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Abstract
The Capacitated Vehicle Routing Problem (CVRP) is one of the most extensively studied problems
in combinatorial optimization. Based on customer demand, we distinguish three variants of CVRP:
unit-demand, splittable, and unsplittable. In this paper, we consider k-CVRP in general metrics and
on general graphs, where k is the vehicle capacity. All three versions are APX-hard for any fixed
k ≥ 3. Assume that the approximation ratio of metric TSP is 3/2. We present a (5/2 − Θ(

√
1/k))-

approximation algorithm for the splittable and unit-demand cases, and a (5/2 + ln 2 − Θ(
√

1/k))-
approximation algorithm for the unsplittable case. Our approximation ratio is better than the
previous results when k is less than a sufficiently large value, approximately 1.7 × 107.

For small values of k, we design independent and elegant algorithms with further improvements.
For the splittable and unit-demand cases, we improve the approximation ratio from 1.792 to 1.500 for
k = 3, and from 1.750 to 1.500 for k = 4. For the unsplittable case, we improve the approximation
ratio from 1.792 to 1.500 for k = 3, from 2.051 to 1.750 for k = 4, and from 2.249 to 2.157 for k = 5.
The approximation ratio for k = 3 surprisingly achieves the same value as in the splittable case. Our
techniques, such as EX-ITP – an extension of the classic ITP method, have the potential to improve
algorithms for other routing problems as well.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Combinatorial Optimization, Capacitated Vehicle Routing, Approximation
Algorithms, Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.93

Related Version Full Version: https://arxiv.org/abs/2210.16534

Funding The work is supported by the Postdoctoral Fellowship Program of CPSF under Grant
Number GZC20251102, and the National Natural Science Foundation of China under the grants
62372095, 62172077, and 62350710215.

Acknowledgements We would like to thank all reviewers for their valuable comments.

1 Introduction

In the Capacitated Vehicle Routing Problem (CVRP), we are given an undirected complete
graph G = (V ∪{v0}, E) with edge weights w satisfying the symmetric and triangle inequality
properties. The n nodes in V = {v1, . . . , vn} represent n customers and each customer vi

has a demand di ∈ Z≥1. A vehicle with a capacity of k ∈ Z≥1 is initially located at the
depot v0. A tour is a walk that begins and ends at the depot and the sum of deliveries to all
customers in it is at most k. The distance of a tour is the sum of the weights of edges in the
tour. In CVRP, we wish to find a set of tours to satisfy the demand of every customer with
minimum total distance. We use k-CVRP to denote the problem where the capacity k is a
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fixed integer. In the unsplittable version of the problem, the demand of each customer can
only be delivered by a single tour. In the splittable version, the demand of each customer
can be delivered by more than one tour. If the demand of each customer is 1, it is called the
unit-demand version.

Since CVRP was raised by Dantzig and Ramser [12] in 1959, it has become a very
famous problem with numerous applications in combinatorial optimization. It has been
widely studied in both theory and application. Readers can refer to a survey [36] for its
applications and fast solvers in practice. In theory, it is a rather rich problem in approximation
algorithms [8, 7, 30, 31, 11, 14].

When k = 1 or k = 2, k-CVRP can be solved in polynomial time [4]. However, for each
fixed k ≥ 3, the problem becomes APX-hard, even for the unit-demand case [3]. A classic
algorithm known as Iterated Tour Partitioning (ITP) was introduced about 40 years ago [19].
ITP is not only efficient in practice but also achieves strong theoretical approximation
guarantees. Assuming we are given an α-approximation algorithm for metric TSP, for
both splittable k-CVRP and unit-demand k-CVRP, ITP achieves an approximation ratio
of α + 1 − α/k [19]. For unsplittable k-CVRP, a variant of ITP called UITP achieves an
approximation ratio of α + 2 − 2α/k for even k and α + 2 − α/k for odd k [1].

For metric TSP, there is a well-known 3/2-approximation algorithm [9, 35]. Although
a recent breakthrough by Karlin, Klein, and Oveis Gharan [24, 25] has improved the
approximation ratio to 3/2−ε, where ε ≈ 10−36, this improvement is too small to significantly
affect the analysis for k-CVRP. Thus, for ease of comparison, we may continue to assume an
approximation ratio of α = 3/2 for metric TSP in our algorithms.

Due to its simplicity and versatility, the ITP algorithm has been adapted for various
other vehicle routing problems [29]. However, for general metrics, there have been few
improvements over ITP in approximating k-CVRP.

One interesting improvement was done by Bompadre et al. [8] about 20 years ago. For
any α ≥ 1, they improved the approximation ratio by a term of 1

3k3 for all three versions of k-
CVRP. Specifically, for α = 3/2, the improvement was 1

4k2 for the splittable and unit-demand
cases, and 1

3k2 for the unsplittable case. These results are still the best-known approximation
ratios for many small values of k. Recently, one significant progress was done by Blauth et
al. [7]. They improved the approximation ratio to α+1−ε for the splittable and unit-demand
cases, and to α + 2 − 2ε for the unsplittable case, where ε is a small value related to α, with
ε > 1

3000 when α = 3/2. While this provides a slight improvement in the constant part of
the approximation ratio, it does not outperform the approximation ratio in [8] for small
values of k. Friggstad et al. [15] proposed two further improvements for unsplittable k-CVRP.
The first is an (α + 1.75)-approximation algorithm using a combinatorial method, while the
second is an (α + ln 2 + 1

1−δ )-approximation algorithm based on LP rounding, with a running
time of nO(1/δ). They also showed that both approximation ratios can be further improved
by a small constant ε′ through the method from [7].

For small k, k-CVRP has garnered independent interest [2, 23, 8]. For unit-demand 3-
CVRP, ITP achieves an approximation ratio of 2. Based on the 25/33-approximation
algorithm for MAX TSP on general graphs [23], Bazgan et al. [5] proposed a 1.990-
approximation algorithm, marking the first known improvement. Leveraging the best-known
4/5-approximation algorithm for MAX TSP [13], the approximation ratio of their algorithm
can be further improved to 1.934. For unit-demand 4-CVRP, ITP achieves an approximation
ratio of 2.125. Anily and Bramel [2] proposed an approximation algorithm for Capacitated
TSP with Pickups and Deliveries, demonstrating that their algorithm can be applied to
unit-demand k-CVRP. Their approach achieves an improved approximation ratio only for
k = 4, with an approximation ratio of 1.750, which remains the best-known result.
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Beyond the aforementioned algorithms, another approach for solving k-CVRP with
k = O(1) is to reduce it to the more general minimum weight k-set cover problem [10, 21, 18].
By treating each feasible tour as a k-set, this reduction applies to both unit-demand k-CVRP
and unsplittable k-CVRP. For splittable k-CVRP, it can be shown that it is equivalent to
unit-demand k-CVRP when k = nO(1). Since there are nO(k) feasible tours, the reduction is
polynomial for k = O(1). Gupta et al. [18] improved the approximation ratio for the minimum
weight k-set cover problem to min{Hk − 1

8k , Hk −
∑k

i=1
log i
8ki }, where Hk =

∑k
i=1

1
i is the

k-th harmonic number. For k = 3, this achieves an approximation ratio of 1.792, surpassing
all previous results for both splittable 3-CVRP and unit-demand 3-CVRP. Furthermore, this
algorithm yields the best-known approximation ratio for unsplittable k-CVRP when k ≤ 9.

In this paper, we focus on approximation algorithms for k-CVRP with bounded k. As
highlighted in [6, 8], many practical problems involve small values of k. For example, a
logistics company raised the need to transport newly produced cars using a truck with a
capacity of at most six cars, where the capacity k = 6. In benchmark datasets, the capacities
of the instances are also typically in the range of hundreds or thousands [37]. These examples
demonstrate the practical relevance and significance of studying k-CVRP with bounded k.

1.1 Our Contributions
We present several algorithms for k-CVRP, improving the best-known approximation ratios
for any k ≤ 1.7 × 107. This threshold is quite large, and to our knowledge, the capacity of all
practical and artificial instances does not exceed this value. We summarize our contributions
to splittable (including unit-demand) k-CVRP and unsplittable k-CVRP separately below.

For splittable k-CVRP and unit-demand k-CVRP, we have the following contributions.
1. Based on a new concept of home-edges, which are edges incident to the depot in an

optimal solution, we obtain tighter lower bounds for k-CVRP based on the minimum
weight spanning tree and several different kinds of cycle covers (Sect. 3). Our analysis
shows that if the lower bound used for the connection part of ITP in [1, 19] is tight, the
optimal solution weight (denoted by OPT) will be dominated by home-edges, enabling
the computation of a Hamiltonian cycle with cost OPT and a cycle cover with zero cost
in polynomial time. Since the upper bound on the cost of the Hamiltonian cycle in [1, 19]
is 3

2 OPT, we can obtain significant improvements for this case. Otherwise, since the lower
bound for the connection part is not tight, we obtain improvements as well. Note that
our lower bounds are also suitable for the unsplittable case.

2. The classic ITP algorithm is based on a given Hamiltonian cycle of the graph. We extend
ITP to an algorithm based on any cycle cover, called EX-ITP. One advantage is that
an optimal cycle cover is polynomially computable [20]. Based on EX-ITP with our
new lower bounds, we can quickly improve the approximation ratio from 1.792 to 1.500
for 3-CVRP and from 1.750 to 1.667 for 4-CVRP. Then, based on a good structural
property related to perfect matchings, we can surprisingly improve the approximation
ratio to 1.500 for 4-CVRP (Sect. 5). Then, to obtain improvements for larger k, we
also consider mod-k-cycle covers (the length of each cycle in it is divisible by k). We
show that given an α-approximation algorithm for metric TSP, by making a trade-off
among two Hamiltonian cycles and a cycle cover with ITP and EX-ITP, we can achieve
an approximation ratio of α + 1 − α/k − Θ(1/k), improving the previous approximation
ratio of α + 1 − α/k − max{Ω(1/k3), ε} [7, 8] for small k (Sect. 6.1)2. Our approximation
ratio achieves 5/2 − 3.5/k when α = 3/2. If α is smaller, we obtain better results.

2 With a more careful analysis, the previous results may be further improved slightly. However, the
improvement is small and not mentioned in any published paper.
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Table 1 Splittable k-CVRP and unit-demand k-CVRP: previous and our approximation ratios
for different values of k under α = 3/2, where the best approximation ratios are marked in bold.

k 3 4 5 6 7 8 9 10
Previous 1.792 1.750 2.188 2.242 2.280 2.308 2.330 2.348
Results [18] [2] [8] [8] [8] [8] [8] [8]

Our Results 1.500 1.500 - - - - - -in Sect. 5
Our Results 1.667 1.750 1.800 1.875 1.929 1.969 2.000 2.025in Sect. 6.2

k 29 . . . 5833 5834 . . . 1.7 × 107 1.8 × 107

Previous 2.44795 . . . 2.49941 2.49941 . . . 2.49967 2.49967
Results [7] . . . [7] [7] . . . [7] [7]

Our Results 2.22414 . . . 2.48140 2.48141 . . . 2.49966 2.49967in Sect. 6.2

3. The best approximation ratio for metric TSP is still about 3/2. Under α = 3/2,
the current best approximation ratio of k-CVRP is approximately 5/2 − 1.5/k −
max{Ω(1/k2), 1.005/3000} [7, 8]. By generalizing the concept of home-edges, we improve
two previously-used lower bounds. Based on these bounds and a detailed analysis of
ITP, we derive an approximation ratio of 5/2 − Θ(

√
1/k), which improves the previous

results for any k ≤ 1.7 × 107 (Sect. 6.2). The exact approximation ratio is presented in
Theorem 24, and some numerical values for specific k are shown in Table 1.

For unsplittable k-CVRP, we achieve similar improvements, though additional techniques
are required. A summary of our results is provided in Table 2. Due to limited space, we omit
the details for the unsplittable case but outline our main ideas and contributions below.
1. We first propose a refined UITP, improving its approximation ratio for fixed k. Building

on this, we extend UITP to EX-UITP, similar to the EX-ITP approach. However, due to
the unsplittable constraint, EX-UITP requires that each customer’s demand cannot be
too large. For cycles involving large-demand customers, we assign a single tour to each,
then apply shortcutting to create a simplified cycle before applying EX-UITP. While
shortcutting can significantly alter a cycle’s structure, we carefully analyze these cycles’
local properties and address them separately. Using this approach, along with ideas from
algorithms for splittable 3-CVRP and 4-CVRP, we improve the approximation ratios for
unsplittable 3-CVRP to 1.500 and 4-CVRP to 1.750.

2. For larger k, we combine the refined UITP with the LP-based technique from [15] to
obtain the LP-UITP algorithm. By making a trade-off between two Hamiltonian cycles
using LP-UITP3, we obtain an approximation ratio of α + 1 + ln 2 − 2α/k − Θ(1/k),
improving the previous approximation ratio of α + 1 + ln 2 − 2α/k − ε′ [15] for small k.

3. Based on the refined two lower bounds (provided in Sect. 6.2) and using a deep analysis
on LP-UITP, we achieve an approximation ratio of 5/2 + ln 2 − Θ(

√
1/k), improving

the previous approximation ratio of 5/2 + ln 2 + ln(1 − 1.005/3000) − 3/k in [15] for any
k ≤ 1.7 × 107. Additionally, for unsplittable 5-CVRP, we further refine the analysis to
improve the approximation ratio to 2.157.

In Tables 1 and 2, the previous results are α+1−α/k−max{Ω(1/k3), ε} and α+1+ln 2−
2α/k − ε′ for splittable and unsplittable k-CVRP, respectively, as well as min{Hk − 1

8k , Hk −∑k
i=1

log i
8ki } for both versions. The constant behind Ω is available in [8]. The values ε and ε′

3 For the unsplittable case, we focus on the trade-off between two algorithms instead of three, as the third
algorithm based on cycle cover is not applicable here.
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Table 2 Unsplittable k-CVRP: previous and our approximation ratios for different values of k

under α = 3/2, where the best approximation ratios are marked in bold.

k 3 4 5 6 7 8 9 10
Previous 1.792 2.051 2.249 2.416 2.558 2.684 2.795 2.893
Results [18] [18] [18] [18] [18] [18] [18] [15]

Our Results 1.500 1.750 2.157 2.163 2.343 2.337 2.471 2.448in the full version

k 11720 11721 11722 . . . . . . 1.7 × 107 1.8 × 107

Previous 3.19256 3.19269 3.19256 . . . . . . 3.19282 3.19282
Results [15] [15] [15] . . . . . . [15] [15]

Our Results 3.17973 3.17981 3.17973 . . . . . . 3.19281 3.19282in the full version

depending on α and k can be calculated using the results in [7, 15]. We adopt α = 3/2. For
this case, the values ε and ε′ are less than 1.005/3000 and − ln(1 − 1.005/3000), respectively.
Hence, the approximation ratio of splittable k-CVRP and unit-demand k-CVRP in [7] is at
least 5/2 − 1.005/3000 − 1.5/k for k ≥ 3. The approximation ratio of unsplittable k-CVRP
in [15] is at least 5/2+ln 2+ln(1−1.005/3000)−3/k for even k ≥ 3. Note that for unsplittable
k-CVRP with odd k ≥ 3, we need to double the capacity and the demand, resulting in a
slightly worse approximation ratio of at least 5/2 + ln 2 + ln(1 − 1.005/3000) − 1.5/k.

Due to limited space, we only present our results for the splittable and unit-demand cases,
and that for the unsplittable case are omitted. The proofs of lemmas and theorems marked
with “*” are also omitted. The full version is available at https://arxiv.org/abs/2210.
16534.

2 Definitions, Assumptions, and Notations

A walk in a graph is a succession of edges in the graph, where the same edge can appear
more than one time. We will use a sequence of vertices to denote a walk: (v1, v2, v3, . . . , vl)
means a walk with edges (v1, v2), (v2, v3), and so on. A path in a graph is a walk such that
no vertex appears twice in the sequence, and a cycle is a walk such that only the first and
the last vertices are the same. A cycle containing l edges is called an l-cycle and the length
of it is l. Two subgraphs (or two sets of edges) are vertex-disjoint if they do not have a
common vertex. Given an edge-weighted graph, where the number n of vertices is a multiple
of k, a minimum weight k-cycle cover is a set of exactly n/k vertex-disjoint k-cycles with the
minimum total weight of edges in the k-cycles in the set. A minimum weight mod-k-cycle
cover (resp., minimum weight mod-k-tree cover) is a set of vertex-disjoint cycles (resp., trees)
such that the length of each cycle (resp., the number of vertices on each tree) is divisible by
k, each vertex of the graph appears in exactly one cycle, and the total weight of edges in
the cycles in the set is minimized. A minimum weight cycle cover is a set of vertex-disjoint
cycles such that the length of each cycle is at least three, each vertex of the graph appears in
exactly one cycle, and the total weight of edges in the cycles in the set is minimized.

Problem Definitions. We use G = (V ∪ {v0}, E) to denote a complete graph, where the
vertex v0 represents the depot and vertices in V represent customers. There is a non-negative
weight function w : E → R≥0 on the edges in E, which denotes the distance between two
endpoints of the edge. The weight function w is a metric function, i.e., it satisfies the
symmetric and triangle inequality properties. For any weight function w : X → R≥0, we
extend it to subsets of X by defining w(Y ) =

∑
x∈Y w(x) for any Y ⊆ X. An itinerary is a

walk starting and ending at vertex v0. It can be partitioned into several minimal itineraries
containing v0, each of which is called a tour.
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The Capacitated Vehicle Routing Problem (CVRP) can be described as follows.

▶ Definition 1. An instance (G = (V ∪ {v0}, E), w, d, k) of CVRP consists of:
a complete graph G, where V = {v1, . . . , vn} represents the n customers and v0 represents
the depot;
a metric weight function on edges w: (V ∪ {v0}) × (V ∪ {v0}) → R≥0, which represents
the distances;
the demand of each customer d = (d1, . . . , dn), where di ∈ Z≥1 is the demand required by
customer vi ∈ V ;
the capacity k ∈ Z≥1 of the vehicle that initially stays at the depot v0.

A feasible solution is an itinerary such that
each tour delivers at most k of the demand to customers on the tour;
the union of tours meets the demand of every customer.

The goal is to find such an itinerary I, minimizing the total distances of the succession of
edges in the walk, i.e., w(I) :=

∑
e∈I w(e).

We define three variants of the problem. If the demand of each customer must be delivered
in one tour, we call it unsplittable CVRP. If the demand of a customer can be split into
multiple tours, we call it splittable CVRP. If the demand of each customer is a unit, we call
it unit-demand CVRP.

Some Assumptions. We make some assumptions which can be guaranteed by simple
observations or polynomial-time reductions (see the full version of this paper).

▶ Assumption 1. In an optimal itinerary, each tour is a cycle, and in each tour, the vehicle
delivers an integer amount of the demand to each customer.

▶ Assumption 2. For splittable k-CVRP, we have di ≤ (n−1)(k −1) for each i ∈ {1, . . . , n};
for unsplittable k-CVRP, we have di < k for each i ∈ {1, . . . , n}.

For a customer with di of the demand in splittable k-CVRP, we take it as di customers
with unit-demand. Then, we obtain an equivalent instance of unit-demand k-CVRP. By
Assumption 2, splittable k-CVRP can be reduced to unit-demand k-CVRP in polynomial
time.

▶ Assumption 3. There is an optimal itinerary where every tour delivers exactly k of the
demand.

Assumption 3 can be ensured by adding some dummy customers at the depot. It
guarantees the existence of an optimal solution with a good structure. It will be helpful in
our analysis. For unit-demand k-CVRP, such an itinerary consists of a set of (k + 1)-cycles
intersecting only at the depot.

Some Important Notations. The following notations are illustrated with the unit-demand
case. Most of them will be used to establish some lower bounds for our problems.

I∗: an optimal solution to our problem;
∆: the sum of the weight of the edges from the depot v0 to the customer, i.e.,∑

vi∈V w(v0, vi);
H∗: a minimum weight Hamiltonian cycle on V ∪ {v0};
HCS : the Hamiltonian cycle on V ∪ {v0} obtained by the Christofides-Serdyukov al-
gorithm [9, 35];
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M∗: a minimum weight perfect matching in G[V ];
MST: the total weight of the edges in a minimum weight spanning tree in G;
C∗: a minimum weight cycle cover in G[V ];
C∗

k : a minimum weight k-cycle cover in G[V ];
C∗

mod k: a minimum weight mod-k-cycle cover in G[V ].

For an instance G = (V ∪ {v0}, E) of splittable or unsplittable CVRP, we construct a
corresponding unit-demand instance G′ = (V ′ ∪ {v0}, E′) by replacing each customer with
demand di with di unit-demand customers. By Assumption 2, this reduction can be done in
polynomial time when k = O(1). It is easy to observe that the optimal value in G′ is at most
the optimal value in G. Thus, for an instance G of splittable or unsplittable CVRP, the lower
bound computed in the unit-demand instance G′ also constitutes a valid lower bound for G.

Although the above notations are defined for the unit-demand case, they can also be
applied to the splittable and unsplittable cases. For an instance G = (V ∪ {v0}, E) of
splittable or unsplittable CVRP, the above notations, including ∆, H∗, HCS , M∗, MST, C∗,
C∗

k , and C∗
mod k, are defined based on the instance G′.

Thus, in the splittable and unsplittable cases, ∆ becomes the sum of each customer’s
demand multiplied by the weight of the edge from v0 to the customer, i.e.,

∑
vi∈V diw(v0, vi),

C∗
k represents a minimum weight k-cycle cover in G′[V ′], and so on. Note that, for H∗, HCS ,

and MST, there is no difference between G and G′, so we do not distinguish between them.
We also mention the following. A minimum weight perfect matching in a complete graph

can be found in O(n3) time using classical algorithms [16, 27], although faster and simpler
algorithms exist for other graphs; see, for example, Schrijver’s book [34]. A minimum weight
spanning tree in a complete graph can be computed in O(n2) time using Prim’s algorithm [33],
or in optimal time using the algorithm of Pettie and Ramachandran [32]. It is NP-hard to
compute a minimum weight k-cycle cover for any k ≥ 3 [26]. There exists an O(n2 log n)-time
2-approximation algorithm for the minimum weight mod-k-cycle cover problem based on
the primal-dual method [17]. Additionally, a minimum weight cycle cover can be computed
via a reduction to the minimum weight perfect matching problem, for which more efficient
algorithms are also known [20, 34]. These results will be used in our algorithms.

For an optimal itinerary I∗, the edges incident to v0 in I∗ are called home-edges, and the
set of home-edges of I∗ is denoted by h(I∗). We define χ as the proportion of the weight of
home-edges in I∗, i.e., χ = w(h(I∗))

w(I∗) , where we assume w(I∗) ̸= 0 to exclude the trivial case.

3 Lower Bounds on Unit-Demand CVRP

In this section, we study lower bounds related to ∆, H∗, HCS , M∗, MST, C∗
k , C∗

mod k, and
C∗. As previously mentioned, the optimal value for G′ is at most the optimal value for G for
an instance G of splittable or unsplittable CVRP. Therefore, the lower bounds we establish
for the unit-demand case in this section will hold for all three versions of CVRP. We now
assume that the problem under consideration is unit-demand CVRP and proceed to prove
some lower bounds.

We will use the concept of χ to derive some refined lower bounds, which were not considered
in previous work. The first lower bound, related to the minimum weight Hamiltonian cycle
H∗ on V ∪ {v0}, has been used in most previous papers.

▶ Lemma 2 ([19, 1]). w(I∗) ≥ w(H∗).

▶ Lemma 3. k
2 w(I∗) ≥ (χ + k−2

2 )w(I∗) ≥ ∆.

MFCS 2025
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Proof. Since 0 ≤ χ ≤ 1, we have k
2 = (1+ k−2

2 ) ≥ (χ+ k−2
2 ), which proves the first inequality.

Now, we show the second inequality. By Assumption 3, I∗ consists of a set of (k+1)-cycles.
We consider an arbitrary (k + 1)-cycle C = (v0, v1, . . . , vk, v0) in I∗. Since k ≥ 3, the triangle
inequality implies that w(C) ≥ 2w(v0, vi) for each i ∈ {2, 3, . . . , k − 1}. Thus, we have

k∑
i=1

w(v0, vi) = w(h(C)) +
k−1∑
i=2

w(v0, vi) ≤ w(h(C)) + k − 2
2 w(C).

Summing the above inequality over all cycles in I∗, we obtain

∆ =
∑

vi∈V

w(v0, vi) ≤
∑

C∈I∗

(
w(h(C)) + k − 2

2 w(C)
)

= χw(I∗) + k − 2
2 w(I∗) =

(
χ + k − 2

2

)
w(I∗),

as desired. ◀

▶ Lemma 4. (1 − 1
2 χ)w(I∗) ≥ MST.

Proof. For each tour in I∗, there are exactly two home-edges. We can obtain a spanning tree
of the graph from I∗ by deleting the longer home-edge in each tour. Since w(h(I∗)) = χw(I∗)
by definition, the weight of this spanning tree is at least w(I∗) − 1

2 χw(I∗) = (1 − 1
2 χ)w(I∗),

which is at least the weight of the minimum weight spanning tree. ◀

Recall that HCS is obtained by the Christofides-Serdyukov algorithm.

▶ Lemma 5 ([9, 35]). MST + 1
2 w(H∗) ≥ w(HCS).

By Lemmas 2, 4, and 5, we can obtain the following result.

▶ Lemma 6. 3−χ
2 w(I∗) ≥ w(HCS).

▶ Lemma 7. min{2(1 − χ), 1}w(I∗) ≥ w(C∗
k) ≥ w(C∗

mod k) ≥ w(C∗).

Proof. We first show that there exists a k-cycle cover in G[V ] whose weight is at most
min{2(1 − χ), 1}w(I∗).

By Assumption 3, I∗ consists of a set of (k +1)-cycles. Consider an arbitrary (k +1)-cycle
C = (v0, v1, . . . , vk, v0) in I∗. Let C ′ = (v1, . . . , vk, v1) be the k-cycle obtained by shortcutting
v0 from C. By the triangle inequality, we have w(v1, vk) ≤ min{w(v0, v1) + w(v0, vk), w(C) −
w(v0, v1) − w(v0, vk)}. Thus, we have w(C ′) = w(C) − w(v0, v1) − w(v0, vk) + w(v1, vk) ≤
min{w(C), 2w(C) − 2w(v0, v1) − 2w(v0, vk)}. Note that the edges (v0, v1) and (v0, vk) are
home-edges of the cycle C. By summing the above inequality over all cycles in I∗, we obtain
the desired result.

Since C∗
k is the minimum weight k-cycle cover in G[V ], we have w(C∗

k) ≤ min{2(1 −
χ), 1}w(I∗). Moreover, since any k-cycle cover is a mod-k-cycle cover, and any mod-k-cycle
cover is also a cycle cover, we have the relationship w(C∗) ≤ w(C∗

mod k) ≤ w(C∗
k). ◀

Since HCS is a 3
2 -approximate Hamiltonian cycle [9, 35], some papers [1, 19] used the

inequalities ∆ ≤ k
2 w(I∗) and w(HCS) ≤ 3

2 w(I∗) in the analysis of ITP and UITP. However, if
the upper bound of ∆ is tight, i.e., ∆ = k

2 w(I∗), we have χ = 1 by Lemma 3. In this case, by
Lemma 6, we also have w(HCS) ≤ w(I∗). Therefore, our new lower bounds show that these
two bounds cannot be tight simultaneously, indicating the potential for better approximation
ratios. Besides, if χ = 1, by Lemma 7, we have w(C∗

k) = w(C∗
mod k) = w(C∗) = 0. So, any

O(1)-approximate cycle covers may outperform the optimal Hamiltonian cycle.
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Before showing how these insights can lead to improved approximation ratios, we first
review the ITP algorithms [1, 19] that operate with a Hamiltonian cycle, and then we will
propose our EX-ITP algorithm, which works for any cycle cover.

4 The ITP Algorithms

ITP (Iterated Tour Partitioning) is a frequently used technique for unit-demand CVRP. The
main idea of ITP is to construct feasible solutions for CVRP based on given Hamiltonian
cycles: first split the Hamiltonian cycle into several connected pieces of length at most k and
then construct a tour for each piece. There are two versions of the ITP algorithm for CVRP
according to the Hamiltonian cycle containing the depot v0 or not [1, 19].

▶ Lemma 8 ([1]). Given a Hamiltonian cycle H on V ∪ {v0} as part of the input, for
unit-demand k-CVRP with any k ≥ 3, the AG-ITP algorithm in O(nk) time outputs a
solution with weight at most (2/k)∆ + (1 − 1/k)w(H).

▶ Lemma 9 ([19]). Given a Hamiltonian cycle H on V as part of the input, for unit-demand
k-CVRP with any k ≥ 3, the HR-ITP algorithm in O(n2) time outputs a solution with weight
at most (2⌈n/k⌉/n)∆ + (1 − ⌈n/k⌉/n)w(H).

An Extension of ITP. The above two ITP algorithms are based on given Hamiltonian
cycles. In fact, the requirement of Hamiltonian cycles is not necessary. We can replace the
Hamiltonian cycle with a cycle cover.

Given any cycle cover C in the graph G[V ] or G[V ∪ {v0}] (either containing the depot
v0 or not), for each cycle C ∈ C, we call the HR-ITP algorithm on it if C does not contain
the depot v0, and call the AG-ITP algorithm on it if C contains the depot v0. By putting all
toobtainher, we can obtain a feasible solution for k-CVRP. The quality of the solution is
related to the cycle cover. We refer to this algorithm as the EX-ITP algorithm.

▶ Lemma 10. Given a cycle cover C in G[V ] or G[V ∪ {v0}] as part of the input, for
unit-demand k-CVRP with any k ≥ 3, the EX-ITP algorithm in O(n2) time outputs a
solution with weight at most 2g∆ + (1 − g)w(C), where g = maxC∈C⌈|C|/k⌉/|C|.

Proof. Define ∆C =
∑

vi∈C w(v0, vi). For the cycle C ∈ C satisfying v0 ∈ C, the AG-ITP
algorithm can generate an itinerary on C with weight at most (2/k)∆C + (1 − 1/k)w(C).
For each cycle C ∈ C satisfying v0 /∈ C, the HR-ITP algorithm can generate an itinerary on
C with weight at most (2⌈|C|/k⌉/|C|)∆C + (1 − ⌈|C|/k⌉/|C|)w(C).

By the triangle inequality, we have w(C) ≤ 2∆C . Then, for any 0 ≤ x ≤ y, we can obtain
2x∆C + (1 − x)w(C) ≤ 2y∆C + (1 − y)w(C). Since 2/k ≤ 2⌈|C|/k⌉/|C| ≤ 2g, we have

(2/k)∆C+(1−1/k)w(C) ≤ (2⌈|C|/k⌉/|C|)∆C+(1−⌈|C|/k⌉/|C|)w(C) ≤ 2g∆C+(1−g)w(C).

Therefore, the itinerary on C ∈ C has a weight of at most 2g∆C + (1 − g)w(C).
Since

∑
C∈C ∆C = ∆, EX-ITP outputs a solution with weight at most∑

C∈C
(2g∆C + (1 − g)w(C)) = 2g∆ + (1 − g)w(C),

as desired. ◀

Intuitively, the value 1/g in Lemma 10 represents the maximum, over all cycles (excluding
the depot), of the average number of customers per tour used to serve that cycle. Thus, a
larger value of g indicates that each tour serves fewer customers on average.

MFCS 2025
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If the cycle cover C used in Lemma 10 satisfies w(C) ≤ min{2(1 − χ), 1}w(I∗), as in
Lemma 7, and if g ≤ 1/2, we have the following corollary.

▶ Corollary 11 (*). Given a cycle cover C in G[V ] or G[V ∪ {v0}] as part of the input,
where w(C) ≤ min{2(1 − χ), 1}w(I∗) and g ≤ 1/2, for unit-demand k-CVRP with any k ≥ 3,
EX-ITP achieves an approximation ratio of 1 + g(k − 2). Moreover, in the worst case, we
have χ = 1/2. (If g = 1/2, the approximation ratio remains the same for any 1/2 ≤ χ ≤ 1.)

5 Applications of the EX-ITP Algorithm

In this section, we demonstrate that the EX-ITP algorithm can be used to design improved
approximation algorithms for splittable k-CVRP and unit-demand k-CVRP. We show as
examples, the approximation ratio can be significantly improved from 1.792 [18] to 3/2 = 1.500
for 3-CVRP, and from 1.750 [2] to 5/3 < 1.667 for 4-CVRP. At last, we show that the
approximation ratio of 4-CVRP can be further improved to 3/2 = 1.500.

Splittable 3-CVRP and Unit-demand 3-CVRP. There are little improvements for 3-CVRP
in the last 20 years. Only recently an improved result for the general weighted k-set cover
problem [18] leads to the current best result for 3-CVRP. We show that we can easily improve
the approximation ratio by using EX-ITP. Our algorithm computes a minimum weight cycle
cover C∗ in G[V ], and then calls EX-ITP on C∗.

▶ Theorem 12. For splittable 3-CVRP and unit-demand 3-CVRP, there is a 3
2 -approximation.

Proof. Since |C| ≥ 3 for each cycle C ∈ C∗, we have

g = max
C∈C∗

⌈|C|/3⌉/|C| ≤ max
|C|≥3

⌈|C|/3⌉/|C| = ⌈4/3⌉/4 = 1
2 .

Note that w(C∗) ≤ min{2(1 − χ), 1}w(I∗) by Lemma 7. Then, by Corollary 11, EX-ITP
achieves an approximation ratio of at most g(k − 2) + 1 ≤ 3

2 , where we have χ ≥ 1
2 in the

worst case. ◀

Splittable 4-CVRP and Unit-demand 4-CVRP. The idea is similar. However, we will
construct a good mod-2-cycle cover C mod 2 on V , instead of using a minimum weight cycle
cover C∗ on V , and then call EX-ITP.

We compute the mod-2-cycle cover C mod 2 in this way: first find a minimum weight
perfect matching M∗ in graph G[V ], find a minimum weight perfect matching M∗∗ in graph
G[V ] \ M∗, and then let C mod 2 = M∗ ∪ M∗∗.

Note that C mod 2 is a mod-2-cycle cover without 2-cycles since M∗ and M∗∗ are two
edge-disjoint perfect matchings in G[V ]. Recall that C∗

4 denotes a minimum weight 4-cycle
cover in G[V ]. We have the following result.

▶ Lemma 13. w(C mod 2) ≤ w(C∗
4 ).

Proof. We first prove the following property.

▷ Claim 14. Given a minimum weight 4-cycle cover C∗
4 and a minimum weight perfect

matching M∗, there is a way to color edges in C∗
4 with red and blue such that

(1) the blues (resp., red) edges form a perfect matching Mb (resp., Mr);
(2) C∗

4 = Mb ∪ Mr;
(3) Mb ∪ M∗ is a mod-2-cycle cover without 2-cycles.

Proof. For each 4-cycle C = (v1, v2, v3, v4, v1) ∈ C∗
4 , we color its edges by considering three

cases.
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Case 1: |C ∩ M∗| = 0. We color the edges (v1, v2) and (v3, v4) with blue and the edges
(v1, v4) and (v2, v3) with red. Now, blue edges (resp., red edges) are vertex-disjoint.
Case 2: |C ∩ M∗| = 1. We assume w.l.o.g. that C ∩ M∗ = {(v1, v2)}. Then, we color
the edges (v1, v2) and (v3, v4) with red and the edges (v1, v4) and (v2, v3) with blue.
Case 3: |C ∩ M∗| = 2. We assume w.l.o.g. that C ∩ M∗ = {(v1, v2), (v3, v4)}. Then, we
color the edges (v1, v2) and (v3, v4) with red and the edges (v1, v4) and (v2, v3) with blue.

It is easy to see that the set of blues edges Mb and the set of red edges Mr are two
perfect matchings, and Mb ∪ Mr = C∗

4 . Moreover, we know that Mb ∩ M∗ = ∅, and hence
Mb ∪ M∗ is a mod-2-cycle cover without 2-cycles. Thus, the claim holds. ◁

By the claim, we have

w(Mb ∪ M∗) ≤ w(Mb ∪ Mr) = w(C∗
4 ).

Since the mod-2-cycle cover C mod 2 = M∗ ∪ M∗∗ is the minimum weight mod-2-cycle
cover containing the minimum weight perfect matching M∗, we have

w(C mod 2) = w(M∗ ∪ M∗∗) ≤ w(Mb ∪ M∗).

Thus, w(C mod 2) ≤ w(C∗
4 ) and the lemma holds. ◀

If we use the lower bound from Lemma 7, Lemma 13 shows that C mod 2 performs as well as
C∗. By calculations, we obtain maxC∈C mod 2 ⌈|C|/4⌉/|C| ≤ 1

3 and maxC∈C∗ ⌈|C|/4⌉/|C| ≤ 2
5 .

Then, by Corollary 11, it is better to use C mod 2 when invoking EX-ITP, which achieves an
approximation ratio of g(k − 2) + 1 = 5

3 . Thus, we have the following result.

▶ Theorem 15. For splittable 4-CVRP and unit-demand 4-CVRP, there is a 5
3 -approximation.

A Further Improvement on Splittable 4-CVRP and Unit-demand 4-CVRP. Note that
we can obtain a solution with weight at most 1

2∆ + 3
4 w(C∗

4 ) for unit-demand 4-CVRP by
calling EX-ITP on a minimum weight 4-cycle cover C∗

4 . However, it is NP-hard to compute
C∗

4 as mentioned before. Surprisingly, we can obtain a solution with the same upper bound
in polynomial time without using C∗

4 , and hence obtain an improved 3/2-approximation
algorithm, which even matches the approximation ratio for unit-demand 3-CVRP.

The main idea is that we can use the minimum weight matching algorithm to optimally
compute a minimum weight itinerary containing all edges in M∗: first we construct a
multi-graph G′ = G[V ]/M∗ by contracting every edge in M∗; for each edge eiej in G′ where
ei, ej ∈ M∗, we set its weight as the minimum weight of a tour in G containing ei and ej ;
then a minimum weight matching in G′ corresponds to a minimum weight itinerary in G

containing all edges in M∗. Next, through a property of C∗
4 , we prove that this solution has

a weight of at most 1
2 ∆ + 3

4 w(C∗
4 ).

▶ Lemma 16. For unit-demand 4-CVRP, there is a polynomial-time algorithm that can
generate a solution with weight at most 1

2 ∆ + 3
4 w(C∗

4 ).

Proof. First, the claim in Lemma 13 can be strengthened using a similar odd cycle elimination
technique in [22].

▷ Claim 17. Given a minimum weight 4-cycle cover C∗
4 and a minimum weight perfect

matching M∗, there is a way to color edges in C∗
4 with red and blue such that

(1) the blues (resp., red) edges form a perfect matching Mb (resp., Mr);
(2) C∗

4 = Mb ∪ Mr;
(3) Mb ∪ M∗ is a mod-4-cycle cover.

MFCS 2025
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Proof. Previously, we have shown that (1) and (2) holds, and Mb ∪ M∗ is a mod-2-cycle
cover without 2-cycles.

Then, we modify the cycle cover Mb ∪ M∗ so that (1), (2), and (3) hold. By the previous
coloring, we know that each cycle of C∗

4 contains two blue edges and two red edges. Two
blue/red edges are called matched if they fall on the same cycle of C∗

4 .
Consider a cycle Ci ∈ Mb∪M∗ with a minimum length not divisible by 4. Since Mb∪M∗

is a cycle cover without 2-cycles and the length of every cycle is divisible by 2, the number
of blue edges on Ci is odd. Hence, there must be a blue edge e1 such that its matched blue
edge e3 falls on a different cycle Cj ∈ Mb ∪ M∗. Moreover, there are two red edges e2 and
e3 sharing common vertices with them. See Figure 1 for an illustration.

e1 e3Ci Cj

e2

e4

Figure 1 An illustration of the cycles Ci, Cj ∈ Mb ∪ M∗, the blue edges {e1, e3}, and the red
edges {e2, e4}, where e1 ∈ Ci, e3 ∈ Cj , and each blue edge is incident to two (black) matching edges.

We can modify the colors of {e1, e2, e3, e4} such that the new color of {e1, e3} is red,
and the new color of {e2, e4} is blue. We can see that (1) and (2) still holds. Moreover,
by repeating this, we obtain a cycle cover Mb ∪ M∗ such that the length of every cycle is
divisible by 4. So, (3) also holds. ◁

Now, consider the multi-graph G′ = G[V ]/M∗, i.e., G′ is obtained by contracting edges
of M∗ in G[V ]. There are n/2 super-vertices in G′ with each corresponding to an edge of
M∗. For any two super-vertices ei, ej ∈ M∗, there are four parallel edges between them.
Assume that ei = (u, u′) and ej = (v, v′). The augmented weights w̃ on the four edges are

w(v0, u′)+w(ei)+w(u, v)+w(ej)+w(v′, v0), w(v0, u′)+w(ei)+w(u, v′)+w(ej)+w(v, v0),

w(v0, u)+w(ei)+w(u′, v)+w(ej)+w(v′, v0), w(v0, u)+w(ei)+w(u′, v′)+w(ej)+w(v, v0),
which measure the weights of tours: (v0, u′, u, v, v′, v0), (v0, u′, u, v′, v, v0), (v0, u, u′, v, v′, v0),
(v0, u, u′, v′, v, v0), respectively. Then, a matching M in G′ corresponds to a solution of
unit-demand 4-CVRP with an augmented weight of w̃(M). The minimum augmented weight
matching in G′, denoted by M∗∗, has the following property.

▷ Claim 18. w̃(M∗∗) ≤ 1
2 ∆ + 3

4 w(C∗
4 ).

Proof. By Lemma 17, M∗ ∪ Mb is a mod-4-cycle cover. So, the number of blue edges
on each cycle C ∈ M∗ ∪ Mb is even. All blue edges in Mb can be decomposed into two
matchings M1 and M2 in G[V ]/M∗. Note that w̃(M1) + w̃(M2) = ∆ + 2w(M∗) + w(Mb).
We have w̃(M∗∗) ≤ 1

2 (w̃(M1) + w̃(M2)) = 1
2∆ + w(M∗) + 1

2 w(Mb). Recall that C∗
4 =

Mb ∪ Mr and w(M∗) ≤ min{w(Mb), w(Mr)} ≤ 1
2 (w(Mb) + w(Mr)) = 1

2 w(C∗
4 ). We have

w(M∗) + 1
2 w(Mb) ≤ 1

2 w(M∗) + 1
2 w(Mr) + 1

2 w(Mb) ≤ 3
4 w(C∗

4 ). ◁

Since the minimum augmented weight matching M∗∗ in G′ can be found by the minimum
weight matching algorithm in O(n3) time [16, 27], we can find a solution of unit-demand
4-CVRP with weight w̃(M∗∗) in polynomial time. ◀

By Lemmas 16, 3, and 7, we have the following result.

▶ Theorem 19. For splittable 4-CVRP and unit-demand 4-CVRP, there is a 3
2 -approximation.



J. Zhao and M. Xiao 93:13

6 Improvements for the Splittable Case

Given an α-approximate Hamiltonian cycle H in G, by Lemma 8, the ITP algorithm outputs
a solution with weight at most (2/k)∆ + (1 − 1/k)w(H) ≤ (2/k)∆ + (1 − 1/k)αw(H∗), where
H∗ denotes an optimal TSP tour. Recall that w(H∗) ≤ w(I∗) by Lemma 2 and ∆ ≤ k

2 w(I∗)
by Lemma 3. Thus, ITP achieves an approximation ratio of α + 1 − α/k.

In the following, we apply ITP and EX-ITP to design three algorithms and use the lower
bounds in Sect. 3 to obtain initial improvements over the approximation ratio α + 1 − α/k.
Then, we introduce two refined lower bounds and use them to obtain further improvements
by carefully analyzing one of the three algorithms.

6.1 Initial Improvements
Recall that if the upper bound of ∆ is tight, we have χ = 1 by Lemma 3. And, we have
w(HCS) ≤ w(I∗) and w(C∗

mod k) = 0 by Lemmas 6 and 7. Hence, apart from using an
α-approximate Hamiltonian cycle H, we also consider the Hamiltonian cycle HCS [9, 35] and
a modification of a 2-approximate mod-k-cycle cover [17]. We apply these two Hamiltonian
cycles to call the AG-ITP algorithm and the mod-k-cycle cover to call the EX-ITP algorithm.
Based on the lower bounds in Sect. 3, the approximation ratios of these three algorithms can
be expressed as functions of the parameter χ, and then we can make a trade-off.

Our first algorithm is to call the EX-ITP algorithm on a mod-k-cycle cover C mod k on V .
Note that the 2-approximate mod-k-cycle cover [17] is obtained by doubling a mod-k-tree cover
and then shortcutting. We may find a minimum weight matching on odd-degree vertices in
the mod-k-tree cover and then shortcutting like the Christofides-Serdyukov algorithm [9, 35].
We use the following three steps to compute C mod k.

Step 1. Compute a mod-k-tree cover T mod k in G[V ] using the algorithm in [17].

Step 2. Find a minimum weight matching M on odd-degree vertices of T mod k.

Step 3. Construct a mod-k-cycle cover C mod k in G[V ] from T mod k ∪ M by shortcutting.
The second algorithm is to call the AG-ITP algorithm on any α-approximate Hamiltonian

cycle on V ∪ {v0}. The third algorithm is to call the AG-ITP algorithm on the Hamiltonian
cycle HCS on V ∪ {v0}.

We first analyze some properties of the first algorithm. The mod-k-tree cover computed
in the first step has the following property.

▶ Lemma 20 ([17]). There is a polynomial-time algorithm that can generate a mod-k-tree
cover T mod k in G[V ] such that w(T mod k) ≤ w(C∗

mod k).

In Steps 2 and 3, we generate a mod-k-cycle cover based on the mod-k-tree cover T mod k

and a minimum weight perfect matching M on odd-degree vertices of T mod k using the
Christifides-Serdykov method for TSP. Although it may not guarantee a better approximation
ratio for the minimum weight mod-k-cycle cover problem, it is useful for CVRP.

▶ Lemma 21 (*). There is a polynomial-time algorithm that generates a mod-k-cycle cover
C mod k in G[V ] such that w(C mod k) ≤ w(C∗

mod k) + 1
2 w(H∗).

Now, we are ready to analyze the three algorithms.
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▶ Theorem 22 (*). Given an α-approximate Hamiltonian cycle on V ∪ {v0}, there is an
approximation algorithm for splittable k-CVRP and unit-demand k-CVRP such that

If 1 ≤ α ≤ 7/6 and k ≥ 3, the approximation ratio is α + 1 − α/k − (α − 1/2)/k;
If 7/6 ≤ α ≤ 3/2 and 3 ≤ k ≤ 5, the approximation ratio is (13k − 11)/(6k);
If 7/6 ≤ α ≤ 3/2 and k ≥ 6, the approximation ratio is α + 1 − α/k − 4(α − 1)/k.

We can obtain an approximation ratio of α + 1 − α/k − Θ(1/k) for splittable k-CVRP,
which improves the previous approximation ratio of α + 1 − α/k − max{Ω(1/k3), ε} [7, 8] for
some small k. Specifically, when α = 3/2, our approximation ratio achieves 5/2 − 3.5/k, and
in the worst case we have χ = 0. Further details and some comparisons can be found in the
full version of this paper.

6.2 Further Improvements
When α = 3/2, we can further improve the approximation ratio to 5/2 − Θ(

√
1/k). Our

motivation is that the approximation ratio 5/2 − 3.5/k is obtained with χ = 0 in the worst
case. That is, in the worst case, the total weight of all home-edges in the optimal solution
I∗ is zero. Recall that each tour of I∗ contains two home-edges and the lower bound based
on MST in Lemma 4 is obtained by deleting the more weighted home-edge in each tour of
I∗. Since χ = 0 in the worst case, we have w(I∗) ≥ MST by Lemma 4. So, by deleting a
zero-weighted home-edge, we gain no revenues. We may obtain a refined lower bound based
on MST by deleting the highest weighted edge in each tour, which is clearly better than just
deleting a zero-weighted home-edge. Based on this, we give two refined lower bounds based
on MST as well as ∆ to combine them.

Our algorithm is simply to call the classic AG-ITP algorithm on the Hamiltonian cycle
HCS on V ∪ {v0}. By Lemmas 2, 5, and 8, the solution is at most

(2/k)∆ + (1 − 1/k)w(HCS) ≤ (2/k)∆ + (1 − 1/k)MST + (1/2)(1 − 1/k)w(I∗). (1)

To prove an approximation ratio of 5
2 − Θ(

√
1/k), we show that 2

k ∆ + (1 − 1
k )MST ≤

(2 − Θ(
√

1/k))w(I∗).
Now, we analyze the structure in more details.
By Assumption 3, I∗ consists of a set of (k +1)-cycles. Consider an arbitrary (k +1)-cycle

C = (v0, v1, . . . , vk, v0). First, let ∆C denote the sum of the weights of edges between vertices
v0 and vi for 1 ≤ i ≤ k, i.e.,

∑k
i=1 w(v0, vi). Note that ∆ =

∑
C∈I∗ ∆C . Then, let TC

denote the spanning tree in G[C] obtained by deleting the highest weighted edge in C, i.e.,
w(TC) = w(C) − max0≤i≤k w(vi, v(i+1) mod (k+1)). After we delete the highest weighted edge
for each cycle C ∈ I∗, the remaining graph is a spanning tree in G. So, MST ≤

∑
C∈I∗ w(TC).

Moreover, since w(I∗) =
∑

C∈I∗ w(C), to prove 2
k ∆+(1− 1

k )MST ≤ (2−Θ(
√

1/k))w(I∗),
it is sufficient to prove 2

k ∆C + (1 − 1
k )w(TC) ≤ (2 − Θ(

√
1/k))w(C).

▶ Lemma 23. When k ≥ 3, for any cycle C ∈ I∗, we have that 2
k ∆C +

(
1 − 1

k

)
w(TC) ≤

(2 − 2l2+k−1
2kl )w(C), where l = ⌈

√
2k−1−1

2 ⌉.

Proof Sketch. Our proof is based on generalizing the concept of home-edges.
When k is odd (resp., even), the number of edges in the cycle C is even (resp., odd). Due

to different structural properties, these two cases have to be handled separately. We consider
the case that k is odd. Another case can be analyzed in a similar way.

We may assume w(C) ̸= 0; otherwise, Lemma 23 holds trivially. Let m = k+1
2 . We define

ai =
w(vi−1, vi) + w(vk+1−i, v(k+2−i) mod (k+1))

w(C) ,

where 1 ≤ i ≤ m. See Figure 2 for an illustration of the definition on ai.
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It is easy to see that
∑m

i=1 ai = 1 and ai ≥ 0 for each 1 ≤ i ≤ m. Note that a1 measures
the proportion of weights of home-edges in C, so it can be regarded as a generalization of χ

but works on a single cycle.

aiv0

v1

vk

vi−1

vk+2−i

vi

vk+1−i

vm−1

vm+1

vm (m = k+1
2 )

Figure 2 An illustration of the cycle C = (v0, v1, . . . , vk, v0) with the case of odd k, where ai

(1 ≤ i ≤ m) measures the weight proportion of the blue edges compared to the cycle C.

Then, by the definitions of ∆C and TC , we have

∆C ≤

(
k + 2

2 −
m∑

i=1
iai

)
w(C) and w(TC) ≤

(
1 − max

1≤i≤m

1
2ai

)
w(C).

Thus, it holds that

2
k ∆C +

(
1 − 1

k

)
w(TC)

w(C) ≤ max
a1,a2,...,am≥0

a1+a2+···+am=1

{
2k + 1

k
− 2

k

m∑
i=1

iai − max
1≤i≤m

k − 1
2k

ai

}
.

In the worst case of the above linear program, we can obtain a1 ≥ a2 ≥ · · · ≥ am;
otherwise, if there exists ap < aq for some p < q, we can exchange their values, and then since
the value max1≤i≤m ai does not change, we can obtain a bigger solution since the coefficients
of ap and aq satisfy 0 > −2p

k > −2q
k , which causes a contradiction. So, max1≤i≤m ai = a1.

Consequently, we have
2
k ∆C+(1− 1

k )w(TC )
w(C) ≤ 2k+1

k − LP, where LP is the value of the
following linear program:

min
x1≥x2≥···≥0
x1+x2+···=1

{
k + 3

2k
x1 + 2

k

∞∑
i=2

ixi

}
.

In the full version, we prove that the linear program exists an optimal solution, denoted
by SOL(x∗

1, x∗
2, . . . ), satisfying that x∗

1 = x∗
2 = · · · = x∗

l = 1
l and x∗

i = 0 for all i > l, where
l = ⌈

√
2k−1−1

2 ⌉. Therefore, it holds that

SOL(x∗
1, x∗

2, . . . ) = k + 3
2k

· 1
l

+ 2
k

l∑
i=2

i

l
= 2l2 + 2l + k − 1

2kl
.

Therefore, we have

2
k ∆C +

(
1 − 1

k

)
w(TC)

w(C) ≤ 2k + 1
k

− 2l2 + 2l + k − 1
2kl

= 2 − 2l2 + k − 1
2kl

,

where l = ⌈
√

2k−1−1
2 ⌉. ◀

Next, we are ready to analyze the AG-ITP algorithm.

▶ Theorem 24. For splittable k-CVRP and unit-demand k-CVRP, the AG-ITP algorithm
admits an approximation ratio of 5

2 − 2l2+k+l−1
2kl < 5

2 −
√

2/k, where l = ⌈
√

2k−1−1
2 ⌉.
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Proof. Using the Hamiltonian cycle HCS , by (1), AG-ITP can output a solution with weight
at most (2/k)∆ + (1 − 1/k)MST + (1/2)(1 − 1/k)w(I∗). Recall that ∆ =

∑
C∈I∗ ∆C and

MST ≤
∑

C∈I∗ w(TC). By Lemma 23, we have

2
k

∆ +
(

1 − 1
k

)
MST + 1

2

(
1 − 1

k

)
w(I∗)

≤
∑

C∈I∗

(
2
k

∆C + k − 1
k

w(TC)
)

+ k − 1
2k

w(I∗)

≤
∑

C∈I∗

(
2 − 2l2 + k − 1

2kl

)
w(C) + k − 1

2k
w(I∗)

=
(

2 − 2l2 + k − 1
2kl

) ∑
C∈I∗

w(C) + k − 1
2k

w(I∗)

=
(

2 − 2l2 + k − 1
2kl

+ k − 1
2k

)
w(I∗) =

(
5
2 − 2l2 + k + l − 1

2kl

)
w(I∗).

To show the approximation ratio 5
2 − 2l2+k+l−1

2kl < 5
2 −

√
2/k holds for any k ≥ 3, it is

sufficient to prove

2l2 + k + l − 1
2kl

>
√

2/k ⇐⇒ 2l2 − (2
√

2k − 1)l + k − 1 > 0.

The latter holds since the discriminant of the quadratic equation satisfies (2
√

2k − 1)2 −
8(k − 1) = 9 − 4

√
2k < 0 for any k ≥ 3. ◀

In the initial improvements, when α = 3/2 and k > 5, the approximation ratio of our
algorithm is 5/2 − 3.5/k. In further improvements, we achieve a result of 5/2 − Θ(

√
1/k),

which is strictly better for any k > 5. This is also better than 5/2 − 1.005/3000 − 1.5/k

for any k ≤ 1.7 × 107 (see Table 1). When 3 ≤ k ≤ 5, the approximation ratio is 2 − 1/k,
which is tight for this algorithm, since it has been shown [28] that the approximation ratio
of AG-ITP is at least 2 − 1/k in general metrics, even using an optimal Hamiltonian cycle.

Our further improvements only consider α = 3/2. For other values of α, similar improved
results, as in Theorem 22, could potentially be obtained by applying refined lower bounds
based on MST and ∆. However, the analysis is sophisticated and achieving significant
improvements for metric TSP appears challenging. We leave the exploration of this direction
for future research.

7 Concluding Remarks

In this paper, we consider k-CVRP in general metrics and improve the approximation ratio
for k less than a sufficiently large value, approximately k ≤ 1.7 × 107. Although most of our
algorithms, such as EX-ITP, are simple or extensions of the classic methods, the analysis is
technically involved. We need to carefully analyze the structure of the solutions and most
of our analysis is based on pure combinatorial analysis. We think that analyzing better
theoretical bounds for simple and classic algorithms is an interesting and important task in
algorithm research. We also believe that our methods have potential to be applied to more
routing problems.
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