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Abstract
The notions of Martin-Löf randomness and of Solovay reducibility, as well as their relations to each
other, are central objects of study in algorithmic randomness. When restricted to left-c.e. reals,
Solovay reducibility of α to β can be characterized [15] as the existence of two left approximations
a0, a1, . . . and b0, b1, . . . of α and β, respectively, such that the ratios α−an

β−bn
are bounded from above.

By a celebrated result of Kučera and Slaman, among left-c.e. reals the Martin-Löf random ones are
largest with respect to Solovay reducibility. The latter result was largely improved by the Limit
Theorem of Barmpalias and Lewis-Pye [2], which asserts that for given left-c.e. reals α and β where β

is Martin-Löf random, for all left-approximations of α and β as above, the ratios α−an
β−bn

converge to
the same limit.

Though the original definition of Solovay reducibility applies to all reals, Solovay reducibility is
considered to be badly behaved on the class of all reals. Accordingly, various variants of Solovay
reducibility have been proposed, including variants defined via real-valued functions by Kumabe,
Miyabe, and Suzuki [8] and a monotone variant by Titov [18]. It is known that for the monotone
variant, the Limit Theorem of Barmpalias and Lewis-Pye extends to all reals [17]. By our main result,
similarly the Limit Theorem holds for all reals with respect to the reducibility cl-open introduced by
Kumabe et al. [8] in 2024. The result is formulated in terms of translation functions of bounded
variation, and asserts that every such function from a Martin-Löf random real β to a real α is left
differentiable in β. In a setting of functions that are required to be defined on the whole unit interval
and not just on the reals strictly smaller than β, the differentiability of computable functions of
bounded variation in every Martin-Löf random real was shown by Demuth [4] in 1975; similar results
for other types of computable functions and randomness notions were obtained by Brattka, Miller,
and Nies [3] in 2011 and Rute [14] in 2018.

Furthermore, we deduce from the main result an equivalent characterization of Martin-Löf
randomness on the set of left-c.e. reals in terms of cl-open-reducibility of a real to itself.
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1 Introduction and background

Preliminaries
We start by reviewing the concept of Solovay reducibility introduced by Solovay [16] in 1975
as a measure of relative randomness and the principal results about its connection with
Martin-Löf randomness on the set of left-c.e. reals, or LEFT−CE for short. Our notation
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is standard. All rationals and reals are supposed to be on the interval [0, 1) if not stated
otherwise. A left-c.e. approximation is a strictly increasing computable approximation.
Unexplained notation can be found in Downey and Hirschfeldt [5].

▶ Definition 1 (Solovay, 1975). A real α is Solovay reducible to a real β, written α≤Sβ,
if there exists a constant c and a partially computable function g from Q to Q such that for
every q < β it holds that

0 < α − g(q) ↓< c(β − q). (1)

Solovay reducibility is meant as a measure of relative randomness in the sense that, if
a real is Solovay reducible to another real, then the latter real is considered to be at least
as random as the former one. For example, the upward closure of Martin-Löf random reals
under ≤S was proved by Solovay himself [16] in 1975.

Solovay reducibility is nowadays considered as the “standard” notion of relative Martin-
Löf randomness on the set of left-c.e. reals. On the latter set, Solovay reducibility has
an equivalent characterization in terms of left-c.e. approximations by Calude, Hertling,
Khoussainov, and Wang [15].

▶ Proposition 2 (Calude et al., 1998). A left-c.e. real α is Solovay reducible to a left-
c.e. real β iff there exists a constant c and two strictly increasing computable sequences
a0, a1, · · · → α and b0, b1, · · · → β (called left-c.e. approximations of α and β, respectively,
also written a0, a1, · · · ↗ α and b0, b1, · · · ↗ β) such that, for every n, it holds that

0 < α − an < c(β − bn). (2)

In 2001, Kučera and Slaman [9] demonstrated that Martin-Löf random reals form the
greatest ≤S-degree within the set of left-c.e. reals.

▶ Theorem 3 (Kučera–Slaman Theorem, 2001). Let α be a left-c.e. real and β be a Martin-Löf
random left-c.e. real. Then α is Solovay reducible to β.

The latter result was strengthened in 2017 by Barmpalias and Lewis-Pye [2, Theorem 1.7] by
showing a limit property of translation functions from Martin-Löf random left-c.e. reals to
arbitrary left-c.e. reals.

▶ Theorem 4 (Barmpalias–Lewis-Pye Limit Theorem 2017). Let α be a left-c.e. real and β

be a Martin-Löf random left-c.e. real. Then there exists a real constant d such that, for all
left-c.e. approximations a0, a1, . . . to α and b0, b1 . . . to β, it holds that

lim
n→∞

α − an

β − bn
= d. (3)

Moreover, d = 0 if and only if α is Martin-Löf nonrandom.

Note that Theorem 3 follows from Theorem 4.
Merkle and Titov [12] noticed that the Barmpalias-Lewis-Pye Limit Theorem applied for

α = β implies that every Martin-Löf random left-c.e. real β is nonspeedable, i.e., that

lim
n→∞

β − bn

β − bf(n)
= 1 for all monotone index functions f. (4)

Hölzl and Janicki proved that (4) is not equivalent to Martin-Löf randomness on the set of
left-c.e. reals: there exists a Martin-Löf nonrandom left-c.e. real that is nonspeedable, i.e.,
satisfies (4).
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Outside of the set of left-c.e. reals, Solovay reducibility is considered by several authors
as “badly behaved” [5]. Accordingly, several variants of Solovay reducibility that are better
suited as a relative measure of randomness in larger classes of reals have been proposed,
prominently including the 2aS-reducibility by Zheng and Rettinger [21].

Titov [17] proposed to use monotone Solovay reducibility, a variant of the Solovay
reducibility where the translation function g in Definition 1 is required to be nondecreasing.
Note that Solovay reducibility agrees with its monotone variant on the set of left-c.e. reals.
Titov also demonstrated that, with respect to monotone Solovay reducibility, the Barmpalias–
Lewis-Pye Limit Theorem extends to all reals.

▶ Theorem 5 (Titov, 2024). Let α be a real and β be a Martin-Löf random real. Then there
exists a constant d such that, for every nondecreasing translation function g from β to α, it
holds that

∃ lim
q↗β

α − g(q)
β − q

= d. (5)

Furthermore, Titov [17] showed that, without the additional requirement that the translation
function is nondecreasing, Theorem 5 does not hold even on the set of left-c.e. reals.

In 2020, Kumabe, Miyabe, Mizusawa, and Suzuki [7] used a similar approach, where the
set of admissible translation functions is restricted to nondecreasing ones. However, they
proposed to use translation functions on reals instead on rationals, which are required to be
computable as real functions in the sense of Weihrauch [20]. They introduced via this type
of translation function a reducibility, which is equivalent to Solovay reducibility on the set of
left-c.e. reals [7, Theorem 1]. In what follows, we refer to this reducibility as real Solovay
reducibility and denote it by ≤R

S .

In the second and third chapters, we analyze the notions of translation functions on
rationals and on reals, respectively, separately from the corresponding reducibilities, i.e.,
without requiring a Solovay condition like in (1).

In the fourth and fifth chapters, we prove the Barmpalias–Lewis-Pye Limit Theorem with
respect to the reducibility ≤open

cL on the set of all reals.
In the sixth chapter, we discuss the notion of self-reducibility (i.e., reducibility of a real

to itself) and show an equivalent characterization of Martin-Löf randomness on LEFT−CE
in terms of the ≤open

cL -self-reducibility.

In order to distinguish the two mentioned concepts of translation functions, we will speak
of Q-translation function and R-translation function for translation functions on
rationals and on reals, respectively.

2 Translation functions on rationals

Titov [19] proposed to formalize the notion of a “translation function from β to α”, which is
a function that fulfills the conditions of Definition 1 with the distance property (1) omitted.
We start the studies of Solovay reducibility by formally defining translation function on
rationals and introducing the relation “there exists a translation function of rationals from β

to α” between reals α and β.

MFCS 2025
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▶ Definition 6. A Q-translation function from a real β to a real α is a partially
computable function g from the set Q ∩ [0, 1) to itself such that, for all q < β, the value g(q)
is defined and fulfills g(q) < α, and it holds that

lim
q↗β

g(q) = α, (6)

where lim
q↗β

denotes the left limit.

We write α≤Q
tfβ if there exists a Q-translation function from β to α and α≤mQ

tf β if there
exists a nondecreasing Q-translation function from β to α.

First, it is easy to see that both ≤Q
tf and ≤mQ

tf are reflexive and transitive; thus, they
are preorders that form degree structures on R. By [19, Corollary 1 and Proposition 3], the
relation ≤Q

tf is not symmetric and strictly weaker than ≤mQ
tf . The non-symmetry of ≤mQ

tf is
implied by the following proposition. We omit the proof due to space restrictions.

▶ Proposition 7. There exist two d.c.e. reals α and β such that α≤mQ
tf β but β≰mQ

tf α.

In other words, outside of the set of left-c.e. reals, it is neither always possible to
“monotonize” a Q-translation function nor to find a monotone Q-translation function from α

to β from a given monotone Q-translation function from β to α.

3 Translation functions on reals

In 2020, Kumabe, Miyabe, Mizusawa, and Suzuki [7] have found a characterization of Solovay
reducibility on LEFT−CE that, instead of the translation functions on rationals, uses the
translation functions on reals.

We start to review their approach by recalling the notion of a computable function on
reals from the viewpoint of computable analysis. For unexplained notions in the next section,
see [20].

3.1 Computability on the real numbers
▶ Definition 8. A sequence q0, q1, . . . of rationals is called effective approximation if it
fulfills |qn − qn+1| < 2−n for every n.

Since every effective approximation q0, q1, . . . is a Cauchy sequence, it converges to some
limit point x ∈ R, and, for this x, we also say that q0, q1, . . . is an effective approximation
of x.

Now, informally speaking, we call a real function f computable if there exists a machine
that, for every (infinite) effective approximation of a real x in its domain, returns some
(infinite) effective approximation of f(x). The class of Turing machines that, using an infinite
sequence of finite strings (in our case, encoded rationals) as an oracle, returns another
sequence of finite strings was firstly formalized by Grzegorczyk [6] and, independently, by
Lacombe [10, 11] in 1955. For further explanations, see the monograph by Weihrauch [20,
Chapter 2], where they are called “Turing machines of Type 2”. In what follows, we give the
formal definition of a computable real function using a notion of Turing machine of Type 2
specified for the sequences of rationals.

▶ Definition 9 (Weihrauch, 2000). A Turing Machine M of Type 2 is an oracle
Turing machine that, for every oracle (p0, p1, . . . ), where p0, p1, . . . are (appropriately finitely
encoded) rationals, produces either an infinite sequence of rationals (q0, q1, . . . ); in this case,
we say that M returns the sequence (q0, q1, . . . ) from the input (p0, p1, . . . ); or a
finite set of rationals (q0, q1, . . . , qn); in the latter case, we say that M (p0,p1,... ) is undefined.
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A real function f from some subset of R to R is computable on some set X ⊆ dom(f)
if there exists an oracle Turing machine M such that, for every x ∈ X and every effective
approximation p0, p1, . . . that converges to x, M (p0,p1,... ) returns an effective approximation
(q0, q1, . . . ) of f(x).

By [20, Corollary 4.3.1], computability on reals implies continuity.

▶ Proposition 10. Every real function, which is computable on some interval [a, b], is
continuous in every point in (a, b).

The following proposition is straightforwardly implied by [20, Corollary 6.2.5].

▶ Proposition 11. If a real function g is computable on the set [a, b), then the maximum
function h(x) = max{g(y) : a ≤ y ≤ x}, is computable on [a, b).

Differentiability of computable functions on reals have strong connections to algorithmic
randomness. In 1975, Demuth [4] proved that Martin-Löf random reals are those in which
all computable function of bounded variation, see Section 4.2, are differentiable. Similar
characterizations for other types of randomness have been found by Brattka, Miller, and
Nies [3, computable and weak 2-randomness] and Rute [14, Schnorr randomness]. We
summarize all mentioned results in the following theorem.

▶ Theorem 12.
1. A real on [0, 1] is weakly 2-random iff every almost everywhere differentiable function that

is computable on [0, 1] is differentiable in it.
2. A real on [0, 1] is Martin-Löf random iff every real function of bounded variation that is

computable on [0, 1] is differentiable in it.
3. A real on [0, 1] is computably random iff every nondecreasing real function that is com-

putable on [0, 1] is differentiable in it.
4. A real on [0, 1] is Schnorr random iff every absolutely continuous function that is comput-

able in the variation norm on [0, 1] is differentiable in it.

3.2 Variants of translation functions on reals
Kumabe, Miyabe, Mizusawa, and Suzuki [7, Theorem 1] characterized Solovay reducibility
on LEFT−CE using different versions of translation functions on reals.

In a similar way as for translation functions on rationals, we start to explore these
reducibilities. by introducing the notions of an “R-translation function” and a “weakly
R-translation function” formalized by Titov [19], which do not require monotonicity.

▶ Definition 13. A weakly R-translation function from a real β to a real α is a real
function f which is computable on the interval [0, β) and satisfies

lim
x↗β

f(x) = α. (7)

An R-translation function from a real β to a real α is a weakly R-translation function
from β to α that maps [0, β) to the interval [0, α). We write α≤R

tfβ if there exists a R-
translation function from β to α.

It is easy to see that ≤R
tf is a preorder that induces a degree structure. In contrast to ≤Q

tf ,
the restriction of R-translation functions to only nondecreasing ones does not induce any
stricter relation, as we will see in the next proposition.

MFCS 2025
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▶ Proposition 14. Let f be a computable R-translation function on reals from β to α. Then,
the function h(x) = max{f(y) : y ≤ x} is a nondecreasing computable R-translation function
from β to α.

Proof. The function h defined as in the proposition statement is computable (in the sense of
Definition 9) by Proposition 11. Moreover, h is obviously nondecreasing, and it holds that

for every x < β, there exists y ∈ [0, β) such that h(x) = f(y) < α. (8)

Moreover, we have lim
x↗β

h(x) = α by the following argument:

lim
x↗β

h(x) = α since lim inf
x↗β

h(x) ≥ lim inf
x↗β

f(x) = lim
x↗β

f(x) = α by (7);

lim sup
x↗β

h(x) ≤ α by (8).

Thus, h is a nondecreasing R-translation function from β to α. ◀

3.3 Reducibilities defined via translation function on reals
Kumabe et al. introduced in 2020 [7, Definition 9] and 2024 [8, Definition 5.1] two new types
of reducibility by requiring the R-translation functions and weakly R-translation functions,
respectively, to be Lipschitz continuous (note that replacing the requirement (1) in the
definition of Solovay reducibility by the requirement for the Q-translation g to be Lipschitz
continuous yields a reducibility notion which is equivalent to ≤S on LEFT−CE; for a formal
proof of this fact, see [19, Proposition 1]). In what follows, we give the formal definition of
these reducibility; where the reducibility denoted by Kumabe et al. as “L2” obtains a more
intuitive name “real Solovay reducibility”.

▶ Definition 15 (Kumabe et al., 2020; Kumabe et al., 2024). A real α is real Solovay
reducible to a real β, written α≤R

Sβ, if there exists a Lipschitz continuous R-translation
function from β to α.

A real α is cl-open reducible to a real β, written α≤open
cL β, if there exists a Lipschitz

continuous weakly R-translation function from β to α.

Titov [19, Corollary 3] has also shown that the additional requirement for the R-translation
function in the latter definition to be nondecreasing (Kumabe et al. denoted [7, Definition 9]
the resulting reducibility “L1”) does not induce any strictly stronger reducibility on R
than ≤R

S .

▶ Proposition 16 (Titov, 2025). If α≤R
Sβ for two reals α and β, then α≤R

Sβ via a non-
decreasing R-translation function.

In the latter definitions, the Lipschitz continuity requirement can be replaced by a
“localized” version of Lipschitz continuity, where instead of arbitrary pairs of arguments, we
consider only pairs with second component β, similarly to the inequality (1) for translation
functions on rationals.

▶ Proposition 17. For all reals α and β, the following equivalences hold:
1. α≤R

Sβ iff there exists a constant c an R-translation function f from β to α that fulfills

α − f(x)
β − x

< c. (9)

2. α≤open
cL β iff there exists a constant c and a weakly R-translation function f from β to α

that fulfills
|α − f(x)|

β − x
< c. (10)
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Proof. Direction =⇒ is straightforward in both equivalences since every Lipschitz continuous
weakly R-translation function f from β to α fulfills (10) with the value of c greater than
Lipschitz constant of f . In case f maps [0, β) to [0, α), we also obtain (9) from (10) since it
holds |α − f(x)| = α − f(x) for all x ∈ [0, β).

The inverse directions will be obtained for every equivalence separately: first, let f be an
R-translation function f that fulfills (9). Then the function g(x) = min{f(y) : y ≤ x} is, by
Proposition 14, is a nondecreasing R-translation function from β to α that still fulfills (9).
Hence, the function h(y) = min{g(y) + c(y − x) : y ≤ x} witnesses α≤R

Sβ.
For a weakly R-translation function f̃ that fulfills (9), we define

g̃(x) = min{f̃(y) + d(x − y) : y ∈ [0, x]} and
h̃(x) = max{g̃(y) − d(x − y) : y ∈ [0, x]}.

Then h̃ is a weakly R-translation function that witnesses α≤open
cL β. ◀

We will refer to the equalities (9) and (10) as Solovay inequality and weak Solovay
inequality, respectively.

By [7, Theorem 1] and by [8, Observation 5.3], respectively, the reducibilities ≤R
S and ≤open

cL
are equivalent to the Solovay reducibility ≤S on the set of left-c.e. reals, and, by [19,
Theorem 1], there are implied by ≤S on R and R \ COMP, respectively.

▶ Theorem 18 (Titov, 2025). The reducibility ≤S implies ≤R
S on all but computable reals

and ≤open
cL on all reals.

4 Prelimilaries to the Barmpalias-Lewis-Pye Limit Theorem for weakly
R-translation functions

4.1 Previous results
The characterization of Solovay reducibility given in Proposition 2 gave a new start to
research of the Solovay reducibility because of its close connection with the construction of
Martin-Löf and Solovay randomness tests.

In 2017, Miller [13] divided the Barmpalias-Lewis-Pye Limit Theorem into two logically
independent statements that we denote by (KS) and (BLP) in what follows.
(KS) If there are two left-c.e. approximations a0, a1, . . . and b0, b1, . . . of a left-c.e. real α

and a Martin-Löf random left-c.e. real β, respectively, then they witness the Solovay
reducibility α≤Sβ in the sense of Proposition 2.

This can be considered as a reformulation of the Kučera–Slaman Theorem (which motivates
the choice of the acronym “KS”), even quite strengthened since the Solovay reducibility is
witnessed by every pair of left-c.e. approximations of α and β, respectively. For a direct
proof of this statement, see [13, Lemma 1.1].
(BLP) For every left-c.e. real α and Martin-Löf random left-c.e. real β, there exists a

constant d such that, for every left-c.e. approximations a0, a1, · · · ↗ α and b0, b1, · · · ↗ β

that witness the Solovay reducibility α≤Sβ in the sense of Proposition 2 with some
constant c, (3) holds.
Moreover, d = 0 if and only if α is Martin-Löf nonrandom.

For the direct proof of this statement, see [13, Lemma 1.2]. It is easy to see that both
statements together imply exactly Theorem 4.

In the remainder of this chapter, we state each of them on R relative to ≤open
cL using the

concept of total variation of a function on reals that we recall in what follows.

MFCS 2025
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4.2 Total variation
The connection between functions of bounded variation on the compact interval and Martin-
Löf randomness has been discovered already by Demuth, see Theorem 12(2).

In what follows, we recall the definition of functions of bounded variation defined in an
arbitrary domain.

▶ Definition 19. A finite partition of a bounded set A ⊆ R is a tuple of finitely many
reals (x0, . . . , xn) where n ∈ N such that

a < x0 < · · · < xn < b and xi ∈ A for all i ∈ {0, . . . , n}. (11)

The total variation Vf of a real function f :⊆ R → R is the quantity

Vf = sup
(x0,...,xn)∈P

n−1∑
i=0

|f(xi+1) − f(xi)|, (12)

where P is the set of all partitions of dom(f).
We say that f is of bounded variation if Vf < ∞, and of unbounded variation

otherwise.

5 Barmpalias-Lewis-Pye Theorem for weakly R-translation functions

▶ Theorem 20. Let α and β be reals such that β is Martin-Löf random. Then for every
weakly R-translation function of bounded variation f from β to α, it holds that

lim
x↗β

α − f(x)
β − x

= d. (13)

Moreover, in case such function f exists and d ̸= 0, then α is Martin-Löf random as well,
and it holds α≡R

Sβ.

▶ Remark 21. In Theorem 20, the requirement for the function f cannot be omitted even for
left-c.e. reals α and β. Indeed, for every left-c.e. approximation b0, b1, . . . of a Martin-Löf
random left-c.e real β, one can easily construct an R-translation function from β to β, such
that

lim sup
x↗β

β − f(x)
β − x

≥ lim sup
n→∞

β − f(bn)
β − bn

= ∞,

hence the theorem statement (13) for the function f and α = β does not hold. We leave the
exact construction as an exercise for the reader.

▶ Remark 22. Theorem 20 is a strengthening of the “only if”-part of Theorem 12 since, in
the condition of Theorem 20, the function f is not required to be defined (or computable) in
the point β.

Proof. Let α and β be two real on [0, 1), and let f be a weakly R-translation function of
bounded variation Vf from β to α computed by a Turing machine M of Type 2.

We organize the proof in the manner of Miller [13] by showing consequently that the ratio
in (13) is bounded, that this ratio has a left limit in β, and that this limit does not depend
on the choice of f . Finally, we consider the case d = 0.
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Outline of the proof

1. In Paragraph 5.1, we define two functions f− and f+ from rationals to rationals that
have the same domain and return the value of f with a convenient precision.

2. In Paragraph 5.2, we prove that f fulfills weak Solovay inequality (10) as follows: using
f− and f+, we define two Martin-Löf tests S and T whose every level will be constructed
by computing in every next enumeration step of the domain of f− and f+ a finite test
that extends a test constructed in the previous step. Then β should pass both tests by its
Martin-Löf randomness, hence, for some i, the ith levels of both tests do not contain β.
Due to the specific construction of the tests, it will imply the weak Solovay inequality for
f with an appropriate Solovay constant. Finally, we turn f into a Lipschitz continuous
weakly R-translation function from β to α. During the whole construction, we will use
technical claims whose proofs are omitted due to space considerations.
Note that, by Proposition 17, this part implies as a corollary that α≤open

cL β.

The part proves a generalization of the statement (KS) on all reals for weakly R-translation
functions. On left-c.e. reals, it easily implies (KS).

3. In Paragraph 5.3, we prove that, for every function f that fulfills (10), there exists a
constant d that fulfills (13) by contradiction: supposing the converse, we define two
functions f− and f+ from rationals to rationals that have the same domain and return
values of f with convenient precision. Then we define a Solovay test S whose every level
will be a finite test computed in every next enumeration step of the domain of f− and
f+ that extends a test computed in the previous step. Due to the specific construction of
the test, it will imply that either contain β infinitely many times, which contradicts its
Martin-Löf randomness.
This is the main part of the proof, which is based on the proof of [17, Section 2.2] adapted
for R-translation functions.

4. In Paragraph 5.4, we prove the uniqueness of d by contradiction: supposing the existence
of two different functions f1 and f2 witnessing α≤open

cL β with the different values of d, we
obtain an effective approximation of β (which cannot exist for Martin-Löf random reals)
by using the computable function f1 − f2. This part is directly implied by properties of
computable real-valued functions.

5. Finally, in Paragraph 5.5 in case d ̸= 0, we construct a function f̃ witnessing β≤Sα by
inverting f . This implies the Martin-Löf randomness of α since, by [19, Proposition 9(a)],
Martin-Löf random reals are ≤open

cL -closed upwards in R. This part has no analogues for
Solovay reducibility via rational translation functions because, by Proposition 7, strictly
increasing translation functions on rationals are not always invertible.
Note that the latter case also implies α≡R

Sβ.

The latter three parts together build a generalization of the statement (BLP) on all reals
for weakly R-translation functions. On left-c.e. reals, they easily imply (BLP).

Notation

In the remainder of this proof and unless explicitly stated otherwise, for two reals a < b,
the length of the interval I = [a, b] will be denoted by |I|, and the notation [b, a] will
denote an empty interval with length 0. A test set is a tuple of pairs of rationals

Q =
( (

r0
s0

)
, . . . ,

(
rn

sn

) )
if it fulfills the inequality s0 ≤ s1 · · · ≤ sn, and a finite test is an

empty set or a tuple A = (U0, . . . , Um) with m ≥ 0 where the Ui are not necessarily distinct
nonempty intervals.
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We also say that a finite test A is covered by another finite test B, written A ⪯ B, if
the union of all intervals contained in the tuple A is covered by the union of all intervals
contained in the tuple B:

A ⪯ B : ⇐⇒
⋃

I∈A

I ⊆
⋃

I∈B

I. (14)

5.1 From functions on reals to functions on rationals
Let p0, p1, . . . be an enumeration of all rationals in [0, 1), and define a two-argument-
function g :⊆ Q|[0,1) × N → Q as follows: for every p, let

g(p, n) = r2n if
{

(M (p,p,... ) ↾ 2n) ↓= (r1, . . . , r2n)
ri+1 − ri < 2i for every i ∈ {1, . . . , 2n − 1}

(remind that M is a Turing machine of Type 2 that computes f) and (p, n) ↑ otherwise. In
particular, if the value of f(p) is defined (which holds, inter alia, for all rationals in [0, β)),
then, for all n, g(p, n) halts and returns it with accuracy 2−2n.

Next, let q0, q1, . . . be the a sub-sequence of p0, p1, . . . obtained by the following dove-
tailing: At the step i, add into the sequence (q0, q1, . . . ) some pk such that g(pk, 2i) is
defined and the sequence (q0, q1, . . . ) does still not contain pk. By the previous discussion,
all rationals in [0, β) will be enumerated into q0, q1, . . . , hence the functions

f̃(q) = g(qn, 2n) and
{

f−(q) = f̃(qn) − 2−2n

f+(q) = f̃(qn) + 2−2n
if there exists n such that q = qn (15)

are defined for all qn, in particular, on the whole set Q|[0,β).
It obviously holds for every n that

|f̃(qn) − f(qn)| = |g(qn, 2n) − f(qn)| ≤ 2−2n, hence f−(qn) ≤ f̃(qn) ≤ f+(qn), (16)

wherein the sum of distances between f+(q) and f−(q) for all their arguments is bounded
from above:∑

n∈N
|f+(qn) − f−(qn)| ≤

∑
n∈N

2 · 2−2n = 8
3 . (17)

The next two claims describe the further properties of functions f̃ , f+, and f−. The first
one follows from the definition of Vf and (16), the second one from (16) and the density of
both functions on [0, β).

▷ Claim 23. Let n be a natural, and let the tuple (qn
0 , . . . qn

n) be the set {q0, . . . , qn} sorted
increasingly. Then we have

n−1∑
i=0

|f̃(qn
i+1) − f̃(qn

i )| ≤ Vf + 8
3 < ∞. (18)

▷ Claim 24. The value α is the left limit of function f̃ in β, i.e.,

∃ lim
q↗β

f̃(q) = α. (19)
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5.2 f fulfills the weak Solovay inequality
Now, using the functions f̃ and g, we construct two Martin-Löf tests S and T by applying
in every enumeration step of q0, q1, . . . the same algorithm that will be described in what
follows on an appropriate test set.

A single stage of the construction

Fix a natural i (called level) and a test set Q =
( (

a0
b0

)
,

(
a1
b1

)
, . . . ,

(
an

bn

) )
where n ≥ 0.

We describe the construction of the finite test Testi(Q), which is a lightly modified
version of a construction used by Titov [17, Theorem 2.1].

For every two indices k, m, such that 0 ≤ k < m ≤ n, define the interval

I[k, m] := R[
(

ak

bk

)
,

(
am

bm

)
] :=

{
[bm, bk + am−ak

2i+1 ] if am−ak

bm−bk
≥ 2i+1,

∅ otherwise,
(20)

and put the intersection of I[k, m] with the unit interval [0, 1] into the test Testi(Q), obtaining

Cover(Testi(Q)) =
( ⋃

k,m∈{0,...,n}:k<m

I[k, m]
)

∩ [0, 1]. (21)

Further, for technical reasons, for all k, m such that 0 ≤ m ≤ k ≤ n, set I[k, m] = ∅. We will
also write Ii[k, m] for I[k, m] in case the level i is not clear from the context.

Then, this construction fulfills the inclusion properties by levers and test sets, respectively,
described in the next claim.

▷ Claim 25. For every test set P and every two indices i and j, i < j implies that
Testj(P ) ⪯ Testi(P ).

For every index i and every two test sets P and Q, P ⊆ Q implies that
Testi(P ) ⪯ Testi(Q) for every index i.

The claim describes the inclusion properties of particular intervals of Testi(Q).

▷ Claim 26. For every two indices k and l where 0 ≤ k < l ≤ n, the following implications
hold:

al − ak

bl − bk
≤ 2i+1 =⇒ ∀m > l

(
I[k, m] ⊆ I[l, m]

)
, (22)

al − ak

bl − bk
≥ 2i+1 =⇒ ∀m

(
I[k, m] ⊇ I[l, m]

)
. (23)

In what follows, we defined an index subset i0, . . . , is of 0, . . . , n and see that every level
Testi(Q) of Test(Q) is a disjoint union of some intervals defined via i0, . . . , is.

Let 0 = i0 < i1 < · · · < is be the indices in the range 0, . . . , n such that

am − ais

bm − bis

> 2i+1 for all m ∈ {is, . . . , n} (24)

and, for every j ∈ {0, . . . , s − 1},
aij+1 − aij

bij+1 − bij

≤ 2i+1, (25)

am − aij

bm − bij

> 2i+1 for all m ∈ {ij + 1, . . . , ij+1 − 1}. (26)
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Further, due to the technical reasons, we fix an additional index is+1 = n + 1 (hence
is+1 − 1 = n) and set qn+1 = 1 and g(qn+1) = 1, so (24) is nothing but (26) for j = s.

Next, define for every j from 0 to s the index hj in the range ij , . . . , s such that

ahj
= max{ah : ij ≤ h < ij+1}. (27)

▷ Claim 27. If a real x is not contained in any interval [bij , bij + ahj
−aij

2i+1 ] for all j in the
range 0, . . . , s, then we have x /∈ I[k, m] for all k and m.

By (21) the latter claim implies as a corollary that

Cover(Test(Qi)) ⊆
⋃

j∈{0,...,s}

[bij
, bij

+
ahi − aij

2i+1 ]. (28)

Construction and properties of two Martin-Löf tests S and T

We will construct two Martin-Löf tests T with levels S0, S1, . . . and T with levels T0, T1, . . . it-
eratively: first, at stage 0, we initialize for every natural i the levels S0

0 , S0
i , . . . and T 0

0 , T 0
1 , . . .

as empty sets; in every next stage n > 0, we define for every natural i the test sets

Qn =
( (

f−(qn
0 )

qn
0

)
,

(
f+(qn

0 )
qn

0

)
,

(
f−(qn

1 )
qn

1

)
,

(
f+(qn

1 )
qn

1

)
, . . . ,

(
f−(qn

n)
qn

n

)
,

(
f+(qn

n)
qn

n

) )
, (29)

Q′
n =

( (
1 − f+(qn

0 )
qn

0

)
,

(
1 − f−(qn

0 )
qn

0

)
, . . . ,

(
1 − f+(qn

n)
qn

n

)
,

(
1 − f−(qn

n)
qn

n

) )
. (30)

In particular, we directly obtain then the following observation:

Qn−1 ⊆ Qn and Q′
n−1 ⊆ Qn for all n > 0. (31)

Next, for every i and n, we define the finite tests

Sn
i = Testi(Qn) and T n

i = Testi(Q′
n).

Then the second statement of Claim 25 implies that

Sn−1
i ⪯ Sn

i , Sn
i−1 ⪯ Sn

i , T n−1
i ⪯ T n

i , T n
i−1 ⪯ T n

i for all i, n > 0.

Now, for all i, we can construct an infinite test Si as follows: by (31), we can represent for
every n > 0 the set Cover(Sn

i ) \ Cover(Sn
i ) as a disjoint union of finitely many intervals (i.e.,

a finite test) Xn
i , wherein a list of intervals is computable in i and n because the same holds

for Sn
i and Sn−1

i . So, we list the intervals in the finite sets X0
i , X1

i , . . . in the infinite Si. An
infinite test Ti can be constructed likewise for every i.

As a next claim, we give an upper bound for the measure of the union of intervals in
every constructed finite test that is implied by Claim 27.

▷ Claim 28. There is a constant c such that, for every naturals i and n, the measure of
the union of all intervals from Sn

i and the measure of the union of all intervals from T n
i are

bounded from above by 2−ic.

By Claim 28, there exists a natural m > 0 such that, for every n > 0, the measures
of Cover(Sn

i ) and Cover(T n
i ) are both bounded from above by 2m−i; therefore, by the

compactness argument, the same holds for Cover(Si) and Cover(Ti). Thus, the tests
(Sm+1, Sm+2, . . . ) and (Tm+1, Tm+2, . . . ) are Martin-Löf tests, wherein, by the first statement
of Claim 25, it holds that

Cover(Sm+1) ⊇ Cover(Sm+2) ⊇ . . . and Cover(Tm+1) ⊇ Cover(Tm+2) ⊇ . . . (32)
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Functions f̃ and f fulfill the weak Solovay inequality

Since β is Martin-Löf random, both Martin-Löf tests fail on it, hence there exist levels i1
and i2 such that β /∈ Si1 and β /∈ Ti2 . Therefore, by ĩ = max{i1, i2} + 1, it holds by (32)
that

β /∈ Cover(Sĩ−1) ∪ Cover(Tĩ−1). (33)

Next, we will successively prove two claims that the functions f̃ and f , respectively, fulfill
the weak Solovay condition.

▷ Claim 29. For all rationals q ∈ [0, β), it holds that |α − f̃(q)| < 2ĩ(β − x).

▷ Claim 30. For all reals x ∈ [0, β), it holds that |α − f(q)| < 2ĩ+1(β − x).

5.3 The limit exists
At that moment, we already know from the previous paragraph that f fulfills weak Solovay
inequality, i.e., the fraction |α−f(x)|

β−x is bounded on [0, β), Now, we prove by contradiction
that, for x converging to β from below, the latter fraction converges, i.e., that

∃ lim
q↗β

α − f(q)
β − q

. (34)

Supposing that the left limit in (34) does not exist, by the boundedness of |α−f(x)|
β−x on

[0, β), we can fix two rational constants c and d where

c < d, d − c < 1, and lim inf
x↗β

α − f(x)
β − x

< c < d < lim sup
x↗β

α − f(x)
β − x

(35)

and the rational

e = d − c > 0. (36)

In particular, we obtain from (35) and the right part of (16), we obtain that

lim inf
q↗β

α − f+(q)
β − q

< c < d < lim sup
q↗β

α − f−(q)
β − q

. (37)

Recall that, according to the discussion in Paragraph 5.1, the rational functions f− and f+

are totally computable on LC(β).
We will obtain the desired contradiction by constructing a Solovay test that fails on eβ,

which cannot be true since e is rational and β is Martin-Löf random. At every construction
stage, we apply the algorithm by Titov [17, Section 2.2] of the test set defined below.

The functions γ(q) and δ(q)

First, we define two partial computable functions γ and δ that have the same domain as f̃ :

γ(q) = f̃(q) − cq and δ(q) = f̃(q) − dq.

Due to c < d, the following claim is immediate:

▷ Claim 31. For every q in the domain of f̃ , we have

γ(q) − δ(q) > (d − c)q = eq > 0, hence γ(q) > δ(q).

In particular, the partial function γ − δ is strictly increasing on its domain, hence, for every
sequence q0 < q1 < . . . of rationals in [0, β) that converges to β, the values g(qi) are defined,
and therefore, the values γ(qi) − δ(qi) converge strictly increasingly to (d − c)β.
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A single stage of the construction: definition of the test set

Let Q = {p0 < · · · < pn} be a finite nonempty subset of the domain of f̃ . Recalling that
q0, q1, . . . is an enumeration of dom(f̃); thus, we have p0 = qk0 , p1 = qk1 , . . . , pn = qkn

for
appropriate indexes k0, . . . , kn. Note that – in contrast to Paragraph 5.2 – p0, . . . , pn don’t
need to be first n + 1 enumeration elements q0, . . . , qn rearranged. For all i in {0, . . . , 2n + 1},
let

δ2i = δ(pi) − 2−2ki+1 = g(pi) − dpi + 2−2ki+1,

γ2i = γ(pi) − 2−2ki+1 = g(pi) − cpi + 2−2ki+1,

δ2i+1 = δ(pi) + 2−2ki+1 = g(pi) − dpi − 2−2ki+1,

γ2i+1 = γ(pi) + 2−2ki+1 = g(pi) − cpi − 2−2ki+1,

Then we set

Mext(Q) = M((δ0, γ0), (δ1, γ1), . . . , (δ2n+1, γ2n+1)), (38)

where M((δ0, γ0), (δ1, γ1), . . . , (δ2n+1, γ2n+1)) is the finite test returned by Titov’s algorithm
[17, Section 2.2] applied to the test set M((δ0, γ0), (δ1, γ1), . . . , (δ2n+1, γ2n+1)).

Then the following claim can be obtained in the same way as the main result of [17,
Section 2.2]. Its explicit proof is omitted due to space restrictions.

▷ Claim 32. For Qn = {q0, q1, . . . , qn} for every n, the finite sets Mext(Q0), Mext(Q1), . . .

subsequently extend to a Solovay test that fails on eβ.

5.4 The limit is unique

We prove the uniqueness of d for all weakly R-translation functions from β to α by contradic-
tion: suppose that there exist two translation functions f and g from β to α such that the
(by the previous paragraph, existing) values lim

x↗β

α−f(x)
β−x and lim

q↗β

α−g(q)
β−q differ. By symmetry,

without loss of generality, we can then pick rationals c and d such that

lim
q↗β

α − g(q)
β − q

< c < d < lim
q↗β

α − f(q)
β − q

. (39)

By (39), for every rational b < β that is close enough to β, it holds that

α − g(q)
β − q

< c and d <
α − f(q)

β − q
.

Then, the real function h = g − f is computable on [b, β), fulfills

lim
x↗β

h(x) = lim
x↗β

g(x) − lim
x↗β

f(x) = α − α = 0 and (40)

lim
x↗β

h(x)
β − x

= lim
x↗β

g(x) − f(x)
β − x

= lim
x↗β

α − f(x)
β − x

− lim
x↗β

α − g(x)
β − x

= d − c > 0. (41)

From (40) and (41), we easily obtain the computability of β.
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5.5 Case d = 0
As a computable function, f is continuous on [0, β) by [20, Theorem 4.3.1].

Therefore, if d > 0 (the case d < 0 is analogous), we can fix a constant c < d and a
rational b < β such that α−f(x)

β−x ∈ [c, d] for every x ∈ [b, β]. The function

h(x) = max{f(y), f(b) + c(y − b) : y ∈ [b, x]}

is a strictly increasing R-translation function of (obviously) bounded variation. Hence, its
inverse f−1 defined on [f(b), α] is computable by [20, Inverse function Theorem] and has a
finite total variation on [f(b), α] (since f has a finite total variation on [b, β]).

It also satisfies Solovay inequality (9) on some left neighborhood of α since

lim
y↗α

β − h(y)
α − y

= lim
x↗β

β − x

α − h(x) = 1
d

,

hence, by Proposition 17, β≤open
cL α.

Then α is Martin-Löf random because, by [19, Proposition 9(a)], the set of Martin-Löf
reals is ≤open

cL -closed upwards. ◀

6 Self-reducibility and Martin-Löf randomness

For a real α, a ≤S-self-reducibility of α is the reducibility α≤Sα witnessed by some
Q-translation function from α to itself. For other reducibilities discussed in this paper, the
self-reducibility notion can be introduced likewise.

The next characteristic of Martin-Löf randomness on the set on left-c.e. reals is implied
by Theorem 5 applied for the Martin-Löf random left-c.e. reals α = β. Its proof uses the
concept of monotone test introduced by Barmpalias, Fang, Merkle, and Titov [1] in 2025.

▶ Theorem 33. For every left-c.e. real α, the following two statements are equivalent:
1. α is Martin-Löf random;
2. every weak R-translation function f of bounded variation from α to itself has the property

∃ lim
x↗α

α−f(x)
α−x = 1.

Proof. First, we show the direction (1) =⇒ (2). By Theorem 5 applied for α = β, the limit
value

d = lim
x↗α

α − f(q)
α − q

exists and does not depend on the choice of f witnessing α≤open
cL α, wherein, for f = id, we

obviously have d = 1.

In order to prove ¬ (1) =⇒ ¬ (2), we fix a Martin-Löf nonrandom left-c.e. real α and a
Solovay test S = ([ln, rn])n∈N that fails on α (i.e., α ∈ [ln, rn] for infinitely many r).

First, on the basis of S and a0, a1, . . . , we construct another Solovay test T = (l′
n, r′

n)n∈N
that fails on α and additionally fulfills

l′
0 < l′

1 < l′
2 < · · · < α. (42)

We do it by cutting the original test S in the following way: starting from i−1 = t−1 = −1,
at every step n ≥ 0, we denote with (in, tn) the first index pair (i, t) such that

i > in−1, t /∈ {t0, t1, . . . , tn−1}, and lt < ai
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and put [l′
n, r′

n] = [ain
, rtn

] into the test T .
The constructed test T is obviously computable and has a finite measure since S has a

finite measure and [ain
, rtn

] ⊆ [ltn
, rtn

]; therefore, T is a Solovay test. Further, (42) holds
since l′

0, l′
1, . . . is a sub-sequence of a0, a1, . . . .

Finally, for every (of infinitely many) t̃ such that

α ∈ [lt̃, rt̃],

we have li < α < rt̃ for every index i, hence there exists an index of a second order ñ

such that t̃ = tñ (in other words, the pair (iñ, tñ) where tñ = t̃ will be enumerated). Thus,
by aiñ

< α, we have α = [aiñ
, rtñ

]. Therefore, the test T fails on α.

The following properties of the Solovay test T can be easily obtained from (42), its finite
measure, and the existence of infinitely many indices i such that α ∈ [l′

i, r′
i]:

l′
0, l′

1, · · · ↗ α and r′
0, r′

1, · · · → α.

Then, the function f defined by

f(x) = l′
n − (r′

n − l′
n) + x − l′

n

l′
n+1 − l′

n

(
l′
n+1 − (r′

n+1 − l′
n+1)

)
if x ∈ [l′

n, l′
n+1] for some n,

and f(x) = l′
0 on [0, l′

0] is a piecewise linear function that fulfills f(l′
i) = l′

i − (r′
i − l′

i) for all
i ≥ 0, hence its total variation is equal to

n∑
i=0

|f(l′
n+1) − f(l′

n)| =
n∑

i=0

(
(2l′

n+1 − r′
n+1) − (2l′

n − r′
n)

)
≤

n∑
i=0

(2l′
n+1 − 2l′

n) +
n∑

i=0
(r′

n − l′
n) = 2(α − l′

0) + µ(T ) < ∞,

where µ(T ) denotes the (finite) measure of the Solovay test T .
Further, f(l′

n) < l′
n < α for all n, and lim

x↗α
f(x) = lim

n→∞

(
l′
n − (r′

n − l′
n)

)
= 2 lim

n→∞
l′
n −

lim
n→∞

r′
n = 2α − α = α, hence f is an R-translation function from α to α, wherein it holds

that

lim sup
x↗α

α − f(x)
α − x

≥ lim sup
n→∞

(α − l′
n) + (r′

n − l′
n)

α − l′
n

≥ 2,

since, for every n such that α ∈ [l′
n, r′

n], the corresponding fraction is larger that 2. ◀

▶ Remark 34. By [18, Proposition 53], speedability can be characterized on LEFT−CE (and
even defined outside of LEFT−CE, see [18, Chapter 5] for further information) in terms of
≤m

S -self-reducibility; in particular, Theorem 5 directly implies that all (not only left-c.e.)
Martin-Löf random reals are nonspeedable.

In the similar manner, Theorem 33 motivates investigating an appropriate speedability
notion that can be defined on R in terms of ≤open

cL -self-reducibility. That can be the point of
interest for a future research.
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