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Abstract
At a global scale, cities are growing and characterizing the built environment is essential for deeper
understanding of human population patterns, urban development, energy usage, climate change
impacts, among others. Buildings are a key component of the built environment and significant
progress has been made in recent years to scale building footprint extractions from satellite datum
and other remotely sensed products. Billions of building footprints have recently been released
by companies such as Microsoft and Google at a global scale. However, research has shown that
depending on the methods leveraged to produce a footprint dataset, discrepancies can arise in
both the number and shape of footprints produced. Therefore, each footprint dataset should be
examined and used on a case-by-case study. In this work, we find through two experiments on Oak
Ridge National Laboratory and Microsoft footprints within the same geographic extent that our
approach of inferring height from footprint morphology features is source agnostic. Regardless of the
differences associated with the methods used to produce a building footprint dataset, our approach
of inferring height was able to overcome these discrepancies between the products and generalize, as
evidenced by 98% of our results being within 3m of the ground-truthed height. This signifies that
our approach can be applied to the billions of open-source footprints which are freely available to
infer height, a key building metric. This work impacts the broader domain of urban science in which
building height is a key, and limiting factor.
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1 Introduction

Populations are increasing at a global scale, and it is estimated that by 2050, 68% of the
global population will live in urban environments [17, 20]. Buildings are a key component
of the urban environment and their footprints have been used across a myriad of subjects
such as population density estimation [31, 32], building energy usage [12, 39], disaster
management [28], building type [1], building height [6, 25, 37] and urban heat islands
(UHI’s) [10]. Being able to characterize the built environment is imperative to address these
issues and information on building footprints, building height and urban morphology is
critical in these efforts.

Fortunately, over the past decade, there has been a dramatic increase in the amount
of open-source building footprint datum available from organizations such as Microsoft2,
Google3, and Oak Ridge National Laboratory (ORNL)4. Between these products, there are
over 3 billion footprints available for use. However, each of the aforementioned products is
generated via differing methods for the pixel extraction/segmentation to identify buildings
and the regularization process of the identified footprints. Furthermore, differences in imagery
sources and resolution as well as environmental factors such as shadows or sun angle can
also influence the footprint extraction and regularization process [13].

The processing workflow from Microsoft is described in their documentation as first
leveraging a deep neural network (DNN) to identify buildings from aerial imagery and then
converting the identified pixels into polygons representing building footprints5. The best
available information on Google’s footprint generation is from a paper in 2023 by Sirko et
al. [35]. In their report, the authors describe utilizing a U-Net model, a common approach
for segmenting satellite datum [2, 29, 38]. Once extracted, the building footprints are then
processed through a contouring algorithm that realigns groups of adjacent polygons to
regularize the building footprints [35]. The authors also provide a caveat that newer versions
(v2 and v3) of the Google Open Buildings dataset underwent further improvements that
are not documented. Of the three datasets, ORNL provides the highest level of detail in
how building footprints were both extracted and regularized from satellite datum as they
leverage a deep convolutional neural network (CNN) framework for pixel extraction and
the ArcGIS proprietary building footprint regularization module 6 [41, 42]. However, the
ORNL footprint dataset is only available publicly in the United States (U.S.), so it lacks the
volume and spatial scale of building footprints that Microsoft and Google provide. While
Microsoft, Google, and ORNL each utilize a deep learning framework to identify, delineate,
and regularize the footprints, there are proven differences associated with the footprints
provided by each entity [8, 14].

Chamberlain et al. found substantial differences between footprint patterns displayed by
Microsoft and Google when comparing the products at a grid scale in Africa [8]. The authors
noted that consideration is needed by users regarding the suitability of the specific building
footprint dataset for its intended application. For example, in urban areas, Microsoft seemed
to have better coverage in relation to the number of matching footprints, but this pattern was
not universal. Also in Africa, Gonzales found patterns of irregularity when comparing Google

2 https://www.microsoft.com/en-us/maps/bing-maps/building-footprints
3 https://sites.research.google/open-buildings/
4 https://gis-fema.hub.arcgis.com/pages/usa-structures
5 https://github.com/microsoft/GlobalMLBuildingFootprints
6 https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/

regularize-building-footprint.htm

https://www.microsoft.com/en-us/maps/bing-maps/building-footprints
https://sites.research.google/open-buildings/
https://gis-fema.hub.arcgis.com/pages/usa-structures
https://github.com/microsoft/GlobalMLBuildingFootprints
https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/regularize-building-footprint.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/regularize-building-footprint.htm
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and Microsoft, but at a building-by-building level [14]. When investigating urban areas,
Microsoft tended to generate larger footprints which may encapsulate multiple buildings
while Google seemed to have more, smaller buildings. When rural areas were investigated,
the building counts were relatively similar, showing little discrepancy. Both at scale and at a
building-by-building level, care must be taken when leveraging footprint datasets [8, 14].

Recently, research has shown that building height is obtainable based on building footprint
information alone [37]. The authors showcased a novel method to infer height at a high
accuracy using only information derived from an individual buildings footprint. Furthermore,
they did so based on footprints extracted from both lidar and satellite datum. The ability
to infer height from footprints extracted from satellite datum allows for this approach to
generate building height maps at large scale. However, the authors only demonstrated their
approach on building footprints developed by ORNL and the model inference may produce
irregular results when exposed to a different footprint source. For example, in Stipek et.
al [37] they discuss that the features with the highest impact on inferring building height
were contextual (number of neighbors) and engineered (complexity of footprint shape). It
has been proven that at both a grid [8] and building-by-building level [14], Microsoft and
Google have differing shapes and sizes which would affect the contextual and engineered
metrics generated at the building level. Therefore, it would be imprudent to assume the
approach proposed by Stipek et al. [37] can be applied to other footprint datasets without
further testing.

In this paper we demonstrate that it is possible to infer building height at a building-
by-building level, agnostic to footprint source. We prove this by comparing the inferred
heights from two distinct products, ORNL and Microsoft across 10 cities in the U.S., with
figure 1 showcasing the spatial extent of our research. We show that regardless of differences
associated with the extraction, regularization of the footprints and other factors, such as
imagery date or environmental factors, our approach of inferring height from footprints can
be applied to ORNL and Microsoft footprints. This signifies that it is possible to leverage
the 1.2 billion footprints which Microsoft has made openly available to infer height at a
global scale. Google footprints are not currently available in the U.S. and this research only
focused on ORNL and Microsoft footprints.

2 Related Works

While the authors acknowledge a deep field of literature in relation to leveraging deep learning
on satellite datum, we would like to bring attention to works which relate to extracting
building information. Secondly, we focus on studies that have inferred height from features
derived from building footprints.

2.1 Footprint Extraction and Regularization
There have been various methods to segment and regularize footprints derived from high-
resolution satellite datum [4, 9, 23, 26, 30, 34, 35, 36, 40, 42, 43]. Shi et al. leverage a
large-scale deep learning mapping framework using Google Earth images to map 280 million
building footprints in east Asia [34]. They note in their work that existing building extraction
models primarily utilize supervised deep learning methods which lack generalization due to
differences in building morphologies. For example, buildings in east Asia are more compact
and display more diverse patterns as compared to buildings within the U.S. or Europe.
The authors further discuss the issues associated with the regularization of the identified
buildings, stating that building footprints differ based on the methods leveraged. To address

GISc ience 2025
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Figure 1 Map indicating the location of the ten cities used in this study, as well as views of
building footprints in Seattle, Houston, and Boston. Note the different patterns within the built
environment in each city, a visual representation of the challenges associated with modeling building
height.

for this, after the footprints are extracted from the satellite datum, they deploy a stable
boundary optimization algorithm which uses a generative adversarial learning network (GAN)
to enhance the semantic features of buildings. To regularize the footprints, they used a
post-processing method proposed by Gribov [16].

Sirko et al., in developing Google’s Open Buildings dataset, leveraged a U-Net architecture,
a deep learning encoder-decoder model for semantic segmentation for pixel identification
from imagery [33, 35]. This approach classifies each pixel of an image as either a building
or a non-building. They tested this approach using a training set of 99,902 satellite images
across the African continent and note that two of the more complex issues they faced were
smaller buildings, and buildings in densely populated areas. To address for this, they taught
their model to predict at least one pixel gap between the buildings, which they accomplished
by employing a morphological erosion operation with a kernel size of 3x3 pixels during
pre-processing. Once footprints were identified and pre-processed, they then deployed a
contouring algorithm to produce angular shapes and realign groups of nearby polygons.

For the development of the ORNL building footprint dataset, Yang et al. developed a
CNN framework to extract pixels which represented structures [41, 42]. Furthermore, the
authors also incorporated custom designed signed-distance labels which aided in improving
the building outline extraction which was especially helpful in core urban areas where there
are high densities of buildings within a small area. Once footprints were identified, they
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leveraged the ArcGIS building footprint regularization module. Using this approach, the
authors provided a simple and effective method that successfully produced a building footprint
map of the U.S.

2.2 Building Height - Machine Learning Approach from Morphology
Features

In 2017, Biljecki et al. leveraged a random forest model to infer building height from footprint
and ancillary information, such as number of floors [6]. The authors tested their approach
on 200,000 buildings in the Netherlands and found that it is possible to infer height using a
tree-based approach. However, some of the features used, such as number of floors, are a
proxy for height and this metric is not available at scale, thus limiting the scalability of their
approach. Furthermore, their analysis was done on footprints extracted from lidar datum,
thus further hindering them to areas in which lidar footprints are available.

Milojevic-Dupont built upon this work and leveraged a gradient boosting algorithm,
XGBoost, to infer height for buildings in Europe (Germany, Netherlands, France, Italy) [25].
They expanded the morphology features derived from building footprints compared to
Biljecki [6], and also used ancillary datasets, such as road networks, with a total of 152
features used in their modeling approach. However, similar to the approach by Biljecki,
they utilized footprints derived from lidar datum, thus suffering from the same constraint of
limited scalability at a continental or global scale.

Stipek et al. expanded upon the work done by the previous authors and inferred height
from building footprints without the use of ancillary information [37]. The authors leveraged
morphology features generated from individual buildings and successfully inferred height on
both lidar-derived and satellite-derived building footprints. However, they only showcased
their ability to infer height on ORNL footprints, thus limiting their approach to that singular
dataset.

3 Methods

Here, we discuss the methodology used for our research which aims to address if it is possible
to infer height based on footprints derived from satellite datum which have been identified
and regularized using varying methods. For this work we leverage 3.09 million building
records across the U.S. (Table 1). We selected 10 cities within the U.S. that had satellite
derived footprints from ORNL and Microsoft which overlapped with lidar derived footprints,
which had a height associated with the footprints (Figure 1).

3.1 Footprint Datasets

3.1.1 ORNL Footprints

This dataset contains footprints for the cities of Albany, Boise, Boston, Houston, Nashville,
Omaha, Phoenix, Portland, Seattle, and Topeka within the U.S. The footprints are derived
from satellite datum based on the approach in Yang et al. [42]. Please note that the current
version of footprints within the USA Structures dataset are lidar generated footprints after
replacement for the reasons described by Yang et al. [41]. However, we chose to use the
earlier version of the satellite derived footprints for fair comparison.

GISc ience 2025
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3.1.2 Microsoft Footprints
The Microsoft dataset provides over 1 billion footprints spanning multiple continents7.
These building footprints were developed from a deep learning model which extracted pixel
information from satellite datum. The pixels, once identified as a building, then underwent
a thorough cleaning and regularization process. Microsoft has multiple releases for their
building footprint dataset and we leverage the footprints Microsoft released on 26/04/2023
for the 10 cities within the U.S. (Table S1).

3.1.3 Lidar Footprints
The lidar footprints leveraged in this research are publicly available as part of the USA
Structures dataset at the FEMA portal8 [41].

3.2 Lidar Conflation
We followed the same conflation approach as proposed by Stipek et al. [37]. Conflating two
datasets collected at differing temporal scales can prove to be problematic due to periods
of growth exhibited by the area-of-interest. Therefore, we followed a strict one-to-one
relationship requirement when conflating the lidar footprints to both the Microsoft and
ORNL footprint datasets (Fig. 2). Please note this conflation process ended with a different
number of matched footprints. For example, in Albany, the matching one-to-one footprints
for lidar to Microsoft were 108,107 and 116,518 for ORNL (Table 1).

3.3 Morphology Features
We utilized morphology features generated from vector geospatial polygon layers at a building-
by-building level [18]. Morphology features have been leveraged to infer building use type,
building height, among others [1, 6, 25, 37]. The morphology feature set consists of three
types of features: geometric, engineered, and contextual (Table S2). Geometric are basic
measures of geometry like area or perimeter. Engineered features describe more complex
ideas like compactness or complexity. Contextual features describe the building and its
relationship to its neighbors, both spatially and in size. The contextual features are generated
at five different scales: 50m, 100m, 250m, 500m, and 1000m. Overall, there are 65 features
generated with table S2 providing a description of each feature. The morphology feature
set was generated for the ORNL and Microsoft footprints which were selected during the
conflation process. We also compared the morphology features generated for each of the
10 cities between the ORNL and Microsoft footprints to better understand the differences
between the two footprint datasets.

3.4 Feature Selection
All buildings less than 2m in height were removed from both datasets, a common practice
when inferring height from 2D features [25, 37]. Feature reduction was then performed for
both datasets via a recursive feature elimination (RFE). This iterative function removes
features that display lower significance in relation to the target variable [15]. The features
selected for by the RFE are bolded in table S2.

7 https://www.microsoft.com/en-us/maps/bing-maps/building-footprints
8 https://gisfema.hub.arcgis.com/pages/usa-structures

https://www.microsoft.com/en-us/maps/bing-maps/building-footprints
https://gisfema.hub.arcgis.com/pages/usa-structures
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(a) Many-to-one – Microsoft. (b) Many-to-one – ORNL.

(c) One-to-one – Microsoft. (d) One-to-one – ORNL.

Figure 2 Examples of footprints which were disqualified due to being a many-to-one (top panel),
and footprints which were included in the datasets based on the one-to-one (bottom panel) conflation
method. Please note that Microsoft footprints are green, ORNL footprints are yellow, with the
ground-truth lidar footprints being the overlaid black outline.

3.5 Model Development

We applied 4 distinct models during this research and compared to a baseline metric, the
median, over which any model would be an improvement. The first model we applied, a
Linear Regression (LR) model provides a baseline initial estimate and works by assuming
there is a linear relationship between the target, height, and the training datum [19]. We next
applied a Random Forest (RF) algorithm, first introduced by Breiman [7]. The RF model
is a collection of tree-structured classifiers with each tree within a defined forest coming
to a decision independent of the other trees. After each tree has inferred a decision based
on a random subset of the training datum, a decision is then made for inferrence based on
a majority vote from the individual trees. The XGBoost Regressor (XGB) is a gradient
boosting trees algorithm in which decision trees are iteratively added and learn from the
previous tree in order to minimize error[11]. This allows for the XGB to learn from each
successive tree such that the model will reduce error and improve overall model performance.
TabNet, a novel high-performance deep learner designed to help improve tabular datum
predictions was also applied [3]. TabNet has been shown to improve run-time and display
comparable results to other gradient boosting algorithms [22]. This is the first time, to the
authors knowledge, that a deep learning framework has been applied to infer building height
from tabular datum. Each model was constructed for each of the cities for both the Microsoft
and ORNL footprint datasets and the ensuing steps were taken for each city within both
datasets, totalling 20 iterations.
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Each city was split into a training and testing dataset, with 70% used for training and
30% for testing. We then leveraged Bayesian optimization using the Hyperopt library [5].
The Bayesian optimization utilizes a prior set of hyper-parameters to inform the successive
set of hyper-parameters for testing. It iterates through this process and once complete, it
produces the optimum hyper-parameters from a pre-defined grid search space in relation
to the lowest RMSE. We selected the following hyper-parameters to fine-tune through the
Bayesian optimization: number of estimators, max depth, gamma, reg alpha, reg lambda,
colsample bytree, min child weight, and learning rate. To validate our results, we conducted a
10 fold cross validation (CV) over the entirity of the datum for each individual city. Please
note that all references to the XGB RMSE are in reference to the CV score.

3.6 Out of Sample Validation
While conducting a 10-fold CV, we acknowledge that when working with spatially diverse
datum, validation should also be applied to distinct geographic areas [24]. To account for
this, we conducted a spatial validation similar to that done by Metzger et al. [24] and Stipek
et al. [37] in which we randomly selected 3 cities (Albany, Houston, Seattle) as hold-out
validation cities for testing for both datasets (ORNL, Microsoft) (Figure S1).

4 Results

The XGB model was chosen based on its superior performance in relation to the other models
applied (LR, RF, TabNet). While we acknowledge that the RF outperformed the XGB in
certain cities, the XGB was more consistent across both datasets (ORNL, Microsoft). All
the results in the following sections are the inferred values from the XGB model. For the
results associated with the LR, RF, and TabNet models please see Supplementary Table S3.

4.1 Microsoft Footprints
Each of the 10 cities modeled within the Microsoft dataset showed improvement upon the
median value generated for both the MAE and RMSE (Table 2). The median values generated
present a baseline value for building height over which any improvement in relation to MAE
or RMSE can be considered an improvement over a baseline estimate. Phoenix showed the
highest goodness of fit, R2, with a metric of 61% with Nashville displaying the lowest, 39%.
In relation to improvement upon the median RMSE baseline, Seattle was the highest, with
−0.59m improvement, going from the median of 2.44m to a modeled output RMSE of 1.85m.
Topeka and Albany displayed the lowest improvement, displaying differences of −0.29m and
−0.35m, respectively. On average, the percentage improvement across the 10 cities from the
median RMSE to the modeled RMSE was 32%.

4.2 ORNL Footprints
The modeled ORNL footprints also showed improvement upon the median MAE and RMSE
for each of the 10 cities (Table 2). Phoenix displayed the highest R2 score, 60%, with Seattle
displaying the lowest, with a score of 38%. For improvement upon the RMSE baseline, Seattle
showed the highest improvement, −0.58m, with Topeka displaying the lowest, −0.30m. The
average percent improvement from the median RMSE to the modeled RMSE across the 10
cities was 31%.
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Across all 10 cities, the largest difference between the Microsoft and ORNL footprints
in relation to RMSE was 0.09m, observed in both Albany and Nashville with the lowest
difference observed being 0.01m in Topeka. In relation to the percentage improvement upon
the median baseline for RMSE when comparing Microsoft and ORNL, the largest difference
in improvement was 7% (29% - Microsoft, 22% - ORNL), observed in Nashville with six of
the cities showing only 1% difference.

4.3 Morphology Differences

When comparing the differences between the morphology features generated for the ORNL
and Microsoft footprints, the majority of the features showed minimal differences. However,
there were some features which displayed differences, primarily the contextual and engineered
features such as complexity ps, n count, and n size mean (Table S4). For the Microsoft
footprints, the complexity ps displayed a median of 2,812 while the ORNL median was 7,717,
signifying differences within the shapes of the footprints (Table S4). For the n count 500,
Microsoft displayed a max count of 1,267, compared to 928 for ORNL, signifying a difference
in the number of footprints within a 500m radius. For n size mean 500, the max feature
displayed by Microsoft was 210,048 with a value of 102,230 by ORNL, highlighting the
differences in footprint sizes within a 500m radius. These results are similar to the research
conducted by Chamberlain et al. ([8]) and Gonzales ([14]).

4.4 Out of Sample Validation

When testing on Microsoft footprints, Albany did not improve upon the median RMSE as
the XGB RMSE displayed a value of 1.55m and a R2 score of -1% (Table S5). However,
the other cities which were tested with Microsoft footprints showed improvements upon the
median RMSE, being −0.20m in Houston and −0.35m in Seattle. All three of the cities
when tested on ORNL footprints displayed improvements upon the median RMSE, being
−0.07m for Albany, −0.22m for Houston and −0.37m for Seattle.

5 Discussion

The expansion of open-source building footprint datasets has provided the possibility for
leveraging these products to characterize the built environment. Our results show that, across
3.09 million buildings in the U.S., our method of inferring height from footprint information
alone is effective for datasets produced by ORNL as well as the much larger and globally
available dataset from Microsoft. Furthermore, our height prediction process is reliable and
agnostic to building footprint source. This finding ensures that our approach of inferring
height from footprint morphology features can be scaled to leverage other publicly available
footprints, such as Microsoft footprints. By inferring building height, this method provides
valuable contextual information for population density estimation, building energy, disaster
management, and UHI’s [10, 12, 31, 32, 39].
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(a) Boston.

(b) Houston.

(c) Seattle.

Figure 3 Here we display the different shapes in footprints displayed by Microsoft (green), ORNL
(yellow) with the lidar footprints a black outline. For Boston (a), the lidar height is 6.90m, with
our prediction based on the MS footprint being 8.52m and 7.82m inferred on the ORNL footprint.
In Houston (b), the lidar height is 6.19m, our prediction based on the MS footprint is 10.29m and
9.28m with the ORNL footprint. In Seattle (c), the lidar height is 38.02m, the height inferred on
the MS footprint is 18.11m and 50.86m on the ORNL fooprint.
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While the main objective of this research is to test the efficacy of leveraging open-source
footprints, we applied various models to ensure the best possible method was selected. It is
important to note that the TabNet model did not outperform either the RF or XGB for any
cities across both footprint sources. In some instances, such as in Phoenix, the difference was
-18% in relation to R2 results displayed by the XGB. However, in other cities (Houston), the
TabNet outperformed the percent improvement displayed by the RF by +1% in relation to
R2. Regardless, the tree based approach consistently outperformed the TabNet model which
signifies that while deep learning models developed for tabular data have made progress
[21, 22], in this instance tree based models show higher accuracy.

While successful, our study does have limitations that need to be acknowledged. First,
the area-of-interest is only within one country, the U.S., and more work is needed to expand
this approach to additional countries. It is known that the built environment varies both
spatially and temporally and a more diverse sample set is needed to further validate this
approach [6, 25, 27, 34, 37]. Another limitation is that during our strict one-to-one conflation
process, building footprints that don’t have a one-to-one match are removed and therefore not
included in the morphology feature generation. Contextual features that look at a building’s
neighbors have been found to be influential to the model’s behaviour and therefore, the model
may not perform as well on the filtered dataset as it would on the unfiltered dataset [37]. For
example, the generated feature n count measures the number of centroids within a defined
radius surrounding a building. This was evidenced by the range of values displayed for the n
count 500 for the ORNL when compared to Microsoft (Table S4). The range in values for n
count 500 signifies that at a 500 m radius, there are differences associated with the total
number of buildings, which can influence the model’s ability to infer an individual building’s
height.

Additionally, there needs to be a formal analysis completed to understand if it is possible
to train on one distinct footprint dataset and test on another. For example, due to the
differences discussed between the Google and Microsoft datasets within Africa [8, 14], can it
be possible to train on the Google footprints to then infer height on the Microsoft footprints.
While the approach presented in this research shows the ability to infer height agnostic of
footprint source, it does not test across the sources, i.e. training on ORNL and testing on
Microsoft.

Furthermore, the differences in footprint shape based on the pixel identification and
regularization process can lead to irregularities in predicted height (Fig. 3). For example,
the complexity ratio, an engineered feature that is the shape length divided by the shape
area which shows high significance in relation to inferring height, can vary depending on
the footprint shape [37]. For example, in Boston, we display the Microsoft, ORNL and
lidar footprint for one specific building where the footprint shapes are similar and the
height prediction for the MS footprint is 8.52m and 7.82m for the ONRL footprint (Fig. 3).
However, when there are differences displayed by the building’s footprint, there can be large
differences associated with the predicted height, as evidenced in the example in Seattle
where the height inferred from the Microsoft footprint is 18.11m and 50.86m on the ORNL
footprint. Therefore, based on the shape and size of the footprint, the inferred height may
vary, as displayed in figure 3. While the majority of the morphology features showed minimal
differences in their distributions, it is important to note that some of the engineered features,
such as complexity ps showed differences (Table S4). Therefore, while the approach presented
in this research has proven it is possible to infer height from various footprint sources, it
would be irresponsible to apply without additional testing if leveraging an additional footprint
source, such as Google.
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This research has highlighted the need for multiple avenues of future work. A compre-
hensive analysis in relation to the distributions displayed by the morphological features
is necessary to truly understand the differences displayed between ORNL and Microsoft
datasets. As the scope of this paper is to investigate if it is possible to infer height from both
products, we do not fully investigate the differences displayed by the ORNL and Microsoft
footprints in relation to the engineered and contextual features. Other potential work could
explore the possibility of training on one homogeneous footprint data source and testing on
another.

6 Conclusion

In this paper, we demonstrate the ability of our method to infer height from building
footprints derived from different sources (ORNL, Microsoft). Our results show that, across
over 3 million footprints in the U.S., we successfully infer building height within 3m of the
ground truth height with 98% accuracy. More importantly, while previous work has proven
that it is possible to infer height from footprints derived from satellite datum, this is the
first time, to our knowledge, that a comparison study has been completed that indicates
a machine-learning height inference method can be applied across multiple datasets. We
believe our approach is successful due to the ability to learn from the distinct morphology
features, regardless of the footprint dataset. This is a significant finding which displays the
generalization of our method to inferring height regardless of how the building footprints
are extracted and regularized. Furthermore, this opens the door to now leverage the over 1
billion Microsoft footprints to infer building height at a building-by-building level across the
globe.
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A Supplementary Tables

Table S1 Temporality of lidar, ORNL footprints, and Microsoft footprints.

Location Lidar ORNL Microsoft
Albany, NY, USA 10/9/2012 19/10/2019 26/4/2023

Boise, ID, USA 8/3/2013 4/8/2018 26/4/2023
Boston, MA, USA 20/5/2009 9/11/2019 26/4/2023
Houston, TX, USA 22/1/2010 21/10/2021 26/4/2023
Nashville, TN, USA 6/6/2006 6/6/2019 26/4/2023
Omaha, NE, USA 24/4/2013 20/5/2020 26/4/2023
Phoenix, AZ, USA 4/10/2014 27/2/2020 26/4/2023
Portland, OR, USA 20/9/2010 27/2/2020 26/4/2023
Seattle, WA, USA 6/5/2010 3/3/2020 26/4/2023
Topeka, KS, USA 10/12/2008 23/11/2020 26/4/2023

Please note that the dates for the footprint sources are in DD/MM/YYYY format.

Figure S1 Map which displays the 3 randomly selected hold out cities for our additional validation
step.
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Table S2 Building Morphology Features.

Feature Description
Geometric Features

shape area Area of polygon in un-projected units
shape length Perimeter length in un-projected units

sqft Area in square feet
sqmeters Area in square meters

lat dif Maximum latitude minus minimum latitude in un-projected units
long dif Maximum longitude minus minimum longitude in un-projected unis
envel area Area of bounding box of geometry in un-projected units

vertex count Count of vertices in geometry
geom count Count of polygons in the geometry

Engineered Features
complexity ratio Shape length / shape area

iasl Inverse average segment length
vpa Vertices per area

complexity ps Complexity per segment, average complexity within each segment
ipq Isoperimetric quotient, shape area maximization for given perimeter length

Contextual Features
n count* Number of building centroids within a given distance

omd* Observed mean distance from building within a given distance
emd* Expected mean distance from building within a given distance
nnd* Nearest neighbor distance from building
nni* Nearest neighbor index, overall pattern of points within a given distance

intensity* Amount of nni occurring
n size mean* Average size of buildings within a given distance

n size std* Standard deviation of buildings within a given distance
n size min* Smallest building size within a given distance
n size max* Largest building size within a given distance
n size cv* Coefficient of variation of building size within a given distance

* Denotes feature being calculated on multiple scales. Bolded features highlight the features selected for
use.
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Table S4 Morphology Differences – Microsoft and ORNL Footprints.

Microsoft Footprints
Metrics Complexity PS N Count 500 N Size Mean 500

Mean 2,767 354 2,435
Median 2,812 295 2,029

Std 1,005 236 2,030
Min 47 2 775
25% 2,025 180 1,742
75% 3,496 487 2,457
Max 15,617 1,267 210,048

ORNL Footprints
Mean 7,673 289 2,124

Median 7,717 252 1,697
Std 2,405 176 1,779
Min 56 1 848
25% 6,240 158 1,402
75% 9,099 398 2,175
Max 21,160 928 102,320

The morphology features displayed in this table were generated in Albany, one of the 10 cities
investigated during this research.

Table S5 Out of Sample Validation Results.

Microsoft Footprints
Cities Albany Houston Seattle

Median MAE 1.12 m 0.92 m 1.30 m
Median RMSE 1.55 m 1.80 m 2.44 m

XGB MAE 1.12 m 0.97 m 1.20 m
XGB RMSE 1.55 m 1.60 m 2.09 m

XGB R2 -1% 13% 23%
ORNL Footprints

Median MAE 1.15 m 0.96 m 1.33 m
Median RMSE 1.63 m 1.90 m 2.49 m

XGB MAE 1.11 m 1.07 m 1.23 m
XGB RMSE 1.56 m 1.68 m 2.12 m

XGB R2 6% 14% 24%

The results displayed for our out of sample validation test.
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