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Abstract
The notion of homomorphism indistinguishability offers a combinatorial framework for characterizing
equivalence relations of graphs, in particular equivalences in counting logics within finite model
theory. That is, for certain graph classes, two structures agree on all homomorphism counts from
the class if and only if they satisfy the same sentences in a corresponding logic. This perspective
often reveals connections between the combinatorial properties of graph classes and the syntactic
structure of logical fragments. In this work, we extend this perspective to logics with restricted
requantification, refining the stratification of logical resources in finite-variable counting logics.
Specifically, we generalize Lovász-type theorems for these logics with either restricted conjunction
or bounded quantifier-rank and present new combinatorial proofs of existing results. To this end,
we introduce novel path and tree decompositions that incorporate the concept of reusability and
develop characterizations based on pursuit-evasion games. Leveraging this framework, we establish
that classes of bounded pathwidth and treewidth with reusability constraints are homomorphism
distinguishing closed. Finally, we develop a comonadic perspective on requantification by constructing
new comonads that encapsulate restricted-reusability pebble games. We show a tight correspondence
between their coalgebras and path/tree decompositions, yielding categorical characterizations of
reusability in graph decompositions. This unifies logical, combinatorial, and categorical perspectives
on the notion of reusability.
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1 Introduction

A fundamental result in graph theory due to Lovász [25] states that two graphs G and H are
isomorphic if and only if for every graph F it holds hom(F,G) = hom(F,H), where hom(F,G)
denotes the number of homomorphisms from F to G. More generally, G and H are said to be
homomorphism indistinguishable over a graph class F , denoted by G ≡F H, if hom(F,G) =
hom(F,H) for all F ∈ F . In this formulation, the seminal result of Lovász states that the
equivalence relation ≡G is the same as graph isomorphism, where G is the class of all graphs.
Understanding characterizations of the homomorphism indistinguishability relation ≡F not
only deepens our understanding of various graph invariants but also informs algorithmic
approaches to problems like graph isomorphism [32], subgraph counting [9], and counting
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answers to conjunctive queries [19]. In recent years, the relation ≡F was characterized for
several graph classes F as a natural equivalence relation arising from logic and algebra.
Notable examples include graphs of bounded treewidth [12, 13], bounded pathwidth [21, 27],
bounded tree-depth [20, 21], and planar graphs [26]. Two central questions have emerged in
this line of research and attract ongoing interest:
(1) How do structural properties of the class F relate to the semantics of the relation ≡F ?
This first question often admits elegant characterizations in terms of mathematical logic,
particularly when the graph classes are defined via graph decompositions. In this context,
logical equivalence provides a natural way to express homomorphism indistinguishability.
For a logic on graphs L, two graphs G and H are said to be L-equivalent if they satisfy
exactly the same sentences from L. In [13] Dvořák shows that two graphs are homomorphism
indistinguishable over the class of graphs of treewidth at most k if and only if they are
equivalent in the k-variable fragment Ck of first-order counting logic C. The techniques
developed in [13] have been refined in [17] to prove that homomorphism indistinguishability
over the class T k

q of graphs admitting tree-decompositions of width k and depth q is the same
as equivalence in Ckq , the fragment of Ck of quantifier-rank at most q. The general technique
is to directly translate between formulas in Ckq and graphs from T k

q by induction on the
structure of formulas and tree decompositions in both directions.

Beyond the characterization of homomorphism indistinguishability relations, the following
natural question is fundamental to understand these relations:
(2) When do different graph classes F induce the same indistinguishability relation ≡F ?
This second question was approached methodically by Roberson [31] via introducing the
notion of homomorphism distinguishing closedness. A graph class F is called homomorphism
distinguishing closed (also h.d. closed) if for every graph F /∈ F there exist graphs G,H with
G ≡F H and hom(F,G) ̸= hom(F,H), i.e., if no graphs can be added to F without changing
the relation ≡F . The significance of this notion is that any two distinct homomorphism
distinguishing closed classes must induce distinct homomorphism indistinguishability relations.
In turn, equivalence relations on graphs characterized by homomorphism indistinguishability
can be separated by separating the underlying graph classes, given they are homomorphism
distinguishing closed. In general, it appears to be a hard task to establish that a given
class is homomorphism distinguishing closed, leading to only a short list of known examples.
These include the class of graphs of bounded degree [31], bounded tree-depth [17], bounded
treewidth [29], bounded depth treewidth [5], and essentially profinite classes [35]. Beyond
the investigation of specific graph classes, in [35] the relation between closure properties
of F and preservation properties of ≡F was studied systematically guided by the two
aforementioned main questions. In [31] Roberson conjectures that every graph class which is
closed under taking disjoint unions and minors is homomorphism distinguishing closed. For
certain such graph classes F , homomorphism distinguishing closedness has been successfully
proven when ≡F is characterized by a model-comparison game and membership in F is
determined by a pursuit-evasion game. A key tool in such proofs is the CFI-construction [8],
which has been instrumental in separating the homomorphism indistinguishability relations
of Ck-equivalence and Ck+1-equivalence. For a graph G, the construction yields two CFI-
graphs X(G) and X̃(G) for which their distinguishability by Ck depends on the structural
complexity of G. Crucial technical challenges arise, particularly in proving the connection
between pursuit-evasion and model-comparison games for the CFI-construction (see [29])
and establishing the monotonicity of pursuit-evasion games (see [5]). The monotonicity of a
game ensures that when searchers have a winning strategy, the reachable positions for the
evading player only decreases as the game progresses.
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For many logics of interest in finite model theory, like Ckq , their equivalence can be
characterized in terms of model-comparison games such as Ehrenfeucht–Fraïssé or pebble
games (see [15]). This correspondence was utilized in [2] to give a novel approach to logical
resources in terms of game comonads. The central observation is that model-comparison
games induce comonads on categories of relational structures. In this framework, several
essential constructions from finite model theory can be given a categorical account, see [3] for a
survey. In particular, coalgebras for some game comonads encode combinatorial parameters of
structures [4] leading to a uniform approach to homomorphism indistinguishability developed
in [11]. There, the first characterization of Ckq -equivalence by homomorphism counts was
shown for graphs admitting pebble forest covers. The comonadic approach was recently used
to show a categorical characterization of the graph parameter pathwidth and prove that
homomorphism indistinguishability over graphs of pathwidth at most k is logical equivalence
in the restricted conjunction logic ∧Ck [27] by building on previous work of Dalmau [10].

The concept of requantification, recently introduced in [30], allows for a more refined
view on stratification by logical resources in finite variable counting logics. The logic C(k1,k2)

is defined as the fragment of C using at most k1 + k2 distinct variables of which only k1
may be requantified, i.e. quantified within scopes of their own quantification. To analyze
the expressive power of C(k1,k2), the bijective (k1, k2)-pebble game BP(k1,k2) and the q-
round (k1, k2)-cops-and-robber game CR(k1,k2)

q were introduced, incorporating reusability into
model-comparison and pursuit-evasion games, respectively. In the context of Question (1),
it is only natural to ask whether logics with restricted conjunction and requantification
admit homomorphism indistinguishability characterizations. Subsequently, Question (2) asks
whether the corresponding graph classes are homomorphism distinguishing closed.

Contribution

In this work, we extend the study of homomorphism indistinguishability to graph classes
with restricted reusability and thereby provide characterizations by counting logics with
restricted requantification. A central contribution of our work is to show that decomposition-
based techniques provide flexible tools for characterizing homomorphism indistinguishability
relations, giving novel answers to Question (1). Furthermore, we use these techniques for
establishing homomorphism distinguishing closedness, giving new answers to Question (2).
By embedding these results into the broader framework of game comonads, we provide a
unified categorical perspective on requantification in finite variable logics. In the following,
we give a more detailed description of our contribution in terms of techniques and results:

Graph decompositions. We answer an open question from [30] by characterizing the class
of graphs T (k1,k2)

q where the cops have a winning strategy for CR(k1,k2)
q by various graph

decompositions, which adapt the concept of reusability (Theorem 3.8). Furthermore, we
introduce the node-searching game NS(k1,k2) where only k1 of the k1 + k2 searchers may be
reused and characterize the class of searcher-win graphs P(k1,k2) by novel path decompositions
(Theorem 3.7). We demonstrate a new effect that differentiates pathwidth from treewidth
in the context of reusability. Namely, for bounded pathwidth, non-reusable resources can
be employed uniformly for the full decomposition while for bounded treewidth their usage
highly depends on intermediate parts of the decomposition (Proposition 3.4). Moreover, we
prove that both games CR(k1,k2)

q and NS(k1,k2) are monotone by showing that reusability is
compatible with monotonicity of the non-restricted games (Proposition 3.5).
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Characterizations by logical equivalence. The newly defined decompositions for P(k1,k2)

and T (k1,k2)
q form the basis of our homomorphism indistinguishability results, providing more

fine-grained answers to Question (1). By imposing constraints on requantification in the
restricted conjunction logic ∧Ck we obtain the new fragment ∧C(k1,k2) and show that ∧C(k1,k2)-
equivalence is exactly the same as homomorphism indistinguishability over P(k1,k2) (The-
orem 4.5). This extends the Lovász-type theorem for P(k,0) from [27] to the setting of
restricted reusability. Interestingly, this also reproves the previous result in a purely combi-
natorial manner by adapting the constructive techniques from [13, 17]. We further underline
the versatility of this strategy by proving that C(k1,k2)

q -equivalence is homomorphism in-
distinguishability over T (k1,k2)

q (Theorem 4.6). Also here we show how the interplay of
requantification and restricted conjunction differentiates the two logics: We prove a normal
form result for ∧C(k1,k2)

∞ω with respect to requantification (Proposition 4.2) which in stark
contrast was ruled out for the logic C(k1,k2) in [30].

Homomorphism distinguishing closedness. We utilize the established framework for count-
ing homomorphisms from the class P(k1,k2) to prove our main technical result: For every
graph G /∈ P(k1,k2) the CFI-graphs X(G), X̃(G) are ∧C(k1,k2)-equivalent (Theorem 4.8
and Lemma 4.9). Using a similar argument for the class T (k1,k2)

q , we obtain that the
classes P(k1,0), the closure of P(k1,k2) under disjoint unions, and T (k1,k2)

q are homomorphism
distinguishing closed (Theorems 4.10 and 4.11). This gives new answers to Question (2) and
further exemplifies the technique of using games to establish homomorphism distinguishing
closedness. In the light of Roberson’s conjecture, Theorem 4.10 is particularly interesting as
the class of graphs of pathwidth at most k must exclude a fixed forest as a minor [33]. Next,
we employ an argument from [29] to give an exact characterization which subgraph counts
are recognized by the logics ∧C(k1,k2) and C(k1,k2)

q . For the logic C(k1,k2)
q , this characterizes

the ability of a reusability-restricted Weisfeiler-Leman variant to detect subgraph counts
(Remark 4.14). Note: Recently, Lemma 4.9 and a part of its consequence Theorem 4.10 were
independently obtained for the case without constraints on reusability in the PhD thesis [36].

A comonadic perspective. Finally, we give a comonadic account of requantification as a
logical resource. The pebbling comonad [2] and pebble-relation comonad [27] were constructed
from organizing the respective pebble games as endofunctors on categories of relational
structures. We use reusability-restricted variants of these pebble games from [30] and this
work to obtain similar constructions, namely the comonads P(k1,k2) and PR(k1,k2). By proving
close correspondences between coalgebras of these comonads and our newly defined path
and tree decompositions, we obtain categorical characterizations of reusability in graph
decompositions (Theorem 5.4). Finally, we show that coKleisli isomorphisms correspond
to Duplicator winning strategies in the corresponding pebble games and hence characterize
equivalence for the logics ∧C(k1,k2) and C(k1,k2)

q (Theorem 5.5). We also devise restricted
pebble games to capture coKleisli morphisms and thereby characterize preservation in
counting-free logics with restricted requantification (Theorem 5.8).

2 Preliminaries

We write N = {0, 1, 2, . . . } for the set of natural numbers, N+ = N \ {0} for the set of
positive integers, and for n ∈ N+ we define [n] := {1, . . . , n}. Unless stated explicitly
otherwise, we let k1, k2 ∈ N throughout the paper. We fix the variable sets (also called pebble
sets) [xk1 ] := {x1, . . . , xk1}, [yk2 ] := {y1, . . . , yk2}, and [xk1 , yk2 ] := {x1, . . . , xk1 , y1, . . . , yk2}.
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For the following definitions we let V be a set. We write 2V for the power set of V and
set

(
V
2
)

= {U ∈ 2V : |U | = 2}. A partial function α : [xk1 , yk2 ] ⇀ V assigns to every
variable z ∈ [xk1 , yk2 ] at most one element α(z) ∈ V . If α does not assign an element
to z, we write α(z) = ⊥. Also, we write im(α) and dom(α) for the image and domain
of α respectively. We write V +, V n and V ≤n for the sets of non-empty finite sequences,
sequences of length n, and sequences of length at most n over V respectively. We denote
sequences of elements s1, . . . , sn ∈ V by s = [s1, . . . , sn] ∈ V n and for s, t ∈ V + we write
s ⊑ t if s is a prefix of t. The concatenation of s and t is denoted by st. For i, j ∈ [n]
with i ≤ j we define s[i, j] := [si, si+1, . . . , sj ] and s[i] := s[i, i]. Also, we indicate that si
occurs in s by writing si ∈ s. For a variable z ∈ [xk1 , yk2 ] and v ∈ V we write α[z/v] for the
partial function that is obtained from α by replacing the image α(z) by v. Given a sequence
s = [(z1, v1), . . . , (zn, vn)] ∈ ([xk1 , yk2 ] × V )n and z ∈ [xk1 , yk2 ] we denote by lastz(s) the vi
with the largest index i such that (z, vi) ∈ s. We call the first entry of each element in s a
pebble index or variable index. For a proposition P , we use the Iverson bracket [P ] ∈ {0, 1}
to indicate whether P is satisfied.

Finite model theory. We fix a finite signature σ of relation symbols and associate to each
R ∈ σ an arity ar(R) ∈ N+. A σ-structure A consists of a universe of elements V (A) and
interpretations RA ⊆ V (A)ar(R) for each R ∈ σ. For σ-structures A and B we say that
B is a substructure of A if V (B) ⊆ V (A) and RB ⊆ RA for each R ∈ σ. Every set of
elements A ⊆ V (A) induces a substructure of A with universe A and relations RA ∩Aar(R)

for R ∈ σ. A homomorphism between σ-structures A and B is a function h : V (A) → V (B)
such that for all R ∈ σ we have that (v1, . . . , var(R)) ∈ RA implies (h(v1), . . . , h(var(R))) ∈ RB.
The function h is called an isomorphism if it is a bijective homomorphism and h−1 is a
homomorphism. Let L be a logic over the signature σ with variable set V (for a formal
definition see [14]). For a formula φ ∈ L we write φ(v1, . . . , vn) to indicate that the set of free
variables of φ, which we denote by free(φ), is a subset of {v1, . . . , vn}. Given a σ-structure
A and an assignment α : V ⇀ V (A) we write A, α |= φ to indicate that A satisfies φ with
free(φ) interpreted according to α. For a tuple a ∈ V (A)n we write A, a |= φ by assigning
vi 7→ ai. For σ-structures A,B we write A ≡L B if A and B satisfy exactly the same sentences
from L. We write A ⇛L B if every sentence from L satisfied by A is also satisfied by B.
First-order counting logic C extends first-order logic FO by counting quantifiers ∃≥nφ for
φ ∈ C. We say that a variable xi is requantified in a logical formula if it either occurs free
and bound or if it is quantified within the scope of a quantification over xi. The logic C(k1,k2)

is obtained from C by fixing the variable set [xk1 , yk2 ] and requiring that only variables from
[xk1 ] are requantified. Finally, C(k1,k2)

q is the fragment of C(k1,k2) with quantifier-rank at
most q (see [30] for details).

Graphs. A finite graph is a pair G = (V (G), E(G)) consisting of a finite set V (G) of vertices
and a set E(G) ⊆

(
V (G)

2
)

of edges. For an edge {u, v} ∈ E(G) we also write uv ∈ E(G).
Given a set W ⊆ V (G) we define the induced subgraph G[W ] = (W, {uv ∈ E(G) : u, v ∈ W}).
For a graph G and v ∈ V (G) we write E(v) for the set of edges incident to v. We denote the
set of vertex sets of connected components (i.e. maximal connected subgraphs) of G by CG.
A rooted tree is a pair (T, r) such that T is a tree and r ∈ V (T ) is a designated vertex, called
the root of T . With a rooted tree we associate a partial order ⪯T on the vertices of T by
setting s ⪯T t exactly if s is on the unique path from r to t. The height of a rooted tree is
the maximal number of vertices on a path from the root to a leaf. A rooted forest is a pair
(F, r) such that if F1, . . . , Fp are the connected components of F we have r = (r1, . . . , rp) and

MFCS 2025
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(Fi, ri) is a rooted tree for each i ∈ [p]. A labeled graph is a graph G together with a finite set
of labels L and a partial labeling function νG : L ⇀ V (G). We write LG := dom(ν) for the
set of labels occurring in G. A labeled graph is called fully labeled if the labeling function
is surjective. We denote the class of all [xk1 , yk2 ]-labeled graphs by G[xk1 ,yk2 ]. The product
of two labeled graphs G1, G2 ∈ G[xk1 ,yk2 ] is the graph G1G2 obtained by taking the disjoint
union of G1 and G2, identifying vertices with the same label, and suppressing any loops or
parallel edges that might be created. Note that for a graph G ∈ G[xk1 ,yk2 ] the labeling νG is
a partial variable assignment and hence we may write G |= φ for G, νG |= φ if free(φ) ⊆ LG.

Two central concepts in this work are tree decompositions and path decompositions, which
we briefly introduce next. For a more detailed exposition, we refer the reader to [7].

▶ Definition 2.1. Let G be a graph. A tree decomposition of G is a tuple (T, β) such that T
is a tree and β : V (T ) → 2V (G) is a function such that⋃

t∈V (T ) β(t) = V (G),
for all uv ∈ E(G) there exists a t ∈ V (T ) with u, v ∈ β(t), and
for all v ∈ V (G) the set of vertices β−1({v}) = {t ∈ V (T ) : v ∈ β(t)} is connected in T .

The width of (T, β) is maxt∈V (T ) |β(t)| − 1 and the treewidth of G is the minimal width of a
tree decomposition of G. If T is a rooted tree with root r ∈ V (T ) we call (T, r, β) a rooted
tree decomposition. A path decomposition of G is a tree decomposition (P, β) such that the
underlying tree P is a path. If the decomposition is rooted, then we define the root to be an
endpoint of P . The width of (P, β) is again maxp∈V (P ) |β(p)| − 1 and the pathwidth of G is
the minimal width of a path decomposition of G.

The CFI-construction. We use the CFI-construction introduced in [8] in the variant
presented in [31]. Let G be a connected graph and U ⊆ V (G). For each v ∈ V (G) we set
δv,U := |{v} ∩ U |. The CFI-graph XU (G) is defined by

V (XU (G)) := {(v, S) : v ∈ V (G), S ⊆ E(v), |S| ≡ δv,U mod 2},
E(XU (G)) := {(v, S)(u, T ) : uv ∈ E(G), uv /∈ S △ T}.

The connected graph G is called the base graph of XU (G). We also define ρ : V (XU (G)) →
G, (u, S) 7→ u. For v ∈ V (G) we also denote FU (v) := {(v, S) : S ⊆ E(v), |S| ≡ δv,U mod 2}
for the vertices in XU (G) associated with v. These vertices are also referred to as gadget
vertices of v and FU (v) as the corresponding gadget.

▶ Lemma 2.2 ([8, Lemma 6.2], [31, Lemma 3.2]). For all sets of base vertices S, T ⊆ V (G),
the graphs XT (G) and XS(G) are isomorphic if and only if |S| ≡ |T | mod 2.

Thus, we setX(G) := X∅(G) and X̃(G) := X{v}(G) for some v ∈ V (G) as the isomorphism
type only depends on the parity of |U |. Note that the vertex sets of the graphs X(G) and
X̃u(G) only differ in F∅(u) and Fu(u).

▶ Lemma 2.3 ([29, Lemma 11]). Let G be a connected graph, u, v ∈ V (G), and P be a path
from u to v in G. Then there exists an isomorphism φu,v : X{u}(G) → X{v}(G) such that
for all (w, S) ∈ V (X{u}(G)) it holds that
1. ρ(φu,v(w, S)) = w, and
2. if w ∈ V (G) \ P then φu,v(w, S) = (w, S).
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Homomorphism indistinguishability. We denote the number of homomorphisms from a
possibly labeled graph F to a graph G by hom(F,G). For a class of labeled graphs F
we write RF for the class of all formal finite linear combinations with real coefficients of
graphs in F . For a linear combination F =

∑
i ciFi ∈ RF and a labeled graph G we define

hom(F, G) :=
∑
i ci hom(Fi, G) and LF to be the set of labels occurring in F.

For a class F of graphs we say that two graphs G and H are homomorphism indistin-
guishable over F if for all F ∈ F it holds that hom(F,G) = hom(F,H). In this case we write
G ≡F H. The homomorphism distinguishing closure of F is defined as the class

cl(F) := {F ∈ G : ∀G,H ∈ G G ≡F H ⇒ hom(F,G) = hom(F,H)}.

The class F is called homomorphism distinguishing closed if cl(F) = F .

▶ Lemma 2.4 ([16, Proposition 47]). Let F be a graph class that is closed under taking
disjoint unions and summands (i.e. F1 ∪̇F2 ∈ F exactly if F1, F2 ∈ F). If for every connected
graph G /∈ F it holds that X(G) ≡F X̃(G), then F is homomorphism distinguishing closed.

Category theory. We assume only very basic background in category theory, see [1] for
details. For a category C we denote its objects by Obj(C) and its morphisms (or arrows)
by Ar(C). We denote the category of σ-structures with their homomorphisms by Str(σ).

A comonad (in coKleisli form) on a category C is given by:
an object map G : Obj(C) → Obj(C),
a counit morphism εA : GA → A for every A ∈ Obj(C),
and a coextension operation (·)∗ associating with each morphism f : GA → B another
morphism f∗ : GA → GB for A,B ∈ Obj(C)

such that for all morphisms f : GA → B, g : GB → C we have ε∗
A = idGA, εB ◦ f∗ = f , and

(g ◦ f∗)∗ = g∗ ◦ f∗. From this, a comonad in standard form (G, ε, δ) on the category C
can be obtained by setting Gf := (f ◦ εA)∗ (turning G into a functor) and δA := id∗

GA for
A ∈ Obj(C). For a comonad in standard form, a coalgebra over G is a pair (A, α) where
A ∈ Obj(C) and Ar(C) ∋ α : A → GA such that δA ◦ α = Gα ◦ α and εA ◦ α = idA.

For a comonad (G, ε, (·)∗) in coKleisli form we define the coKleisli category K(G):
Obj(K(G)) is the class of objects Obj(C).
Ar(K(G)) are all morphisms f : GA → B for A,B ∈ Obj(C).
The composition ◦K is defined by setting g ◦K f := g ◦ f∗.
The identity morphisms are given by the counit morphisms εA for A ∈ Obj(C).

3 Graph decompositions with restricted reusability

In this section, we introduce several graph decompositions that incorporate constraints on
reusability of vertices within the parts of each decomposition. Specifically, we define four
distinct types of decompositions, each of which comes in two variants corresponding to two
underlying structural models: the path model and the (bounded-depth) tree model. Each
decomposition is parameterized by two values: k1, representing the number of reusable
resources, and k2, representing the number of non-reusable resources. Our goal is to show
that, for each of the two models, the corresponding decompositions define the same graph
class with aligned parameters. This equivalence allows us to explore the concept of reusability
in graph decompositions from multiple, yet consistent, perspectives. The motivation for each
decomposition arises from its significance in homomorphism indistinguishability over the
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associated graph class, establishing a unifying theme for our study. In Table 1 we summarize
the significance of the various decompositions introduced in this section for our results on
homomorphism indistinguishability.

Table 1 Utilization of graph decompositions for homomorphism indistinguishability and game
comonads.

graph class homomorphism
indistinguishability h.d. closedness game comonads

path P(k1,k2) defined by
path decompositions

∧C(k1,k2)-equivalence
via construction caterpillars

LP(k1,k2)

only for ∪̇P(k1,k2)

via NS(k1,k2)

coalgebras over PR(k1,k2)
correspond to linear

component forest covers

tree
T (k1,k2)

q defined by
bounded depth

tree decompositions

C(k1,k2)
q -equivalence

via construction trees
LT (k1,k2)

q

true via
CR(k1,k2)

q

coalgebras over Pq
(k1,k2)

correspond to
forest covers

We begin by introducing the notion of exception sets for tree decompositions of bounded
depth and for path decompositions. The key idea is to generalize the concept of a tree
decomposition of width k1 by permitting up to k2 exceptions along each branch of the
underlying tree. However, there is an important restriction: if a vertex is designated as an
exception at some node t in the rooted tree decomposition, then it must remain fixed, i.e.,
cannot be replaced by a different vertex at any descendant of t. In this sense, the exception
status is not reusable along the subtree rooted at t.

▶ Definition 3.1. Let G be a graph, k2 ∈ N, k1 ∈ N ∪ {−[k2 > 0]}, and k1 + k2, q ∈ N+. A
rooted tree decomposition (T, r, β) of G has

width (k1, k2) if for each leaf ℓ ∈ V (T ) there exists a set of exceptions Sℓ ⊆ V (G) with
|Sℓ| ≤ k2 such that maxt⪯T ℓ |β(t) \ Sℓ| − 1 ≤ k1,
and depth maxv∈V (T ) |

⋃
t⪯T v

β(t)|.
We write T (k1+1,k2) for the class of all graphs admitting a tree decomposition of width (k1, k2)
and T (k1+1,k2)

q for the subclass admitting such a cover of depth q.
If (P, r, β) is a path decomposition, we define that (P, r, β) has component width (k1, k2)

if for each connected component C ⊆ V (G) there is an exception set SC ⊆ C with |SC | ≤ k2
such that maxp∈V (P ) |β(p) \

⋃
C∈CG

SC | − 1 ≤ k1.
We write P(k1+1,k2) for the class of graphs admitting a path decomposition of width (k1, k2).

For k2 = 0 we recover the class T (k1+1,0) of graphs of treewidth at most k1 but for k2 > 0
we allow the technical nuisance of having k1 = −1 in order to avoid a case distinction.

Note that for the width of a path decomposition we only require the existence of one single
set S of exceptions. Thus, for fixed k1 the class of graphs admitting a path decomposition of
width (k1, k2) can be seen as an approximation of the class of graphs of pathwidth at most
k1 up to deleting k2 vertices.

Next, we extend the notion of pebble forest covers to incorporate the concept of reusabil-
ity. Originally introduced in [2] as k-traversals, these structures provide a combinatorial
characterization of coalgebras over the pebbling comonad Pk, finally demonstrating how the
comonadic structure of Pk can be used to characterize treewidth. Our aim is to follow a
similar approach to characterize reusability (specifically, width (k1, k2)) within tree decompo-
sitions of bounded depth via comonadic methods. To this end, we use non-reusable pebbles
y1, . . . , yk2 , which mark fixed positions in a forest cover that cannot be reassigned, thereby
encoding the non-reusability constraint directly into the structure.
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▶ Definition 3.2. Let G be a graph and k1 + k2 ∈ N+. A (k1, k2)-pebble forest cover of G is
a tuple (F, r, p) where (F, r) is a rooted forest with V (F ) = V (G) and p : V (G) → [xk1 , yk2 ]
is a pebbling function such that
1. if uv ∈ E(G), then u ⪯F v or v ⪯F u,
2. if uv ∈ E(G) and u ≺F v, then for all w ∈ V (G) with u ≺F w ⪯F v it holds that p(u) ̸=

p(w), and
3. if u ∈ V (G) and p(u) ∈ [yk2 ], then for all w ∈ V (G) with u ≺F w it holds that p(u) ̸= p(w).

The forest cover (F, r, p) has depth q ∈ N+ if (F, r) has height q.
We call (F, r, p) a linear forest cover if it additionally holds that

1. every connected component of F is a path, and
2. if u ∈ V (G) and p(u) ∈ [yk2 ], then for every w ∈ V (G) \ {u} it holds that p(u) ̸= p(w).
If we relax Item 2 such that for u ∈ V (G) with p(u) ∈ [yk2 ] only for every w in the same path
of F as u it must hold p(u) ̸= p(w), we say that (F, r, p) is a linear component forest cover.

The tree-depth of a graph G is the minimum q such that G has a forest cover of depth at
most q (see [28]). The class of graphs of tree-depth at most q is denoted by Tq.

The classes P(k,0), T (k,0), and Tq admit characterizations in terms of pursuit-evasion
games by [37], [6, 22], and [18] respectively. The characterization of T (k,0) was refined to
T (k,0)
q in [17]. In [30] a cops-and-robber game with constraints on the reusability of cops and

the number of rounds was introduced. We recall its definition and also modify it to match
the game-theoretic characterization of P(k,0).

▶ Definition 3.3. Let G be a graph and let k1 + k2, q ∈ N+. The cops-and-robber game
CR(k1,k2)

q (G) is defined as follows: The game is played between a group of k1 + k2 cops
denoted by the elements in [xk1 , yk2 ] and one robber. The position of the cops is given by
a function γ : [xk1 , yk2 ] ⇀ V (G) and the position of the robber is a vertex v ∈ V (G). We
denote the connected component of v in the graph G − im(γ) by Cγv . In one round of the
game, the following steps are performed:
1. The cops choose one cop z ∈ [xk1 ] ∪ {y ∈ [yk2 ] : γ(y) = ⊥} and declare a new destina-

tion w ∈ V (G) ∪ {⊥}.
2. The robber chooses a vertex v′ in C

γ[z/⊥]
v .

3. If v′ ∈ im(γ[z/w]) the cops win. Otherwise, the game continues from the new posi-
tion (γ[z/w], v′).

Initially, neither the cops nor the robber are placed on the graph. The robber wins if the cops
do not win after q rounds. The game variant CR(k1,k2) is defined in the same way with the
modification that the robber wins if the cops never win a round.

The node searching game NS(k1,k2)(G) is defined as the variant of CR(k1,k2) in which
the robber is invisible to the cops. That is, the choice of the assignment γi can only depend
on γi−1, but not on v. Here the cops are called searchers instead and the robber is called
fugitive. In this formulation the only difference to CR(k1,k2) is that searchers do not know
the position v, but the fugitive knows the position γ.

The strategy of the cops or searchers is called monotone if in each round it holds that
Cγv ⊇ C

γ[z/⊥]
v . We say that a game variant is monotone if the existence of a winning strategy

implies the existence of a monotone winning strategy.

A winning strategy of the searchers in the game NS(k1,k2)(G) can be specified as a
sequence of positions γ1, . . . , γm : [xk1 , yk2 ] ⇀ V (G) while in the game CR(k1,k2) the cop
strategy depends on the moves of the robber and therefore each position γi additionally
depends on the robber position vi in round i. The proof of [30, Theorem 15] hinges on this
fact and shows that in the game CR(k1,k2) the use of non-reusable cops is restricted to a
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pattern involving arbitrarily long sequences of reusing all reusable cops before utilizing a
new non-reusable cop. We show that the situation is entirely different for NS(k1,k2) due to
the invisibility of the fugitive.

▶ Proposition 3.4. The searchers have a winning strategy in NS(k1,k2)(G) if and only if
they have a winning strategy in NS(k1,0)(G) with k2 initial fixed placements of non-reusable
searchers.

To prove the characterization of a graph parameter by a pursuit-evasion game an important
step often is to establish that the respective game is monotone. Alongside this, in some
cases proving the monotonicity of a game is the crucial step in establishing homomorphism
distinguishing closedness of the associated graph class, see [5, 17] for a discussion. Our
goal is to show monotonicity of the games introduced here in order to utilize this property
to prove game-theoretic characterizations of P(k1,k2) and T (k1,k2)

q towards homomorphism
distinguishing closedness. The monotonicity of NS(k1,0) was proven in [23] and recently
[5] established the monotonicity of CR(k1,0)

q (G). We build on top of these results to show
that reusability is compatible with monotonicity by replacing parts of winning strategies
by monotone strategies. The notion of monotonicity we use here is usually referred to as
robber-monotonicity in the literature.

▶ Proposition 3.5. Let k1 + k2, q ∈ N+ and G be a graph. Then both games NS(k1,k2)(G)
and CR(k1,k2)

q (G) are monotone.

To characterize homomorphism indistinguishability over the class T (k,0)
q , in [17] the

notion of construction trees was introduced, building on techniques from [13]. We extend
this concept to accommodate the classes T (k1,k2)

q and P(k1,k2). This generalized definition
forms the basis of our framework for analyzing homomorphism indistinguishability over these
broader classes.

▶ Definition 3.6. Let k1+k2 ∈ N+ and G be a [xk1 , yk2 ]-labeled graph. A (k1, k2)-construction
tree for G is a tuple (T, λ, r), where (T, r) is a rooted tree and λ : V (T ) → G[xk1 ,yk2 ] is a
function assigning [xk1 , yk2 ]-labeled graphs to the nodes of T such that

λ(r) = G,
all leaves ℓ ∈ V (T ) are assigned fully labeled graphs,
all internal nodes t ∈ V (T ) with exactly one child t′ are elimination nodes, that is λ(t) is
obtained from λ(t′) by deleting a label,
all internal nodes t ∈ V (T ) with more than one child are product nodes, that is λ(t) is
the product of its children,
if t ∈ V (T ) is an elimination node deleting a label y ∈ [yk2 ], then for all s ≺T t it holds
that y /∈ Lλ(s).

The elimination depth of (T, λ, r) is the maximum number of elimination nodes on any
path from the root r to a leaf. If G has a (k1, k2)-construction tree of elimination depth
q we say that G is (k1, k2, q)-constructible. We write LT (k1,k2)

q for the class of (k1, k2, q)-
constructible labeled graphs. If G has a (k1, k2)-construction tree T such that each product
node v ∈ V (T ) has at most one child which is not a leaf, we say that T is a construction
caterpillar and G is linearly (k1, k2)-constructible. We write LP(k1,k2) for the class of linearly
(k1, k2)-constructible labeled graphs.

We obtain the following characterizations for the classes T (k1,k2)
q and P(k1,k2), showing

that all previous definitions are equivalent for unlabeled graphs.
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▶ Theorem 3.7. For a graph G and k1 + k2 ∈ N+ the following are equivalent:
1. G ∈ P(k1,k2), i.e., G has a path decomposition of width (k1 − 1, k2).
2. G admits a linear (k1, k2)-pebble forest cover.
3. The searchers have a winning strategy for the game NS(k1,k2)(G).
4. G ∈ LP(k1,k2), i.e., G is linearly (k1, k2)-constructible.

▶ Theorem 3.8. For a graph G and k1 + k2, q ∈ N the following are equivalent:
1. G ∈ T (k1,k2)

q , i.e., G has a tree decomposition of width (k1 − 1, k2) and depth q.
2. G admits a (k1, k2)-pebble forest cover of depth q.
3. The cops have a winning strategy for the game CR(k1,k2)

q (G).
4. G ∈ LT (k1,k2)

q , i.e., G is (k1, k2, q)-constructible.

▶ Remark 3.9. Regarding inclusions between classes T (k1,k2) (or P(k1,k2)) for varying pa-
rameters k1 and k2 we observe that the proof of [30, Theorem 13] can be used to show a
complete classification of all inclusions, which in particular separates T (k1,k2) from T (k′

1,k
′
2)

for (k1, k2) ̸= (k′
1, k

′
2) (and likewise for P(k1,k2), except that P(1,k2) ̸⊆ P(0,k′

2) for all k′
2 by

Proposition 3.4).
We observe that classes the T (k1,k2)

q and P(k1,k2) admit usual closure properties, except
that P(k1,k2) is not closed under taking disjoint unions.

▶ Proposition 3.10. Let k1 + k2 ∈ N+. The class T (k1,k2)
q is closed under taking disjoint

unions, summands, and minors. The class P(k1,k2) is closed under taking summands and
minors but not under taking disjoint unions for k2 ≥ 1.

The class P(k1,k2) formalizes the notion of reusability for path decompositions in an
appropriate sense as exemplified by the characterization through NS(k1,k2). However, to
overcome the obstacle that this class is not closed under disjoint unions we define the class
∪̇P(k1,k2) as the closure of P(k1,k2) under disjoint unions. This class formalizes the notion
of restricted reusability componentwise on a graph. The next proposition, which follows
directly from Theorem 3.7, makes this explicit.

▶ Proposition 3.11. For a graph G and k1 + k2 ∈ N+ the following are equivalent:
1. G ∈ ∪̇P(k1,k2), i.e., G has a path decomposition of component width (k1 − 1, k2).
2. G admits a linear (k1, k2)-pebble component forest cover.
3. For each component C ∈ CG the searchers have a winning strategy for NS(k1,k2)(G[C]).

4 Homomorphism indistinguishability and logical equivalence

In this section, we characterize homomorphism indistinguishability over the classes P(k1,k2)

and T (k1,k2)
q by logics with restricted requantification. We start by giving the definition of

finite variable counting logic with restricted conjunction and requantification, extending a
definition from [27].

▶ Definition 4.1. We define the set of logical formulas ∧C(k1,k2)
∞ω over the variable sets

[xk1 , yk2 ] and W = {w1, w2, . . . }. The non-counting formulas of the logic are given by

φ ::= zi = zj | R(z) | ¬p |
∨
i∈I

ψi |
∧
j∈J

ψj | ∃zi(zi = wℓ ∧ ψ(z, w))

for zi, zj ∈ [xk1 , yk2 ], z ∈ [xk1 , yk2 ]n, p atomic, I and J countable index sets,
∧
j∈J ψj a

restricted conjunction, and a non-counting formula ψ(z, w) with w ∈ Wm, wℓ /∈ w. Here,
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restricted conjunction means that at most one formula ψj containing a quantifier is not a
sentence. Furthermore, the logic contains the formulas

φ ::= ∃n(wℓ1 , . . . , wℓm
)ψ(wℓ1 , . . . , wℓm

) | ψ1 ∨ ψ2

for n,m ∈ N, wℓ1 , . . . , wℓm ∈ W , a non-counting formula ψ, and ψ1, ψ2 ∈ ∧C(k1,k2)
∞ω . We

additionally require that only variables from [xk1 ] are requantified. The fragment ∧C(k1,k2) is
defined by additionally requiring that all conjunctions and disjunctions are finite.

We call a non-counting formula primitive if it contains no disjunction and every restricted
conjunction does not contain a sentence. A formula φ ∈ ∧C∞ω is called primitive if it is of
the form φ = ∃nw ψ(w) for a primitive non-counting formula ψ.

We first prove that there is a normal form for restricted conjunction counting logic with
respect to requantification and primitivity, enabling a more direct correspondence between
the syntax of formulas and construction caterpillars. The idea is to translate the scheme
from Proposition 3.4 into the language of logic: It suffices to first fix all non-requantifiable
variables followed by a well-behaved employment of requantifiable variables.

▶ Proposition 4.2. Every sentence φ ∈ ∧C(k1,k2)
∞ω is logically equivalent to disjunction of

sentences of the form

∃nw∃y1 . . . ∃yk2

∧
i∈[k2]

yi = wℓi
∧ χ

for a primitive non-counting formula χ only containing quantification over variables from [xk1 ].

In [27] it was shown that equivalence in ∧C(k,0)
∞ω is the same as homomorphism indis-

tinguishability over P(k,0). This result was proven by evoking a categorical meta-theorem
from [11]. We utilize the constructive nature of the proofs in [13, 17] to give a new combina-
torial proof of the result that also generalizes to the setting with restricted requantification.

As a first step, we show that homomorphism counts from graphs in LP(k1,k2) are ∧C(k1,k2)-
definable by inductively building up the formula along a construction caterpillar.

▶ Lemma 4.3. Let F ∈ LP(k1,k2) and m ∈ N. There exists a formula φFm ∈ ∧C(k1,k2) with
free(φ) = LF such that for each [xk1 , yk2 ]-labeled graph G with LF ⊆ LG it holds that

G |= φFm if and only if hom(F,G) = m.

Next, we aim to prove that also every property definable in ∧C(k1,k2) can be modeled by
counting homomorphisms from LP(k1,k2). In fact, the number of solutions to a non-counting
formula in a graph can be expressed by counting homomorphisms from linear combinations:

▶ Lemma 4.4. Let k1 + k2 ∈ N+ and ψ(wℓ1 , . . . , wℓm
, z) ∈ ∧C(k1,k2) be a non-counting

formula. Then there exists a linear combination Fψ ∈ RLP(k1,k2) such that for all G ∈
G[xk1 ,yk2 ] we have

hom(Fψ, G) =
{

|{v ∈ V (G)m : G, v |= ψ}| if free(ψ) ∩ W ̸= ∅
[G |= ψ] otherwise

Combining the two previous results allows us to prove that homomorphism indistinguisha-
bility over the class P(k1,k2) is the same as logical equivalence with restricted conjunction
and requantification.
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▶ Theorem 4.5. For k1 + k2 ∈ N+ and graphs G,H the following are equivalent:
G and H are homomorphism indistinguishable over the class P(k1,k2).
G and H are ∧C(k1,k2)-equivalent.

Following the proof from [17], this strategy can be used to make all constructions for the
logic Ckq with unrestricted conjunction also preserve requantification.

▶ Theorem 4.6. For k1 + k2, q ∈ N+ and graphs G,H the following are equivalent:
G and H are C(k1,k2)

q -equivalent.
G and H are homomorphism indistinguishable over the class T (k1,k2)

q .

4.1 Homomorphism distinguishing closedness
We follow the approach from [29] to combine pursuit-evasion and model-comparison games
to prove homomorphism distinguishing closedness for the classes T (k1,k2)

q and ∪̇P(k1,k2).
First, we introduce a reusability-restricted variant of the all-in-one bijective pebble game

from [27] to characterize ∧C(k1,k2)
∞ω -equivalence.

▶ Definition 4.7. Let A,B be σ-structures and k1 + k2 ∈ N+. The all-in-one bijective
(k1, k2)-pebble game ABP(k1,k2)(A,B) is defined as follows:

The game is played by the two players Spoiler and Duplicator on the structures A and B.
During the first and only round of the game, the following steps are performed:
1. Spoiler chooses a sequence of pebbles z = [z1, . . . , zn] ∈ [xk1 , yk2 ]n such that each yj ∈ [yk2 ]

occurs at most once in z.
2. Duplicator chooses a bijection hz : V (A)n → V (B)n.
3. Spoiler chooses v ∈ V (A)n and defines the sequence s := [(zi, vi)]i∈[n].
4. Duplicator responds with the sequence d := [(zi, hz(v)[i])]i∈[n].
Duplicator wins if for all i ∈ [n] the function ηi defined by setting ηi(lastz(s[1, i])) :=
lastz(d[1, i]) for each z ∈ [xk1 , yk2 ] is a partial isomorphism between A and B.

We extend the proof of [27, Theorem 5.9.] to the setting with restricted requantification
and obtain the following:

▶ Theorem 4.8. Let A,B be finite σ-structures and k1 + k2 ∈ N+. Then the following
assertions are equivalent:
1. A and B are ∧C(k1,k2)

∞ω -equivalent.
2. A and B are ∧C(k1,k2)-equivalent.
3. Duplicator has a winning strategy for ABP(k1,k2)(A,B).
The proof shows that the theorem also holds for infinite structures if we omit Item 2.

The next lemma is the key technical ingredient to establish our first homomorphism
distinguishing closedness result. But more generally, it shows that the capability of G to be
decomposed in a path-like fashion with reusability constraints provides a lower bound for
the distinguishability of the CFI graphs X(G), X̃(G) by ∧C(k1,k2).

▶ Lemma 4.9. Let k1 + k2 ∈ N+ and G be a connected graph. If the fugitive has a
winning strategy for the game NS(k1,k2)(G), then Duplicator has a winning strategy for
ABP(k1,k2)(X(G), X̃(G)).

The proof idea is that the position of the fugitive in NS(k1,k2)(G) corresponds to the position
where the difference of the CFI graphs is moved to in ABP(k1,k2)(X(G), X̃(G)) by Lemma 2.3.
Thus, the invisibility of the fugitive corresponds to the fact that Spoiler has to fix their entire
strategy at once. We conjecture that using similar techniques also the reverse implication of
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this lemma can be shown, which would in particular yield that the pathwidth of a graph
G is exactly the minimum k such that ∧Ck+1 distinguishes X(G) and X̃(G). However, to
prove our next theorem the direction form Lemma 4.9 suffices.

▶ Theorem 4.10. The classes P(k1,0) and ∪̇P(k1,k2) are homomorphism distinguishing closed.

Proof. For F ∈ {P(k1,0), ∪̇P(k1,k2)} the class F is closed under taking disjoint unions
and summands. For every connected graph G /∈ F the fugitive has a winning strategy
for NS(k1,k2)(G) by Theorem 3.7. By Theorem 4.5 and Lemma 4.9 this in turn yields
X(G) ≡F X̃(G). Finally, by Lemma 2.4 it follows that F is h.d. closed. ◀

Note that the class P(k1,k2) is not homomorphism distinguishing closed since the relations
≡∪̇P(k1,k2) and ≡P(k1,k2) are identical, but P(k1,k2) ⊊ ∪̇P(k1,k2).

After establishing the monotonicity of CR(k1,k2)
q in Proposition 3.5, we can use the

correspondence to the bijective pebble game [30, Lemma 8] to recast the proof for T (k1,k2)
q .

▶ Theorem 4.11. The class T (k1,k2)
q is homomorphism distinguishing closed.

▶ Remark 4.12. In the language of [31] the proofs of Theorem 4.10 and Theorem 4.11 show
that the respective classes are closed under weak oddomorphisms by [31, Theorem 3.13].

4.2 Invariance of subgraph counts
As an application of the previous results of homomorphism distinguishing closedness and its
relation to logic, we provide characterizations of the logical invariance of subgraph counts
with respect to hereditary graph structure as in [29].

For graphs G,F we denote by sub(F,G) the number of subgraphs of G which are
isomorphic to F . We write spasm(F ) for the set of homomorphic images of a graph F

containing exactly one representative from each isomorphism class. For a logic L and a graph
F we say that the function sub(F, ·) is L-invariant if for all graphs G and H the implication
G ≡L H =⇒ sub(F,G) = sub(F,H) holds.

▶ Theorem 4.13. Let k1 + k2, q ≥ 1 and F be a graph. Then the following assertions hold:
The function sub(F, ·) is ∧C(k1,k2)-invariant if and only if spasm(F ) ⊆ P(k1,k2).
The function sub(F, ·) is C(k1,k2)

q -invariant if and only if spasm(F ) ⊆ T (k1,k2)
q .

▶ Remark 4.14. By [30, Theorem 6] the second assertion of this theorem characterizes
which subgraph counts are detected after q iterations of the (k1, k2)-dimensional oblivious
Weisfeiler-Leman algorithm.

5 A comonadic account of requantification

In this section, we present variations of the pebble-relation comonad PRk introduced in [27]
and the pebbling comonad Pk from [2], with the aim of capturing requantification as a logical
resource from a categorical perspective. We emphasize that, in order to achieve this, it suffices
to adapt the definitions of the associated universes PR(k1,k2)A and P(k1,k2)A. This approach
highlights the versatility of the pebble-relation and pebbling comonads, enabling concise
proofs building on previous work despite the significant differences among the corresponding
graph classes.

For a sequence s = [(z1, a1), . . . , (zn, an)] ∈ ([xk1 , yk2 ] × V (A))n and i ∈ [n] define
πA(s, i) = zi. When no index i is given, we set πA(s) := zn.
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▶ Definition 5.1. For a σ-structure A we define the σ-structure PR(k1,k2)A as follows:
The universe of PR(k1,k2)A consists of all pairs (s, i) = ([(z1, a1), . . . , (zn, an)], i) for
n ∈ N, i ∈ [n], and (zj , aj) ∈ [xk1 , yk2 ] × V (A) for j ∈ [n] such that every yj ∈ [yk2 ]
appears at most once as pebble index in s.
The counit morphism εA : PR(k1,k2)A → A is defined by εA([(z1, a1), . . . , (zn, an)], i) := ai
For R ∈ σ it holds RPR(k1,k2)A((s1, i1), . . . , (sm, im)) exactly if there exists s such that

for all j ∈ [m] it holds sj = s, (equality)
πA(s, ij) does not appear in s[ij + 1, i] for i = max{i1, . . . , im}, and (active pebble)
RA(εA(s1, i1), . . . , εA(sm, im)). (compatibility)

For a σ-structure B and a homomorphism f : PR(k1,k2)A → B we define the coextension
f∗ : PR(k1,k2)A → PR(k1,k2)B of f by setting bi = f([(z1, a1), . . . , (zm, am)], i) for i ∈ [m] and
f∗([(z1, a1), . . . , (zm, am)], i) := ([(z1, b1), . . . , (zm, bm)], i).

▶ Definition 5.2. For a σ-structure A we define the σ-structure P(k1,k2)A as follows:
The universe of P(k1,k2)A consists of all sequences s ∈ ([xk1 , yk2 ] × V (A))+ such that
every pebble yj ∈ [yk2 ] appears at most once as pebble index in s.
The counit morphism εA : P(k1,k2)A → A is defined by εA([(z1, a1), . . . , (zm, am)]) := am
For R ∈ σ it holds RP(k1,k2)A(s1, . . . , sm) exactly if
RA(εA(s1), . . . , εA(sm)), (compatibility)
for i, j ∈ [m] we have si ⊑ sj or sj ⊑ si, and (comparability)
for i, j ∈ [m] if si ⊑ sj then πA(si)
does not occur as a first coordinate in s+ for si = sjs+. (active pebble)

For a σ-structure B and a homomorphism f : P(k1,k2)A → B the coextension f∗ is defined by
f∗([(z1, a1), . . . , (zm, am)]) := [(z1, b1), . . . , (zm, bm)] where bi = f([(z1, b1), . . . , (zi, ai)]) for
i ∈ [m]. For q ∈ N+ the structure Pq(k1,k2)A is defined as the substructure of P(k1,k2)A over
the universe ([xk1 , yk2 ] × V (A))≤q.

To show that PR(k1,k2) and Pq(k1,k2) are again comonads it suffices to observe that the
definitions of RPR(k1,k2)A, RPq

(k1,k2)A, and the coextensions are invariant under reusability
constraints. Thus, from [27, Proposition 3.1] and [2, Theorem 4] we obtain the following:

▶ Proposition 5.3. The triples (Pq(k1,k2), ε, (·)
∗) and (PR(k1,k2), ε, (·)∗) are comonads in

coKleisli form on Str(σ).

Utilizing the characterization of the classes T (k1,k2)
q and P(k1,k2) in terms of pebble forest

covers, we now provide a categorical account of reusability in path- and bounded depth
tree decompositions. Similar results are called coalgebra characterization theorems in the
literature of game comonads [4]. We have defined our decompositions in terms of graphs
rather than relational structures. The definition of forest covers can be adapted for structures,
which yields the same as considering forest covers of the Gaifman graph G(A) of A.

▶ Theorem 5.4. For every finite σ-structure A there is a bijective correspondence between
1. (k1, k2)-pebble linear component forest covers of G(A) and coalgebras α : A → PR(k1,k2)A.
2. (k1, k2)-pebble forest covers of depth q of G(A) and coalgebras α : A → Pq(k1,k2)A.

Further employing the theory of game comonads, we give a categorical formulation of
equivalence in the counting logics ∧C(k1,k2)

∞ω and C(k1,k2)
q as isomorphism in the coKleisli

category. Accordingly, similar theorems are also called isomorphism power theorems in
the literature. As in [27], we use the extended signature σ+ = σ ∪ {I} to define the
functor J : Str(σ) → Str(σ+) which extends each σ-structure A by the identity relation
IJA = {(a, a) : a ∈ V (A)} and gives rise to a relative comonad on J (see [27]).

MFCS 2025
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▶ Theorem 5.5. For all σ-structures A and B the following hold:
1. There exists a coKleisli isomorphism PR(k1,k2)JA → JB if and only if A ≡∧C(k1,k2)

∞ω
B.

2. There exists a coKleisli isomorphism Pq(k1,k2)A → B if and only if A ≡C(k1,k2)
q

B.

One of the contributions of game comonads is to provide a unified language for various
relations from finite model theory. Specifically, in the remainder of this section we show
that morphisms in the coKleisli category characterize preservation and winning strategies
for logics and games without counting. We first introduce the notion of reusability to the
all-in-one pebble game from [27] and the well-known existential k-pebble game from [24],
allowing for a more fine grained analysis.

▶ Definition 5.6. Let A,B be σ-structures and k1 + k2 ∈ N+. The all-in-one (k1, k2)-pebble
game AP(k1,k2)(A,B) and ∃-(k1, k2)-pebble game are defined as follows: Both games are
played by the two players Spoiler and Duplicator on the structures A and B and start from a
(possibly empty) position s0 ∈ ([xk1 , yk2 ] × V (A))m, d0 ∈ ([xk1 , yk2 ] × V (B))m with the same
pebble sequence in which each pebble pair occurs at most once.

In each round n ∈ N+ of the ∃-(k1, k2)-pebble game, the following steps are performed:
1. Spoiler picks a pebble zn ∈ [xk1 , yk2 ] such that zn is not yet placed or zn ∈ [xk1 ] and places

it on an element an ∈ V (A).
2. Duplicator places the pebble zn on an element bn ∈ V (B).

This induces sequences s = [(z1, a1), . . . , (zn, an)] and d := [(z1, b1), . . . , (zn, bn)] of placements
after round n.

In the single round of the game AP(k1,k2)(A,B), the following steps are performed:
1. Spoiler chooses a sequence s = [(z1, a1), . . . , (zn, an)] ∈ ([xk1 , yk2 ] × V (A))n such that

each yj ∈ [yk2 ] occurs at most once in z = (z1, . . . , zn) and not in s0.
2. Duplicator responds with a sequence d := [(z1, b1), . . . , (zn, bn)] ∈ ([xk1 , yk2 ] × V (B))n.

The winning condition for both games is the following: Duplicator wins the game if for all
i ∈ [m + n] the function ηi defined by setting ηi(lastz(s0s[1, i])) := lastz(d0d[1, i]) for each
z ∈ [xk1 , yk2 ] is a partial homomorphism between A and B.

The logic ∃+L(k1,k2) is defined as the fragment of existential positive first-order logic
(i.e. no universal quantification and negation) over the variable set [xk1 , yk2 ] such that only
variables from [xk1 ] are requantified. We obtain ∃+∧L(k1,k2) by additionally requiring that
every conjunction is restricted and ∃+L(k1,k2)

q by bounding the quantifier-rank by q.

▶ Proposition 5.7. For all σ-structures A and B the following hold:
1. Duplicator wins AP(k1,k2)(A,B) if and only if A ⇛∃+∧L(k1,k2) B.
2. Duplicator wins q rounds of the ∃-(k1, k2)-pebble game if and only if A ⇛∃+L(k1,k2)

q
B.

Finally, we also obtain what is called a morphism power theorem for game comonads with
restricted reusability.

▶ Theorem 5.8. For all σ-structures A and B the following hold:
1. There exists a coKleisli morphism f : PR(k1,k2)A → B if and only if A ⇛∃+∧L(k1,k2) B.
2. There exists a coKleisli morphism f : Pq(k1,k2)A → B if and only if A ⇛∃+L(k1,k2)

q
B.

6 Conclusion

In this work, we extended the analysis of homomorphism indistinguishability to graph classes
characterized by graph decompositions with restricted reusability. We demonstrate how
decomposition-based approaches offer robust and adaptable techniques for characterizing
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indistinguishability relations as well as for establishing homomorphism distinguishing closed-
ness. Moreover, by integrating these results within the broader framework of game comonads,
we present a unified categorical perspective on the role of requantification in finite variable
counting logics. We list some open questions for future work:

The homomorphism indistinguishability relation ≡T (k1,k2)
q

can be decided by a more
space-efficient variant of the (k1 + k2)-dimensional Weisfeiler-Leman algorithm [30]. It
would be interesting to develop a linearized variant to efficiently decide the relation
≡P(k1,k2) . The logic ∃+Lk is closely related to the k-consistency algorithm for solving
constraint satisfaction problems, so it might be fruitful to explore whether restricting
reusability yields improved algorithmic techniques.
Motivated by the constructive nature of our results, it is natural to ask for more con-
nections between model-comparison and pursuit-evasion games. Specifically, identifying
broader classes of games that align with logical equivalences could yield more results on
characterizations and h.d. closedness.
While we have established h.d. closedness for specific graph classes, a comonadic treatment
of this property could provide a deeper understanding of its categorical structure. In
particular, investigating whether h.d. closedness can be characterized via coalgebraic prop-
erties of game comonads might reveal fundamental principles governing homomorphism
indistinguishability of relational structures as in [11].
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