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Abstract
The exponential growth of interactive geovisualizations on the Web has underscored the need for
automated techniques to enhance their findability. In this paper, we present the Geovicla dataset
(2.5K instances), constructed through the harvesting and manual labelling of webpages from a broad
range of domains. The webpages are categorized into three groups: “interactive visualisation”,
“interactive geovisualisation” and “‘no interactive visualisation”. Using this dataset, we compared
three approaches for interactive (geo)visualization classification: (i) a heuristic-based approach
(i.e. using manually derived rules), (ii) a feature-engineering approach (i.e. hand-crafted feature
vectors combined with machine learning classifiers) and (iii) an embedding-based approach (i.e.
automatically generated large language model (LLM) embeddings with machine learning classifiers).
The results indicate that LLM embeddings, when used in conjunction with a multilayer perceptron,
form a promising combination, achieving up to 74% accuracy for multiclass classification and 75%
for binary classification. The dataset and the insights gained from our empirical comparison offer
valuable resources for GIScience researchers aiming to enhance the discoverability of interactive
geovisualizations.
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1 Introduction

Interactive visualisations are becoming increasingly available on the Web and techniques are
needed to facilitate their findability [11]. Since maps are “one of the most valuable document
for gathering geospatial information about a region” [17], finding and accessing this type
of data is relevant for tasks such as information synthesis and hypothesis generation about
places during the early phases of the research data lifecycle. Currently, finding interactive
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maps for specific tasks remains challenging, though there are some solutions – in the form
of online platforms – that offer limited cataloging functionalities (e.g. Observable [30] and
ArcGIS Online Gallery [15]).

The focus of this work is on the automated classification of interactive geovisualizations
of the Web. While different approaches to classifying webpages have been proposed in the
literature (see [7, 19, 31, 41] for examples and [9, 34] for reviews), the categorization of
interactive visualization and interactive geovisualization has, so far, received less attention.
Interactive (geo)visualization classification can be seen as an instance of genre classification,
which, as discussed in [9], is about categorizing webpages based on functional factors, unlike
subject-based classification that focuses on their topic. In general, the practical relevance of
automated classification of resources in the context of spatial information search is at least
twofold: resource selection [8, 10] and results presentation [28] (e.g. in the form of structured
and actionable results).

“Resource selection” is a task in distributed information retrieval (a.k.a federated search),
which consists in finding the most relevant data sources for a user’s query in a heterogeneous
collection. Resource selection, in this context, has the potential to improve users’ satisfaction
during interactive (geo)visualization search through the identification of the most related
types of target entities to their search intent. This is particularly relevant in the context of
scientific [4] and spatial data infrastructures [13], which feature heterogeneous collections of
(geoinformation) resources. Besides, the identification of the type of search targets is key to
structured result presentation and actionable results presentation.

“Structured results presentation” and “actionable results presentation” are two patterns for
the design of search user interfaces, as discussed in [28]. Both approaches enable users to access
the information they need without having to open complete result pages. “Structured results
presentation” is concerned with using rich snippets (e.g. maps, timelines) to communicate
the structure of search results (e.g. spatial structure, temporal structure) in addition to
simple text snippets (e.g. title, description). “Actionable results presentation” involves
providing the means to perform tasks as an integral part of the result presentation process
(e.g. zooming/panning an interactive map, playing/stopping an animated geovisualization).

This article presents an exploratory study that addresses the research question: Which
classification methods are best suited for identifying webpages containing interactive geo-
visualisations? In line with Koehler [24], webpages are defined throughout this article as
collections of Internet objects navigable without hypertext links; they are web documents
that can be scrolled through. Websites consist of one or more webpages unified by a common
theme or organizing principle. The contributions of the work are twofold: First, we present
the Geovicla dataset, which was constructed through the harvesting and manual labelling
of webpages from a broad range of domains (e.g. sustainability, health, technology, human
rights and politics). The dataset includes 2.5K annotated webpage instances from diverse
domains and provides labels for three categories, namely “interactive visualisation” (IV),
“interactive geovisualisation” (IGV) and “no interactive visualisation” (noIV).

Second, we compared three approaches for the automated interactive (geo)visualizations
classification: (i) a heuristic-based approach, (ii) a feature-engineering approach and (iii) an
embedding-based approach. Approach (i) uses manually derived rules and heuristics to
identify IV and IGV based on the webpages’ code; approach (ii) utilises hand-crafted feature
vectors in combination with a machine learning classifier and approach (iii) automatically
extracts embeddings using a large language model (LLM), which are subsequently used to
classify the web content.
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2 Background

The focus of the article is on web-based interactive (geo)visualizations, which at their core,
are web documents as discussed in [11]. Here, we briefly touch upon previous work on static
map search and classification, as well as interactive map search and classification.

Regarding Static Map Search and Classification, existing approaches have tackled
the issue from different perspectives, often with very different goals. For example, Goel et
al. [17] used a Content-Based Image Retrieval (CBIR) approach to classify static images
extracted from PDF files and the Web as maps or nonmaps, achieving an F1 score of 74%.
Tan et al. [36] investigated the classification of figures in digital documents as maps or
nonmaps and used several variants of support vector machines (SVM) for the classification
task. They reported F1 measures of up to 90%. While the two articles mentioned above have
a stronger focus on image classification in digital documents, others emphasize Web image
harvesting and classification. For instance, Beagle [3] mines the Web for SVG-based (Scalable
Vector Graphics) visualizations and automatically classifies them by type (e.g. bar charts,
line charts, maps, ...). The authors reported an accuracy of 85% across 24 visualization types.
Bone et al. [5] proposed a Geospatial Search Engine that harvests Web Map Services and
ArcGIS services (among others) to provide enhanced searchability. Finally, Walter et al. [38]
tested several approaches to automate the harvesting of maps in the shapefile format on the
Web. They found that the combination of a crawler and a search engine is more efficient than
the use of a crawler alone and reported a hit rate during search between 0.18% and 1.5%.
We use a search engine during our harvesting workflow in line with this finding (Section 3).

Concerning Interactive Map Search and Classification, a research agenda for
findable online geovisualization was proposed in [11], highlighting three aspects: knowledge
representation aspects, user interface design issues, and technical considerations during the
publishing of online geovisualizations. Previous work has focused on user interaction aspects
and publishing aspects mostly. For example, Degbelo et al. [12] examined design elements for
the search of map layers in map-based applications, while Hüffer et al. [21] compiled users’
wishes regarding search tools for interactive (geo) visualizations through participant interviews.
Regarding the publishing of online geovisualizations, Lai and Degbelo [26] compared the
impact of speech-based and typing modalities for the creation of metadata for web maps
and provided empirical evidence about their complementarity for effective geovisualization
annotation. Thompson et al. [37] proposed the MIAGIS standard to facilitate the publication
of maps according to the FAIR principles and illustrated how the standard can be used
to publish maps generated within ArcGIS Online. We argue here that while these works
are valuable, progress regarding knowledge representation is equally important to advance
current research on findable online geovisualizations. Classification, i.e. finding the semantic
type (a.k.a. category) of web documents, is a key aspect of knowledge representation and is
the subject of this article.

3 The Geovicla Dataset

Open datasets about interactive (geo)visualizations are desirable to advance research on
interactive (geo)visualization search but are still lacking. The generation of the Geovicla
dataset to address this gap considered the following three categories of web documents.
Interactive visualisation (IV): An interactive visualisation is a webpage, which displays at

least one visualisation that affords computer-mediated interaction. Interaction in this
context is defined in line with [14, 35] as the dialogue, involving a data-related intent,
between a human and a data interface.

GISc ience 2025
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Interactive geovisualisation (IGV): An interactive geovisualisation is a webpage, which
shows at least one geovisualization that affords computer-mediated interaction. Interaction
is defined as stated above; a geovisualization is a digital artefact whose visual properties
encode geographic data [11].

No interactive visualisation (noIV): This category is used to refer to webpages that do not
contain an IV or IGV, as defined above.

The generation of the dataset involved three tasks, namely search term generation, web
document search and web document labelling.
Search term generation: To generate search queries with a high possibility of finding in-

teractive visualisations and interactive geovisualisations, we employed the commonly
available ChatGPT model [32], with GPT version 3.5. In particular, this model was
used to generate synonyms for the phrases “interactive visualisation” and “interactive
geovisualisation”, as well as a set of random topics to query for webpages. Examples of
these topics include: climate change, sustainable agriculture, wildlife conservation, geo-
political tensions and antibiotic resistance. Each search query had the form “SYNONYM
TOPIC”, where SYNONYM denotes a synonym/type of interactive (geo)visualization (as
suggested by the LLM) and TOPIC refers to a theme (taken from the pool generated
from the LLM as well). Examples of search queries are “Interactive mapping tool Roman
Empire” and “GIS dashboard Vietnam War protests”. The full list of topics and search
queries is available on GitHub.

Web document search: Searches with the Google Custom Search API [18] were done to
retrieve urls that have a higher chance of containing an IV or IGV. The retrieved urls
were saved in a MongoDB database.

Web document labelling: A Python script was created to facilitate the annotation. It
launches an interactive command line that automatically takes an unlabelled webpage
from the database, opens it in the browser and asks the user to provide a label. Irrelevant
webpages can be also deleted from the database through the interactive command line.

The labelling of the webpages faced a few challenges. For instance, some webpages took
several minutes to load and show their content, which impedes effectiveness when classifying
thousands of items. Also, some pages could not be opened and were therefore unusable.
These webpages were deleted from the database. Another challenge was the low recall in
the early stages. After running the first set of search queries and labelling 171 items, the
percentages of classifications were only around 5.8% (IV) and 2.9% (IGV) respectively. This
is an improvement compared to the 0.05% reported in [3], but still not high enough for
scalable dataset generation. As mentioned above, the first set of queries followed the template
“SYNONYM TOPIC”. Initially, the queries were slightly verbose in the hope that these
would lead to a better matching of the entities of interest, e.g. “Interactive geovisualizations
Satellite technology for Earth observation”, “Map-based data exploration The Great Wall of
China construction” (see the full list on GitHub). Many webpages returned after this first
set of queries contained long scientific texts, notably in the form of PDF documents. In light
of these initial results, the approach was changed towards more simplified search queries.
Both SYNONYM and TOPIC were made more concise, e.g. “interactive map weather” and
“dynamic map air pollution”. After these changes regarding the search queries, the percentage
of IV classifications went up a bit to 10%. For further improvements, the data collection
approach evolved once more to focus on dashboards. Dashboards used include Carto,
Ceros (ceros.com), Esri (arcgis.com/apps/dashboards), Highcharts (highcharts.com/demo),
Infogram (infogram.com), Plotly (plotly.com) and Tableau (tableau.com). It should be noted
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Table 1 Descriptive information about Geovicla: #code and #embed signal the availability of
the original HTML code and their embeddings values; #featureinformation denotes semi-structured
information (extracted post-harvesting) available in the dataset.

#count #avglen #sdlen #minlen #maxlen #code #embed #featureinformation
NoIV 1153 224094.8 329201.2 52 4711499

Yes Yes
url, content, description,

external links, external scripts,
div_ids, class_ids

IV 476 158247.7 169970.4 1186 1323808
IGV 910 111248.5 249832.6 52 2906885
All 2539 171305 282034 52 4711499

that the webpages were not solely collected from these dashboards. A portion of the dataset
stems from the search results and pages linked to them. Indeed, it was often the case that a
webpage contained links to other webpages with IVs or IGVs. When this was noticed while
labelling the webpage, these webpages were added to the database as well.

Table 1 shows some information about the resultant dataset, which is available in two
formats for reuse: CSV (Comma-Separated Value) and JSON (JavaScript Object Notation).

4 Automated Classification

As discussed in previous work [9], the automated classification of web-based documents
involves two steps: webpage representation (i.e. transforming the webpage into a feature
vector) and webpage classification (where machine learning models are trained/used to learn
the classification function for a set of features). This section briefly presents the two steps.

4.1 Representation

Two approaches were considered to extract features from the websites, namely a feature-
engineering approach and an embedding-based approach.

Feature-engineering approach: The gist of the feature-engineering approach is the
presence or absence of selected keywords in some portions of the web document, notably:
content, description, external_links, external_scripts, div_ids and div_classes. Following
Hüffer et al. [21] four types of keywords were considered: names of frameworks (e.g.
highcharts, d3, leaflet), IDs of HTML elements (e.g. apexcharts, map, globe), classes
of HTML elements (e.g. tableau, esri-map, mapboxgl) and sentences (e.g. interactive,
geovisualization, Datenvisualisierung). The full list of keywords considered is extended
from [21] and is available on GitHub. The presence/absence of these keywords is encoded
using one-hot encoding, leading to a sparse vector with 74 entries. The three classes of
target entities (IGV, IV and noIV) are encoded using label encoding (and more precisely
the LabelBinarizer from the scikit-learn library).
Embedding-based approach: Text embeddings encode text into dense vectors that
capture the meaning and are useful for measuring the relatedness of text snippets. While
the feature-engineering approach generates a small, transparent set of features for training
machine learning models (see above), the features generated by text embedding models
are opaque, as they are produced automatically. We considered both open-source and
proprietary large language models for generating the embeddings. The Massive Text
Embedding Benchmark [29] (MTEB) guided the selection of the open-source model.
Our goal was to identify the optimal trade-off between model performance and model
context length. With these aspects in mind, the model stella 1.5b (with 1024 dimensions)

GISc ience 2025
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was chosen2. It has a memory footprint of approximately 6 GB, ranks under the first
10 models concerning classification as a task and has a token limit of 131,072 (which
is the second highest of all models). BERT and GPT2 used in previous work [22] for
geometry and spatial relation representations have a much lower token limits (512 and
1024 tokens respectively) and hence were not considered in this work. The same goes for
recent text embedding models by OpenAI, which have a context length of about 8200
tokens [33]. About one-third of the webpages have more characters than the context
length of the stella model. Hence, to assess the sensitivity of the results to context length,
we report the classification results for two settings: (1) all web documents (referred to as
Embedding-based I), and (2) web documents shorter than the token limit (referred to as
Embedding-based II).

4.2 Classification and experimental setup
We considered five models from different families of classification algorithms: k-nearest
neighbors (kNN; instance-based learning [39]), support vector machine (SVM) [39], Naive
Bayes (Bayesian Network [25]), random forest (ensemble) and multi-layer perceptron (neural
network [25]).
kNN: The value of k was determined using a grid search on the training set. The best

parameters obtained were: k = 3, weight = uniform (feature-engineering); and k=5,
weights=distance (embedding-based).

SVM: We compared the performance of the linear and the radial basis function (rbf) kernels.
The rbf kernel led to no or only very minimal improvements so that the linear SVM was
selected due to its simpler kernel function and its faster training time (Occam’s razor
principle).

Naive Bayes: We compared a Gaussian model and a Bernoulli model. Based on the results,
we selected the Bernoulli model for the feature-engineering approach and the Gaussian
model for the embedding-based approach. This is also in line with theoretical considera-
tions: The Bernoulli model relies on binary occurrence information whereas the Gaussian
model assumes that values of features are normally distributed [40].

Random Forest: The best parameters obtained using grid search were: n_trees = 200
(feature-engineering) and n_trees = 400 (embedding-based).

Multi-layer Perceptron: A grid search was used to identify the best-performing architecture.
The outcome was an architecture with hidden layer sizes of (36, 18, 9) for the feature-
engineering approach and a shallow network with a single hidden layer with 512 neurons
for the embedding-based approach.

We used the F1 score with macro averaging for decision-making in all cases because
we have an imbalanced dataset. The grid search for hyperparameter fine-tuning was done
using a 10-fold cross-validation. Model comparison for selection was done using 10-fold
cross-validation as well. Besides, we tested two classification strategies: multiclass (IGV,
IV, noIV) and binary (IGV vs noIGV), as we are primarily interested in the automated
classification of web-based geovisualizations. We also assess the impact of balancing and
the representation strategy (feature-engineering vs embedding-based) on performance. At
last, we explore the sensitivity of the results to the threshold of the context length of the
LLM-generated embeddings. We used a 80/20 % train and test data split in the experiments.

2 https://huggingface.co/dunzhang/stella_en_1.5B_v5. Though the model is accessible in multiple
dimensions, 1024 provided a good compromise between size and performance as of December 2024.

https://huggingface.co/dunzhang/stella_en_1.5B_v5
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Tables 2 and 3 present the results for multiclass classification and binary classification
respectively. The confusion matrices for the models are available as supplementary material
at https://doi.org/10.6084/m9.figshare.28238885. To compare our results to the state-
of-the-art, we include the results from a heuristic-based (i.e. rule-based) approach from [21],
which was suggested for multiclass classification. The values obtained were 49% (accuracy),
54% (precision), 47% (recall), and 42% (F1 score). Finally, we used permutation feature
importance, introduced originally in [6], to investigate the contributions of each feature to
the overall classification accuracy in the case of the feature-engineering approach. The tests
were done for the random forest and the multi-layer perceptron models, and the results are
available in the supplementary material as well.

Table 2 Results of the multiclass classification (IGV vs IV vs noIV). Best values are in bold.
Embedding-based I = all documents; Embedding-based II = documents fitting Stella’s context
length.

Accuracy Precision Recall F1 ROC-AUC
Feature-engineering Imbalanced knn 62% 71% 55% 56% 0.66

svm 62% 71% 55% 55% 0.66
nb 57% 66% 53% 55% 0.65
rf 62% 69% 55% 56% 0.66
mlp 61% 69% 55% 56% 0.66

Balanced knn 35% 68% 35% 46% 0.63
svm 29% 67% 32% 43% 0.62
nb 31% 75% 31% 41% 0.63
rf 36% 71% 36% 47% 0.64
mlp 34% 73% 35% 46% 0.64

Embedding-based I Imbalanced knn 69% 70% 71% 70% 0.78
svm 54% 73% 53% 61% 0.71
nb 29% 52% 85% 64% 0.73
rf 67% 76% 65% 69% 0.77
mlp 62% 76% 59% 66% 0.74

Balanced knn 70% 70% 71% 69% 0.78
svm 69% 70% 70% 70% 0.78
nb 40% 63% 88% 72% 0.79
rf 67% 74% 67% 69% 0.78
mlp 71% 73% 75% 74% 0.81

Embedding-based II Imbalanced knn 65% 65% 72% 67% 0.77
svm 67% 67% 74% 69% 0.78
nb 39% 56% 75% 64% 0.71
rf 63% 65% 69% 66% 0.76
mlp 69% 70% 74% 71% 0.80

Balanced knn 63% 65% 65% 64% 0.74
svm 62% 62% 66% 63% 0.73
nb 30% 56% 83% 66% 0.74
rf 62% 67% 63% 64% 0.74
mlp 65% 64% 67% 65% 0.75

4.3 Discussion
We now discuss the different effects assessed in the work: effect of the representation strategy,
of the classification model, of the classification strategy, of balancing and of context length.

Effect of the representation strategy: In nearly all instances, the embedding-based
performances were higher than those obtained using the feature-engineering approach (F1
and ROC-AUC scores). This suggests that the embeddings were likely better at condensing
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Table 3 Results of the binary classification (IGV vs noIGV). Best values are in bold. Embedding-
based I = all documents; Embedding-based II = documents fitting Stella’s context length.

Accuracy Precision Recall F1 ROC-AUC
Feature-engineering Imbalanced knn 72% 73% 63% 63% 0.63

svm 73% 78% 62% 61% 0.62
nb 73% 74% 63% 63% 0.63
rf 72% 76% 62% 61% 0.62
mlp 73% 77% 63% 62% 0.63

Balanced knn 67% 69% 67% 67% 0.67
svm 65% 69% 65% 64% 0.65
nb 65% 69% 65% 64% 0.65
rf 67% 70% 67% 66% 0.67
mlp 66% 69% 66% 65% 0.66

Embedding-based I Imbalanced knn 77% 75% 73% 74% 0.73
svm 77% 76% 72% 73% 0.72
nb 68% 67% 69% 67% 0.69
rf 79% 79% 74% 75% 0.74
mlp 78% 77% 74% 75% 0.74

Balanced knn 72% 73% 72% 72% 0.72
svm 74% 74% 74% 74% 0.74
nb 68% 68% 68% 67% 0.68
rf 73% 73% 73% 73% 0.73
mlp 75% 75% 75% 75% 0.75

Embedding-based II Imbalanced knn 67% 67% 66% 66% 0.66
svm 69% 69% 68% 68% 0.68
nb 59% 59% 59% 58% 0.59
rf 68% 69% 67% 67% 0.67
mlp 71% 71% 71% 71% 0.71

Balanced knn 62% 58% 56% 55% 0.56
svm 64% 62% 61% 61% 0.61
nb 56% 58% 58% 56% 0.58
rf 67% 65% 65% 65% 0.65
mlp 67% 65% 64% 64% 0.64

relevant features to separate the different types of entities than the hand-crafted features.
Also, these results remind of the “black box conundrum” [27] – model interpretability
and predictive power are often competing goals for (Geo)AI models. Another aspect to
mention in the comparison of the two approaches is that the embedding-based approach
is more time/resource-consuming. For example, computing one single embedding takes
around 20 seconds (on a laptop with an AMD Ryzen 7 7840U processor (3.30 GHz),
integrated Radeon 780M Graphics, 32 GB of RAM, and 1 TB of storage, on Windows 11),
which is the reason why the embeddings were pre-computed and included in the final
dataset. Features from the feature-engineering approach can be computed at run-time as
the feature extraction algorithm only takes a few milliseconds to run.
Effect of the classification model: As the tables suggest, all models have comparable
performance for the feature-engineering approach. The relatively low F1 scores (40%–60%)
indicate the need for further research exploring “intelligent hints” [1] for the separation
of the three types of entities considered. Regarding the embedding-based approach, the
Naive Bayes family exhibited the strongest recall (=probability of detection) for the
multiclass classification task. The MLP exhibited a good performance across all settings
often having the highest or second-highest F1 score. Values obtained were in the range
[66%–75%] (imbalanced dataset) and [64%–75%] (balanced dataset). As the architectures
used for testing were slightly different depending on the results of the grid search, the
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recurrent good performance of MLP suggests the relevance of this model family for the
issue at hand and recommends it as a starting point for further work. There are more
families of classifiers that were not considered in this work (e.g. discriminant analysis,
bagging, decision trees, see [16]) and more kernel functions (e.g. polynomial kernels for
support vector machines) that could be further explored in future work.
Effect of the classification strategy (all vs binary): There was no notable impact of
the classification strategy on the performance. SVM and Naive Bayes seem to have
performed better regarding the feature-engineering approach, but slightly less so for the
embedding-based approach.
Effect of balancing on performance: The balancing led at times to improvement, and
at times to deterioration in performance. The dimension does not seem to impact the
results and may be dropped in subsequent studies.
Effect of context length: As mentioned above about one-third of the web documents
considered had a size greater than the context length. Details of how exactly the Stella
model treats those could not be found in the model’s documentation. Besides, the
definition of what exactly a token is varies (e.g. characters, words, subwords). Hence
an empirical assessment of the impact of the context length was done. It appears from
the results that there are small drops in performance (F1 scores, ROC-AUC scores) for
several models when the dataset contains web documents within the context length only
(Embedding-based II). This issue deserves further investigation in future work.

Limitations. Although the dataset is 30 times bigger than the one from previous work [21],
it is still relatively small compared to standard machine learning datasets and could be
extended in future work. Furthermore, though the webpages were inspected thoroughly, some
visualisations were challenging to find and could have been missed because 1) some webpages
have the policy that interactive charts are only available on screens of a specific size (i.e.
large screens), and 2) some webpages had a dense hierarchical organization and several levels
of nested content, which increased the difficulty of checking every interaction possibility. At
last, we mentioned in Section 3 that a portion of the dataset came from dashboards. The
extent to which these dashboards bias the performance results needs a systematic assessment
in future work.

5 Conclusion and Future Work

Given the increasing availability of (interactive) maps on the Web, there is a need for
techniques to automate their findability. While previous work has offered techniques for the
classification of static maps (e.g. figures in digital documents, SVG-based maps, shapefile-
based maps), there is still a need for the automated classification of interactive maps. To
address this gap, we have compiled a dataset to study the automated classification of inter-
active (geo)visualizations and performed a preliminary assessment of models’ performances
at the classification task. The results obtained show that interactive (geo)visualization
classification is indeed a challenging problem for existing models and deserves more attention
in future research.

Follow-up work to this article can be done along the following lines:
Dataset: The work in this article was exploratory and hence the dataset was collected and

annotated manually by one researcher only. The low hit rates observed during harvesting
call for further work to improve the efficiency of the harvesting workflow. Besides, previous
work [21] suggested that a crowd-sourcing approach to collect interactive geovisualization

GISc ience 2025
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annotations could be workable, but a large-scale dataset is still lacking. Hence, looking
into crowd-sourcing-based approaches for the annotation task is an important direction
for further work. The challenge here lies in simultaneously maintaining systematicity
during collection, diversity of visualization types and themes, quality of the annotations,
as well as producing more fine-grained annotations (e.g. the annotation should state not
only if there is a visualization, but how many there are and where these are located in
the web document if appropriate).

Representation and Classification: Regarding the feature-engineering approach, we only
looked into content information while engineering the features. Previous work [2, 23]
examined URL-based approaches to web-page classification and this could be investigated
also for interactive (geo)visualization classification. Furthermore, combining link and
content information is popular during classification [34] and could be considered in future
work as well. For instance, interactive maps about attractions in cities have a higher
likelihood to link to/be linked from tourist webpages; interactive maps covering events
as they unfold (e.g. war, earthquake, election results) have a higher likelihood of being
linked from news webpages; interactive geovisualizations in web-based notebooks such
as Observable (observablehq.com) have a higher likelihood of linking to/being linked
from other notebooks. This graph-based modelling of the interactive (geo)visualization
is intriguing and worth additional exploration in future work, along with appropriate
(graph neural network or end-to-end) architectures to boost the automated detection of
interactive maps and geovisualizations on the Web.
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