
Elimination Distance to Dominated Clusters
Nicole Schirrmacher #

University of Bremen, Germany

Sebastian Siebertz #

University of Bremen, Germany

Alexandre Vigny #

Université Clermont Auvergne, Clermont Auvergne INP, LIMOS, CNRS, Clermont-Ferrand, France

Abstract
In the Dominated Cluster Deletion problem, we are given an undirected graph G and integers k

and d and the question is to decide whether there exists a set of at most k vertices whose removal
results in a graph in which each connected component has a dominating set of size at most d.
In the Elimination Distance to Dominated Clusters problem, we are again given an undirected
graph G and integers k and d and the question is to decide whether we can recursively delete
vertices up to depth k such that each remaining connected component has a dominating set of
size at most d. Bentert et al. [Bentert et al., MFCS 2024] recently provided an almost complete
classification of the parameterized complexity of Dominated Cluster Deletion with respect to
the parameters k, d, c, and ∆, where c and ∆ are the degeneracy, and the maximum degree of
the input graph, respectively. In particular, they provided a non-uniform algorithm with running
time f(k, d) · nO(d). They left as an open problem whether the problem is fixed-parameter tractable
with respect to the parameter k+d+c. We provide a uniform algorithm running in time f(k, d)·nO(d)

for both Dominated Cluster Deletion and Elimination Distance to Dominated Clusters.
We furthermore show that both problems are FPT when parameterized by k + d + ℓ, where ℓ is
the semi-ladder index of the input graph, a parameter that is upper bounded and may be much
smaller than the degeneracy c, positively answering the open question of Bentert et al. We further
complete the picture by providing an almost full classification for the parameterized complexity and
kernelization complexity of Elimination Distance to Dominated Clusters. The one difficult
base case that remains open is whether Treedepth (the case d = 0) is NP-hard on graphs of
bounded maximum degree.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Fixed parameter tractability

Keywords and phrases Graph theory, Fixed-parameter algorithms, Dominated cluster, Elimination
distance

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.90

Related Version Full Version: https://doi.org/10.48550/arXiv.2504.21675 [34]

Funding This paper is a part of the ANR-DFG project Unifying Theories for Multivariate Algorithms
(UTMA), which has received funding from the German Research Foundation (DFG) with grant
agreement No 446200270, and benefited from state aid managed by the ANR under France 2030
referenced ANR-23-IACL-0006.

1 Introduction

Assume that Q is a graph problem that is hard to solve on general graphs but C is a class
of graphs where Q can be solved efficiently. In many cases, we can also solve Q efficiently
on instances that are close to the instances of C , say, on graphs that belong to C after
the deletion of a small number of vertices. Guo et al. [25] formalized this concept under
the name distance from triviality. For example, the size of a minimum vertex cover is the
distance to the class of edgeless graphs and the size of a minimum feedback vertex set is

© Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny;
licensed under Creative Commons License CC-BY 4.0

50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Paweł Gawrychowski, Filip Mazowiecki, and Michał Skrzypczak; Article No. 90; pp. 90:1–90:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:schirrmacher@uni-bremen.de
https://orcid.org/0000-0002-1740-7478
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
mailto:alexandre.vigny@uca.fr
https://orcid.org/0000-0002-4298-8876
https://doi.org/10.4230/LIPIcs.MFCS.2025.90
https://doi.org/10.48550/arXiv.2504.21675
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


90:2 Elimination Distance to Dominated Clusters

the distance to the class of acyclic graphs. Cluster Vertex Deletion is the problem to
determine for a given graph and number k whether there exists a set of at most k vertices
whose deletion results in a cluster graph, that is, a graph in which every connected component
is a clique [5, 35]. Many generalizations and special cases of Cluster Vertex Deletion
have been studied. For example, one may require that each connected component in the
resulting graph is an s-club (a graph of diameter at most s) [21, 28] or an s-plex (a graph
in which each vertex has degree at least n − s) [26, 36]. Note that the special case where
each clique in the solution graph has to be of size one is again the Vertex Cover problem.
Very recently, Bentert et al. [4] studied the following Dominated Cluster Deletion
problem: Given a graph G and integer parameters k and d, does there exist a set S of at
most k vertices such that each connected component of G− S can be dominated by at most
d vertices? Bentert et al. provided an almost complete classification of the parameterized
complexity and kernelization complexity of Dominated Cluster Deletion with respect
to the parameters k, d, c, and ∆, where c and ∆ are the degeneracy and the maximum degree
of the input graph, respectively. They proved the following results: Dominated Cluster
Deletion is para-NP-hard for parameters k + ∆ and d+ ∆, W [2]-hard for parameter k + d

and admits a non-uniform algorithm with running time f(k, d) · nO(d), and is non-uniformly
fixed-parameter tractable with respect to parameter k+ d+ ∆. They left as an open problem
whether the problem is fixed-parameter tractable with respect to the parameter k + d+ c.
They also showed that the problem does not admit a polynomial kernel even for d = 1
with respect to the parameter k + c, or with respect to the parameter k + d + ∆, unless
NP ⊆ coNP/poly.

A related measure is the elimination distance to a class C , which measures the number of
recursive deletions of vertices needed for a graph G to become a member of C . Formally, a
graph G has elimination distance 0 to C if G ∈ C , and otherwise elimination distance k + 1,
if in every connected component of G, we can delete a vertex such that the resulting graph
has elimination distance k to C . Note that elimination distance to the class containing only
the empty graph corresponds to the well-known measure treedepth. Elimination distance
was introduced by Bulian and Dawar [10] in their study of the parameterized complexity
of the graph isomorphism problem. Just as distance to triviality, but with more general
applicability, elimination distance allows to lift algorithmic results from a base class to more
general graph classes. For example, Bulian and Dawar [10] provided an FPT algorithm for
the graph isomorphism problem parameterized by the elimination distance to the class Cd of
graphs with maximum degree bounded by d, for any fixed integer d. Hols et al. [27] proved
the existence of polynomial kernels for the vertex cover problem parameterized by the size
of a deletion set to graphs of bounded elimination distance to different classes of graphs.
Agrawal et al. [2] proved fixed-parameter tractability of Elimination Distance to C for
any class C that can be defined by a finite set of forbidden induced subgraphs. Agrawal and
Ramanujan studied the Elimination Distance to Cluster Graphs [3]. Fomin, Golovach
and Thilikos further generalized several of these prior results by considering elimination
distances to graph classes expressible by restricted first-order formulas [22]. These results
are also implied by the recent algorithmic meta theorem for separator logic [31, 33]. The
related concept of recursive backdoors has recently been studied in the context of efficient
SAT solving [18, 30]. To the best of our knowledge, we are the first to study elimination
distance to classes with small dominating sets.

In this work, we answer the open questions of Bentert et al. [4] for Dominated Cluster
Deletion and furthermore provide an almost full classification of the parameterized com-
plexity and kernelization complexity of Elimination Distance to Dominated Clusters.



N. Schirrmacher, S. Siebertz, and A. Vigny 90:3

More precisely, we prove that Dominated Cluster Deletion admits a uniform algorithm
with running time f(k, d) ·nO(d) as well as a uniform fixed-parameter algorithm with running
time f(k, d, ℓ) · nO(1), where ℓ is the semi-ladder index of the input graph. The semi-ladder
index was introduced by Fabiański et al. [20] in the study of domination-type problems and
is a parameter that is upper bounded and may be much smaller than the degeneracy c of a
graph. In fact, our result holds for all classes of graphs where the related Partial Domin-
ation problem is fixed-parameter tractable and satisfies an additional technical condition
(the concept of Partial Domination and the details will be discussed in a moment). In
particular, our result answers the question of Bentert et al. positively.

Our main contributions are the uniform FPT algorithms for Dominated Cluster
Deletion and Elimination Distance to Dominated Clusters on semi-ladder-free
graphs.

▶ Theorem 1. Dominated Cluster Deletion can be solved in time f(k, d) · nO(d) and
in time f(k, d, ℓ) · nO(1) for a computable function f , where ℓ is the semi-ladder index of the
input graph.

▶ Theorem 2. Elimination Distance to Dominated Clusters can be solved in time
f(k, d) · nO(d) and f(k, d, ℓ) · nO(1) for a computable function f , where ℓ is the semi-ladder
index of the input graph.

The hardness results completing the classification are simple observations. We prove the
following. Elimination Distance to Dominated Clusters is
1. para-NP-hard for parameter k + ∆; this is a simple consequence of the fact that the case

k = 0 corresponds to the Dominating Set problem, which is known to be NP-hard on
graphs of maximum degree 3 [23], and

2. para-NP-hard for parameter d; this is a simple consequence of the fact that the case d = 0
corresponds to the Treedepth problem, which is known to be NP-hard [32], and

3. W[2]-hard for parameter k + d; this is again a simple consequence of the fact that
the case k = 0 corresponds to Dominating Set, which is W[2]-hard with respect to
parameter d [15], and

4. uniformly fixed-parameter tractable for parameter k+d+ℓ. This is our main contribution,
we discuss the details below, and

5. uniformly fixed-parameter tractable with respect to k when d is considered to be a
constant, that is, admits a uniform algorithm with running time f(k, d) · nO(d).

6. The problem does not admit a polynomial kernel with respect to parameter k even
for fixed parameters d = 0 and c = 2 unless NP ⊆ coNP/poly; The parameter d = 0
corresponds to Treedepth. We prove the simple observation that Treedepth is NP-
complete on 2-degenerate graphs. It is then trivial using an AND-cross-composition to
prove that Treedepth on 2-degenerate graphs does not admit a polynomial kernel unless
NP ⊆ coNP/poly.

The one case that we could not resolve is the parameter d+∆. The case d = 0 corresponds
to Treedepth, but we could not resolve whether the problem is NP-hard on graphs of
bounded maximum degree. We state the following two conjectures.

▶ Conjecture 1. Treedepth is NP-hard on some class of graphs with bounded maximum
degree.

▶ Conjecture 2. Treedepth is NP-hard on planar graphs.

MFCS 2025



90:4 Elimination Distance to Dominated Clusters

The latter conjecture is related to the long-standing open question about the complexity
of Treewidth on planar graphs. On the other hand, it is known since 1997 that Treewidth
is NP-hard on graphs with maximum degree 9 [7] and more recently on graphs with maximum
degree 3 [6].

1.1 Techniques
Our main contribution is the uniform algorithm with respect to the parameter k + d+ ℓ (the
algorithm for k + d is a simple modification of this algorithm).

We follow the approach of Bentert et al. [4] to reduce to unbreakable graphs, that
is, graphs that cannot be separated into multiple large connected components by small
separators. Let us give some formal definitions. A separation in a graph G is a pair of vertex
subsets A,B ⊆ V (G) such that A∪B = V (G) and there is no edge with one endpoint in A\B
and the other in B \A. The order of the separation (A,B) is the size of its separator A ∩B.
For q, k ∈ N, a set X ⊆ V (G) is (q, k)-unbreakable if for every separation (A,B) of G of order
at most k, we have |A ∩X| ≤ q or |B ∩X| ≤ q. Intuitively speaking, X is (q, k)-unbreakable
if no separation of order k can break X in a balanced way: one of the sides must contain at
most q vertices of X. For example, cliques and k+ 1-connected graphs are (k, k)-unbreakable,
and square grids are (O(k2), k)-unbreakable.

Lokshtanov et al. [29] proved a powerful meta theorem for logically defined graph prop-
erties. Whenever a CMSO-property (monadic second-order logic with modulo counting
predicates) can be solved efficiently on unbreakable graphs (for appropriately chosen paramet-
ers k and q), then it can also be decided efficiently on general graphs. There is a small caveat
though. The meta theorem uses the non-constructive recursive understanding technique,
and hence, one only obtains an efficient non-uniform algorithm on general graphs. Both
Dominated Cluster Deletion and Elimination Distance to Dominated Clusters
are CMSO-properties, and hence fall into this framework. Bentert et al. rely on this frame-
work and show how to solve Dominated Cluster Deletion on unbreakable graphs in
time f(k, d) · nO(d). The key combinatorial observation is that in (q, k)-unbreakable graphs,
the deletion of at most k vertices leads to one giant component and a bounded number of
remaining small components. One can then guess a dominating set for the giant component
in time O(nd) and argue combinatorially to efficiently find the vertices to be deleted. Using
the result of Lokshtanov et al. one obtains the non-uniform algorithm for general graphs
with the desired running time.

We remark that Dominated Cluster Deletion and Elimination Distance to
Dominated Clusters are in fact first-order definable problems, that is, for all paramet-
ers k, d, there exist first-order formulas of length Ok,d(1) defining the problems. Hence, the
problems are fixed-parameter tractable on all classes on which first-order model checking is
fixed-parameter tractable, e.g. on nowhere dense classes [24] and even monadically stable
graph classes [16, 17], as well as on classes with bounded cliquewidth [11] (and classes with
bounded twinwidth [9] when contraction sequences are given with the input). Note that
first-order logic cannot define connected components in general. However, the connected
components arising in the recursive deletion of elements must have small diameter when they
can be dominated by few vertices. Hence, connected components in positive instances of
Dominated Cluster Deletion and Elimination Distance to Dominated Clusters
become first-order definable. Thus, on these classes one obtains algorithms with running
time f(k, d) · nO(1) by the meta theorems for first-order logic. It is conjectured that monad-
ically dependent classes are the most general hereditary graph classes that admit efficient
first-order model checking, we hence included them in the inclusion diagram, see Figure 1.



N. Schirrmacher, S. Siebertz, and A. Vigny 90:5

Biclique-Free

Degenerate

Bounded Twinwidth

Monadic DependenceSemi-Ladder-Free

Monadic Stability

Nowhere Denseness Bounded Cliquewidth

Figure 1 Relation between the discussed graph classes. Arrows indicate inclusion. Dominated
Cluster Deletion and Elimination Distance to Dominated Clusters are fixed-parameter
tractable on monadically stable classes by a meta theorem for first-order logic. The same is true for
bounded twinwidth classes when contraction sequences are given with the input. Our main result is
the fixed-parameter tractability on semi-ladder-free graphs.

This leaves two main questions. First, can we turn the non-uniform algorithm of Bentert
et al. running in time f(k, d) · nO(d) into a uniform algorithm? Second, can we improve the
running time on further restricted graph classes? We answer both questions positively.

As mentioned, we follow the approach of Bentert et al. [4] to reduce to unbreakable
graphs. We first observe that on unbreakable graphs, the notion of elimination distance almost
collapses to distance to triviality, enabling us to treat Dominated Cluster Deletion
and Elimination Distance to Dominated Clusters in a similar way. This idea has
already been examined for hereditary classes in several papers see e.g. [1]. Note that
being a dominated cluster is not a hereditary notion. In order to avoid the non-uniform
approach of Lokshtanov et al. [29], we use a decomposition theorem due to Cygan et al. [13].
The theorem states that every graph admits a tree decomposition with small adhesion such
that each bag is unbreakable in the subgraph induced by the bags below. We show that if
an annotated version of the Partial Dominating Set problem can be solved in a slightly
modified graph (that we call the bag graph), then we can implement an efficient dynamic
programming algorithm along the tree decomposition to the original input graph for both
Dominated Cluster Deletion and Elimination Distance to Dominated Clusters.

The (Annotated) Partial Dominating Set problem is the following problem.
We are given a graph with three sets F , R and B and parameters d and k. We ask
whether there exist k vertices of G− F (F stands for forbidden) that may be deleted such
that the remaining graph has a Red-Blue dominating set of size at most d, i.e. the vertices of
R can be dominated by d vertices of B (R and B stand for Red and Blue). Formally, the
problem is defined as follows. Given a graph G with (not necessarily disjoint) sets F ⊆ V (G),
R ⊆ V (G), and B ⊆ V (G) and parameters d and k, does there exist a set X ⊆ V (G) − F of
size at most k and a set D ⊆ B−X of size at most d such that G[R−X] is dominated by D?
The problem can obviously be solved in time nO(d) (guess the dominating set and check if
at most k Red vertices remain undominated). By our dynamic programming approach, we
hence get a uniform algorithm running in time f(k, d) · nO(d) in general graphs. We then
turn our attention to restricted graph classes where (Annotated) Partial Domination
can be solved more efficiently. Using an approach of Fabiański et al. [20], we observe that
(Annotated) Partial Domination can be solved efficiently on all semi-ladder-free graph
classes, which yields our second main result.

Semi-ladder-free are very general graph classes. For example, all degenerate classes are
biclique-free (that is, exclude a fixed complete bipartite graph Kt,t as a subgraph), which in
turn are semi-ladder-free, hence, our result in particular answers the question of Bentert et al.

MFCS 2025



90:6 Elimination Distance to Dominated Clusters

positively. On the other hand, these classes are incomparable with monadically stable classes
and classes with bounded twinwidth on which we can efficiently solve the first-order model
checking problem. For example, the class of all ladders has bounded twinwidth (in fact
even bounded linear cliquewidth) but is not semi-ladder-free. The class of all co-matchings
is monadically stable (and has bounded linear cliquewidth as well) and is not semi-ladder-
free. On the other hand, the class of all 1-subdivided cliques is semi-ladder-free (and even
2-degenerate) but is neither monadically stable nor has bounded twinwidth.

As mentioned, we require that (Annotated) Partial Domination needs to be solved
on a slightly modified graph class (on the bag graphs), however, the property of being
semi-ladder-free is preserved by this modification, so that ultimately we conclude our main
results, Theorem 1 and Theorem 2.

Organization. The paper is organized as follows. After recalling the necessary notation
in Section 2, we talk more precisely about partial domination and the graph parameters
enabling FPT evaluation in Section 3. We then present how to solve Dominated Cluster
Deletion and Elimination Distance to Dominated Clusters on unbreakable graph
with bounded semi-ladder index in Section 4. After that, in Section 5, we sketch the
uniform algorithm on general semi-ladder-free graphs for Dominated Cluster Deletion
and Elimination Distance to Dominated Clusters with running time f(k, d) · nO(d).
The details can be found in the full version [34]. The hardness results conclude the paper in
Section 6.

2 Preliminaries

Graphs. We consider finite, undirected graphs without loops. Our notation is standard,
and we refer to Diestel’s textbook for more background on graphs [14]. We write |G| for the
size of the vertex set V (G) and ∥G∥ for |V (G)| + |E(G)|, where E(G) is the edge set of a
graph G. A connected component of G is a maximal connected subgraph of G. For a vertex
subset X ⊆ V (G), we write G[X] for the subgraph of G induced by X. We write G − X

for G[V (G) \X] and for singleton sets {v} we write G− v instead of G− {v}. We denote
the open neighborhood of a vertex v by N(v) and the closed neighborhood (including the
vertex v) by N [v]. For a set Y ⊆ V (G), we write N [Y ] for

⋃
v∈Y N [y].

Semi-ladders. Let G be a graph. Two sequences, a1, . . . , an ∈ V (G) and b1, . . . , bn ∈ V (G)
of 2n distinct vertices, form a semi-ladder of order n in G if {ai, bj} ∈ E(G) for all i, j ∈
{1, . . . , n} with i > j, and {ai, bi} /∈ E(G) for all i ∈ {1, . . . , n}. Note that we do not impose
any condition for i < j. The semi-ladder index of a graph is the maximum order of a
semi-ladder that it contains. A class of graphs has bounded semi-ladder index or is called
semi-ladder-free if there is some ℓ such that the semi-ladder index of all of its members is
bounded by ℓ, see Figure 2.

Tree decompositions. A tree decomposition of a graph G is a pair T = (T, bag), where T
is a rooted tree and bag : V (T ) → 2V (G) is a mapping that assigns to each node x ∈ T its
bag bag(x) ⊆ V (G) such that the following conditions are satisfied:

For every vertex v ∈ V (G), there exists a node x ∈ V (T ) such that v ∈ bag(x).
For every vertex v ∈ V (G), the set of nodes x ∈ V (T ) satisfying v ∈ bag(x) induces a
connected subtree of T .
For every edge {u, v} ∈ E(G), there exists a node x ∈ V (T ) such that u, v ∈ bag(x).



N. Schirrmacher, S. Siebertz, and A. Vigny 90:7

a1 a2 a3 a4

b1 b2 b3 b4

Figure 2 Semi-ladder of order 4. Solid lines represent edges while dashed edges represent non-
edges.

Let T = (T, bag) be a tree decomposition of a graph G. The adhesion of a node
x ∈ V (T ) is defined as adh(x) := bag(parent(x)) ∩ bag(x) and the margin of a node
x ∈ V (T ) is defined as mrg(x) := bag(x) \ adh(x). The cone at a node x ∈ V (T ) is
defined as cone(x) :=

⋃
y≽T x bag(y) and the component at a node x ∈ V (T ) is defined as

comp(x) := cone(x) \ adh(x) =
⋃

y≽T x mrg(y). Here, y ≽T x means that y is a descendant
of x in T .

Unbreakable graphs. A separation in a graph G is a pair of vertex subsets A,B ⊆ V (G)
such that A ∪ B = V (G) and there is no edge with one endpoint in A \ B and the other
in B \A. The order of the separation (A,B) is the size of its separator A ∩B.

For q, k ∈ N, a vertex subset X in a graph G is (q, k)-unbreakable if for every separa-
tion (A,B) of G of order at most k, we have |A ∩X| ≤ q or |B ∩X| ≤ q. Not every graph
is (q, k)-unbreakable, but all graphs admit tree decompositions with small adhesion and
unbreakable parts. For fixed q, k ∈ N, a tree decomposition (T, bag) of a graph G is (q, k)-
unbreakable if for every node x ∈ V (T ), the bag bag(x) is (q, k)-unbreakable in G[cone(x)].
By the result of Cygan et al. [13], such tree decompositions exist and can be computed
efficiently.

▶ Theorem 3 (Theorem 10 of [13]). Let G be a graph and k an integer. There exists an
integer q ∈ 2O(k2) and an algorithm that computes in time q · |G|2∥G∥ a tree decomposi-
tion (T, bag) of G with at most |G| nodes such that the following conditions hold:

For every node x ∈ V (T ), the bag bag(x) is (q, k)-unbreakable in the subgraph G[cone(x)].
For every node x ∈ V (T ), the adhesion adh(x) is of size at most q.

A tree decomposition (T, bag) is regular if for every non-root node x ∈ V (T ),
the margin mrg(x) is non-empty,
the graph G[comp(x)] is connected, and
every vertex of adh(x) has a neighbor in comp(x).

We may further assume that the tree decomposition we get from Theorem 3 is regular,
see the construction of Lemma 2.8 of [8] and the discussion in [31].

Parameterized complexity. A parameterized problem L ⊆ Σ∗ × N is fixed-parameter
tractable (FPT) if there exists an algorithm that decides for an instance (x, k) whether
(x, k) ∈ L in time f(k) · |(x, k)|O(1) for some computable function f .

MFCS 2025



90:8 Elimination Distance to Dominated Clusters

3 Partial domination and FPT evaluation

We show how to efficiently solve the Annotated Partial Domination problem on semi-
ladder-free graphs. This problem falls into the framework of domination-type problems on
semi-ladder-free graphs introduced by Fabiański et al. [20].

We are going to use the following meta theorem of Fabiański et al. [20]. A domination-type
problem is a formula ∃x̄∀ȳδ(x̄, ȳ), where δ is a positive first-order formula using fixed distances
as predicates (called a distance formula in [20]). On every graph G, a formula δ(x̄, ȳ) defines
a bipartite graph Gδ on the vertex set V (G)|x̄| × V (G)|ȳ|, where two elements ū and v̄ are
connected by an edge if the formula δ(ū, v̄) is true in G. The semi-ladder index of δ on G is
defined as the semi-ladder index of Gδ.

▶ Theorem 4 (Theorem 19 of [20]). Let C be a class of graphs and let δ be a distance formula.
Assume that Gδ has bounded semi-ladder index ℓ for some fixed ℓ ∈ N on all graphs G ∈ C .
Then there is an algorithm that solves the domination-type problem δ on graphs G from C in
time f(ℓ, |φ|) · ∥G∥.

Annotated Partial Domination can be written with the following first-order formula:

φk,d = ∃x1 . . . ∃xk∃y1 . . . ∃yd∀z
( ∧

1≤i≤k

¬F (xi)
)

∧
( ∧

1≤i≤d

B(yi)
)

∧

(
R(z) →

( ∨
1≤i≤k

dist(z, xi) = 0 ∨
∨

1≤i≤d

dist(z, yi) ≤ 1
))

However, φ is not a distance formula as it uses negations. This can be circumvented
by inverting the predicates, i.e. F ′ = V (G) − F and R′ = V (G) − R. We then obtain the
following formula

δk,d = ∃x1 . . . ∃xk∃y1 . . . ∃yd∀z
( ∧

1≤i≤k

F ′(xi)
)

∧
( ∧

1≤i≤d

B(yi)
)

∧

(
R′(z) ∨

∨
1≤i≤k

dist(z, xi) = 0 ∨
∨

1≤i≤d

dist(z, yi) ≤ 1
)

We prove next that δd,k has bounded semi-ladder index on every graph G with bounded
semi-ladder index.

▶ Lemma 5. Let G be a graph with semi-ladder index ℓ. Then δd,k has semi-ladder index at
most f(d, k, ℓ) on G, for some computable function f .

Proof. Lemma 4 of [20] states that if φ1(x̄; ȳ), . . . , φk(x̄; ȳ) are formulas and ψ(x̄; ȳ) is a
positive boolean combination of φ1, . . . , φk, and G is a graph such that φ1(G), . . . , φk(G)
have bounded semi-ladder index, then also ψ(G) has bounded semi-ladder index. This is
the case for the above formula δk,d. By Lemma 5 of [20], the formula

∨
1≤i≤d dist(z, yi) ≤ 1

has bounded semi-ladder index on every graph with bounded semi-ladder index. All other
formulas trivially have bounded semi-ladder index on all graphs. ◀

▶ Corollary 6. Let C be a class of graphs with bounded semi-ladder index ℓ. Then Annotated
Partial Domination can be solved in time f(d, k, ℓ) · ∥G∥ for all G ∈ C for a computable
function f .

While the semi-ladder index is currently one of the most general graph parameters
enabling FPT evaluation of δk,d, some other parameter could have this property.



N. Schirrmacher, S. Siebertz, and A. Vigny 90:9

▶ Property 1. A graph parameter t(·) has Property 1 if for every graph G Annotated
Partial Domination can be solved in time f(d, k, t(G))·|G|O(1) for a computable function f .

As previously discussed, examples of parameters with Property 1 include treewidth,
maximum degree, Hadwiger number (i.e. largest clique minor), degeneracy, largest excluded
bi-clique, as they all imply bounded semi-ladder index. Other parameters, which are however
not as interesting, as the problem can be solved by efficient FO model checking, are cliquewidth
and twinwidth (when contraction sequences are given with the input).

As mentioned, we want to solve Annotated Partial Domination on slightly modified
graphs. We therefore want a parameter that, if bounded on the graph, bounds a parameter
with Property 1 on bgraph which is a similar notion as bag graphs (see Definition 27) that is
only defined in the full version of the paper [34].

▶ Property 2. A graph parameter t2(·) has Property 2 if there is a parameter t1(·) satisfying
Property 1 such that for every graph G, and integers q, k, d, every (q, k)-unbreakable tree
decomposition (T, bag), vertex x ∈ T , and set S ⊆ cone(x) we have that t1(bgraphS(x)) ≤
f(q, k, d, t2(G)).

In the rest of the paper, we precisely reference parameters having Property 1 or Property 2.
In particular, the semi-ladder index also satisfies Property 2. The proof can be found in the
full version [34].

4 Algorithm on unbreakable graphs based on Annotated Partial
Domination

As sketched above, we first solve Dominated Cluster Deletion and Elimination
Distance to Dominated Clusters on unbreakable graphs. Our algorithm runs efficiently
on all graph classes for which we can efficiently solve the Annotated Partial Domination
problem, that is, for classes on which a parameter t(·) satisfying Property 1 is bounded.

In the following, q, k, and d will always be non-negative integers, and we will not always
quantify them for readability. We will also tacitly assume that our graphs have at least
2q+ 1 vertices. Then, whenever we delete a set S of at most k vertices there will be a unique
connected component C0 of G− S with more than q vertices that we call the large connected
component. When a graph has less vertices, we can solve all our problems by brute-force.

▶ Lemma 7. Let G be a (q, k)-unbreakable graph, and let v ∈ V (G). Then G − v is
(q, k − 1)-unbreakable.

Proof. Assume that G−v that is not (q, k−1)-unbreakable. Then, there is a separation (A,B)
of G − v such that |A| ≥ q, |B| ≥ q and |A ∩ B| ≤ k − 1. By adding the vertex v to the
separator, we obtain a separation (A′, B′) of G such that |A′| > q, |B′| > q and |A′ ∩B′| ≤ k

contradicting that G is (q, k)-unbreakable. ◀

▶ Lemma 8. Let G be a (q, k)-unbreakable graph. If G is a positive instance of Dominated
Cluster Deletion with parameters k and d, then G has a dominating set of size at
most q + d.

Proof. Let S′ with |S′| ≤ k be a solution for Dominated Cluster Deletion with
parameters d and k. Let A = S′∪C0, where C0 is the large connected component of G−S′ and
B = S′ ∪

⋃
1≤j≤m Cj , where C1, . . . , Cm are the other connected components of G − S′.

Then, (A,B) is a separation of order at most k, hence |B| ≤ q, as G is (q, k)-unbreakable.
As G is a positive instance of Dominated Cluster Deletion, C0 can be dominated by a
set D0 of size at most d. Then D0 ∪B is dominating set of G of size at most q + d. ◀

MFCS 2025



90:10 Elimination Distance to Dominated Clusters

Figure 3 Different skeletons for the dominated cluster deletion problem for parameter k = 4 and
d = 1 on a fixed (14,4)-unbreakable graph. The skeleton S is in red, the witness S′ also contains the
crossed-out vertices.

4.1 Dominated Cluster Deletion
We first deal with Dominated Cluster Deletion. Our approach is based on finding
skeletons for dominated cluster deletion, which are vertex sets that can be extended to the
deletion set of a solution for Dominated Cluster Deletion and in (q, k)-unbreakable
graphs capture the part of a solution that essentially separates the large connected component
from the other connected components.

▶ Definition 9. Let G be a (q, k)-unbreakable graph. We call a set S a skeleton for dominated
cluster deletion for parameters k and d if there is a superset S′ ⊇ S of vertices satisfying:

|S′| ≤ k,
every connected component of G− S′ has domination number at most d, and
S contains exactly the vertices of S′ that have at least one neighbor in C ′

0 and at least
one neighbor in G−N [C ′

0], where C ′
0 is the large connected component of G− S′.

Note that S may be the empty set in the third item above if G−S′ has only one connected
component. Figure 3 shows examples of skeletons for dominated cluster deletion.

The next lemma is the key ingredient to compute the set of skeletons (and to show that
there are only few possible skeletons). It shows that there is a small set of vertices that hits
every skeleton.

▶ Lemma 10. Let q, k, d be integers, G a (q, k)-unbreakable graph, and assume that S
is a non-empty skeleton for dominated cluster deletion for parameters k and d. Given a
dominating set X of size at most q + d, there is a vertex v ∈ S that is
1. in the dominating set X, or
2. in the neighborhood N(x) of a vertex x ∈ X, where deg(x) ≤ q, or
3. in the neighborhood N(y) of a vertex y ∈ N(x), where deg(x) ≤ q, deg(y) ≤ q, and x ∈ X.

Proof. Assume that Case 1 is not satisfied so that no vertices from the skeleton are in the
dominating set X. Denote by C ′

0 the large connected component of G− S′ for a set S′ ⊇ S

witnessing that S is a skeleton, hence, S contains exactly the vertices of S′ that have a
neighbor in C ′

0 and a second neighbor in G−N [C ′
0]. Let C0 be the large connected component

of G− S. Note that it contains C ′
0.



N. Schirrmacher, S. Siebertz, and A. Vigny 90:11

Let A = S ∪ C0 and B = S ∪
⋃

1≤j≤m Cj , where C1, . . . , Cm are the other connected
components of G− S. Then (A,B) is a separation of order at most |S| ≤ k, hence |B| ≤ q,
as G is (q, k)-unbreakable. Pick an arbitrary element v ∈ S. By definition of S, v has
a neighbor in C0 and a neighbor w in a second connected component, say C1 of G − S.
Hence, w must be a vertex of degree at most q as its neighborhood lies in G − C0 ⊆ B.
If w is in X, then this vertex v satisfies Case 2. Otherwise, w must have a neighbor x in X

(since X is a dominating set). Since we are not in Case 1, this x is not in S, and is therefore
in C1. Hence, similarly to w, we have that x has degree at most q, and we are in Case 3. ◀

Lemma 10 gives rise to a bounded search tree branching algorithm that branches over
the possible choices for a vertex from S given by the conditions of the lemma.

▶ Definition 11. The skeleton-algorithm with parameter q, k, d over a graph G returns a
family of sets of vertices, each set of size at most k. First, it computes a dominating set X of
size at most q+d (returning the empty family if there is no such set). Second, it computes the
set X ∪ Y ∪ Z, where Y is the set of all vertices in the neighborhood N(x) of a vertex x ∈ X

with deg(x) ≤ q, and the set Z is the set of all vertices in the neighborhood N(y) of a
vertex y ∈ Y where deg(y) ≤ q. Third, call the algorithm with parameters q, k− 1, d on G− v

for every v in X ∪ Y ∪ Z (and get a family Fv). Finally, for every v in X ∪ Y ∪ Z add v to
every set in Fv, and return the empty set and the union of all the families Fv.

Algorithm 1 Skeleton-algorithm.

1: procedure Skeleton(G, q, k, d)
2: F := ∅
3: if k = 0 then
4: return F
5: end if
6: X := DominatingSet(G, q + d)
7: Y := {N(x) : x ∈ X ∧ deg(x) ≤ q}
8: Z := {N(y) : y ∈ Y ∧ deg(y) ≤ q}
9: for all v ∈ X ∪ Y ∪ Z do

10: F := F ∪ {∅} ∪
(
{v}× Skeleton(G− v, q, k − 1, d)

)
11: end for
12: return F
13: end procedure

Note that in the above definition, if a family Fv is empty, adding v to every set still
results in an empty family (e.g. in the case where G− v does not have a q + d dominating
set). Do not be confused with Fv having the empty set as one of the family members (e.g. for
branches of the algorithm that stops before reaching k = 0).

We now show that the skeleton algorithm 1) runs efficiently and outputs a small family
of sets which is proved in Lemma 12, and 2) if the given graph was a positive instance to
Dominated Cluster Deletion, then the skeleton algorithm outputs all possible skeletons;
see Lemma 13.

▶ Lemma 12. Let t(·) be a graph parameter satisfying Property 1, then the skeleton-algorithm
runs in time f(q, k, d, t(G)) · |G|O(1), and outputs a family of at most g(q, k, d) sets where f
and g are computable functions.

MFCS 2025



90:12 Elimination Distance to Dominated Clusters

Proof. Computing X,Y and Z takes time f(q, k, d, t(G)) · |G|O(1) thanks to the fact that t(·)
satisfies Property 1. We then branch over (q + d)q2 many choices for v, and the recursion
has depth at most k. ◀

▶ Lemma 13. If G is a (q, k)-unbreakable graph that is a positive instance to Dominated
Cluster Deletion with parameters (k, d), then the skeleton-algorithm outputs a family
that contains every skeleton.

Proof. By induction on k. If k = 0, we simply output the empty set. Otherwise, by Lemma 8
there is such a set X, and by Lemma 10 at least one element v of X is in S. For the
correct choices of v, G− v is a positive instance for Dominated Cluster Deletion with
parameters k − 1, d, and by Lemma 7, G− v is (q, k − 1)-unbreakable, so the recursive call
to Skeleton produces the expected sets by induction. ◀

It remains to verify that S can indeed be enlarged to a set S′ of size at most k with the
properties.

▶ Lemma 14. Given a (q, k)-unbreakable graph G and a set S of at most k vertices, we
can test in time f(q, k, d, t(G)) · |G|O(1), whether S is a skeleton for Dominated Cluster
Deletion with parameters k and d assuming t(·) satisfies Property 1.

Proof. We need to check the existence of a set S′ ⊇ S with |S′| ≤ k such that:
every connected component of G− S′ has domination number at most d, and
S contains exactly the vertices of S′ that have a neighbor in C ′

0 and a second neighbor
in G−N [C ′

0] where C ′
0 is the large connected component of G− S′.

Note that by these conditions the large connected component C0 of G− S is separated
from the small connected components by S. Let s = |S|, what remains to be done is hence
the following.
1. Find an optimal solution for G− S − C0. This can be done in time f(k, d), because this

subgraph has size at most q and yields a value k′ of vertices that need to be deleted.
If k′ > k − s, we conclude that this S is not a skeleton because there is no possible S′.

2. Test whether an additional set W of size k′′ = k − s− k′ can be deleted from C0 such
that G[C0 −W ] can be dominated by d vertices. Note that by assumption on S and S′

the deletion of W will not cause C0 to break into multiple further connected components.
Hence, we simply check whether C0 is a positive instance of Annotated Partial
Domination with parameter k′′, where R = B = C0, and F = ∅. If S is a skeleton, such
a set exists (as S′ ∩C0 is a candidate) and hence, if G is a positive instance of Dominated
Cluster Deletion a positive solution will be found. Since t(·) is a graph parameter
satisfying Property 1, we can test the existence of such W in time f(k, d, t(G)) · |G|O(1).
If no solution is found, then this S is not a skeleton. ◀

The combination of Lemmas 10 and 12–14 yields the following theorem.

▶ Theorem 15. Dominated Cluster Deletion on (q, k)-unbreakable graphs can be solved
in time f(q, k, d, t(G)) · |G|O(1), where t(·) is a parameter satisfying Property 1.

4.2 Elimination Distance to Dominated Clusters
We now show how to adapt the algorithm for Elimination Distance to Dominated
Clusters. The approach is very similar. Of course, the notion of skeletons has to be
adapted, however, they behave very similarly on unbreakable graphs.

First, let us properly define Elimination Distance to Dominated Clusters.



N. Schirrmacher, S. Siebertz, and A. Vigny 90:13

▶ Definition 16. A graph G has elimination distance k to a class C if:
G is not connected and every connected component of G has elimination distance k

to C , or
G is connected and there is a vertex v such that G − v has elimination distance k − 1
to C , or
G ∈ C and k = 0.

In our case we measure, for every d, the elimination distance to the class Cd of d-
dominated clusters, i.e. graphs where every connected component has a d-dominating set.
We interchangeably write “elimination distance k to d-dominated cluster”, and “a positive
instance for (k, d)-Elimination Distance to Dominated Clusters”. For algorithmic
purposes, the above definition is not the most useful. We will instead look at the set of vertices
that needs to be deleted to get d-dominated clusters. While this set is of unbounded size, it
has a nice tree structure that is much more useful for our algorithms. This characterization
is pretty standard, see the definition of elimination order [10, Proposition 4.3]

For a rooted tree T , we write ≼T for the ancestor relation, that is, x ≼T y if x lies on
the unique path from y to the root of T . Note that we treat every node as an ancestor of
itself. The least common ancestor of two nodes y, z ∈ V (T ) is the ≼T -maximal element x
with x ≼T y and x ≼T z.

▶ Definition 17. Let G be a graph and S ⊆ V (G). We say that S is tree-structured if
there is a rooted tree T and a bijection λ : S → V (T ) such that every path in G between two
vertices u, v of S must contain a common ancestor in T of λ(u) and λ(v). The tree T is
called an elimination tree for S. The elimination depth of a tree-structured set with respect
to the tree T is the depth of T . The elimination depth of S is the minimum elimination depth
of S over all elimination trees for S.

▶ Remark 18. A graph G is a positive instance for (k, d)-Elimination Distance to
Dominated Clusters if and only if there is a tree-structured set S with elimination
depth k such that every connected component of G− S has a d-dominating set.

▶ Lemma 19. Let G be a (q, k)-unbreakable graph with at least 3q(k + q) vertices. Let S be
a tree-structured set with an elimination tree T of depth at most k. Then
1. the largest connected component C0 of G− S is uniquely determined, and
2. for every component C of G − S there is a subset S(C) ⊆ S of size at most k that

separates C from the rest, that is, G− S(C) has C as one of its components.

Proof. Let C be a connected component of G − S. As S is tree-structured by T , C is
not adjacent to two ≼T -incomparable elements, that is, the set S(C) of neighbors of C
in S consists of ≼T -comparable elements. C is a connected component both of G− S and
of G− S(C), as all neighbors of C in S are collected in S(C).

Assume now that there are two connected components C0, C1 of G − S of size greater
than q. However, C0 and C1 are separated by S(C0) of size at most k, which contradicts
the (q, k)-unbreakability of G. So there can only be one connected component of size greater
than q.

We now show that there must be at least one such component. First note that there
cannot be more than 3q connected component in G − S. Otherwise, there would be a
balance separator of T of size 1, by deleting this vertex and its ancestors, we delete at
most k vertices and obtain a separation with both sides containing at least q components
of G− S, contradicting the unbreakability of G. Last, as there are only 3q components C
and |S(C)| ≤ k we have that |S| ≤ 3qk hence |G− S| ≥ 3q2 so on of the component must
contain at least q vertices. ◀

MFCS 2025



90:14 Elimination Distance to Dominated Clusters

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v18

v19

v20

v21

v29

v30

v9

v10

v3 v30

Figure 4 Example of a skeleton for elimination distance to dominated clusters for parameter
k = 3 and d = 1 on a (12,3)-unbreakable graph (left). The skeleton S is in red, the witness S′ also
contains the crossed-out vertices. A tree structure for S′ of elimination depth 3 is on the right.

▶ Lemma 20 (Analog of Lemma 8). Let G be a (q, k)-unbreakable graph. If G is a positive
instance of Elimination Distance to Dominated Clusters with parameters k and d,
then G has a dominating set of size at most q + d.

The proof can be taken verbatim from Lemma 8 with S′ replaced by S′(C0).

▶ Definition 21. Let G be a (q, k)-unbreakable graph. We call a set S a skeleton for
elimination distance to dominated clusters for parameters k and d if there is a tree-structured
superset S′ ⊇ S of elimination depth at most k satisfying:

every connected component of G− S′ has domination number at most d, and
S contains exactly the vertices of S′ that have a neighbor in C ′

0 and a second neighbor
in G − N [C ′

0] where C ′
0 is the large connected component of G − S′ (the next lemma

shows that this connected component is uniquely determined even though S′ can be larger
than k).

The following observation follows immediately from Lemma 19.

▶ Observation 22. Every skeleton has size at most k.

Now the analog of Lemma 10 also holds for skeletons for elimination distance to dominated
clusters. The proof can be taken verbatim with S′ replaced by S′(C0).

▶ Lemma 23. Let q, k, d be integers, G be a (q, k)-unbreakable graph and assume that S
is a non-empty skeleton for Elimination Distance to Dominated Clusters with
parameters k and d. Given a domination set X of size q + d, there is a vertex v ∈ S that is
1. in the dominating set X, or
2. in the neighborhood N(x) of a vertex x ∈ X where deg(x) ≤ q, or
3. in the neighborhood N(y) of a vertex y ∈ N(x) with deg(x) ≤ q, deg(y) ≤ q, and x ∈ X.

Hence, the algorithm to guess a skeleton S can be carried out in exactly the same way as
for Dominated Cluster Deletion. We then guess a tree structure on S (which takes time
at most O(k!)). Note that these vertices being adjacent to the large connected component,
the tree structure is a linear order. In the final step, when we aim to extend a fixed skeleton S
to a tree-structured solution S′, the only difference is that we have to solve the base problem
Elimination Distance to Dominated Clusters for the small part G− S − C ′

0, which
again can be simply solved by brute-force. Note that because G− S − C ′

0 is small, we can
also find an elimination tree T for S′ and embed S according to the originally guessed order.
We conclude the main theorem of this section. The full algorithm for the annotated version
is presented in the full version [34].



N. Schirrmacher, S. Siebertz, and A. Vigny 90:15

▶ Theorem 24. Elimination Distance to Dominated Clusters on (q, k)-unbreakable
graphs can be solved in time f(q, k, d, t(G)) · |G|O(1), where t(·) is a parameter satisfying
Property 1.

4.3 Skeletons for general graphs
In this section, we show that by parameterizing only by q, k, and d, we can compute the
skeleton of unbreakable graphs in time f(q, k, d) · |G|O(d). This construction follows the work
of Bentert et al. [4]. Having access to this algorithm will then be useful for our uniform
version of their result.

▶ Lemma 25. There is an algorithm that, given a (q, k)-unbreakable graph G, computes all
skeletons S for dominated cluster deletion and for elimination distance to dominated clusters
for parameters k and d in time f(q, k, d) · nO(d).

This lemma resembles and can be proved analogously to [4, Lemma 7].

Proof. Assume the existence of a solution S′ and let S be its skeleton. We guess a set D of
at most d vertices in time O(nd). (This will play the role of the dominating set for the big
component). We then define S1 = G − N [D] and S2 = {v ∈ N(u) | u ∈ S1 ∧ deg(u) ≤ q}.
If either |S1| > q or |S2| > q + kq, we conclude that this D is not a good candidate for the
dominating set of the large connected component and terminate this branch. Otherwise, we
now claim that S ⊆ S2.

To this end, let C ′
0 be the large connected component of G − S′ and assume that the

algorithm guessed D as a dominating set for C ′
0. Observe that C ′

0 ⊆ N [D] ⊆ N [C ′
0].

A vertex of G − N [C ′
0] has no neighbor in C ′

0, and therefore only has degree at most q.
Finally, remember that any vertex v of S must have a neighbor u that is not in N [C ′

0] and
hence not in N [D]. So u is in S1 and u has degree at most q. So v belongs to S2. Regarding
the cardinality constraints. Note that at most q vertices are in G− C ′

0 and hence at most q
are in G − N [D] = S1. Also, the only vertices of S2 that are in C0 must be neighbors of
a vertex of S′ of degree at most q, hence |S2 ∩ C0| ≤ kq, and since |G − C0| ≤ q, we get
that |S2| ≤ q + kq.

We conclude that S ⊆ S2. So we can guess S in time f(q, k, d) · nO(d). ◀

Note that Lemma 25 applies to skeletons for both Dominated Cluster Deletion and
Elimination Distance to Dominated Clusters. Furthermore, the dominating set D
for the large connected component is computed (by brute-force).

5 Annotated versions for Dominated Cluster Deletion

▶ Definition 26 (Annotated Dominated Cluster Deletion). Given a graph G, in-
tegers k, d, and vertex sets F,R,B, the (k, d)-Annotated Dominated Cluster Deletion
problem is to find at most k vertices S ⊆ G − F such that every connected component C
of G− S has a Red-Blue dominating set of size at most d (i.e. d Blue vertices dominating all
Red vertices).

The next proposition states that this problem can be solved on instances we call bag
graphs.

▶ Definition 27. A graph G is called a (q, k, d)-bag graph, if the vertices of G can be
partitioned into two vertex sets I, E called respectively interior vertices and exterior vertices,
such that:

MFCS 2025



90:16 Elimination Distance to Dominated Clusters

every connected component of G[E] has at most 2d+ 1 vertices,
every connected component of G[E] has at most q neighbors in I, and
for every separation L,R of G of order k such that L ∩R ⊆ I, we have that |L ∩ I| ≤ q

or |R ∩ I| ≤ q.

▶ Proposition 28. There is an algorithm such that, given a (q, k, d)-bag graph G = (I, E),
and vertex sets F,R,B of G satisfying E ⊆ F and |E ∩ B| ≤ qd, the algorithm decides
whether G is a positive instance to (k, d)-Annotated Dominated Cluster Deletion, in
time f(q, k, d, t(G)) · |G|O(1), where t(·) is a parameter satisfying Property 1.

We prove Proposition 28 in the full version [34]. Using this, we then prove the following
statement via dynamic programming on an unbreakable tree decomposition, see [34].

▶ Theorem 29. There is an algorithm solving Annotated Dominated Cluster Deletion
in time f(q, k, d, t(G)) · |G|O(1), where t(·) is a parameter satisfying Property 2.

Remember that Property 2 implies that some parameter with Property 1 is bounded on
bag graphs built in our algorithm, so we can use Proposition 28 on these bag graphs. Note
that Theorem 29 implies Theorem 1, by setting F = ∅ and R = B = V (G). The annotated
version for Elimination Distance to Dominated Clusters is introduced and solved in
the full version [34].

6 Hardness Results

In this section, we give the details of the hardness results mentioned in the introduction.

Para-NP-hardness for parameter k + ∆ and for parameter d. A problem is para-NP-hard
with respect to a parameter if the restriction to instances whose parameter value is at most
a certain constant, is itself an NP-hard problem.

▶ Theorem 30. Elimination Distance to Dominated Clusters is para-NP-hard for
parameter k + ∆.

Proof. Setting k = 0 and ∆ = 3 corresponds to Dominating Set on degree 3 graphs. This
problem is known to be NP-hard [23], which implies the statement. ◀

▶ Theorem 31. Elimination Distance to Dominated Clusters is para-NP-hard for
parameter d.

Proof. Setting d = 0 corresponds to Treedepth. This problem is known to be NP-hard [32],
which implies the statement. ◀

W[2]-hardness for parameter k + d. A problem is W[2]-hard if a W[2]-hard problem
reduces to it via an FPT-reduction.

▶ Theorem 32. Elimination Distance to Dominated Clusters is W[2]-hard for
parameter k + d.

Proof. The W[2]-hard Dominating Set [15] reduces to Elimination Distance to Dom-
inated Clusters by simply setting k = 0. This is an FPT-reduction. ◀



N. Schirrmacher, S. Siebertz, and A. Vigny 90:17

No polynomial kernels for parameter k+ c+ d. A kernelization algorithm (or kernel) for a
parameterized problem is a polynomial-time algorithm that maps each instance (x, k) of a
parameterized problem L to an instance (x′, k′) of L such that

(x, k) ∈ L ⇔ (x′, k′) ∈ L, and
|x′| + k′ ≤ f(k) for a computable function f .

A kernel is polynomial if f is. We use the AND-cross-composition technique [19] to show
that Elimination Distance to Dominated Clusters does not admit a polynomial kernel
unless NP ⊆ coNP/poly. If an NP-hard language L AND-cross-composes into a parameterized
language Q, then Q does not admit a polynomial kernel, unless NP ⊆ coNP/poly. Since
the treedepth of a disjoint union of a family of graphs is equal to the maximum over the
treedepth of these graphs, the disjoint union yields an AND-cross-composition from the
unparameterized version of Treedepth into the parameterized one. As computing the
treedepth of a graph is NP-hard [32], it follows that Treedepth not admit a polynomial
kernel, unless NP ⊆ coNP/poly. It remains to prove that Treedepth is also NP-complete
on 2-degenerate graphs. Recall that c denotes the degeneracy of a graph. A graph G is
c-degenerate if every subgraph H has a vertex of degree at most c (in H).

▶ Theorem 33. Treedepth is NP-hard on 2-degenerate graphs.

Proof. We reduce Treedepth to Treedepth on 2-degenerate graphs. Given a graph G

and parameter k, we compute H by replacing each edge of G by two disjoint paths of length 2
with the same endpoints. We set k′ = k+ 1 and prove that G has treedepth at most k if and
only if H has treedepth at most k′. Observe that H is 2-degenerate.

Assume that G has treedepth at most k with an elimination tree T . We take the same
elimination tree for H and in the very last step eliminate the isolated subdivision vertices.

Vice versa assume that H has treedepth at most k + 1 with an elimination tree of depth
at most k + 1. Observe that every subdivision vertex must be comparable in the tree-order
with both of its endpoints, as each edge must be controlled by the ancestor-descendant
relation in the elimination tree. Now, if a sudivision vertex is eliminated before one of its
endpoints, we can simply exchange the subdivision vertex with this endpoint and thereby
obtain an elimination tree that is not deeper than the original one. In this way, we obtain an
elimination tree where the subdivision vertices are on the lowest level. Then the tree with
the subdivision vertices removed is an elimination tree for G of depth at most k. ◀

▶ Corollary 34. Elimination Distance to Dominated Clusters does not admit a
polynomial kernel with respect to parameter k even for fixed parameters d = 0 and c = 2.

7 Conclusion

We have studied the Dominated Cluster Deletion problem and resolved the open
question by Bentert et al. [4] whether the problem is fixed-parameter tractable with re-
spect to the parameters k + d+ c, by proving uniform fixed-parameter tractability even
for the smaller parameter k + d + ℓ, where ℓ is the semi-ladder index of the input graph.
We also introduced the more general Elimination Distance to Dominated Clusters
problem and almost fully classified its parameterized and kernelization complexity. The most
interesting missing part of the classification is whether the case d = 0, which corresponds
to Treedepth, is NP-complete on graphs of bounded maximum degree. We conjecture
that this is the case. Our proofs combine the main tools for addressing cut problems, the
decomposition theorem into unbreakable parts by Cygan et al. [12] with the main tools for
addressing domination-type problems [20].

MFCS 2025



90:18 Elimination Distance to Dominated Clusters

References
1 Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan,

Saket Saurabh, and Meirav Zehavi. Deleting, eliminating and decomposing to hereditary
classes are all fpt-equivalent. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings
of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference
/ Alexandria, VA, USA, January 9 - 12, 2022, pages 1976–2004. SIAM, 2022. doi:10.1137/
1.9781611977073.79.

2 Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, MS Ramanujan, and Saket Saurabh. A
fixed-parameter tractable algorithm for elimination distance to bounded degree graphs. SIAM
Journal on Discrete Mathematics, 36(2):911–921, 2022. doi:10.1137/21m1396824.

3 Akanksha Agrawal and MS Ramanujan. On the parameterized complexity of clique elimination
distance. In 15th International Symposium on Parameterized and Exact Computation (IPEC
2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.
2020.1.

4 Matthias Bentert, Michael R. Fellows, Petr A. Golovach, Frances A. Rosamond, and Saket
Saurabh. Breaking a graph into connected components with small dominating sets. In Rastislav
Královic and Antonín Kucera, editors, 49th International Symposium on Mathematical Found-
ations of Computer Science, MFCS 2024, August 26-30, 2024, Bratislava, Slovakia, volume
306 of LIPIcs, pages 24:1–24:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.MFCS.2024.24.

5 Stéphane Bessy, Marin Bougeret, Dimitrios M Thilikos, and Sebastian Wiederrecht. Ker-
nelization for graph packing problems via rainbow matching. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3654–3663. SIAM,
2023. doi:10.1137/1.9781611977554.ch139.

6 Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dusan Knop, Paloma T. Lima, Martin
Milanic, Sebastian Ordyniak, Sukanya Pandey, and Ondrej Suchý. Treewidth is NP-complete
on cubic graphs. In 18th International Symposium on Parameterized and Exact Computation,
(IPEC 2023). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.
IPEC.2023.7.

7 Hans L Bodlaender and Dimitrios M Thilikos. Treewidth for graphs with small chordality.
Discrete Applied Mathematics, 79(1-3):45–61, 1997. doi:10.1016/S0166-218X(97)00031-0.

8 Mikolaj Bojanczyk and Michal Pilipczuk. Definability equals recognizability for graphs
of bounded treewidth. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors,
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 407–416. ACM, 2016. doi:10.1145/2933575.
2934508.

9 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width
I: tractable FO model checking. ACM Journal of the ACM (JACM), 69(1):1–46, 2021.
doi:10.1145/3486655.

10 Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to
bounded degree. Algorithmica, 75(2):363–382, 2016. doi:10.1007/s00453-015-0045-3.

11 Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. doi:10.1007/s002249910009.

12 Marek Cygan, Paweł Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, Saket
Saurabh, and Magnus Wahlström. Randomized contractions meet lean decompositions. ACM
Transactions on Algorithms (TALG), 17(1):1–30, 2020. doi:10.1145/3426738.

13 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed-parameter tractable. SIAM J. Comput., 48(2):417–450, 2019.
doi:10.1137/140988553.

14 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/21m1396824
https://doi.org/10.4230/LIPIcs.IPEC.2020.1
https://doi.org/10.4230/LIPIcs.IPEC.2020.1
https://doi.org/10.4230/LIPIcs.MFCS.2024.24
https://doi.org/10.1137/1.9781611977554.ch139
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://doi.org/10.1016/S0166-218X(97)00031-0
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1145/3486655
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1007/s002249910009
https://doi.org/10.1145/3426738
https://doi.org/10.1137/140988553


N. Schirrmacher, S. Siebertz, and A. Vigny 90:19

15 Rod G Downey and Michael R Fellows. Fixed-parameter tractability and completeness II:
On completeness for W [1]. Theoretical Computer Science, 141(1-2):109–131, 1995. doi:
10.1016/0304-3975(94)00097-3.

16 Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michal Pilipczuk, and
Szymon Torunczyk. First-order model checking on monadically stable graph classes. CoRR,
abs/2311.18740, 2023. doi:10.48550/arXiv.2311.18740.

17 Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC 2023), pages 567–580, 2023. doi:10.1145/3564246.3585186.

18 Jan Dreier, Sebastian Ordyniak, and Stefan Szeider. Sat backdoors: Depth beats size. Journal
of Computer and System Sciences, 142:103520, 2024. doi:10.1016/j.jcss.2024.103520.

19 Andrew Drucker. New limits to classical and quantum instance compression. SIAM Journal
on Computing, 44(5):1443–1479, 2015. doi:10.1137/130927115.

20 Grzegorz Fabianski, Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. Progressive
algorithms for domination and independence. CoRR, abs/1811.06799, 2018. doi:10.48550/
arXiv.1811.06799.

21 Aleksander Figiel, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. On 2-clubs
in graph-based data clustering: theory and algorithm engineering. In Tiziana Calamoneri and
Federico Corò, editors, Algorithms and Complexity - 12th International Conference, CIAC
2021, Virtual Event, May 10-12, 2021, Proceedings, volume 12701 of Lecture Notes in Computer
Science, pages 216–230. Springer, Springer, 2021. doi:10.1007/978-3-030-75242-2_15.

22 Fedor V Fomin, Petr A Golovach, and Dimitrios M Thilikos. Parameterized complexity of
elimination distance to first-order logic properties. ACM Transactions on Computational Logic
(TOCL), 23(3):1–35, 2022. doi:10.1145/3517129.

23 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, volume 174. W. H. Freeman, 1979.

24 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. Journal of the ACM (JACM), 64(3):1–32, 2017. doi:10.1145/3051095.

25 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne,
editors, Parameterized and Exact Computation, First International Workshop, IWPEC 2004,
Bergen, Norway, September 14-17, 2004, Proceedings, volume 3162 of Lecture Notes in Com-
puter Science, pages 162–173. Springer, Springer, 2004. doi:10.1007/978-3-540-28639-4_15.

26 Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A more relaxed
model for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete
Mathematics, 24(4):1662–1683, 2010. doi:10.1137/090767285.

27 Eva-Maria C Hols, Stefan Kratsch, and Astrid Pieterse. Elimination distances, blocking sets,
and kernels for vertex cover. SIAM Journal on Discrete Mathematics, 36(3):1955–1990, 2022.
doi:10.1137/20m1335285.

28 Hong Liu, Peng Zhang, and Daming Zhu. On editing graphs into 2-club clusters. In Jack
Snoeyink, Pinyan Lu, Kaile Su, and Lusheng Wang, editors, Frontiers in Algorithmics
and Algorithmic Aspects in Information and Management - Joint International Confer-
ence, FAW-AAIM 2012, Beijing, China, May 14-16, 2012. Proceedings, volume 7285
of Lecture Notes in Computer Science, pages 235–246. Springer, Springer, 2012. doi:
10.1007/978-3-642-29700-7_22.

29 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
model checking to highly connected graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2018). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.ICALP.2018.135.

MFCS 2025

https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.48550/arXiv.2311.18740
https://doi.org/10.1145/3564246.3585186
https://doi.org/10.1016/j.jcss.2024.103520
https://doi.org/10.1137/130927115
https://doi.org/10.48550/arXiv.1811.06799
https://doi.org/10.48550/arXiv.1811.06799
https://doi.org/10.1007/978-3-030-75242-2_15
https://doi.org/10.1145/3517129
https://doi.org/10.1145/3051095
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1137/090767285
https://doi.org/10.1137/20m1335285
https://doi.org/10.1007/978-3-642-29700-7_22
https://doi.org/10.1007/978-3-642-29700-7_22
https://doi.org/10.4230/LIPIcs.ICALP.2018.135


90:20 Elimination Distance to Dominated Clusters

30 Nikolas Mählmann, Sebastian Siebertz, and Alexandre Vigny. Recursive backdoors for SAT. In
Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2021). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.73.

31 Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alexandre
Vigny. Algorithms and data structures for first-order logic with connectivity under vertex
failures. In 49th International Colloquium on Automata, Languages, and Programming (ICALP
2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.
2022.102.

32 Alex Pothen. The complexity of optimal elimination trees. Technical Report, 1988.
33 Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. First-order logic with

connectivity operators. ACM Transactions on Computational Logic, 24(4):1–23, 2023.
doi:10.1145/3595922.

34 Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. Elimination distance to
dominated clusters. CoRR, abs/2504.21675, 2025. doi:10.48550/arXiv.2504.21675.

35 Dekel Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory of Computing
Systems, 65(2):323–343, 2021. doi:10.1007/s00224-020-10005-w.

36 René Van Bevern, Hannes Moser, and Rolf Niedermeier. Approximation and tidying—a
problem kernel for s-plex cluster vertex deletion. Algorithmica, 62:930–950, 2012. doi:
10.1007/s00453-011-9492-7.

https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1145/3595922
https://doi.org/10.48550/arXiv.2504.21675
https://doi.org/10.1007/s00224-020-10005-w
https://doi.org/10.1007/s00453-011-9492-7
https://doi.org/10.1007/s00453-011-9492-7

	1 Introduction
	1.1 Techniques

	2 Preliminaries
	3 Partial domination and FPT evaluation
	4 Algorithm on unbreakable graphs based on Annotated Partial Domination
	4.1 Dominated Cluster Deletion
	4.2 Elimination Distance to Dominated Clusters
	4.3 Skeletons for general graphs

	5 Annotated versions for Dominated Cluster Deletion
	6 Hardness Results
	7 Conclusion

