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—— Abstract

Color Refinement, also known as Naive Vertex Classification, is a classical method to distinguish
graphs by iteratively computing a coloring of their vertices. While it is traditionally used as an
imperfect way to test for isomorphism, the algorithm has permeated many other, seemingly unrelated,
areas of computer science. The method is algorithmically simple, and it has a well-understood
distinguishing power: it has been logically characterized by Immerman and Lander (1990) and
Cai, Firer, Immerman (1992), who showed that it distinguishes precisely those graphs that can
be distinguished by a sentence of first-order logic with counting quantifiers and only two variables.
A combinatorial characterization was given by Dvofdk (2010), who showed that it distinguishes
precisely those graphs that differ in the number of homomorphisms from some tree.

In this paper, we introduce Relational Color Refinement (RCR, for short), a generalization of
the Color Refinement method from graphs to arbitrary relational structures, whose distinguishing
power admits the equivalent combinatorial and logical characterizations as Color Refinement has
on graphs: we show that RCR distinguishes precisely those structures that differ in the number
of homomorphisms from an acyclic connected relational structure. Further, we show that RCR
distinguishes precisely those structures that are distinguished by a sentence of the guarded fragment of
first-order logic with counting quantifiers. Additionally, we show that for every fixed finite relational
signature, RCR can be implemented to run on structures of that signature in time O(N - log N),
where N denotes the number of tuples present in the structure.
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1 Introduction

Color Refinement (CR, for short) constitutes a simple procedure to classify the vertices of
a graph G; it is well-understood and widely used in many areas of computer science. The
idea is a simple iteration: given a coloring ~y of the vertices V(G) of a graph G, one computes
a new coloring v of V(G) following a certain procedure. The new coloring 4’ is then used
to compute another coloring +" following the same procedure, and so on, until the coloring
stabilizes, i.e., the partitioning of V(@) induced by the new coloring is the same as the one
induced by the previous coloring. The procedure to compute the new coloring is very simple:
two vertices u, v shall get different colors if they already have different colors, or they have
a different number of neighbors of some color. Otherwise, they receive the same color. To
start the iteration, one either uses the colors of the vertices (if G is a colored graph), or the
uniform coloring that assigns to every vertex the same color. This approach is sometimes also
called “naive vertex classification” or the “1-dimensional Weisfeiler-Leman algorithm”. CR is
often formalized using multisets in the following way, see e.g. [19, Chapter 3]. Considering
an uncolored, undirected, simple graph G, we start with v,(v) = 0 for all v € V(G), and for
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all i € N, we let 7,1 (v) = (v;(v), {7;(w) : {v,w} € E(G)}). Note that this formalizes
the procedure described above: if v;(u) # v;(v), then v, (u) # v;41(v); and if u and v
disagree in the number of neighbors of some color, then we have {v,;(w) : {u,w} € E(G)} #
{vi(w) : {v,w} € E(G)}, hence, v;,1(u) # v;;1(v). This formalization has the additional
advantage that the colorings vy, assign canonical colors, i.e., the colors themselves do not
depend on the vertex set of G. Cardon and Crochemore [11] showed that CR can be
implemented to run in time O((n + m) - log(n)), where n denotes the number of vertices,
and m the number of edges; and Berkholz, Bonsma, Grohe [5] showed that even a canonical
coloring can be computed within the same running time.

Applications. An obvious application of CR is to test for graph isomorphism: if there is an
i € N and a ¢ such that [{v € V(GQ) : v,(v) =c}#{veV(H) : v,(v) =c}| (wesay CR
distinguishes G and H if this is true), then G and H cannot be isomorphic. However, this test
is not perfect, since there exist non-isomorphic pairs of graphs that are not distinguished by
CR. Nevertheless, it is a common subroutine in practical isomorphism testers and even plays
a part in Babai’s seminal result that graph isomorphism is decidable in quasi-polynomial
time [3]. In recent years, the classification of “similar vertices” that CR establishes has been
applied to other problems as well: it was used in [23, 22] to reduce the cost of solving linear
programs, in [31] it was used to speed up the evaluation of binary acyclic conjunctive queries,
and in the area of machine learning, it is used as a graph kernel [37] and was proven to be
equivalent to so-called Graph Neural Networks (GNNs) w.r.t. vertex classification [38, 21].

The power of CR. The power of CR is well-understood [2, 5, 10, 15, 26, 28] — consult
e.g. [19, 27] for an overview. Some key results on the distinguishing power of CR are a logical
characterization due to Immerman and Lander [26] and Cai, Fiirer, Inmerman [10], and a
combinatorial characterization w.r.t. the concept of “homomorphism indistinguishability”
due to Dvordk [15] and Dell, Grohe, Rattan [13]. In [10, 26] it is shown that CR distinguishes
G and H if, and only if, there is a sentence ¢ of first-order logic with counting quantifiers
with at most 2 variables (C2, for short) such that G = ¢ and H [~ ¢. In [15, 13] it is shown
that CR distinguishes two graphs G and H if, and only if, G and H differ in the number of
homomorphisms from some tree 7" into G and H. If no such T exists, one says that G and
H are homomorphism indistinguishable over the class of trees. This result sparked active
research in recent years exploring the concept of homomorphism indistinguishability over
various graph classes, see e.g. [12, 16, 20, 29, 30, 32, 36, 33, 34]. These characterizations can
explain the success of the CR method, and in particular, they give us a hint on why the
vertex classification produced by CR is so powerful: two vertices u,v € V(G) get classified
as “similar” by CR if the number of homomorphisms from every rooted tree T' into G that
map the root to u is equal to the number of homomorphisms from 7" into G that map the
root to v.

Contributions. With the success of CR in mind, it is an obvious question how one could
devise a method to color arbitrary finite relational structures, not just graphs. In particular,
we would like a method that admits a combinatorial characterization w.r.t. homomorphism
counts from the class of acyclic connected relational structures (for a sensible, broad definition
of acyclicity) and a logical characterization for a sensible logic, analogously to the ones of
CR mentioned above. We propose Relational Color Refinement (RCR, for short) as such a
method and show that it indeed admits the desired characterizations and, at the same time,
can be implemented to run in time comparable to the running time of classical CR.
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Our main result reads as follows.

» Theorem A. Let o be a finite relational signature.
(a) RCR can be implemented to run in time O(N -log N) upon input of a o-structure A,
where N denotes the number of tuples present in A.

(b) For all o-structures A and B, the following statements are equivalent:
(1) RCR distinguishes A and B.
(2) There exists an acyclic and connected o-structure C such that hom(C, A) # hom(C, B).
(3) There exists a sentence ¢ € GF(C) such that A |= ¢ and B |~ ¢.
(4) Spoiler wins the Guarded Game on A, B.

Here, hom(C, .A) denotes the number of homomorphisms from C to A (cf. Section 4),
while GF(C) is the guarded fragment of the logic C (cf. Section 5.1), and the Guarded Game
is a particular variant of Ehrenfeucht-Fraissé games (cf. Section 5.2). The technically most
challenging parts are proving (a) and proving the equivalence of (1) and (2) in (b).

Section 2 introduces the necessary basic concepts and notations used throughout the
paper. In Section 3 we introduce RCR, discuss its connection to CR, and provide a proof of
Theorem A (a). Section 4 is devoted to the proof of the equivalence of statements (1) and (2)
of Theorem A (b). Section 5 starts by introducing the logic GF(C) and the Guarded Game,
followed by the proof of the equivalence of statements (1), (3) and (4) of Theorem A (b).
Finally, we conclude in Section 6 with a summary and an outlook on future work. Due to
space limitations, many details had to be deferred to the paper’s full version.

Further related work. The articles [2, 28] studied related, but different questions that
do not concern the power of distinguishing two given graphs, but rather the power of
distinguishing one given graph from all other graphs. Arvind, Kébler, Rattan, Verbitsky [2]
provided a characterization of those graphs G that are amenable by CR in the sense that
CR distinguishes G from every graph H that is not isomorphic to G. Kiefer, Schweitzer,
Selman [28] provided a characterization of those graphs and, more generally, finite relational
structures that can be identified (i.e., described up to isomorphism) by a sentence of the
logic C2. In [2] it is noted that by the result of [26, 10] it follows that “amenability by CR”
and “identifiability by C2” are equivalent notions.

The work by Dell, Grohe, Rattan [13] has been generalized to relational structures by
Butti and Dalmau [8]. However, they apply classical CR on the incidence graph of the
relational structure and use the weaker notion of Berge-acyclicity that is subsumed by our
notion of acyclicity; consequently, the distinguishing power of their algorithm is considerably
weaker than that of RCR.

There is also related work in this direction on hypergraphs, which are conceptually similar
to relational structures. Boker [9] introduced a variant of CR that works on hypergraphs, and
showed that it distinguishes two hypergraphs if, and only if, there is a Berge-acyclic hypergraph
that has a different number of homomorphisms to them. Again, the distinguishing power
yielded by Berge-acyclicity is considerably weaker than that of the more general acyclicity
notion considered in our work. The connection between the logic C? and homomorphism
counts from trees due to [15, 13] was generalized to the logic GC (a logic similar to the
guarded fragment GF(C), but tailored towards hypergraphs) and homomorphism counts from
acyclic hypergraphs by Scheidt and Schweikardt [34].

Riveros, Scheidt, Schweikardt [31] use CR to speed up the evaluation of acyclic conjunctive
queries on edge- and vertex-labeled graphs. Beyond CR itself, there is no overlap in the
technical contributions between this paper and [31].
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2 Preliminaries

Basic notation. We write N for the set of non-negative integers, and we let N>, := N\ {0}.
For n € N we write [n] to denote the set {i € N : 1 <i<n} (ie, [0] =2, [1] = {1}, and
[n] = {1,...,n} for n > 2). For a set S we write 2° to denote the power set (i.e., the set of
all subsets) of S; and for k € N we let (i) ={X CS : |X|=k}. Weuse bold letters a to
denote tuples (aq,...,ar). The tuple’s arity ar(a) is k, and a; denotes the tuple’s i-th entry
(for i € [k]). We let set(a) = {a1,...,a; }. We write {a; — b1, ..., ar — by } to describe
the function f: {ay,...,ax } — {b1,...,bx } with f(a;) =b; for i € [k].

A multiset M is a tuple (S, f), where S is a set and f is a function f: S — N,,; the
number f(s) indicates the multiplicity with which the element s € S occurs in the multiset
M. We write multys(x) to denote the multiplicity of x in the multiset M; in particular,
multps(z) = 0 denotes that = ¢ S. We adopt the usual notation for multisets using brackets
{---} in which each s € § is listed exactly multy,(s) times. E.g., {a,a,b} denotes the
multiset ({a,b},{a—2,b—1}).

A coloring of a set S is a function v: S — C for some set C. Let a: S — C, and
B: S — Cjs be two colorings of the same set S. We say that o refines 3, if for all u,v € S:
a(u) = a(v) = B(u) = B(v). The colorings a and S are equivalent, if for all u,v € S:
a(u) = a(v) <= pu) = B(v).

An (uncolored, undirected, simple) graph is a tuple G := (V(G), E(G)), where V(G) is a
finite set of vertices and F(G) C (V(QG)) is a set of edges. A forest is an acyclic graph; and a
tree is a connected forest.

Relational Structures. A (finite, relational) signature o is a finite, non-empty set; the
elements in ¢ are called relation symbols. Every R € ¢ has an associated arity ar(R) € N,.
The arity of o is defined as ar(c) := max{ar(R) : R € o}. By o, for k € N,,, we denote
the subset { R € 0 : ar(R) = k } of relation symbols of o with arity exactly k.

A structure A of signature o (for short, o-structure) consists of a finite, non-empty set
V(A) (called the universe of A), and a relation RA C V(A)ar(R) for every R € 0. We
additionally require that every v € V(A) occurs as an entry in at least one tuple of at least
one relation of A — note that this assumption can easily be met, e.g. by inserting into o a
new relation symbol U of arity 1 with U* = V(A) (here, we identify a tuple (v) of arity 1
with the element v). By A we denote the set ., RA of all tuples that belong to some
relation of A. We define the size® of A as ||A|| :=|A|. We say that two o-structures A, B
have strictly equal size, if |R*| = |RB| for every R € 0.

The Gaifman graph of A is defined as the (undirected, simple) graph G with V/(G) = V(A)
and where E(G) consists of all {u,v} € (V(f)) for which there is a tuple @ € A with
u,v € set(a). A o-structure is called connected if its Gaifman graph is connected.

A binary signature is a signature o where every R € ¢ has arity < 2. A colored multigraph
G is a structure of a binary signature. The binary relations of G can be viewed as directed
edge relations that carry specific labels, and the unary relations of G can be viewed as
assigning specific labels to the vertices of G.

! In the literature, usually ||.A| denotes the size of a reasonable representation of A as input for an
algorithm. Since we consider o to be a fized signature and restrict attention to structures where each
v € V(A) occurs in at least one tuple in A, within the O-notation our notion of ||.4]| is equivalent to
the one used in the literature.
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Color Refinement (CR). Color Refinement (CR) can be adapted to colored multigraphs by
including the vertex labels and the loops in the base color, and the edge labels in the iteration.
This can be formalized as follows. Let o be a binary signature, and let G be a o-structure.
For every v € V(G), let v,(v) = ({C €]y : ve€ C9}, {RE€a|y : (v,v) € RY}), and for all
1€ N let

7i+1(v) = (’71‘(”)7 {{ ()‘(an)vfyi(w)) : {v7w} € E(G)]})7
where G denotes the Gaifman graph of G and
Mov,w) = {RT : Reols, (v,w)e R} U {R™ : Reols, (w,v) € RY}.

Types. The notion of atomic type and the similarity type of tuples will be crucial for
the definition of RCR. Let o be an arbitrary signature. For a o-structure A and a tuple
ac V(A)k of arity k, the atomic type atp(a) is the set { R € o : a € R*}. For every tuple
b e V(.A)E of arity ¢, the similarity type stp(a,b) between a and b is defined as the set
{(i,7) € [k] x [£] : a; =Db; }. We use stp(a) as shorthand for stp(a, a).

In general, an atomic type p of arity k (over signature o) is a subset of o|,. A similarity
type T of arity (k,¢) (over signature o) is a subset of [k] x [¢] that satisfies the following
condition of “rectangularity”: for all 4,¢' € [k] and 7,5 € [4], if {(4,7),(,5),(,5)} C 7
then (¢, ') € 7. We write ar(p) and ar(7) to denote the arity of p and 7. If 7 has arity
(k, k), we simply say that 7 has arity k and write ar(7) = k. We let STP,, be the set of all
similarity types of arity (ar(R),ar(S)) for any R, S € o. We say that a tuple a@ € V(A)* has
atomic type p if p = atp(a). Analogously, we say that a has similarity type 7, if 7 = stp(a);
and we say that a, b have similarity type 7, if 7 = stp(a, b).

3 Color Refinement on Relational Structures

The goal of this section is to introduce RCR as a generalization of CR from graphs to
relational structures. Let o be an arbitrary (relational) signature; this ¢ will be fixed
throughout the rest of the paper.

3.1 Relational Color Refinement (RCR, for short) — Definition

Consider an arbitrary o-structure A. The key idea of RCR is to color the tuples in A and
take into account the tuples’ atomic type and their mutual overlap (the latter is formalized
by their similarity type). The details are as follows.

We iteratively compute colors for every tuple a € A. For every a € A, the initial color
consists of the atomic type and the similarity type of a, i.e., it is gy(a) := (atp(a), stp(a)).
For i € N5, the color after i iterations is defined as g;(a) == (9;_;(a), N/*(a)), where

N#(a) = {(stp(a,b), 0,_,(b)) : be A, stp(a,b) #2}}.

Note that stp(a, b) # @ <= set(a)Nset(b) # &. By definition, g, refines g,_; for alli € N3;.
The i-th coloring is stable, if for all a,b € A we have g;(a) = ¢,(b) <= 0;,,(a) = 0;,,(b).
It is easy to see that for every o-structure A there is an ¢ € N such that the i-th coloring is
stable; we let i4 be the smallest such number, and we write o.,(a) to denote o, , (a).

For i € N we write RC;(A) to denote the set of colors produced in the i-th refine-
ment round, i.e., RC;(A) = {g;(a) : a € A}. For each ¢ € RC;(A) we let mult4(c) =
Hae€ A : g,(a) =c}|,ie., mults(c) is the number of tuples with color c. We let RC(A) :=
RCw(A) = RC; , (A); and we will call this the set of stable colors on A produced by RCR.

88:5
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We say that RCR distinguishes two o-structures A and B in round i, if there is a color
¢ € RC;(A) URC;(B) such that mult 4(c) # multg(c). Furthermore, we say that RCR
distinguishes A and B if there is an ¢ < max{i,ip } such that RCR distinguishes .4 and B
in round ¢. It is straightforward to see that if A and B are not of strictly equal size, then
RCR distinguishes A and B in round 0.

A run of RCR on particular example structures can be found in the paper’s full version.

3.2 Connection between RCR and CR

For the signature o = { £, U } with ar(F) = 2 and ar(U) = 1, the following is straightforward
to see. For any (simple, undirected) graph G let Ag be the o-structure A that represents
G as follows: V(A) = U4 = V(G) and EA consists of the tuples (u,v) and (v,u) for all
{u,v} € E(G). RCR on A¢ produces a stable coloring « that is equivalent to the stable
coloring v produced by CR on G. Therefore, RCR can be viewed as a generalization of CR
from graphs to o-structures for arbitrary (relational) signatures o.

Next, we point out that running RCR on a o-structure A produces the same result as
running CR on a suitably defined colored multigraph representation G4 of A. The colored
multigraph G4 can be viewed as a suitably colored generalization, from graphs to relational
structures, of the notion of the line graph L(G) (cf. [14]) associated with an undirected graph
G. It will be crucial for the proof of Theorem A (b).

» Definition 3.1. We represent a o-structure A by a colored multigraph G 4 of the signature
0 = {E; :i,jelar(o)]}U{Ur : Reo},

where ar(E; ;) =2 for all 4, j € [ar(0)] and ar(Ug) =1 for all R € 0.

The universe V(G4) of G4 consists of a new element w, for every tuple a € A. Fur-
thermore, (Ug)?* = {wq : a € RA}, for all R € 0. And for all i,j € [ar(c)] we have
(E; ;) = { (wa, wp) : a,be A, (i,7) € stp(a,b) }.

» Example 3.2. Consider 0y := { E, R} with ar(F) = 2 and ar(R) = 6, and let .A; be the o1-
structure with the universe { 1,2, 3, u,v,w }, where EA == {(1,2),(2,3), (3,1), (u,v), (v, w),
(w,u)}, and R4 == {(1,2,3,u,v,w) }. The representation G4, of A; as a colored multigraph
is depicted in Figure la. To keep the figure easy to grasp, we labeled the vertices with the
tuples they represent, omitted the self-loops, and contracted multi-edges into a single one
with a combined edge label, where xy denotes the tuple (x,y).

It is easy to see that running RCR on a o-structure A produces (in the same number of
rounds) a stable coloring of A that is equivalent (via identifying a € A with wge € V(G4))
to the stable coloring produced by classical CR on the colored multigraph G 4.

Let us define the cohesion of A as the number I'(A4) of all tuples (a,b) € A x A with
a # b and set(a) Nset(b) # @. Obviously, I'(A4) < [|A]]>.

It is known that classical CR can be implemented to run in time O((n 4+ m) - log(n)) on
colored multigraphs, where n denotes the number of vertices and m denotes the total number
of edges (cf., [11, 5]). Thus, on the colored multigraph G 4 representing A, CR runs in time
O((n+m)-log(n)) where n = |A| = ||A|| and m = Zi,je[ar(o’)]‘(Eiaj)gA| = O(T'(A)) (for each
fixed signature o). Thus, by running CR on G4, we obtain an implementation of RCR on A
that, for each fixed signature o, runs in time O((||.A||+T(A))-log(|[Al)) = O(||A|*>-log([|Al))-
In the next subsection, we will improve the running time to O(||A|| - log||.4||) by using a
representation of A by a colored multigraph different from G 4.
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(a) G.a, for the structure A; from Example 3.2. (b) H.4, for the structure A2 from Example 3.5.

Figure 1 Visualization of the colored multigraph representations from Sections 3.2 and 3.3.

3.3 Implementing RCR in Time O(||A]|| - log(||.A||))
This subsection is devoted to proving Theorem A (a), i.e., we prove the following theorem.

» Theorem B. For each fized signature o, RCR can be implemented to run in time O(||.A]| -
log(||A]l)) upon input of a o-structure A.

The factor hidden by the O-notation is of size 20 1°2%) wwhere k is the maximum arity
of the relation symbols in o.

Recall from Section 3.2 that by performing classical CR on the colored multigraph G 4 we
can implement RCR on a o-structure A with runtime O((n + m) - log(n)), where n denotes
the number of vertices and m denotes the total number of edges of G 4. Note that the nodes
wq for all tuples @ € A that share an element form a clique in G 4. This causes a blow-up of
the number of edges in G 4. We will alleviate this by resolving every clique by inserting a

constant number of fresh vertices that are connected to all tuples participating in a clique.

This will drastically reduce the number of edges, yielding a new colored multigraph H 4
whose number of nodes and edges is in O(]|.A]]). For the precise definition of H 4 we need
the following notation.

» Definition 3.3. Let A be a o-structure. We call a tuple s = (s1,...,8¢) € V(A a slice
(over V(A)), if its elements are pairwise distinct (i.e., £ = [set(s)|) and £ > 1. We call s a
slice of a € V(A)", if s is a slice over V(.A) and set(s) C set(a). For an a € A, we write S(a)

for the set of all slices of a, i.e., S(a) ={s € V(A : set(s) C set(a), £ > 1, |set(s)| = l}.

Conversely, for a slice s over V(A) we denote by S7!(s) :=={a € A : s € S(a)} the set of
tuples in A that s is a slice of.

» Definition 3.4. Let A be a o-structure. Let H 4 be the colored multigraph of signature
o defined as follows. The universe V(H 4) consists of the nodes wq for all @ € A and a
new node v, for every slice s € S(A) == Uzcna S(a). Le., V(Ha) = {wa : a€ A} U
{vs : s €S8(A)}. Furthermore, (Ug)™ = {wq : @ € R}, for all R € 0. And for all
i,j € Jar(o)] we let (Eiﬂj)H““ = {(wa,vs) : a € A, s € S(a), (i,j) € stp(a,s)} U
{ (vs,wp) : b€ A, s€8(b), (i,j) €stp(s,b) } .

» Example 3.5. Consider the signature o2 := { R} with ar(R) = 3. Then, 05 consists of the
unary relation symbol Ug and binary relation symbols E; ; for ¢,5 € {1,2,3}.
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Let Ay be the og-structure where V(Az) =

{1,2,3} and R*> = {(1,1,2), (2,3,2) }.
Then, Ay = R and S(A2) = {(1), (2), (3), (1
r)"

,2), (2,1), (2,3), (3,2)}. The colored
{ 112)7 w<232)}U{US : SES(AQ)}.
Ha {U) (1,1,2)> 273)2 } See Figure 1b

multigraph H 4, is the og-structure with V(H 4,)
The unary symbol Ug, is interpreted by the set (U,
for an illustration of H 4,.

Note that for each a € A of arity k, the number of slices of a is |S(a)| < k-k!. Thus, for
k= ar(c) = max{ar(R) : R € o} we have |[V(Ha)| = |A] +|S(A)| < (1 + k-k!)-|A| and
\(EW)HA| 2-k-k!-|Al, for all 4,5 € [k]. Hence, the total number of edges of H 4 is at most
2-k3-k!-|A|. Le., for the fixed relational signature o, the number of nodes and edges of the
colored multigraph H 4 associated with a o-structure A is of size O(||.A||), where the factor
hidden by the O-notation is bounded by 2-k3-k! = 20(+108k) for k = ar(o).

Since the number of vertices and the number of edges in H 4 both are of size O(||A|)),
Theorem B is obtained as an immediate consequence of the following Theorem 3.6 and the
known running time of CR (cf. Sections 1 and 3.2):

» Theorem 3.6. Let A be a o-structure. Let p,(a) be the color assigned to tuple a € A in
the i-th round of Relational Color Refinement RCR on A, and let ~;(u) be the color assigned
to node u of Ha in round i of conventional Color Refinement CR on the colored multigraph
Ha. Foralli €N and all a,b € A we have: 9;(a) = 0;(b) <= V9,1 1(Wa) = Yoi11(ws).

The remainder of this section is devoted to the proof of Theorem 3.6. See the paper’s full
version for detailed proofs of all subsequent lemmas and claims. We start with a lemma that
summarizes some obvious facts.

» Lemma 3.7. Let A be a o-structure. Let k,k',¢ > 1 and let a = (a1,...,ax) and

b= (by,...,bx) be elements in A, and let s = (s1,...,5¢) be a slice over V(A).

(a) stp(a,b) # @ < set(a) Nset(b) # @.

(b) stp(a) =stp(b) < ar(a) = ar(b) and the function : set(a) — set(b) with 5(a;) == b;
for all i € [k] is well-defined and bijective.

(c) se S(a) < for everyi € [{] there exists a j € [k] such that (i,7) € stp(s,a) <
for every j € [{] there exists an i € [k] such that (i,7) € stp(a, s).

(d) Let s € S(a). For all s’ € S(a) we have: stp(a,s) =stp(a,s’) < s=3¢s".

Two nodes u,u’ € V(H.) are called neighbors in Ha if (u,u') € (E; ,J) 4 for some
i,7 € [ar(o)].
» Remark 3.8. Note that for all @ € A and s € S(A) we have: wq and v, are neighbors in
Ha < s < S(a). Also, by Lemma 3.7 (d) we obtain: For all @ € A and all s,s" € S(a)
with s # s’, we have stp(a, 8) # stp(a, 8).

The following characterization of tuples a,b with stp(a) = stp(b) will be crucial for our
proof of Theorem 3.6.

» Lemma 3.9. Let A be a o-structure. For all a,b € A we have: stp(a) = stp(b) <= there
is a bijection ms: S(a) — S(b) such that for all s € S(a) we have stp(a, s) = stp(b, 1s(s)).

It follows from Remark 3.8 that the bijection 7s is unique, if it exists. The following lemma
summarizes straightforward properties of the mapping ms obtained from Lemma 3.9.

» Lemma 3.10. Let A be a o-structure, let a, b € A with stp(a) = stp(b), and let ts: S(a) —
S(b) be the bijection obtained from Lemma 3.9. For all s,8" € S(a) and for t .= w5(s) and
t' = ms(s’) we have: (1) ar(s) = ar(t), and (2) set(s) C set(s’) <= set(t) C set(t'),
and (8) set(s) = set(s’) <= set(t) = set(t).
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Fora € Alet N(a) ={c € A : stp(a,c)#2} ={c € A : set(a)Nset(c) # 2 }.
We proceed with the main technical lemma that will enable us to prove Theorem 3.6.

» Lemma 3.11. Let A be a o-structure. Let Z be a non-empty set and let f be a mapping
f: A— Z. Consider a,b € A with f(a) = f(b) and stp(a) = stp(b). Let 7s: S(a) — S(b)
be the bijection obtained by Lemma 8.9. The following are equivalent:

L. {(stp(a,c), f(c)) : c€ N(a)} = {(stp(b,c), f(c)) : c€ N(b)}.

2. For all s € S(a) we have:

f (stp(s.c), f(c)) : e€S7H(s) } = {(stp(ms(s),d), f(d)) : d €S (ms(s)) }.

The proof makes heavy use of Lemma 3.10 and is combinatorially quite involved; in
particular, the proof of direction 2=-1 proceeds by an intricate induction that starts with
tuples ¢ in N(a) with set(c) = set(a), and the induction step considers tuples ¢ in N(a)
with a decreasing size of the intersection of set(c) and set(a).

The following fact will be helpful for the subsequent proofs.

» Fact 3.12. For all a,b € A we have
(a) atp(a) = atp(b) <= 7¢(wa) = 7o(ws).
(b) For all s € S(a) and t € S(b) we have: stp(a,s) =stp(b,t) < A wg,vs) = A(wp, vt)
(c) For all s € S(a), t € S(b) and for allc € S71(s), d € S71(t) we have:
stp(s,c) =stp(t,d) <= Avs,we) = A(vg, waq).
(d) For all nodes v of H.4 we have:
v and wq are neighbors in Ha <= v = v, for some s € S(a).

The first three statements follow immediately from the definition of H 4, see Definition 3.4.
The last statement follows from Remark 3.8 and the definition of H 4. The following lemma
relates the color that CR assigns to the node w, to the colors it assigns to the nodes vy for
the slices s of a.

» Lemma 3.13. For all a,b € A with stp(a) = stp(b) and all i € N1 we have:

Vi(wa) = vi(wp)

(@) vi—1(wa) =v;—1(we) and (b) v;_1(vs) =7;_1(ve), for all s € S(a) and t = ms(s).
Here, ns: S(a) — S(b) is the bijection from Lemma 5.9.

Finally, we are ready for the proof of Theorem 3.6.

Proof of Theorem 3.6. We proceed by induction on i. For the induction base i=0, the
proof is straightforward by using Fact 3.12 and Lemma 3.9.

For the inductive Step, consider an i € N3, and let a,b € A.

Induction hypothesis: For all j < i and ¢,d € A we have: g;(c) = 0;(d) <= 7g;11(we) =
72j+1(wd)-

Induction Claim: o;(a)= 0;(b) <= 79;11(Wa) = Voi41(Ws).

In case that stp(a) # stp(b), we have g,(a) # 0,(b), and hence, by the definition of RCR,
0;(a) # 0,(b) holds for all j > 0. Furthermore, by the induction base, o5(a) # 0(b) implies
that v, (wa) # 71 (wp). Hence, by the definition of CR, v;(wa) # v;(ws) holds for all j > 1.
This yields: o;(a) # 0;(b) and 75, (wa) # V241 (ws), completing the induction step.

In the following, we consider the case where stp(a) = stp(b). From Lemma 3.9 we obtain
a bijection ms: S(a) — S(b) satisfying stp(a, s) = stp(b, 7s(s)) for all s € S(a).

If 9;_1(a) # 0;_1(b), then g,(a) # ¢;(b) by definition of RCR and 7v5(;_1)11(wa) #
Ya(i—1)+1(ws) by induction hypothesis. It follows from the definition of CR that v, (wa) #
Yai41(ws) as well. Thus, from now on we consider the case that o; ;(a) = 0;_,(b).
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Using Lemma 3.13 we get that vy, (wa) = 79,41 (ws) if, and only if, vy, (wa) = Vo; (ws)
and for all s € S(a) and t = wg(s) it holds that ~,,(vs) = 7v9,;(ve). Applying the same
lemma again yields that v,;,1(wa) = Y941 (ws) if, and only if 75, | (wa) = v9;_1(ws) and
for all s € S(a) and t := 7s(s) it holds that vy, (vs) = vq;(v¢) and v, _1(vs) = Yo;_1 (ve).

Thus, we must show that g,(a@) = g;(b) if, and only if, v4; 1 (wa) = v¥9;_1(ws) and for all
s € S(a) and t := ws(s) it holds that 7,;(vs) = Vo, (ve) and vy, _1(vs) = Yo9;_1(ve). Recall
that we have g, _;(a) = 0,_1(b). Since 2i—1 = 2(i—1)+1, we get that o, 1 (wa) = Yo;_1 (ws)
from the induction hypothesis. Hence, it remains to show that g;(a) = p;(b) if, and only if,
for all s € S(a) and t := ws(s) it holds that v, (vs) = vy, (ve) and vo;_1(vs) = Yo;_q (ve). It
is now easy to see that the following two claims finish the proof.

> Claim 3.14. If g,(a) = p;(b), then the following holds for all s € S(a) and t = 7s(s):
If 72 1(vs) = Y21 (ve), then 79;(vs) = Vo (ve).

> Claim 3.15. p,(a) = p;(b) <= forall s € S(a) and t := 75(s) we have v,;_;(vs) =
Yai1(ve).

To prove both claims we use Lemma 3.11, Fact 3.12 and the definitions of CR and RCR. <«

4 Connection to Homomorphism Counts

This section is devoted to proving the equivalence of statements (1) and (2) of Theorem A (b).
Le., we relate the distinguishing power of RCR to distinguishability via homomorphism
counts from acyclic o-structures.

Acyclic o-structures. Let C be a o-structure. A join-tree for C is a tree (i.e., an undirected,
simple graph that is connected and acyclic) J with vertex set V(J) := C (i.e., the tuples
in C serve as vertices of J) and which satisfies the following connectivity condition: for
all v € V(C) the set {c € V(J) : v € set(e) } induces a connected subgraph of J; we will
denote this subgraph (which in fact is a tree) by J,.

We call a o-structure C acyclic if there exists a join-tree for C. This definition of acyclicity
of o-structures is equivalent to acyclicity as defined in the textbook [1], it is equivalent to
the notion of alpha-acyclicity as defined in [4, 6] and, finally, is also equivalent to C having
(generalized or fractional) hypertree width 1 as defined in [17, 18, 24]. In the literature, also
other notions of acyclicity for relational structures (and hypergraphs) have been considered;
but alpha-acyclicity arguably is the most common and the least restrictive one. Consult [7]
for a detailed survey on this topic.

For the special case of binary signatures o, i.e., where g-structures are colored multigraphs,
it is known [7] that a g-structure C is acyclic if, and only if, its Gaifman graph is acyclic
(w.r.t. the usual notion of acyclicity of undirected simple graphs). It is well-known that for
non-binary signatures ¢ there exist acyclic o-structures whose Gaifman graph is not acyclic.

Homomorphisms. A homomorphism from a o-structure C to a o-structure A is a mapping
h: V(C) — V(A) such that for all R € o, for k := ar(R), and all ¢ = (cy,...,cx) € RC we
have (h(c1),...,h(cy)) € RA. We write Hom(C,.A) for the set of homomorphisms from C to
A, and we let hom(C,.A) := [Hom(C, .A)| denote the number of homomorphisms from C to .A.

The remainder of this section is dedicated to proving the equivalence of statements (1)
and (2) of Theorem A (b), i.e., proving the following theorem.
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» Theorem C. For all o-structures A and B, the following statements are equivalent.
1. RCR distinguishes A and B.
2. There exists an acyclic and connected o-structure C such that hom(C,.A) # hom(C, B).

This can be viewed as a generalization of the following result by Dvoték [15] and Dell, Grohe,
Rattan [13] to arbitrary signatures o. While [15, 13] state the theorem just for graphs, it
easily extends to colored multigraphs (as noted in [13]). A colored multitree is an acyclic and
connected colored multigraph, i.e., a colored multigraph whose Gaifman graph is a tree.

» Theorem 4.1 ([15, 13]). Let G and H be colored multigraphs. The following statements
are equivalent.

1. CR distinguishes G and H.

2. There exists a colored multitree T such that hom(T,G) # hom(T,H).

Theorem 4.1 will serve as the first key ingredient of our proof of Theorem C. The second
key ingredient is to use the following notion of a join-tree representation GZ. Recall from
Definition 3.1 the binary signature ¢ = { E;; : i,j € [ar(0)] }U{Ug : R€ o} and the
colored multigraph G 4 of signature ¢ that represents a o-structure A. For an acyclic o-
structure C and a join-tree J for C we define the colored multigraph GJ of signature & to
have universe V(GJ) .= {ve : ¢ € C'} where v, is a new vertex for each tuple ¢ € C, and

(UR)gg ={ve. : c€ RC } and (Em-)g‘c] ={(vp,ve) : {b,e} € E(J)and (i,j) € stp(b,c) }

for all R € o and all 4, j € [ar(0)]. Via identifying ¢ and v, for all ¢ € C, the Gaifman graph
of G¢ is isomorphic to a subgraph of J. Thus, since J is a tree, GZ is acyclic.
The last two ingredients for our proof of Theorem C are the following lemmas:

» Lemma 4.2. For o-structures A and C and any join-tree J for C we have:
hom(C,A) = hom(GZ,GA).

» Lemma 4.3. Let A and B be o-structures, and let T be a colored multitree of signature &
such that hom(T,G4) # hom(T,Gg). There exists an acyclic and connected o-structure C
and a join-tree J for C such that hom(gg,gA) #+ hom(gCJ7 Gp).

Before proving these lemmas, we first show how to use the four key ingredients for proving
Theorem C.

Proof of Theorem C. As pointed out in Section 3.2, running RCR on a o-structure A4
produces a stable coloring that is equivalent (via identifying a € A with wa € V(G4)) to
the stable coloring produced by the classical CR on the colored multigraph G 4. Thus, RCR
distinguishes the o-structures A and B if, and only if, classical CR distinguishes G 4 and Gg.
According to Theorem 4.1 the latter is the case if, and only if, there is a colored multitree T
with hom(7,G4) # hom(T,Gg).

Hence, for the direction “1 = 27, if RCR distinguishes A and B, then there exists a colored
multitree T with hom(7,G4) # hom(7,Gg). By Lemma 4.3, there also exists an acyclic
and connected o-structure C and a join-tree J for C such that hom(GZ,G4) # hom(GZ, Gg).
According to Lemma 4.2, this implies that hom(C, A) # hom(C, B).

For the direction “2 = 17, if there exists an acyclic and connected o-structure C such that
hom(C,.A) # hom(C, B), then according to Lemma 4.2 we have hom(GZ, G 4) # hom(G{, Gr),
for any join-tree J for C. By construction, the Gaifman graph of G¢ is a subgraph of .J.
In fact, the Gaifman graph of C being connected implies that the Gaifman graph of G is
exactly J. Hence, GJ is a colored multitree. Thus, as pointed out in the first paragraph of
the proof, RCR distinguishes A and B. <
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The remainder of this section is devoted to proving the Lemmas 4.2 and 4.3. The following
notation will be convenient. If f is a mapping from at set V to a set V', and a = (ay, ..., ax)
is a tuple in V* for some k € N.,, then we write f(a) for the tuple (f(ay),..., f(ax)).

Proof of Lemma 4.2. We prove the lemma by providing a bijection = between Hom(C, A)
and Hom(GZ,G4). Recall that V(GZ) = {ve : c€ C}and V(Ga) ={wq : a € A}

For all h € Hom(C, A) let m(h) = h', where h' is defined by h'(ve) == wy() for all ¢ € C.
Since ¢ € C and h € Hom(C, A), we obtain that h(c) € A. Hence, h/(ve) = wp(c) € V(Ga)-
To prove the lemma, it suffices to verify that: (a) img(r) C Hom(GZ,GA), i.e., w(h) is a
homomorphism for every h € Hom(C,.A); (b) 7 is injective; and (c) 7 is surjective. The
proofs of statements (a) and (b) are straightforward. For the proof of statement (c) let
h" € Hom(GZ,G.4). Our aim is to find an h € Hom(C,.A) such that h’ = 7(h). By definition
of C (recall our assumption on o-structures described in Section 2), for every z € V(C) there
exists an R € o and a tuple ¢ € RC such that z € set(c). For each z € V(C) let us choose
arbitrary, but from now on fixed such R and ¢ which we henceforth will denote by R, and
¢, and let us fix an i, € [ar(R,)] such that z is the i,-th component of the tuple ¢,. Since
c. € (R.)°, by definition of GZ we have v, € (URz)gg‘ Since 1" € Hom(GZ,G.), we obtain
W' (ve.) € (Ug.)%*. By definition of G 4 there is a tuple a. € (R.)" such that h”(ve,) = wq. .
Let us write z, to denote the i.-th component of the tuple a.. Clearly, z, € V(A). Using
these notions, we define the mapping h: V(C) — V(A) by letting h(z) = z, for every
z e V(C).

Claim 1: For all ¢ € C and a € A with h”(v.) = wq we have: h(c) = a.
Claim 2: h € Hom(C, A).

See the paper’s full version for proofs of both claims. To complete the proof of Lemma 4.2
it suffices to show that w(h) = h”. By definition of © we have: w(h) = h/, where A’ is
defined by h'(ve) = wp(c) for all ¢ € C. From Claim 1 we obtain that h"(v.) = h'(v.) for
all ¢ € C. Hence, h” = h/ = w(h). This completes the proof of statement (¢) and the proof
of Lemma 4.2. <

Proof of Lemma 4.3. By assumption, hom(7,G.4) # hom(7,Gp), for a colored multitree T
of signature ¢ and o-structures A, B. We will show that the homomorphisms from 7 provide
us with “templates” for acyclic connected o-structures, one of which must have a number of
homomorphisms into A that is different from its number of homomorphisms into B.

Let us write T to denote the Gaifman graph of 7. Since T is a colored multitree, T is a
tree. For an h € Hom(7,G4) the print P, of h in G 4 is the colored multigraph of signature
o defined by V(Pp,) = V(T) =V (T) and, for all R € o and all 4, j € [ar(0)]:

Ur)™ = {veV(T) : h(v)e (Ur)™ },
(Ei,j)Ph = { (u,v) : (h(u),h(v)) € (Em-)g““ and (u:v or {u,v} e E(T)) .

Note that T is also the Gaifman graph of Py,. We let P4 = { P, : h € Hom(7,G4) }. The
notion of the print Py, of h in G for h € Hom(7T, Gg) and the set Py are defined analogously.
Note that P4 and Pg are not necessarily disjoint, and that different homomorphisms may
have the same print.

For every P € P4 U Pg we let #(P, A) :=|{h € Hom(7,G4) : P, = P}|. The number
#(P, B) is defined analogously. Note that hom(7,G4) = > pep, #(P,A) and hom(T, Gp) =
ZPGPB #(P, B) — see the paper’s full version for a proof.

For any two prints P, P’ we say that P is a subprint of P’ (for short: P < P’) if
(Ur)" € (UR)" and (E; ;)" C (Ei;)", for all R € o and all i, j € [ar(c)]. Obviously, < is
a partial order on P4 U Pg.
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It can be verified that for every print P we have hom(P,G4) = > p/. p<p #(P’, A) and
hom(P, gB) = ZP’:PjP/ #(P/7B)'

Since hom(7,G4) = 3" pcp, #(P,A) and hom(T,Gp) = > pc p, #(P, B) and, by assump-
tion, hom(7,G.4) # hom(T,Gg), there must be a P € P4 U Pg such that #(P, A) # #(P, B).
We choose a largest such P w.r.t. the partial order <. lLe., #(P,A) # #(P,B), but
#(P',A) = #(P',B) for all P’ with P < P’ and P’ # P. Combining this with the fact
that hom(P,Ga) = > p/.p<p #(P', A) and hom(P,Gg) = > p.p<p #(P', B), we obtain:
hom(P,G 4) # hom(P,Gp).

Now, all that remains to be done is to show that there exists an acyclic and connected
o-structure C and a join-tree .J for C (J will have exactly the same shape as T') such that G¢ is
isomorphic to P — then hom(P, G 1) # hom(P, Gg) implies that hom(GZ, G 4) # hom(GZ,Gp).
Details on how to construct C are given in the paper’s full version. This then completes the
proof of Lemma 4.3. <

5 Connection to Logic

This section’s goal is to provide a logical characterization of the distinguishing power of
RCR. We aim for a theorem that is analogous to the following result due to Immerman and
Lander [26] and Cai, Fiirer, Immerman [10] concerning the logic C, a syntactic extension
of first-order logic with counting quantifiers of the form 3*"x 1) (for every fixed n € Ny, ),
expressing “there exist at least n values for « such that 1 holds”. The restriction of C to two
variables is denoted by C2.

» Theorem 5.1 ([10, 26]). Let G and H be graphs. The following statements are equivalent:
1. CR distinguishes G and H.
2. There exists a sentence ¢ € C? such that G = ¢ and H [~ .

5.1 The Guarded Fragment of Counting Logic

This section introduces the guarded fragment of the logic C, for short: GF(C). Its definition is
in the same spirit as the logic GF (the guarded fragment of first-order logic; see [25]) and the
logic GF(L) (the guarded fragment of any logic L that is a subset of first-order logic; see [18]).
Here, we use a similar notation as in [18], but adapt it in order to obtain a reasonable
notion of “guarded fragment of C”. As in [25, 18], the term “guarded” refers to the fact that
quantifiers are appropriately relativized by relational atoms.

We have available a countably infinite set Var := {v; : i € N1 } of variables. We call
a tuple v of m distinct variables of the form (v;,,...,v;, ) € Var™ a variable tuple, and we
let vars(v) .= {vi,...,v;,, }. Recall that at the beginning of Section 3 we have chosen an
arbitrary (relational) signature that is fixed throughout the rest of this paper.

» Definition 5.2 (Syntax of GF(C)). The logic GF(C) is inductively defined along with the
free variables and the guard-depth, formalized by the functions free: GF(C) — 22 and
gd: GF(C) — N.
Atomic Formulas: For all R € o with ¢ := ar(R), all z1,...,2¢ € Var and all x,y € Var, the
following formulas ¢ (of signature o) are in GF(C): ¢ is of the form
1. R(z1,...,x¢) with free(p) = {x1,...,2¢} and gd(yp) = 0;
2. z=y with free(p) == {z,y} and gd(p) :=0.
Inductive Rules: Let x, 1 be formulas (of signature o) in GF(C). The following formulas ¢
(of signature o) are in GF(C): ¢ is of the form
3. —x with free(p) := free(x) and gd(p) = gd(x);
4. (x ANY) with free(p) := free(x) U free(¢p) and gd(y) := max(gd(x),gd(¥)).
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An atomic formula A (of signature o) of the form R(z1,...,2) in GF(C) is called a guard
for 1, if free(y)) C free(A). Let n € N1 and let A be a guard for ¢. For every variable
tuple v with vars(v) C free(A), the following formula ¢ (of signature o) is in GF(C): ¢ is
of the form

5. F"v.(AAY) with free(p) = free(A) \ vars(v) and gd(¢) == gd(v)) + 1.

In this paper we assume w.l.o.g. that the variable tuple v = (v;,,...,v;, ) after a quantifier
3" is ordered, i.e., i3 < - -+ < ip,. This has no effect on the semantics, but simplifies some
arguments. We write 37" v. (A A¢) as shorthand for (F"v.(AAg) A ~F" v (ANg)).
We omit parentheses in the usual way.

» Definition 5.3 (Semantics of GF(C)). A o-interpretation is a tuple Z = (A, ) consisting
of a o-structure A and a function a: Var — V(A). Formulas (of signature o) in GF(C) are
evaluated on o-interpretations Z. We write Z = ¢ to denote that Z satisfies ¢, and T }= ¢ to
denote that Z does not satisfy . By IH we denote the o-interpretation (A, ') with
o' (vi;) = a; for all j € [(], and o/(x) := a(z) for all x € Var\ {v;,,...,v;, }. The semantics
of formulas in GF(C) are inductively defined as follows:

Rule 1: 7 |= R(x1,...,2¢) <= (a(x1),...,a(zs)) € RA.

Rule 2: T = 2=y < a(z) = a(y).

Rules3and 4: T -x < ITHx. ITEKXAY) < ITE=xandZ .

Rule 5: T = F"v . (A A¢) <= there are at least n tuples a € V(A4)™™) such that

12 - (A AY).

We will use the following conventions throughout the paper: ¢(z1,...,zx) denotes that
free(p) C {x1,...,zk }; and A, (a1,...,ax) = ¢(x1,...,z1) denotes that (A, a) = ¢ where
a is an assignment where a(x;) = a; holds for all ¢ € [k]. A sentence is a formula ¢ € GF(C)
that has no free variable, i.e., free(p) = @. If ¢ is a sentence, we write A |= ¢ to denote that
(A, ) | ¢ for any assignment « (since o does not matter in this case). We write A =gr(c) B
to denote that the o-structures A and B satisfy the same sentences (of signature o) in GF(C).
Finally, we say that A and B are distinguishable in GF(C) if A Zgr(c) B.

» Example 5.4. Counsider the formula ¢ =
F(v1, va, v3, V4, Vs, v6) . (R(v1, v, v, va, Vs, v6) A (E(v1,v2) A (E(v2,vs) A E(vs,vi)))),

the oy-structure A; from Example 3.2 and the oy-structure B; with V(By) = {1, 2,3, u, v, w},
EB = {(1,2), (2,w), (w,u), (u,v), (v,3),(3,1)} and R := {(1,2,3,u,v,w)}.

Clearly, ¢ == (E(v1,v2) A (E(v2,v3) A E(vs,v1))) is a formula in GF(C) with free(y) =
{v1,ve,v3} and gd(¢)) = 0. Thus, R(vy,va, Vs, V4, Vs, Ve) is a guard for 1. Hence, ¢ € GF(C)
with free(¢) = @, and gd(p) = 1.

The formula ¢ states that there is at least one tuple (of arity 6) in R such that the first 3
entries of this tuple form a triangle w.r.t. relation E. Hence, A; | ¢ and B; £~ ¢, which
means A; and By are distinguishable in GF(C).

5.2 The Guarded Game

Our ultimate goal in Section 5 is to prove for any two o-structures A and B that RCR
distinguishes A and B if, and only if, A #gr(c) B- Similarly to the proof of Theorem 5.1, our
proof will use, as an intermediate step, a game characterization of (in)distinguishability of
two o-structures in GF(C). We call this game the Guarded Game; it is defined as follows. It is
played on two o-structures A, B. A configuration of the Guarded Game is a tuple of the form
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((A,a), (B, b)), where A and B are the given o-structures and a € V(A)*, b € V/(B)* for some
k € N. A configuration ((A,a), (B,b)) is called distinguishing, if stp(a) # stp(b) or there

are an £ € [ar(o)] and indices 41, . .., i, € [k] such that atp((a;y,...,ai,)) # atp((bi,, ..., bs,)).

We may omit parentheses if they are clear from the context. If £k = 0, we write A, B for
the configuration ((A4, (), (B,())), and we call this the empty configuration; note that this
configuration is not distinguishing.

A round of the Guarded Game is played as follows: consider (A,a), (B,b) to be the
configuration at the beginning of the round. Spoiler picks a relation symbol R € o. Then,
Duplicator provides a bijection m between RA and RB. If no such bijection exists (i.e.,
|RA| # |RB|), the round ends and Spoiler wins this round; otherwise the round proceeds as
follows. Spoiler picks some a’ € R4 and creates the new configuration (A,a’), (B,b') where
b’ = m(a’). Duplicator wins this round if the new configuration is not distinguishing and
stp(a, a’) = stp(b, b’). Otherwise, Spoiler wins this round.

Duplicator has a 0-round winning strategy on (A, a), (B,b) if the configuration is not
distinguishing. For ¢ > 1, Duplicator has an i-round winning strategy on (A, a), (B, b) if this
configuration is not distinguishing, and she can provide a bijection 7 for every R € o that
Spoiler may pick, such that for every a’ and b’ := 7(a’) that Spoiler may choose, she wins
the current round and has an (i—1)-round winning strategy on the resulting configuration
(A,a’), (B,b"). Spoiler has an i-round winning-strategy on (A, a), (B,b), if Duplicator does
not have one. In particular, if Spoiler has a winning strategy for ¢ rounds, he also has a
winning strategy for more than i rounds. If A and B are not of strictly equal size, then
Spoiler has a trivial 1-round winning strategy, because Duplicator is unable to give a bijection
in the first round. We say that Duplicator wins the Guarded Game on (A, a), (B, b) if she
has an -round winning strategy on (A, a), (B,b) for every i € N.

5.3 RCR is equivalent to GF(C) and the Guarded Game

This section is devoted to proving the equivalence of statements (1), (3) and (4) of Theo-
rem A (b), i.e., we prove the following theorem.

» Theorem D. For all o-structures A and B, the following statements are equivalent.
1. RCR distinguishes A and B.

2. There exists a sentence ¢ € GF(C) such that A = ¢ and B~ ¢.

3. Spoiler wins the Guarded Game on A, B.

We prove the theorem by showing that the implication chain 1 = 2 = 3 = 1 holds. For this,
we use the following three lemmas; their proofs are inductive and quite similar to the way
the analogous result on graphs is shown, thus we defer their proofs to the paper’s full version.
The arity ar(c) (atomic type atp(c), similarity type stp(c)) of a color ¢ € RC;(A) is defined
as the arity (atomic type, similarity type) of the tuples in A that receive this color. Recall
that we denote the color of a tuple a € A after ¢ iterations of RCR as g,(a).

» Lemma 5.5. For every o-structure A, every i € N, and every c € RC;(A) of arity k, there
exists a formula ¢’ (x) € GF(C) with © = (z1,...,xx) such that for every o-structure B of
size strictly equal to A and every b € B of arity k we have: B,b = pi(x) < p,;(b) = c.

» Lemma 5.6. Let A and B be o-structures of strictly equal size and let a € V(A)k,
b € V(B be arbitrary tuples of arity k. Let @ = (x1,...,x) be a tuple of k distinct
variables. If there exists a formula ¢ € GF(C) with free(¢) C {a1,...,2x } such that
A,a = o(x) <= B,b [~ o(x), then Spoiler has a gd(p)-round winning strategy for the
Guarded Game on (A, a), (B,b).
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» Lemma 5.7. Let i € N, let A and B be o-structures of strictly equal size, and let
a € A, b € B be tuples of arity k. If o,(a) = p,(b), then the configuration (A, a),
(B, b) is not distinguishing. Further, if 0,1 (a) = 0;,1(b) and mult 4(c) = multg(c) for all
¢ € RC;(A)URC;(B), then Duplicator has an i-round winning strategy for the Guarded Game
on (A, a), (B,b).

The proof of Theorem D proceeds as follows. If A and B are not of strictly equal size, it
is straightforward to see that each of the theorem’s three statements is fulfilled. For the case
where A and B are of strictly equal size, “1=-2" easily follows from Lemma 5.5, and “2=-3”
is obtained from Lemma 5.6. Concerning “3=-1", one proves the contraposition and uses
Lemma 5.7 to obtain a winning strategy for Duplicator in the Guarded Game; this winning
strategy ensures that after each round, the configuration is of the form (A, a), (B,b) where
a and b have the same color in the stable coloring produced by RCR on A and B.

6 Final Remarks

We introduced Relational Color Refinement (RCR) as an adaptation of the classical Color
Refinement (CR) procedure for arbitrary relational structures. We showed that it can be
implemented with the same running time as CR (Theorem B). Furthermore, we showed
that the distinguishing power of RCR, admits an analogous combinatorial (Theorem C) and
logical (Theorem D) characterization as CR. Combining the Theorems B, C and D yields
our main result, Theorem A, formulated in Section 1.

There are multiple directions for further research:
One interesting task is to lift the results of [2, 28] from CR and C? to RCR and GF(C).
This is non-trivial, because GF(C) is capable of identifying certain o-structures that
cannot be identified in C?: consider, e.g., the signature o3 := { R} with ar(R) = 4 and the
oz-structure Az with V(Az) = {1,2,3} and R4 = {(1,2,3,3) }. It is easy to construct a
GF(C)-sentence ¢ that is satisfied by A3 but by no o3-structure Bz that is not isomorphic
to Az and where every node is contained in some relation (recall the assumption on
structures we adopted in Section 2). But there does not exist any C2-sentence ¢ with the
same property — in fact, according to [28, Proof of Corollary 5.9], the logic C? does not
identify any o-structure whose universe contains > 3 elements and where o contains a
relation symbol of arity > 3.
Considering that CR is equivalent to the 1-dimensional Weisfeiler-Leman algorithm (WL),
RCR might be a good basis to devise a generalization of the k-dimensional WL to arbitrary
relational structures.
Given the close relationship between relational structures and hypergraphs, a coloring
method similar to RCR should exist for hypergraphs, too. However, RCR relies heavily
on the order that the tuples provide — and this order is absent in hyperedges. Thus, it is
not clear how to adapt the refinement of the colors in an iteration step from tuples to
hyperedges.
Another promising direction is to think about the applications of RCR, given that there are
so many applications of classical CR, also apart from isomorphism testing (cf. Section 1).
In particular, we conjecture that some of the techniques developed in this paper can
be used to lift the result by Riveros, Scheidt, Schweikardt [31] from binary structures
to arbitrary structures. Further, the tight connection between CR and Graph Neural
Networks suggests interesting applications for RCR in machine learning as well. We plan
to investigate this.
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