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Abstract
Many promising quantum algorithms in economics, medical science, and material science rely on
circuits that are parameterized by a large number of angles. To ensure that these algorithms are
efficient, these parameterized circuits must be heavily optimized. However, most quantum circuit
optimizers are not verified, so this procedure is known to be error-prone. For this reason, there is
growing interest in the design of equivalence checking algorithms for parameterized quantum circuits.
In this paper, we define a generalized class of parameterized circuits with arbitrary rotations and
show that this problem is decidable for cyclotomic gate sets. We propose a cutoff-based procedure
which reduces the problem of verifying the equivalence of parameterized quantum circuits to the
problem of verifying the equivalence of finitely many parameter-free quantum circuits. Because
the number of parameter-free circuits grows exponentially with the number of parameters, we
also propose a probabilistic variant of the algorithm for cases when the number of parameters is
intractably large. We show that our techniques extend to equivalence modulo global phase, and
describe an efficient angle sampling procedure for cyclotomic gate sets.
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1 Introduction

In quantum mechanics, unitary operators describe how the probability distributions of
quantum systems evolve over time. In quantum computing, primitive operators (known as
quantum gates) are composed in sequence and parallel, to create quantum circuits which
prepare quantum systems with desirable probability distributions. By sampling from these
distributions, answers can be obtained to many high-value problems, such as those from
economics [19], medical science [14,40], and material science [29]. In these algorithms, an
initial guess is made for the correct probability distribution, and then each sample is used to
further refine the distribution. To make this search tractable, the probability distributions
are sampled from a family of parameterized quantum circuits, known as ansatz circuits.

In practice, the structure of the ansatz circuit is static, so that the parameters only
vary the operators which appear within the circuits. The parameterized operators within
ansatz circuits can be understood geometrically as rotations by arbitrary angles. As a
result, the gate sets used to construct ansatz circuits are necessarily infinite. In contrast,
the gate sets implemented by real quantum computers are finite, due to limitations related
to error-correction [15]. This means that for each parameter refinement, the ansatz circuit
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must be recompiled and optimized again. However, the compilation and optimization of
quantum circuits are known to be highly error-prone [20, 50], so it is desirable to verify
both the equivalence of the optimized circuit to the original circuit, and more generally, the
correctness of each optimization. In both cases, it is necessary to reason equationally about
parameterized relations between quantum circuits.

The problem of parameterized equivalence-checking has been well-studied in the context of
distributed system. Given a set of parameters P and two programs parameterized by P , say C1
and C2, the parameterized-equivalence checking problem asks whether C1(θ) = C2(θ),∀θ ∈ P .
When P is finite, this problem can be solved by simply testing the elements of P . When
P is infinite, one approach to this problem is to find a cutoff n for which checking the
equivalence of C1 and C2 for n distinct elements of P implies the equivalence of C1 and C2
for all elements of P [16]. Formally, one tries to find an n ∈ N such that for all D ⊆ P , if
|D| ≥ n, then ∀θ ∈ D · C1(θ) = C2(θ) implies ∀θ ∈ P · C1(θ) = C2(θ). Typically, the choice
of n (and sometimes even D) will depend on both C1 and C2, and therefore this technique
requires domain-specific insights (see, e.g., [2, 22,25,27,34,45]). When n becomes intractably
large, probabilistic techniques have also been employed [13].

Cutoff-based techniques have yet to see wide application in the domain of parameterized
quantum circuit equivalence-checking. In 2020, Miller-Bakewell developed a framework which
adapts cutoff-based techniques to quantum circuits [32], though these techniques have yet
to be applied in practice. The key insight of this work was to note that parameterized
quantum circuits are analytic for realistic gate sets, and (up to a change of variable) can
often be expressed as matrices over complex Laurent polynomials. The positive and negative
degrees of these Laurent polynomials can be over-approximated in an inductive manner,
and correspond to a cutoff for parameterized verification. The main challenge in applying
the Miller-Bakewell framework is to identify an appropriate change-of-variables such that
all parameterized matrices become matrices over complex Laurent polynomials. Once this
change-of-variable has been identified, further steps may be taken, such as deriving a closed-
form equation for the cutoff. In Miller-Bakewell’s paper, the framework was applied to ZX-,
ZW-, and ZH-diagrams, though closed-form bounds were not derived.

In this paper, we propose a cutoff-based technique for quantum circuits with arbitrary
rotations with linear arguments. This technique can be understood as an instantiation
of the Miller-Bakewell framework, insofar as each parameterized circuit is realized as a
matrix over complex Laurent polynomials. However, the circuits considered in this paper
correspond to ZXW-diagrams (i.e., with matrix exponentiation) [42], which are not addressed
in Miller-Bakewell’s original work. We derive closed-form equations for these cutoffs, which
depend only on the coefficients of the parameters in the circuits. Furthermore, we provide an
alternative proof for the correctness of the Miller-Bakewell framework, which depends on the
distribution of zeros of Laurent polynomials as opposed to polynomial interpolation. This
change in perspective motivates a probabilistic variant of the Miller-Bakewell framework,
which is applicable for circuits with intractably large cutoffs.

In Sec. 3, we provide the syntax and semantics for our circuit language. In Sec. 4, we
illustrate our technique on a simple real-world example. In Sec. 5, we prove a cutoff theorem,
and propose a probabilistic variant. In Sec. 6, we identify and solve several challenges faced
when implementing this technique. All appendices can be found in the full paper [39].

2 Background

We write N for the set of natural numbers (including zero), Z for the set of integers, Q for
the set of rational numbers, R for the set of real numbers, and C for the set of complex
numbers. If z ∈ C, then z denotes the complex conjugate of z. If n ∈ N, then [n] denotes the
set {j ∈ N : 1 ≤ j ≤ n} so that [0] = ∅. If a ∈ R, then a+ = max(0, a) and a− = min(0, a).
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(a) The roots of unity in Q(ζ8). (b) Q(ζ6) = Q(ζ3) since ζ6 = −(ζ3)2.

Figure 1 Geometry of the cyclotomic numbers. The basis vectors of Q[ζn] form the vertices of a
regular n-gon on the complex unit circle, with one vertex at (1, 0).

2.1 Linear Algebra
We assume familiarity with the basics of linear algebra. Otherwise, we refer the reader to an
introductory text, such as [7]. Let M be a complex matrix. We let Mj,k denote the entry of
M in the j-th row and the k-th column. We recall the following definitions. The conjugate
of M is the matrix M such that M j,k = Mj,k. The transpose of M is the matrix MT such
that (MT )j,k = Mk,j . The adjoint of M is the matrix MT , and is denoted M†. A matrix H
is called Hermitian if H = H†. A matrix U is called unitary if U is invertible and U−1 = U†.

2.2 Algebraic Numbers and Computation
We assume the reader is familiar with field theory, as found in standard abstract algebra
textbooks, such as [17]. Let F be a subfield of K. An element α ∈ K is algebraic over F if
there exists a polynomial p ∈ F[x] such that p(α) = 0. We write F(α) to denote the smallest
subfield of K containing both F and α. If deg(p) = n, then it can be shown that the elements
of F(α) form a finite-dimensional F-vector space with basis vectors {1, α, α2, . . . , αn−1}.
Furthermore, this vector space forms an F-algebra under the multiplication of F(α). In the
case where F = Q and K = C, we say that α is an algebraic number. The field of all algebraic
numbers is denoted QAlg. Algebraic numbers are ideal from a computational perspective,
since elements from n-dimensional Q-vector spaces can be represented exactly using only
2n integers (i.e., the numerators and denominators). This is in contrast to floating-point
arithemtic, which is inherently inexact.

A special class of algebraic numbers are the cyclotomic numbers. These are solutions
to polynomial equations of the form xn − 1 = 0. In other words, each cyclotomic number
is a root of unity. We let ζn denote the primitive n-th root of unity, which can be defined
analytically as ζn = ei2π/n. For example, ζ2 = −1 and ζ4 = i. The smallest subfield of C
containing Q and all cyclotomic numbers is referred to as the universal cyclotomic field.
Many algorithms exist to work efficiently with elements of the universal cyclotomic field, such
as [10] and [11]. It is well-known that many quantum gate sets can be defined exactly using
only finite-dimensional sub-fields of the universal cyclotomic field, such as the Clifford+T gate
set [18] and its generalizations [4]. For this reason, recent work in the verification of quantum
programs has advocated for the use of cyclotomic numbers as an exact representation [6].

In this paper, we also utilize analytic properties of cyclotomic numbers. It follows
from Euler’s formula that eiθ = cos(θ) + i sin(θ). We can then think of each cyclotomic
number as a point of the complex unit circle (see Figure 1a). It follows geometrically that
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Q(ζn) = Q(ζ2n) whenever n is odd (see Figure 1b). Moreover, it can be shown by simple
algebraic manipulations that the following equations hold.

cos(θ) = eiθ + e−iθ

2 sin(θ) = eiθ − e−iθ

2i
If θ is a rational multiple of π, say (q/r)2π, this means that both cos(θ) and sin(θ) are
elements of Q(i, ζr). However, identifying roots of unity can be challenging, since not all
elements of norm 1 in the universal cyclotomic field are roots of unity. A well-known example
is (3 + 4i)/5, which has norm 1 but is not a root of unity.

2.3 Multivariate Laurent Polynomials
Let R be a ring. Then R[x1, . . . , xk] denotes the ring of multivariate polynomials with
coefficients in R and indeterminates x1 through xk. An arbitrary element f ∈ R[x1, . . . , xk] is
of the form f(x1, . . . , xk) =

∑
t∈T (at

∏k
j=1 xj

tj ) for some finite T ⊆ Nk \{0}k with a non-zero
sequence {at}t∈T over R. We write degxj

(f) for the degree of f in variable xj and deg(f) for
the total degree of f , where degxj

(f) = max{tj : t ∈ T} and deg(f) = max{
∑k

j=1 tj : t ∈ T}.
When R is an integral domain, the following hold for all f, g ∈ R[x1, . . . , xk] and j ∈ [k].

degxj
(fg) = degxj

(f) + degxj
(g) deg(fg) = deg(f) + deg(g)

degxj
(f + g) ≤ max{degxj

(f),degxj
(g)} deg(f + g) ≤ max{deg(f),deg(g)}

It is well known that when k = 1 and R is an integral domain, either f = 0 or f has at
most deg(f) zeros. A consequence is that for any S ⊆ R, if f ̸= 0 and |S| > degx1(f), then
there exists an s ∈ S such f(s) ̸= 0. Moreover, if s is sampled uniformly from S, then
Pr(f(x) = 0) ≤ deg(f)/|S|. The latter two remarks generalize to multivariate polynomials.
Further generalization to Laurent polynomials are possible, by clearing the denominators.

▶ Theorem 2.1 (Combinatorial Nullstellensatz [3]). Let F be a field and f a polynomial in
F[x1, x2, . . . , xk] with total degree d1 + d2 + · · · + dk such that the coefficient of

∏k
j=1 x

dj

j is
nonzero in f . If S1, S2, . . . , Sk are subsets of F with |Sj | > dj for each j, then there exists
x ∈ S1 × S2 × · · · × Sk such that f(x) ̸= 0.

▶ Theorem 2.2 (DeMillo–Lipton–Schwartz–Zippel Lemma [13,41,51]). Let R be an integral
domain and f ∈ R[x1, x2, . . . , xk] a polynomial with total degree d. For each finite subset S
of R, if s1, s2, . . . , sk are sampled at random, both independently and uniformly from S, then
Pr(f(s1, s2, . . . , sk) = 0) ≤ d/|S|.

We can further generalize multivariate polynomials to multivariate Laurent polynomials,
denoted R[x1, x

−1
1 , . . . , xk, x

−1
k ]. In this setting, T ⊆ Zk, so that powers may be positive

or negative. For example, f(x1, x2) = x1x2 − x−3
1 + 5 is a Laurent polynomial from

Z[x1, x
−1
1 , x2, x

−1
2 ]. Since the exponents in a Laurent polynomial may be both positive and

negative, each Laurent polynomial has both positive and negative degrees. We write deg+
xj

(f)
for the positive degree of f in variable xj and deg−

xj
for the negative degree of f in variable

xj , where deg+
xj

(f) = max{t+j : t ∈ T} and deg−
xj

(f) = max{−t−j : t ∈ T}. Similarly, the
total positive degree of f is deg+(f) = max{

∑k
j=1 t

+
j : t ∈ T}.

3 A Syntax and Semantics for Parameterized Circuits

This section begins by reviewing quantum states, quantum operators, and their composition,
as in [35, Ch. 4]. This background material is then used to give syntax and parameterized
semantics for quantum circuits with arbitrary gates, and rotations around arbitrary axes.
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3.1 Quantum States
The primitive unit of information in quantum computing is the qubit. As in classical
computing, a qubit can be in the states zero and one, denoted |0⟩ and |1⟩. However, a
qubit may also be in a superposition of the states |0⟩ and |1⟩. Formally, this means that
the state of a qubit |ψ⟩ can be described as α |0⟩ + β |1⟩ for any α ∈ C and β ∈ C satisfying
|α|2 + |β|2 = 1. To simplify calculations, we think of |0⟩ and |1⟩ as the standard basis vectors
for C2 to obtain the following vector equation: |ψ⟩ = α |0⟩ + β |1⟩ = α

[
1
0

]
+ β

[
0
1

]
=

[ α
β

]
.

Of course, the quantum algorithms described in the introduction of this paper require
more than a single qubit of information. Given an n-qubit quantum system, there are clearly
2n possible basis states. For example, when n = 2, these are |00⟩, |01⟩, |10⟩, and |11⟩. As
before, an n-qubit quantum system may also be in an arbitrary superposition of these basis
states with the modulus-squared of the coefficients summing to 1. For example, an arbitrary
2-qubit quantum system has state |ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + ρ |11⟩ for any α, β, γ, ρ ∈ C
satisfying |α|2 + |β|2 + |γ|2 + |ρ|2 = 1. This means that the states of an n-qubit quantum
system correspond to the unit vectors in C2n .

3.2 Quantum Operations
A quantum program evolves the state of a quantum system, after which all qubits are
measured. Given a quantum state |ψ⟩ =

∑2n

j=1 αj |j⟩, the probability of observing state |j⟩ is
|αj |2. Then the paradigm of quantum computing is to construct an n-qubit quantum system
whose probability distribution assigns high probability to the correct output.

The evolution of a quantum system is described by a linear transformation of its state
space. Since the laws of physics are reversible, then this transformation must be invertible.
Moreover, the inverse of this transformation should be its conjugate transpose. This means
that operations on n-qubit systems correspond to unitary matrices. Given an n-qubit state
|ψ⟩ and an (2n) × (2n) dimensional matrix M , the state obtained by applying M to |ψ⟩ is
M |ψ⟩. For example, the following four matrices are unitary operations on a qubit.

I =
[
1 0
0 1

]
X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
Y =

[
0 −i
i 0

]
The matrix I corresponds to a no-op and the matrix X corresponds to a not gate. The
matrix Z can be understood as adjusting the coefficient of |1⟩ by a factor of (−1). This has
no classical analogue. The gate Y is equal to (−iZ)X, and therefore, corresponds to a not
gate followed by some non-classical operation.

An important construct in classical computing is the if-then statement. This can be
generalized to quantum computing as follows. Let M be a unitary transformation on an
n-qubit quantum system. Then there exists a unitary transformation I2n ⊕M on an (n+ 1)-
qubit quantum system, such that I2n ⊕M applies M to the last n qubits of a basis state if
and only if the first qubit of the basis is in state |1⟩. Formally, I2n is the (2n) × (2n) identity
matrix, and I2n ⊕ M is the direct sum of I2n with M . In terms of matrices, I2n ⊕ M is
simply the block diagonal matrix with blocks I2n and M , as shown below.

I2n ⊕M =
[
I2n 0
0 M

]
I2 ⊕X =

[
I2 0
0 X

]
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The matrix for I2 ⊕X, known as a cnot gate, is given above. This generalizes the classical
conditional statement: if the first bit is in state |1⟩, then apply a not gate to the second bit.

MFCS 2025
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So far, all of the operations discussed are parameter-free. However, quantum algorithms
also make use of rotation gates, which are parameterized by an angle of rotation. As the
name suggests, a rotation gate is defined by its axis-of-rotation. Formally, each axis M is a
Hermitian unitary matrix. Then one can define, as a generalization of Euler’s formula, the
rotation RM (θ) as follows.

RM (θ) = e−iMθ/2 =
∞∑

n=0

(−iMθ/2)n

n! = cos(−θ/2)I + i sin(−θ/2)M

This definition can be extended to k parameters by taking any transformation f : Rk → R.
For example, given f(θ1, θ2) = θ1 + θ2, we can define a two parameter rotation RM (f) where
RM (f)(θ1, θ2) = RM (f(θ1, θ2)) = RM (θ1 + θ2). In this work, we consider the family F of
k-variable rational-linear functions with affine translations by rational multiples of π. That
is, the set F is defined to be {f(θ) = a1θ1 + a2θ2 + · · · + akθk + qπ | a1, a2, . . . , ak, q ∈ Q}.

The most common rotations in quantum circuits are the I-, X-, Y -, and Z-rotations.
However, there are many single qubit rotations not of this form. For example, given any
coefficients α, β, γ ∈ R, if α2 + β2 + γ2 = 1, the matrix αX + βY + γZ is also a Hermitian
unitary matrix. Note that the matrix RI(−2θ) is typically referred to as a global phase gate,
rather than an I-rotation.

▶ Example 3.1 (Real Amplitude Ansatz Circuit). In quantum machine learning, convolutional
layers are often implemented using the real amplitude ansatz circuit [1, 5, 26, 31, 48]. This
circuit is composed from one or more layers of Z-rotations, each followed by a layer of
controlled-not gates. Since Z-rotations do not commute with the targets of controlled-not
gates, then these layers can interact in non-trivial ways. The choice of parameter to each
Z-rotation is treated as a weight in the quantum machine learning model.

3.3 Composing Quantum Operations

Just like classical operations, quantum operations can also be composed in sequence and in
parallel. Of the two, sequential composition is the simplest to describe. Assume that both M
and N are operations on an n-qubit quantum system. If N is applied to an n-qubit system
|ψ⟩, then the state N |ψ⟩ is obtained. If M is then applied to this intermediate state, then
the state M(N |ψ⟩) is obtained. This is equivalent to applying MN to |ψ⟩. In other words,
the sequential composition of quantum operations corresponds to matrix multiplication.

Now let M denote a quantum operation on an m-qubit quantum system and N denote a
quantum operation on an n-qubit quantum system. Intuitively, the parallel composition of
M and N should act on the first m-qubits by M , and the last n-qubits by N . However, this
composition must also respect superposition, through a property known an bilinearity. To
compute this new operation, the Kronecker tensor product is required, which is denoted ⊗
and defined as follows for matrices of any dimension.

c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n

...
...

. . .
...

cm,1 cm,2 · · · cm,n

 ⊗M =


c1,1M c1,2M · · · c1,nM

c2,1M c2,2M · · · c2,nM
...

...
. . .

...
cm,1M cm,2M · · · cm,nM


It follows that (M ⊗N)(|ψ⟩ ⊗ |φ⟩) = (M |ϕ⟩) ⊗ (N |φ⟩) as desired.
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G

(a) G ∈ G.

G

(b) C(G).

RH(f(θ))

(c) RH(f).

C1

C2

(d) C1//C2.

C1 C2

(e) C2 ◦ C1.

Figure 2 The graphical language for circuits in Circ(G, H).

3.4 Quantum Circuits
Quantum circuits are constructed from primitive gates, under sequential and parallel compos-
ition. In this section, we first define what we take to be primitive gates, and then define what
it means to be a circuit over this gate set. The distinction between syntax and semantics is
emphasized. In both cases, we introduce inductive principles which will be used later in this
paper. Formally, these circuits correspond to diagrams in a certain PROP category [8], with
semantics given functorially [28], though this is only used to prove the inductive principles
used throughout the paper, and to establish that our semantics and circuit transformations
are well-defined (see the full paper for more details).

In what follows, C(−) is a function symbol used to denote conditional control. A gate
set is a collection of basic gates, closed under conditional control. A basic gate is a complex
matrix (e.g. unitary operations, state preparation, post-selection) or parameterized rotation.
Formally, we take some set G of complex matrices and some set H of Hermitian unitary
matrices. The associated gate set, denoted Σ(G,H) is defined inductively as follows.

If G ∈ G, then G ∈ Σ(G,H).
If M ∈ H, then RM (f) ∈ Σ(G,H) for each parameterization f ∈ F .
If G ∈ Σ(G,H) and G is unitary, then C(G) ∈ Σ(G,H).

We let in(−) and out(−) denote the input and output arities of these gates, which are defined
as follows.

If G ∈ G is (2n) × (2m), then in(G) = n and out(G) = m.
If M ∈ H is (2n) × (2n) and f ∈ F , then in(RM (f)) = out(RM (f)) = n.
If G ∈ Σ(G,H), then in(C(G)) = in(G) + 1 and out(C(G)) = out(G) + 1.

We let [[−]] denote the parameterized semantics of each gate, which are defined as expected.
If G ∈ G, then [[G]](θ) = G.
If M ∈ H and f ∈ F , then [[RM (f)]](θ) = cos(−f(θ)/2)I + i sin(−f(θ)/2)M .
If G ∈ Σ(G,H) with G an (2n) × (2n) unitary, then [[C(G)]](θ) = I2n ⊕ [[G]](θ).

Since this gate set is defined inductively, then to prove that every gate satisfies a predicate
P , it suffices to use well-founded induction (see the full paper).

▶ Proposition 3.2. Assume that a predicate P on Σ(G,H) satisfies the following.
Base Case (1). ∀G ∈ G, P (G).
Base Case (2). ∀M ∈ H,∀f ∈ F , P (RM (f)).
Control Induction. ∀G ∈ Σ(G,H), G unitary and P (G) implies P (C(G)).

Then P (G) holds for each G ∈ Σ(G,H).

Circuits are then constructed from the elements of Σ(G,H) through sequential and parallel
composition. We let (◦) denote sequential composition and (//) denote parallel composition,
to distinguish between syntactic compositions and their semantic counterparts. Of course,
sequential composition requires that the outputs of the first sub-circuit matches the inputs
of the second sub-circuit. To handle this, we extend in(−) and out(−) as follows.

in(C1//C2) = in(C1) + in(C2) and out(C1//C2) = out(C1) + out(C2).
in(C2 ◦ C1) = in(C1) and out(C2 ◦ C1) = out(C2).

MFCS 2025
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RZ(2θ)
=

RZ(θ) RZ(−θ)

Figure 3 A parameterized equality used to compile controlled rotations.

Then Circ(G,H), the family of circuits over the gate set Σ(G,H), is defined inductively as
follows where ϵ denotes the empty wire with in(ϵ) = out(ϵ) = 1.

If C ∈ Σ(G,H), then C ∈ Circ(G,H).
If C1, C2 ∈ Circ(G,H), then C1//C2 ∈ Circ(G,H).
If C1, C2 ∈ Circ(G,H) and in(C2) = out(C1), then C2 ◦ C1 ∈ Circ(G,H).

A graphical language for Circ(G,H) is given in Figure 2. The semantic map [[−]] extends to
these circuits as expected: [[C2//C1]](θ) = [[C2]](θ)⊗[[C1]](θ), [[C2◦C1]](θ) = ([[C2]](θ))([[C1]](θ)),
and [[ϵ]] = I2. As with quantum gates, an inductive principle also holds for quantum circuits.

▶ Proposition 3.3. Assume that a predicate P on Circ(G,H) satisfies the following.
Base Case (1). P (ϵ).
Base Case (2). ∀G ∈ Σ(G,H), P (G).
Parallel Induction. If C1, C2 ∈ Circ(G,H) such that P (C1) and P (C2), then P (C1//C2).
Sequential Induction. If C1, C2 ∈ Circ(G,H) such that in(C2) = out(C1) with P (C1)
and P (C2), then P (C2 ◦ C1).

Then P (C) holds for each C ∈ Circ(G,H).

4 A Motivating Example: Circuit Compilation

We now discuss the verification of a concrete circuit equation. The example is simple but
illustrative of the techniques we will develop in the next section. Consider the equation in
Figure 3. A naive approach to establishing this equation is to evaluate the right-hand side to
obtain the following operator.

(I ⊕X)(I ⊗RZ(−θ))(I ⊕X)(I ⊗RZ(θ)) =
[
RZ(−θ)RZ(θ) 0

0 XRZ(−θ)XRZ (θ)

]
Then, by further simplification, we obtain the following equations.

RZ(−θ)RZ(θ) =
[
e−iθ/2eiθ/2 0

0 eiθ/2e−iθ/2

]
XRZ(−θ)XRZ(θ) =

[
e−iθ/2e−iθ/2 0

0 eiθ/2eiθ/2

]
Using the identities eaeb = ea+b and e0 = 1, it then follows that XRZ(−θ)XRZ(θ) = RZ(2θ)
and RZ(−θ)RZ(θ) = I. Consequently,

(I ⊕X)(I ⊗RZ(−θ))(I ⊕X)(I ⊗RZ(θ)) =
[
I 0
0 RZ(2θ)

]
= (I ⊕RZ(2θ)).

This establishes the equation in Figure 3 for all choices of θ. However, this proof depends on
the parameterized equations ea+b = eaeb and e0 = 1. In general, it is challenging to find a
complete set of parameterized relations for a parameterized gate set [33]. Moreover, given an
arbitrary set of complete relations, the problem of deciding if two expressions are equivalent
is known to be undecidable [36]. For these reasons, we adopt a different approach.

A perhaps surprising result is that all parameterized circuit equalities can be established
by checking only a finite number of rotation angles. In other words, if the equality in Figure 3
did not hold, then a counterexample could be found by checking only a fixed number of
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instances. To do this, we first convert the equality into a family of polynomials, such that
the equality holds if and only if all of the polynomials are identically zero. We then find an
integer n such that each of the polynomials has degree at most n. Since non-zero polynomials
of degree n have at most n roots, then either the polynomial is zero and will evaluate to zero
on n+ 1 angles, or the polynomial is non-zero and at least one of the n+ 1 angles yields a
non-zero result.

To obtain the desired polynomials, we apply the change-of-variable e−iθ/2 7→ z. Under
this change of variable, the following equalities hold.

RZ(−θ)RZ(θ) =
[
z−1z 0

0 zz−1

]
=

[
1 0
0 1

]
= z−2

[
z2 0
0 z2

]
XRZ(−θ)XRZ(θ) =

[
z−1z−1 0

0 zz

]
=

[
z−2 0
0 z2

]
= z−2

[
1 0
0 z4

]
Continuing in this fashion, we can find that each matrix entry on the left-hand side or
the right-hand side of Figure 3 has degree at most four. Then the difference between the
left-hand side and the right-hand side also has degree at most four. Note that the z−2

terms correspond to a removable singularity at z = 0, which does not fall on the complex
unit circle, and can be safely ignored. Since degree four polynomials have at most four
roots, then it suffices to check the equality in Figure 3 using only 5 angles from [0, 4π).
For example, consider the five angles θj = jπ/2 for 0 ≤ j ≤ 4. It is easily verified that
(I ⊕ RZ(2θj)) = (I ⊕ X)(I ⊗ RZ(−θj))(I ⊕ X)(I ⊗ RZ(θj)) for all 0 ≤ j ≤ 4. Then
f(θ) = (I ⊕RZ(2θ)) − (I ⊕X)(I ⊗RZ(−θ))(I ⊕X)(I ⊗RZ(θ)) has at least five roots. Since
each entry of f(θ) has degree at most four, then f is identically zero and Figure 3 must hold.
Note that the angles were sampled from [0, 4π) since e−iθj/2 has period 4π.

While this example was admittedly simplistic, we will see in the next section, that the
technique generalizes to all parameterized circuits. In particular, just as in this example, we
will see that computing the polynomials is inconsequential. Instead, it will suffice to find an
efficient procedure which provides a reason bound on each degree.

5 Equivalence Checking Techniques

In this section, we consider parameterized quantum circuits where all coefficients are from Z,
rather than Q. We denote these circuits CircZ(G,H). It is first shown that up to a change of
variable, these circuits admit semantics as matrices over the ring of Laurent polynomials
C[z1, z

−1
1 , . . . , zk, z

−1
k ]. This is then combined with Thm. 2.1 to establish a cutoff-based

equivalence checking theorem for these circuits. Using Thm. 2.2, a probabilistic variant is
also obtained. In Sec. 6, we show how these results generalize back to parameterized circuits
with rational coefficients.

5.1 Polynomial Semantics
This section shows that, up to a change of variable, each circuit Circ(G,H) has semantics
given by a matrix with entries corresponding to complex Laurent polynomials. Moreover,
these polynomials are shown to have degrees bounded by certain sums of the coefficients
which appear in the circuit. It follows that the techniques used in Sec. 4 can be generalized
to all integral circuits in CircZ(G,H).

As a first step, a new semantic interpretation [[−]]Poly is provided for CircZ(G,H), which
interprets each circuit in CircZ(G,H) as a polynomial over C[z1, z

−1
1 , . . . , zk, z

−1
k ]. Since

parameters only appear in trigonometric terms, then a first step is to give Laurent polynomi-
als which abstract the trigonometric terms. Let α ∈ Zk, q ∈ Q, and f(θ) = α1θ1+· · ·αkθk +q.
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cos
(

−f(θ)
2

)
= ei(−f(θ)/2) + e−i(−f(θ)/2)

2 = e−iq/2

2

k∏
j=1

(
e−iθj/2

)aj

+ eiq/2

2

k∏
j=1

(
eiθj/2

)aj

sin
(

−f(θ)
2

)
= ei(−f(θ)/2) − e−i(−f(θ)/2)

2i = e−iq/2

2i

k∏
j=1

(
e−iθj/2

)aj

− eiq/2

2i

k∏
j=1

(
eiθj/2

)aj

By substituting zj = e−iθj/2 for each j ∈ [k] and letting c = e−iq/2, the following Laurent
polynomials are obtained.

CPoly(f) = c

2

k∏
j=1

z
αj

j + 1
2c

k∏
j=1

z
−αj

j SPoly(f) = −ic
2

k∏
j=1

z
αj

j + i

2c

k∏
j=1

z
−αj

j

Then the following equations hold by construction.

CPoly(f)
(
e−iθ1/2, . . . , e−iθk/2

)
= e−iq/2

2

k∏
j=1

(
e−iθj/2

)aj

+ eiq/2

2

k∏
j=1

(
eiθj/2

)aj

= cos
(

−f(θ)
2

)

SPoly(f)
(
e−iθ1/2, . . . , e−iθk/2

)
= e−iq/2

2i

k∏
j=1

(
e−iθj/2

)aj

− eiq/2

2i

k∏
j=1

(
eiθj/2

)aj

= sin
(

−f(θ)
2

)
Given these polynomials, [[−]]Poly is defined inductively on the gates as follows.

If G ∈ G, then [[G]]Poly = G.
If M ∈ H and f ∈ F , then [[RM (f)]]Poly = CPoly(f)I + iSPoly(f)M .
If G ∈ Σ(G,H) with G an (2n) × (2n) unitary, then [[C(G)]]Poly = I2n ⊕ [[G]]Poly.

The semantics extend as expected to sequential and parallel composition. This makes precise
the change of variable used in Sec. 4.

▶ Definition 5.1 (Polynomial Abstraction). A polynomial abstraction is a function [[−]]∗ from
CircZ(G,H) to collection of matrices over C[z1, z

−1
1 , . . . , zk, z

−1
k ] such that [[C]](θ1, . . . , θk) =

[[C]]∗
(
e−iθ1/2, . . . , e−iθk/2)

for all C ∈ CircZ(G,H).

▶ Theorem 5.2. [[−]]Poly is a polynomial abstraction.

▶ Example 5.3 (Polynomial Semantics). The calculations from Sec. 4 can be revisited from
the perspective of polynomial semantics. Of course, the circuit in Figure 3 is somewhat
uninteresting, since the circuit has only one parameter. Instead, we will consider a new
circuit with two parameters ρ1 and ρ2 obtained through the substitution θ = f(ρ1, ρ2) where
f(ρ1, ρ2) = ρ1 − 2ρ2. The sine and cosine polynomials for f are as follows.

CPoly(f) = 1
2z1z

−2
2 + 1

2z
−1
1 z2

2 SPoly(f) = −i
2 z1z

−2
2 + i

2z
−1
1 z2

2

Then CPoly(f) + i SPoly(f) = z1z
−2
2 and CPoly(f) − i SPoly(f) = z−1

1 z2
2 . Let C1 denote the

right-hand side of the equation in Figure 3. To compute [[C1]]Poly, we start by evaluating each
gate. Clearly [[C(X)]]Poly = I2 ⊕X. Moreover,

[[ϵ//RZ(f)]]Poly = I2 ⊗ [[RZ(f)]]Poly = I2 ⊗
[
z1z

−2
2 0

0 z−1
1 z2

2

]
,

[[ϵ//RZ(−f)]]Poly = I2 ⊗ [[RZ(−f)]]Poly = I2 ⊗
[
z−1

1 z2
2 0

0 z1z
−2
2

]
.
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It follows by calculations similar to those in Sec. 4 that,

[[C1]]Poly = [[C(X)]]Poly[[ϵ//RZ(−f)]]Poly[[C(X)]]Poly[[ϵ//RZ(f)]]Poly = I2 ⊕
[
z−2

1 z4
2 0

0 z2
1z

−4
2

]
.

Then [[C1]]Poly(e−iρ1/2, e−iρ2/2) = I ⊕RZ(2f(ρ1, ρ2)) = [[C1]](ρ1, ρ2) as expected. ⌟

To check that [[C1]] = [[C2]], it suffices to check symbolically that [[C1]]Poly = [[C2]]Poly.
However, it is often too computationally expensive to compute the polynomials explicitly.
Instead, one could first upper-bound the degree of each polynomial, and then combine these
degree bounds with the theorems of Sec. 2.3. It is not hard to see that for each component
of [[RH(f)]]Poly, its degrees are all bounded by the coefficients of f . This property extends to
all circuits in CircZ(G,H) by studying their coefficient sequences. Intuitively, the coefficient
sequence of a circuit C is a sequence A(C) over Qk such that A(C)j is the list of coefficients
for the j-th rotation in C. More formally, let (Qk)∗ denote the set of all finite sequences over
Qk and (·) denote sequence concatenation. Then A(−) is defined inductively as follows.

If G ∈ G, then A(G) = ϵ.
If M ∈ H and f(θ) = a1θ1 + · · · + akθk + q, then A(RM (f)) = ((a1, . . . , ak)).
If G ∈ Σ(G,H), then A(C(G)) = A(G).
If C1, C2 ∈ Circ(G,H), then A(C1//C2) = A(C1) ·A(C2).
If C1, C2 ∈ Circ(G,H) and in(C2) = out(C1), then A(C2 ◦ C1) = A(C2) ·A(C1).

Then CircZ(G,H) is precisely the set of circuits in CircZ(G,H) such that A(C) ∈ (Zk)∗. We
define ΣZ(G,H) analogously. The following definition generalizes the coefficient bound of the
degree of a gate to a coefficient bound on the degree of all circuits.

▶ Definition 5.4 (Coefficient Bounded Semantics). Let [[−]]∗ be a polynomial abstraction. A
circuit C ∈ Circ(G,H) with in(C) = n and out(C) = m is coefficient bounded with respect to
[[−]]∗, denoted Bnd∗(C), if for each s ∈ [2n] and t ∈ [2m] with f = ([[C]]∗)s,t,

(B1). deg+
zj

(f) ≤
∑

a∈A(C) |aj | for each j ∈ [k],
(B2). deg−

zj
(f) ≤

∑
a∈A(C) |aj | for each j ∈ [k],

(B3). deg+(f) ≤
∑

a∈A(C) κ(a) where κ(a) = max{
∑k

j=1 a
+
j ,

∑k
j=1 −a−

j }.

▶ Example 5.5 (Coefficient Bounded Semantics). Recall C1 from Ex. 5.3. It will be shown that
BndPoly(C1) holds. First, the coefficient sequence of C1 must be computed. As illustrated
in the previous example, C1 contains only the rotations: R1 = C(RZ(−ρ1 + 2ρ2)) and
R2 = C(RZ(ρ1 − 2ρ2)). The coefficient sequences of these rotations are β = (−1, 2) and
γ = (1,−2) respectively. Then A(C2) = A(R1) · A(R2) = (β) · (γ) = (β, γ). Moreover,
κ(β) = max{0 + 2, 1 + 0} = 2 and κ(γ) = max{1 + 0, 0 + 2} = 2. By inspecting the matrices
in Ex. 5.3, it is clear that the following bounds hold for all j ∈ [2] and s, t ∈ [4].

deg+
zj

(([[R1]]Poly)s,t) ≤ |βj | deg−
zj

(([[R1]]Poly)s,t) ≤ |βj | deg+(([[R1]]Poly)s,t) ≤ κ(β)

deg+
zj

(([[R2]]Poly)s,t) ≤ |γj | deg−
zj

(([[R2]]Poly)s,t) ≤ |γj | deg+(([[R2]]Poly)s,t) ≤ κ(γ)

The κ terms can be thought of as adding together the maximum positive degrees of the
two terms in each sine or cosine polynomial It turns out that these bounds compose ad-
ditively under the composition of matrices, motivating properties (B1) through to (B3).
In this example

∑
α∈A(C1) |α1| = | − 1| + |1| = 2,

∑
α∈A(C1) |α2| = |2| + | − 2| = 4, and∑

α∈A(C1) κ(α) = 2 + 2 = 4 By inspecting the final matrix in Ex. 5.3, it is clear that the
following bounds hold for all s, t ∈ [4] where f = ([[C1]]Poly)s,t.

deg+
z1

(f) ≤ 2 deg−
z1

(f) ≤ 2 deg+
z2

(f) ≤ 4 deg−
z2

(f) ≤ 4 deg+(f) ≤ 4

Then C1 satisfies (B1) through to (B3). Therefore, BndPoly(C1) holds ⌟
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RX(θ1 + 2θ2)

RX(−θ2)

(a) The circuit for α = ((1, 2), (0, −1)).

RX(nθ) Z RX(nθ)

(b) (RX(nθ)) ◦ Z ◦ (RX(nθ)).

Figure 4 Circuits used in Ex. 5.8 and Ex. 5.9 to illustrate the precision of Bnd(−).

This rationale given in Ex. 5.5 extends to all circuits in CircZ(G,H). Since primitive gates
map to constant matrices, then they trivially satisfy BndPoly(−). By construction of CPoly(f)
and SPoly(f), then rotation matrices also satisfy BndPoly(−). It is then easy to show, using
Prop. 3.2, that every gate in ΣZ(G,H) satisfies BndPoly(−). With a slightly more careful
analysis, it can then be shown that this invariant is closed under sequential and parallel
composition. Intuitively, both matrix multiplication and the Kronecker tensor product yields
sums of products of polynomials, in which each term can be shown to satisfy the degree
bounds. Then by Prop. 3.3, every circuit in CircZ(G,H) also satisfies BndPoly(−). Given
these coefficient bounded semantics, the singularity factoring techniques of Sec. 4 can then
be applied to obtain Cor. 5.7. All proof details can be found in the full paper.

▶ Theorem 5.6. If C ∈ CircZ(G,H), then BndPoly(C).

▶ Corollary 5.7. If C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2) = n and
out(C1) = out(C2) = m, then for each pair of indices s ∈ [2n] and t ∈ [2m], there exists a
polynomial f ∈ C[x1, . . . , xk] such that,

(D1). degxj
(f) ≤ 2λj for each j ∈ [k],

(D2). deg(f) ≤ max{
∑

a∈A(C) κ(a) : C ∈ {C1, C2}} +
∑k

j=1 λj,
(D3). ([[C1]] − [[C2]])s,t (θ) = 0 if and only if f(e−iθ1/2, . . . , e−iθk/2) = 0,

where λj = max{
∑

a∈A(C) |aj | : C ∈ {C1, C2}} for each j ∈ [k].

An interesting observation is that the bounds obtained through Thm. 5.6 were tight
in Ex. 5.5. A natural question is whether these bounds are always tight, with respect to
the granularity of the abstraction. We answer this question in the positive, by showing
that for each coefficient sequence α, there exists a circuit C with A(C) = α such that the
corresponding bound is tight. Of course, it is not possible to reconstruct a circuit from its
coefficient sequence, so some information must be lost. To this end, we exhibit a family of
circuits in Ex. 5.9, each of degree zero, for which arbitrarily large bounds can be obtained.
In this example, relations exist between the rotations that depend on the axes-of-rotation
and the parameter-free gates in the circuit, both of which are not captured by the coefficient
sequence. In particular, both examples rely on the relations (RX(β))(RX(γ)) = RX(β + γ)
and Z(RX(β)) = (RX(−β))Z.

▶ Example 5.8 (Necessary Bounds). Let α be any sequence over Zk with |α| = n. For each j ∈
[n], define a linear function fj(θ) = (αj)1θ1 + · · · + (αj)kθk and a rotation gate Gj = RX(fj).
Now consider the circuit C = G1// · · · //Gn (see Figure 4a). It follows that A(C) = α.
Moreover, ([[C]](θ))0,0 =

∏n
j=1 cos(fj(θ)/2). With regard to the polynomial semantics,

[[C]]Poly = 2−n
∏

a∈α(
∏k

j=1 z
aj

k −
∏k

j=1 z
−aj

k ). Clearly deg+
xj

(([[C]]Poly)0,0) =
∑

a∈α |aj | and
deg−

xj
(g) =

∑
a∈α |aj | for each j ∈ [k]. Then BndPoly(C) is tight. Since α was arbitrary, then

every coefficient sequence is realizable with tight bounds. ⌟

▶ Example 5.9 (Impact of Circuit Relations). Fix k = 1 as the number of parameters and
let n ∈ N. Consider the circuit C = RX(nθ) ◦ Z ◦ RX(nθ), as illustrated in Figure 4b. It
follows that [[C]](θ) = (RX(nθ))Z(RX(nθ)) = (RX(nθ))(RX(−nθ))Z = RX(0)Z = Z. Since
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[[C]](θ) is constant, its associated polynomials have degree zero. However, BndPoly(C) yields
an upper bound of

∑
a∈A(C) |a1| = |n| + |n| = 2n, which exceeds the true degree by 2n. Since

n was arbitrary, this error can be made arbitrarily large. ⌟

5.2 A Cutoff Theorem for Parameterized Equivalence
This section shows that parameterized equivalence checking reduces to parameter-free equival-
ence checking for quantum circuits (Thm. 5.10). The proof proceeds as follows. First, Cor. 5.7
is used to characterize a family of polynomials which are identically zero if and only if the
two circuits are equal. Using Thm. 2.1, a finite set of points S ⊆ Qk can be constructed to
determine if these polynomials are identically zero. The points in S are in bijection with a
set of points on the complex unit circle under the transformation x 7→ e−ix/2. It follows that
each polynomial is identically zero if and only if [[C1]](s) = [[C2]](s) for all points s ∈ S. Note
that the polynomials are never explicitly constructed. All proof details are in the full paper.

▶ Theorem 5.10. Let C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2) and
out(C1) = out(C2). If S1, S2, . . . , Sk ⊆ [0, 4π) such that |Sj | > 2λj for each j ∈ [k], then
[[C1]](θ) = [[C2]](θ) for all θ ∈ Rk if and only if [[C1]](v) = [[C2]](v) for all v ∈ S1 ×S2 ×· · ·×Sk.

▶ Corollary 5.11. If G and H consist of matrices over the universal cyclotomic field, then
the parameterized equivalence checking problem is decidable for CircZ(G,H).

As k grows large, the utility of Thm. 5.10 decreases. For example, if each λj is b, then
|S1 × · · · × Sk| = (2b + 1)k. That is, the number of instances grows exponentially with k.
However, this exponential growth can be overcome by a probabilistic algorithm. Fix a finite
subset S of [0, 4π)k and assume that s is chosen at random from S. If [[C1]](s) = [[C2]](s),
then conclude that [[C1]] = [[C2]], otherwise conclude that [[C2]] ̸= [[C2]]. Clearly, this algorithm
has no false negatives, since [[C1]](s) ̸= [[C2]](s) implies [[C2]] ̸= [[C2]]. A more interesting
question is the false positive rate. Note that a false positive occurs when [[C1]](s) = [[C2]](s)
but [[C1]] ̸= [[C2]]. It is shown in the following theorem that the probability of a false positive
decreases with order O(1/|S|), as an application of Thm. 2.2.

▶ Theorem 5.12. Let C1 ∈ CircZ(G,H) and C2 ∈ CircZ(G,H) with in(C1) = in(C2),
out(C1) = out(C2), and [[C1]] ̸= [[C2]]. For each finite subset S ⊆ [0, 4π), if s1, . . . , sk

are sampled at random both independently and uniformly from S, then

Pr ([[C1]](s1, . . . , sk) = [[C2]](s1, . . . , sk)) ≤ d/|S|

where d = max{
∑

α∈A(C) κ(α) : C ∈ {C1, C2}} +
∑k

j=1 λj.

6 Extending to Rational Coefficients and Global Phase

The methods presented in Sec. 5 face several limitations. In particular, both Thm. 5.10 and
Thm. 5.12 assume that the circuits are integral, and do not allow for equivalence up to global
phase. In this section, we show how to extend the techniques of Sec. 5 to handle rational
circuits and global phase. We also expand Thm. 5.12 into an algorithm, and consider the
problem of angle sampling given a gate set over the universal cyclotomic field.

6.1 Verifying Circuits with Rational Coefficients
Most parameterized quantum circuits have fractional coefficients. For example, the equality
in Figure 3 is typically stated with a parameter θ on the left-hand side and the parameters
±θ/2 on the right-hand side. The circuits in Figure 3 are related to these fractional circuits
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by the substitution f(θ) = θ/2. Conceptually, f : Rk → Rk reparameterizes the circuit, by
inducing a bijection between the parameter space of the rational circuits and the parameter
space of the integral circuits. This generalizes to all examples (see the full paper for proofs).

▶ Lemma 6.1. Let C1, C2 ∈ Circ(G,H). If f : Rk → Rk is a bijective function, then
[[C1]] = [[C2]] if and only if [[C1]] ◦ f = [[C2]] ◦ f .

The goal of this section is to construct a syntactic transformation which eliminates all
rational coefficients, which preserving the semantic interpretation via a bijective reparameter-
ization. A syntactic reparameterization is a map F : Circ(G,H) → Circ(G,H) with a bijective
function f : Rk → Rk such that [[F (C)]] = [[C]] ◦ f . The simplest syntactic reparameterization
is a linear rescaling of the parameters in the circuit by a non-zero rational vector. For each
vector v ∈ (Q \ {0})k, define the map Fv : Circ(G,H) → Circ(G,H) as follows.

If G ∈ G, then Fv(G) = G.
If M ∈ H and f(θ) = a1θ1 + a2θ2 + · · · + akθk + q, then Fv(RM (f)) = RM (g) where
g(θ) = (v1a1)θ1 + (v2a2)θ2 + · · · + (vkak)θk + q.
If G ∈ Σ(G,H), then Fv(C(G)) = C(Fv(G)).
If C1, C2 ∈ Circ(G,H), then Fv(C1//C2) = Fv(C1)//Fv(C2).
If C1, C2 ∈ Circ(G,H), then Fv(C2 ◦ C1) = Fv(C2) ◦ Fv(C1).

▶ Theorem 6.2. For each v ∈ (Q\{0})k, f : Rk → Rk defined by f(θ) = (v1θ1, v2θ2, . . . , vkθk)
is bijective and Fv is syntactic reparameterization with respect to f .

Now assume that C1 and C2 are circuits in Circ(G,H). For the correct choice of v, both
Fv(C1) and Fv(C2) are elements of CircZ(G,H). Intuitively, each vj must be chosen such
that it clears the denominators of all coefficients tied to θk in both C1 and C2. Formally, let
denom(q) denote the denominator of q ∈ Q and lcm{x1, x2, . . . , xn} denote the least common
multiple of x1, x2, . . . , xn ∈ Z. Then for each j ∈ [k], Xj = {denom(αj) : α ∈ A(C1) ·A(C2)}
is the set of all denominators of coefficients tied to θk in both C1 and C2. Then vj = lcm(Xj)
for each j ∈ [k]. Let circLcm(C1, C2) denote this vector.

▶ Theorem 6.3. If C1, C2 ∈ Circ(G,H) and v = circLcm(C1, C2), then Fv(C1) ∈ CircZ(G,H)
and Fv(C2) ∈ CircZ(G,H). Moreover, [[C1]] = [[C2]] if and only if [[Fv(C1)]] = [[Fv(C2)]].

▶ Corollary 6.4. If G and H consist of matrices over the universal cyclotomic field, then the
parameterized equivalence checking problem is decidable for Circ(G,H).

6.2 Verifying Circuits Modulo Global Phase
In Sec. 5 the circuits C1 and C2 where defined to be equivalence when [[C1]](θ) = [[C2]](θ) for
all θ ∈ Rk. For many applications, this notion of equivalence is far too strict. This is because
C1 and C2 will prepare the same probability distribution provided there exists some function
p : Rk → R such that [[C1]](θ) = eip(θ)[[C2]](θ) for all θ ∈ Rk. When such a function exists, we
say that C1 and C2 are equivalent modulo global phase. Of course, verifying the existence of
an arbitrary p is infeasible. Prior work has assumed p to be affine linear [21, 38, 47]. That is,
p(θ) = α1θ1 + · · ·αkθk + β. We further assume that α1 through to αk are rational. In this
section we show how to verify the equivalence of C1 and C2 modulo affine rational linear
global phase, under the following assumptions.
1. All matrices in H are defined over the universal cyclotomic field.
2. All matrices in G are injective and defined over the universal cyclotomic field.
In practice, the second assumption restricts G to unitary operations and state preparation.
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Since the universal cyclotomic field is closed under addition and multiplication, then every
global phase will be cyclotomic when evaluated at rational multiples of π. In general, α need
not be rational, since there exists cyclotomic numbers of norm 1 which are not roots of unity.
However, the periodicity of [[C1]] an [[C2]] ensure that α ∈ Qk. Using properties of cyclotomic
numbers, such as the fact that Q(ζ2n) = Q(ζn) for odd n, it is then possible to solve for α (if
it exists). In the full paper, an algorithm FindPhase(C1, C2) is described to compute these
coefficients. The injectivity of G ensures that all coefficients can be isolated (this condition is
sufficient but not necessary). In the case where C1 and C2 are not equivalent up to global
phase, then arbitrary coefficients are returned. Otherwise, the function FindPhase(C1, C2)
returns a tuple (z, f) such that z = eiβ and f(θ) = (−2α1)θ1 + · · · + (−2αk)θk. Then the
global phase can be offset by introducing a unitary gate zI and a global phase gate RI(f).
Then equivalence modulo global phase reduces to exact equivalence as follows.

▶ Theorem 6.5. Assume G and H consist of matrices over the universal cyclotomic field,
with all gates in G injective. If C1, C2 ∈ CircZ(G,H) and (z, f) = FindPhase(C1, C2), then
C1 is equivalent to C2 modulo affine rational linear global phase if and only if the equation
[[C1]] = [[zI ◦RI(f) ◦ C2]] holds.

▶ Corollary 6.6. If G and H satisfy assumptions (1–2), then the parameterized equivalence
checking problem is decidable modulo affine rational linear global phase for Circ(G,H).

6.3 A Probabilistic Equivalence Checking Procedure

Imagine applying Thm. 5.12 to a pair of quantum circuits C1 and C2. In practice, an end-user
would have some desired upper bound p ∈ (0, 1] on the false positive rate. A simply way to
bound the false positive rate is to require that d/|S| ≤ p, meaning that d/p ≤ |S|. Since d/p
is positive and |S| is a natural number, then the minimum value of |S| which satisfies this
inequality is N = ⌈d/p⌉. Using this optimal solution, the following algorithm is obtained.
1. Compute d = max{

∑
α∈A(C) κ(α) : C ∈ {C1, C2}} +

∑k
j=1 λj .

2. Select a set S ⊆ [0, 4π) such that |S| = ⌈d/p⌉.
3. Sample s1, . . . , sk at random both independently and uniformly from S.
4. Determine if [[C1]](s1, . . . , sk) = [[C2]](s1, . . . , sk).
The most crucial step of this algorithm is the second step. First, the choice of S must ensure
that the values of sin(−) and cos(−) are exact. As outlined in Sec. 2.2, the simplest way to
do this is to sample S from [0, 4π) ∩ Qπ for with for which sin(−) and cos(−) must evaluate
to cyclotomic numbers. This method is particularly effective when G and H consists purely
of matrices over the universal cyclotomic field, in which case all computation can be carried
out over the universal cyclotomic field.

Now, consider the elements of sin(S) and cos(S). For each (j/n)π in S, the elements
sin(j/n) and cos(j/n) will be elements of Q[ζn]. Likewise, if ℓ is the least common denominator
of all fractions in S, then S ⊆ Q[ζℓ]. In the worst case, Q[ζℓ] will be an ℓ-dimensional vector
space. This means that the cost of addition will grow at least linearly with ℓ, and the cost of
multiplication will grow at least quadratically with ℓ.

▶ Theorem 6.7. If k ∈ N, S ⊆ [0, k) ∩ Q and b = |S|, then lcm{denom(s) : s ∈ S} ≥ ⌈b/k⌉.

Let M be the smallest multiple of 4 which is greater than or equal to N . It follows from
Thm. 6.7 that S = {0, (1/M)4π, (2/M)4π, . . . , ((M − 1)/M)4π} minimizes ℓ. This set is also
easy to compute, and is therefore taken to be the definition of S.
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7 Related Work

In the introduction, we discussed the cutoff-based techniques [32], which subsumes prior
work such as [23]. In this section, we compare to other approaches.

Circuit Rewriting. It was highlighted in Ex. 5.9 that circuit rewriting intersects with
parameterized equivalence checking. In [38], an incomplete equational theory is given for
a family of parameterized circuits, which is shown to be effective for equivalence checking.
In [44], a complete set of relations are derived, under the assumption that each parameter
appears exactly once in the circuit. Relations which hold for abstract gate sets, such as
Σ(G,H), have yet to be explored.

Symbolic Techniques. In [47], symbolic techniques are used to determine parameterized
equivalence. Particularly, trigonometric relations, together with the Pythagorean relation
cos(θ)2 + sin(θ)2 = 1, are used to reduce equivalence checking to a family of equations over
the theory of non-linear real arithmetic. This is then solved using the Z3 [12] solver as a
black box. However, the decision problem for non-linear real arithmetic is known to be
double-exponential in the number of variables [9, 24], whereas our approach is exponential in
the number of variables.

Probabilistic Techniques. In [46], Thm. 2.2 was used to determine the equivalence of
parameterized quantum circuits. However, our technique yields Laurent polynomials rather
than ordinary polynomials, which we do not compute explicitly. In [38], Peham et al. show
that if v is sampled uniformly at random from [0, 4π)k, then Pr([[C1]](v) = [[C2]](v)) = 0 given
[[C1]] ̸= [[C2]]. However, sampling v from a uniform continuous distribution is impossible on a
digital computer, which can only represent a countable and non-enumerable subset of real
numbers [43]. In Peham et al., floating-point is used, and presumably, the error is assumed
to be uniform as well. In our work, all computation is exact, and therefore, such assumptions
do not apply. Since there does not exist a uniform distribution for countable sets, we instead
sample uniformly from a finite subset of [0, 4π), in which case Thm. 2.2 applies, rather than
the analytic results of Peham et al.

8 Conclusion and Future Work

In this paper, we considered the problem of parameterized equivalence checking for quantum
circuits. We show that the parameterized problem can be reduced to finitely many instances
of the parameter-free problem, regardless of the gate set or axes of rotation. Consequently,
the problem is decidable in the case of gate sets defined over the universal cyclotomic field.
Moreover, we show that when the number of instances becomes intractable large, there exists
a probabilistic variation of the algorithm where the probability of being incorrect can be
made arbitrarily small. We have outlined how the techniques can be implemented in practice,
taking into account rational coefficients, global phase, and angle sampling.

In future work, we would like to explore how these decision procedures can be implemented
efficiently using circuit rewriting and sparse matrix representations. In particular, we would
like to explore angle sampling and circuit evaluation using ZX-diagrams [37], tensor decision-
diagrams [49], and model-counting [30], which have all proven effective in parameter-free
equivalence checking. We would also like to explore how rewriting-based techniques and
symmetry reductions might help to tighten the cutoffs obtained from Bnd(−). For example,
the bound obtained in Ex. 5.9 could be reduced to zero by viewing each relation as a rewriting
rule, and then searching for a derivation which reduces the bound.
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