={2"eL : C@@|z)<d}, R={y eR : Cy|z) <p'}

Observe that x € L' and y € R’.

» Lemma 3.5. |I/| = 20/+0(logn) IR'| = 98'+0(logn)

Proof of lemma. This lemma is a standard translation between the combinatorial and the
information-theoretic languages. The upper bound for |L’| follows from the fact that each
element of I’ is obtained from z by a program of length at most /. The lower bound

O(logn) gmallest

follows from the observation that L’ contains, among other elements, the 20" =
elements of L in lexicographic order. The argument for R’ is similar. A more detailed proof

can be found, e.g., in [3, lemma 1 and lemma 2]. <
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It remains to prove a bound on the cardinality of E’. Given a string z, we can run in
parallel all programs of length o/ and ' on input z and enumerate the results that they
produce. These results will provide us with the lists of elements L’ and R’ revealing step by
step. Accordingly, we can enumerate edges of E’. Every pair (2/,y") € E’ can be specified
by (i) the binary expansion of the numbers «, 8 and (ii) by the ordinal number of (z’,%’) in
the enumeration of F’. This argument applies in particular to the pair (x,y), which belongs
to E'. Therefore, C(x,y|z) < log|E'| + O(logn). Reading this inequality from the right to
the left, we obtain

|E’| > 9C(z,42)—O(logn) _ 27,70(10gn)7

and we are done. |

3.2 Typical incidences in a projective plane

Now we instantiate the framework discussed above and discuss the central construction of
this paper — typical incidences in a finite projective plane.

» Example 3.6. Let I be a finite field and FP be the projective plane over this field. Let L
be the set of points and R be the set of lines in this plane. A pair (z,y) € L X R is connected
by an edge iff the chosen point z lies in in the chosen line y. Hereafter we denote this graph
by GEL.

We proceed with a discussion of properties of (x,y) from Example 3.6 that differ depending
on whether F possesses a proper subfield.

» Theorem 3.7 (see [5]). Let F be a field with a subfield of size \/|F|. Then for a typical
edge (z,y) of GRY (i.e., a typical incident pair (line, point) on the plane FP) we have
Clz) 2 2n, Cy) £ 2n, Cla,y) = 3n,
and there exists a z such that
C(z|z) o8 n, C(y|z) o n, C(z,y|z) %1 5n
or, equivalently
C(z|y,2) o8 0.5n, C(y|z,z2) 8 0.5n, I(z:y|2) 8 0.5n,

for n=[|F|], as shown in the diagram in Fig. 1.

Sketch of the proof. The first claim of the theorem (the values of unconditional Kolmogorov
complexity) follows from Proposition 3.2 and from typicality of (z,y). The second claim,
concerning the values of conditional Kolmogorov complexity, is subtler and requires a
construction. The statement statement boils down to the following combinatorial claim: the
graph GEY can be covered by a relatively small family! of induced subgraphs H; = (L;, R;; E;),
where

|Li| = |Ri| = 2", | B = 2"

This combinatorial claim, in turn, follows from the facts that GEY is edge-transitive and F
contains a subfield of size \/|F|, see [5, Theorem 9] for details. |

L More technically, we need 21:57+0(ogn) gych subgraphs, and every edge of GEY is covered by at most
poly(n) subgraphs H;.
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Figure 1 Complexity profile for (z,y, z) from Theorem 3.7.

Theorem 3.7 contrasts with Theorem 3.8.

» Theorem 3.8. Let € > 0 be a small enough real number and F be a field of a prime
cardinality p, and n := [logp]. Than for a typical edge (z,y) of GEV (i.e., a typical incident
pair (line, point) on the plane FP) we have

Clx) L 2, Cly) Z 2n, Cla,y) Z 3,

and for every z such that
log log
Clz]z) < (1+e)n, Clylz) < (1+€e)n (6)

log
we have C(z,y|2) < 2(1+e)n < 2.

Proof. Again, the first claim of the theorem (the values of unconditional Kolmogorov
complexity) follows from Proposition 3.2 and from typicality of (z,y). We proceed with the
second claim. From Proposition 3.4 it follows that in GE* there is a subgraph G’ = (L', R', E')
such that

|L/| —_ 2(1+e)n+0(logn)7
|R/| _ 2(1+6)n+0(logn)’ (7)
and
|El| > 2C(:L’,Mz)70(logn)' (8)

If € < 1/7, then the cardinalities of I’ and R’ are less than |F|8/7. Tt was shown in [26] that
for every subgraph G’ in GE* for a prime F satisfying the constraints

IL'["7® < |R'| < |L'[*7 and max{|L'|,|R'|} < [F*/7
we have
|E'| < (|| -|R/)"/1.

We plug in this inequality (7) and (8) and obtain

log 22 3n
Claylz) £ (1 +n <

provided that e is small enough. <

MFCS 2025
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» Corollary 3.9. For every n there exists a triple of strings (a,b,c), each one of complexity
O(n), such that there is no z satisfying

Clalz) = 1C(a)+ O(logn),
C(blz) = iC(b)+ O(logn),
C(clz) = iC(c)+ O(logn).

More precisely, for all z such that C(a|z) = 1C(a) and C(b|z) = 10(b), we have

22 1
C(clz) < ﬁC(C) + O(logn) < 50(0).
Proof. We fix an integer n and the minimal prime number p such that 2" < p < 2"*+1 and let
(z,y) be a typical edge in GEJ, as in Theorem 3.8. Then we define a :=z, b:=y, ¢:= (z,y)
and apply Theorem 3.8. <

4 Secret key agreement

In this section we study communication complexity of the protocol of unconditional (in-
formation-theoretic) secret key agreement. Let us recall the settings of the unconditional
secret key agreement. We deal with two parties, Alice and Bob. Alice and Bob receive
input data, x and y respectively. It is assumed that the mutual information between = and
y is non-negligible, and its value is known to Alice and Bob, as well as to the adversary.
Further, Alice and Bob exchange messages over a public channel and obtain (on both sides)
some string w that must be incompressible (i.e., C'(w) is close to its length) and must have
negligible mutual information with the transcript of the protocol, i.e.,

C(w | concatenation of all messages sent by Alice and Bob) =~ |w|.

Thus, Alice and Bob use the mutual information between x and y to produce a common secret
key w using a communication via a non-protected channel. The protocol succeed if Alice
and Bob obtain one and the same w, and an eavesdropper gets only negligible information
about this key, even having intercepted all messages sent to each other by Alice and Bob. In
this paper we assume that the communication protocols are deterministic. All arguments
easily extends to randomized communication protocols with a public? source of randomness
(accessible to Alice, Bob, and the eavesdropper). A more detailed discussion of the settings
of secret key agreement problem in the framework of AIT can be found in [8,21].

The optimal size of the secret key is known to be equal to the mutual information between
x and y, and communication complexity of the protocol is at most (4), see [21] (in what
follows we discuss pairs (z,y) with a symmetric complexity profile where C(x|y) = C(y|x)).

4.1 Specific input data: secret key agreement with a typical incidence
from a finite plane

Let us focus on the case where the inputs (z,y) represent a pair of typical incidences in a
projective plane over a finite field F (we denote n := [log |F|]). In this case the upper bound
(4) (which rewrites in this case to to n) is tight, the communication complexity cannot be
made better than n — O(logn), [8]. Moreover,

2 The case of private sources of randomness is a more complex setting. We leave the consideration of this
type of protocols for further research.
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(i) for every communication protocol, for its transcript ¢t we have

log log
Ct) = It z|y) +1(t:ylz) > n,

(the first inequality is known from [21] and the second one from [8]);

(ii) this bound remains valid even if the parties agree on a sub-optimal secret key of size dn
for any ¢ > 0, [8];

(i) if Alice and Bob agree on a secret key w of maximal possible size I(x : y) = n, then not
only the total communication complexity must be equal to n but actually one of the
parties (Alice or Bob) must send max{C(z|y),C(y|x)} % 1) bits of information, [3].

We summarize:
log
even for a suboptimal key size communication complexity of the protocol > n;

for an optimal key size the communication is very asymmetric — all n bits are sent by
one of the participants.
There remained a question: Does there exist a protocol with a symmetric communication
load (both Alice and Bob send = n/2 bits) with a suboptimal key size? In what follows we
show that the answer to this question depends on whether the underlying field contains a
proper subfield.

4.2 Prime field: a negative result

» Theorem 4.1. Let g be a prime number and F, be the field with q elements. Let FIP be the
projective plane over Fy, and (x,y) be a typical incidence in this plane (z is a line in this

projective plane, y is a point in this line, and C(z,y) o8 3logq). Let us denote n = [logq].
We consider communication protocols where Alice is given as her input x and Bob is
given as his input y. Assume that there exists a communication protocol where
Alice sends messages of total length (3 + €)n bits to Bob,
Bob sends messages of total length (1 + €)n bits to Alice,
at the end of the communication, Alice and Bob agree on a secret key w of length k,
satisfying C(w|t) o8 C(w) o8 k, where t is the transcript of the protocol (the sequence of
all messages exchanged between Alice and Bob during the protocol); in other words, the
protocol reveals virtually no information about the secret to the eavesdropper.
We claim that for small enough € the size of the secret key is much less than %I(w 1y, i.e.,
k< n/2.

AU

z

Figure 2 Complexity profile for (z,y, z) from Theorem 4.1, cf. Fig. 1.
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Proof. Let Alice and Bob agree on a secret key w in protocol with transcript ¢. The fact
that both Alice and Bob compute w at the end of the protocol means that C(w|t,z) and
C(w|t,y) are negligibly small. Security of the key means that I(w : t) is negligible, i.e.,
the transcript divulges virtually no information about the key. Keeping in mind these
observations, we define z = (t,w). We have C(z|z,y) = O(logn) (given both z and y, we
can simulate the protocol and compute the transcript and the key). We may assume that
log
C(t) > n (otherwise the size of the key is negligibly small, [8]). On the other hand, since
log
Alice and Bob each send at most (0.5 + €)n bits, we have C(t) < (1 + 2¢)n and, moreover,
log log
C(t|z) < (0.54 €)n and C(t|y) < (0.5 + €)n.

Kolmogorov complexity of z = (¢,w) is equal to C(t) + C(w) (the mutual information
between w and ¢ is negligible since protocol reveals no information about the secret). However,
conditional on z and conditional on y, Kolmogorov complexities of z and ¢ are essentially
the same (given the transcript ¢ and the input of one of the parties, we can obtain the secret
key w for free). It follows that

Clzz) 2 Cla,2)— C() L C@) +C(z]z) — C(2)
9B O(2) + Ct|z) — Ot w) & C(z) + C(t|z) — C(t) — C(w)

log
< M+ (05+en—n—k 15+ — k.

lo,
Similarly we obtain C(y|z) gg (1.54 €)n — k and

Cle,ylz) L Clw,y,2) —C(2) Z Cla,y) + C(z|x,y) — C(t) — Clw)
lo. °
> 30— (142 —k'%(2—2)n — k.

If we assume now that k = & £ O(en), we obtain

log log log
C(z]z) <n+0(en), Clylz) < n+ O(en), C(z,y|z) > 1.5n — O(en),
which for small enough € contradicts Theorem 3.8. |

» Remark 4.2. Theorem 4.1 states that, for the given setting, in a communication protocol in
which each party sends approximately 1C(z|y) + O(en) = 3C(y|z) + O(en) = n/2 + O(en)
bits of information, the size of the secret key cannot attain 1I(z : y) = n/2. Our proof
(application of Theorem 3.8) actually implies a stronger bound: the size of the key cannot be
greater than 3n/7 + O(en) < $1(z : y).

4.3 Field with a large subfield: a positive result

» Theorem 4.3. Let F, be a field with q elements, and q = p? for some integer p (e.g., p is
prime and q is a square of this prime number, or p = 2 and q = 22%).

Let FP be the projective plane over F,, and (x,y) be a typical incidence in this plane (z
is a line in this projective plane, y is a point in this line, and C(x,y) = 3logq + O(logn)).
We consider communication protocols where Alice is given as her input x and Bob is given as
his input y. We claim that there exists a communication protocol where

Alice sends a message ma of length n/2 bits to Bob,

Bob sends a message mp of length n/2 bits to Alice,
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then Alice and Bob compute a secret key w of length n/2 such that

Clw| (ma,ms)) = n/2,

where n = [logq], i.e., the protocol reveals virtually no information about the secret to
the eavesdropper.

Proof. A point x and a line y in the projective plane FP can be specified by their projective
coordinates (zg : x1 : x2) and (yp : y1 : y2) respectively. Without loss of generality, we
assume xg # 0 and y9 # 0 and denote

) 1= w1 /30, G 1= —w2/x0 and yo = Yo /Y2, Y1 = y1/y2.
The incidence of x and y means that zgyg + x1y1 + z2y2 = 0, or equivalently
Yo+ 71y) —ah = 0. (9)

Since ¢ = p?, the field F, contains a subfield G of size p, and there exists an element £ € F,
such that every element a € IF; can be represented as o = ag + a; - § for some ag,a; € G. So
we may represent z; and y, as follows:

vy =f4rE yo=g+t&, vy =h+sE

for some f, g, h,r,s,t €G. In this notation, (9) rewrites to

(g+1t&) + (f +7E)(h+ s€) = x5,

It follows that
zh =g+ fh+ (t+ fs+ hr)é + rsé? (10)

(The value £2 can be represented as u + v¢ for some u,v € G, but we do not need to specify
these parameters.) Let us recall that Alice knows all parameters derived from x (including
fyr,24), and Bob knows all parameters derived from y (including g, h, s,t). We use the
following protocol.

Communication protocol

Round 1 Bob sends to Alice the value m := s (this message consists of log |G| = n/2 bits
of information)

Round 2 Alice computes my := g + fh and sends it to Bob (this message also consists of
log |G| = n/2 bits of information)

Post-processing Both participants compute the value f and take it as the final result (the
secret key, which also consists of log |G| = n/2 bits of information).

> Claim 4.4. Alice has enough information to compute ms.

Proof of claim. Initially, Alice is given the values of 2} = f + r¢ and =}, = v’ + V'€, where
fyr,u/,v" are elements of G. When she receives from Bob s, she gets all information to
compute rs&? = u” 4+ v"¢ (for some u”,v"” € G). From (10) it follows that g + fh = u' —u”.

<

Alice is given the secret key f as a part of her input. Bob, however, needs to do some
computation to get this value.

84:15
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> Claim 4.5. Bob has enough information to compute the final result f.

Proof of claim. Initially, Bob was given the values g,t, h,s € G. Bob receives from Alice the
value g + fh, which is another element of the field G. This allows him to compute f as

((g+fh)—g)-n 7" <

It remains to show that we reveal no information to the eavesdropper. The adversary can
intercept the messages m; = s and mg = g + fh. We need to show that these messages give
no information about the produced secret key:

> Claim 4.6. I(f: (m1,ma2)) = O(logn).

Proof of claim. To specify the incidence (x,y), it is enough to provide the values f, g, h,r, s,t
in G. Thus, we have

Cley) = C(f,9,hs,m,1)

lo_g C(m1) + C(m2) + C(f,g,h,s,r,t|mi, ms)

L Clma) + Clma) + C(s|ma,ma) + C(f | m1,ms) + C(h)
+ C(g|my,ma, f,h) + C(r) + C(t)

loég C(m1) + C(ma) + C(f[mi,mz2) + C(h) + C(r) + C(t)

1? 5log |G| + C(f|m1,ms)

og

Sn+C(fmy1, ms)

(in this calculation, C(s|m1,mg) vanishes since m; = s, and C(g | m1,ma, f,h) vanishes
since we can compute g given f, h and the value of g + fh).

log
Since the incidence (z,y) is typical, i.e., C(x,y) o8 3n, we obtain C'(f|mi,ma) > 3.
log
Thus, C(f|m1,m2) > C(f), and the claim is proven. <
<

5 Conclusion

We have shown that the Kolmogorov complexities of a triple of correlated strings cannot,
in general, be reduced by a constant factor through conditioning. This impossibility relies
on algebraic structures arising in incidence geometry over fields without proper subfields.
Our argument connects recent advances in bounds on point-line incidences with previously
developed techniques in algorithmic information theory and communication complexity.
This suggests broader prospects for the algebraic and combinatorial methods developed
in [2,10-12,26] for studying fundamental barriers in information theory and communication
complexity. We emphasize that Question 1 on page 11 (see also [20]) remains widely open.
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