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Abstract
Reproducibility is a key principle of the modern scientific method. Maps, as an important means
of communicating scientific results in GIScience and across disciplines, should be reproducible.
Currently, map reproducibility assessment is done manually, which makes the assessment process
tedious and time-consuming, ultimately limiting its efficiency. Hence, this work explores the extent
to which Visual Question-Answering (VQA) can be used to automate some tasks relevant to map
reproducibility assessment. We selected five state-of-the-art vision language models (VLMs) and
followed a three-step approach to evaluate their ability to discriminate between maps and other
images, interpret map content, and compare two map images using VQA. Our results show that
current VLMs already possess map-reading capabilities and demonstrate understanding of spatial
concepts, such as cardinal directions, geographic scope, and legend interpretation. Our paper
demonstrates the potential of using VQA to support reproducibility assessment and highlights the
outstanding issues that need to be addressed to achieve accurate, trustworthy map descriptions,
thereby reducing the time and effort required by human evaluators.
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1 Introduction and Background

Maps play a key role in information visualisation, serving as an essential tool for com-
municating insights from geographic and spatial data. Geographic maps are published in
various outlets, from scientific journals to newspapers, which makes them accessible to a
wide range of audiences. Maps in scientific outlets, in particular, should represent the world
truthfully and accurately within known limits of precision [14], and ideally be reproducible
in order to provide reliable evidence for findings and facilitate the communication of science
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to society. Take, for instance, the field of environmental sciences, where climate change
debates have grown increasingly polarised. Maps can be powerful tools in these discussions,
but they can also be used to promote competing agendas. If inaccurate or misleading, maps
can lead to serious consequences, including poor decision making and hindered climate
action. This example illustrates a larger point: the need for transparent and reproducible
map making standards that can be applied across domains to support informed decision
making and maintain scientific integrity. Current practices of overpublishing that favour
quantity over quality in research publications [1], combined with the explosion of generative
artificial intelligence (AI), have made reproducibility increasingly important for establishing
the credibility of published research, for verifying results, and for enabling current studies to
be reused and built upon.

Reproducibility is defined as the ability to reach the same results previously obtained
by other researchers after repeating a scientific experiment based on the same data and
methods [18]. This can only be achieved if the data and software that underpinned a study are
transparent and accessible, but even then it is often not possible in practice to achieve exactly
the same results as the original study, especially when it comes to reproducing visualisations.
Inadequate documentation, the use of different software packages, and the reliance on implicit
system configurations are common causes of discrepancies between the reproduced results
and the original findings [15, 16, 19]. To ensure that a study is reproducible, the reproduced
results must be evaluated against the original results [12, 15, 17, 24].

Basing the evaluation of reproduced results on numerical values is generally a straightfor-
ward process: if all numbers are identical, the reproduction is considered successful. However,
visualised results, e.g. in the form of diagrams or maps, are easier to grasp for human
observers, but pose several challenges when used to assess reproducibility. Variations in
graph curves, missing key numbers, and different aspect ratios can make it difficult for
readers to determine if reproduced figures accurately reflect the original results, even when
the numerical data is identical [15]. In addition, an increased effort required for map reading
can negatively impact the evaluator’s assessment of the success of the map reproduction [17].
Therefore, computational support is essential for assessing reproduced maps in order to
increase efficiency and accuracy, as well as to facilitate the examination of geovisualisations
illustrating complex datasets. Besides, multiple maps can be derived from a single dataset
during scientific exploration. Nonetheless, reproducible map making focuses on creating a
faithful visual copy of an original map, without introducing any significant variations that
alter the map’s interpretation [16]. Hence, only two maps are of interest during reproducibil-
ity assessment: the original and its copy. The goal is to identify similarities or differences
between them - using supporting data, software, and documentation - without concern for
the map’s ontological status (e.g. as truth, social construct, or mappings [13]). Of course,
graphical excellence and graphical integrity [21] remain essential to ensure that both the
original and the copy do not distort effects in the underlying source data.

Question-answering (QA) can serve as a method for extracting and evaluating map
content [20]. Visual question-answering (VQA), the computer vision task of teaching machines
to comprehend the content of a picture and to answer questions about it in natural language,
can now be supported by vision language models (VLMs), which are multimodal large
language models (LLMs) capable of processing and understanding both text and image. For
example, Bendeck and Stasko [3] explored the potential of VLMs for the visual interpretation
of charts, confirming their capabilities while also highlighting their current limitations in
this task. Thus, we can infer that maps, as a specialised type of chart with explicit spatial
relationships between the depicted elements, could also benefit from these advancements.
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In order to investigate to what degree this is true in practice, we examined the ability of
five state-of-the-art models to support tasks related to map reproduction assessment. Our
goal was to assess whether VLMs can assist an independent reproducing researcher or a
reproducibility reviewer to verify that a map has been successfully reproduced. In particular,
we examined three tasks: map discrimination (distinguishing between map and non-map
images), map interpretation (answering questions about a map image accurately), and map
comparison (assessing the similarity of two maps based on a set of questions).

Recent studies in GIScience have explored the understanding of LLMs for spatial concepts.
For instance, Ji and Gao [11] evaluated the ability of LLMs (GPT-2, BERT) to represent
geometries and their spatial relations using LLM-generated embeddings. The results showed
the potential of LLMs to capture geometry types and spatial relations, while there is room
for improvement in estimating numerical values and retrieving spatially related objects.
The capacity of LLMs for spatial reasoning was also confirmed by Cohn and Blackwell [6].
However, they concluded that LLMs are not reliable for drawing conclusions about cardinal
directions and perform better in factual recall tasks rather than in spatial reasoning tasks.
Hojati and Feick [9] tested the performance of various LLMs in answering spatial questions
and providing methodological steps for arriving at each answer, both in natural language
and in SQL. Feng et al. [7] connected the prompt to an external knowledge base to develop
a Geographic Question Answering (GeoQA) pipeline, thereby extending the capabilities of
LLMs. Moving from text-only to multimodal input (i.e. text accompanied by images), Xu
and Tao [23] found that GPT-4V could retrieve information and perform basic analysis tasks
with maps. Griffin and Robinson [8] used the ChatGPT prompt to generate accessibility
descriptions for map input. While the aforementioned studies demonstrate encouraging
results, multimodal input has yet to be systematically tested for spatial concepts.

Our research addresses this challenge, setting the context of QA in relation to the
assessment of map reproducibility. The key contribution of this paper is the empirical
evaluation of five state-of-the-art VLMs for three key tasks related to map reproducibility
assessment: map discrimination, interpretation and comparison. Our findings demonstrate
that, albeit with certain limitations, VLM-enabled VQA can streamline the verification of
reproduced scientific results displayed on maps. In addition to its benefits in automating
reproducibility assessment, map VQA also has the potential to improve accessibility as it
opens up new possibilities for visually impaired readers to access information in figures.

2 Experimental Design

To examine the interpretation capabilities of VLMs for maps, we selected five state-of-the-art
VLMs based on performance and diversity. Specifically, we considered the models with the
highest scores on the vision leaderboard in the Chatbot Arena [5], ensuring that no two
models were from the same provider (e.g. Google or OpenAI). We did not consider models
that might be subject to rate limits or withdrawn without prior notice, such as those labelled
as experimental or preview. The selection was done at the beginning of January 2025 and
this led to the following five models: Gemini 2.0 Flash-001, GPT-4o (2024-11-20), Claude
3.5 Sonnet (20240620), Pixtral Large (latest), and Qwen-VL-Max. We narrowed down the
scope of this study by focusing solely on thematic maps and followed a three-step approach
to evaluate the map reasoning skills of the selected VLMs:
Step 1 – Map Discrimination The ability to distinguish between different types of charts -

between maps and non-maps in this case - is necessary for automating the reproducibility
assessment of visualisations. We considered this step a prerequisite for confirming that
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the VLM understands the concept of a geographic map and can therefore be used to
automate subsequent tasks related to the reproducibility assessment of geovisualisations.
Hence, we tested the ability of the models to differentiate between maps and other types
of charts. We assembled a dataset of 40 images, consisting of 20 maps and 20 charts of
other types, including pie, line, bar and point charts, and posed the question Is this image
showing a map?. To account for the diversity of maps encountered in different outlets,
we sourced maps from Our World in Data, which targets broader audiences, and from
the scientific Journal of Maps. The selected maps cover a range of geographic scopes,
from regional to global; different layout and legend styles; and different applications, from
geological to socio-economic indicators. All the images we sourced were licensed under
CC BY.

Step 2 – Map Interpretation Extracting and evaluating information from maps is essential
for assessing the equivalence between one map and another. Therefore, we tested the
VLM’s ability to read and interpret geographic maps. We asked eight questions about
map interpretation on the map subset from the map discrimination task, each question
addressing one of the following dimensions: map type, spatial scale, geographic scope,
orientation, visualised data, symbology, legend recognition, and legend-data consistency.

Step 3 – Map Comparison The final step in assessing reproducibility is to compare the
reproduced result with the original, as mentioned in Section 1. Therefore, we evaluated
the VLMs’ map comparison capabilities. For this step, we used a dataset of 20 maps that
differ from each other in only one dimension, such as orientation, symbology, or legend,
to assess whether the models can identify subtle visual nuances that are relevant in
geographic information visualisation. We provided two maps as input to the models and
asked six questions about their differences, following the guidelines on the importance of
visual differences in assessing map reproducions provided by [17]. The questions addressed
similarities in the topic, geographic extent, orientation, positions of the visualised data,
legend, and symbology. All questions were formulated to be answerable with yes or no,
so that a human evaluator could quickly skim through the automated responses and
determine whether any significant differences were identified.

The aforementioned steps were implemented using the models’ APIs in Python scripts.
In the API calls, we set the models’ attributes temperature to “0” and, if applicable, seed to
the same random integer (“123”) to make the model as deterministic as possible. We also set
the maximum number of tokens in the model’s response to 128, assuming that this number of
tokens should be sufficient to provide a focused answer. If the model exhausted this limit for
most answers, we reran the test and set a new maximum number of 160 tokens. We did not
extend the token limit beyond this number. Additionally, we measured the time each model
took to respond to each prompt and calculated the mean completion time per output token.

A sample of the dataset for all three steps is shown on Figure 1. The entire dataset and
the scripts created for this experiment can be accessed at https://doi.org/10.17605/OSF.
IO/W4BQG.

Evaluation

We evaluated the accuracy of the map discrimination task based on the model’s ability
to correctly answer yes or no, without further analysing the responses. For the map
interpretation and comparison tasks, we evaluated the models’ constrained response accuracy
by classifying an answer as correct if all the information provided within the specified token
limit was accurate; otherwise, it was classified as incorrect. This metric indicates the model’s
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Figure 1 A selection of images from the dataset we compiled. Images are sourced from Our World
in Data (https://ourworldindata.org/data) and Vlkova et al. [22] under the CC BY license,
and our own creations. The map comparison figures were generated by systematically varying one
dimension (e.g. color, orientation, or symbology) of an existing map image.

ability to provide an accurate answer to the question within the specified token limit, without
including any false information. For example, if the model gave a correct answer but provided
a false justification or included any incorrect information along with the answer, we marked
it as incorrect. Similarly, if the model provided several true facts but failed to explicitly
answer the question within the token limit, we also marked it as incorrect. Our guiding
principle for the evaluation was whether the model could be trusted to provide accurate
information without requiring our supervision. During the evaluation process, we kept a log
of issues that arose and could help further characterise the use of VLMs for this purpose,
but that could not be quantified in terms of correct/incorrect percentages. We also did this
to gain a qualitative impression of the models’ strengths and weaknesses.

Prototype

As mentioned in Section 1, automated tests are a desirable asset for map reproducibility
assessment. With the best performing model, we built a browser-based tool that allows
users to upload two map images, run the evaluation process, and determine if the second
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image has been successfully reproduced. The evaluation process is based on the questionnaire
we created for the map comparison task. Additionally, we implemented a simple overall
evaluation function that counts the number of yes and no answers, and returns a successful
status if more than half of the questions were answered with yes and unsuccessful otherwise.
We also integrated the calculation of cosine similarity based on the image embeddings of
the two input images as an initial quantitative indicator of their similarity. The code of the
prototype can be found at https://doi.org/10.17605/OSF.IO/W4BQG.

3 Results

We ran all the experiments from the same Ethernet cable endpoint, which theoretically
provides a 1000 Mbps Internet connection. In practice, we measured 936.71–937.38 Mbps for
download and 874.27–933.74 Mbps for upload. We found the average completion time per
output token, from shortest to longest, to be as follows: Pixtral Large (0.06 seconds), Gemini
2.0 Flash (0.08 seconds), Qwen-VL-Max (0.10 seconds), Claude Sonnet 3.5 (0.11 seconds),
and GPT-4o (0.15 seconds). However, Gemini 2.0 Flash had the fastest overall completion
time, as it provided shorter answers compared to the other models.

In the map discrimination task, all models were able to differentiate perfectly between
maps and non-maps. It is worth mentioning that one of the geographic maps in this dataset
included pie charts illustrating the ratio of mountain area to land surface for each continent,
and all five models correctly classified this image as a map. It should also be noted that Qwen-
VL-Max rejected nine of the 20 map images used as input for the map discrimination and map
interpretation tasks. The error message returned was: “Input data may contain inappropriate
content.” We were unable to identify any pattern related to map topic, geographic extent, or
image resolution.

For the map interpretation task, we found the constrained response accuracy, from highest
to lowest, to be as follows: Gemini 2.0 Flash (80%), GPT-4o (77%), Claude Sonnet 3.5 (76%),
Qwen-VL-Max (69%), and Pixtral Large (58%). The lower performance of Pixtral Large
is mostly due to an inability to give concise answers within the token limit, rather than
providing factually inaccurate information. Qwen-VL-Max and Pixtral Large appear to
rely heavily on Optical Character Recognition (OCR), as they seem to repeatedly use the
text extracted from the image in their responses. This, combined with the text generation
module, can lead to vague answers. Pixtral Large also tends to continue describing the
entire image even after answering the question. The constrained response accuracy per
question for the map interpretation task is shown in Table 1. We can observe that almost all
models performed worst on the question What is the spatial scale of the map?. We accepted
answers related to the scale bar as correct; however, the models often ignored the scale
bar, misinterpreted it, or referred to the geographic extent instead. Conversely, the models
achieved the highest average constrained response accuracy on the question regarding the
geographic scope.

The models were able to identify and distinguish between several types of maps beyond
thematic, including choropleth, topographic, tectonic, proximity, land cover and habitat
suitability maps. GPT-4o provided the most diverse responses to this question. All models
were able to identify inset maps, although they were not explicitly asked to do so. Moreover,
the models are already performing some level of fact-checking, such as identifying the location
of the highest mountain peaks. The generative nature of VLMs is also evident, as they tend
to elaborate on aspects that were not the subject of the question. Gemini 2.0 Flash exhibited
this behaviour the least.

https://doi.org/10.17605/OSF.IO/W4BQG
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To answer the question What data are visualised on the map?, the models essentially
parsed and repeated the legend. They showed a good understanding of what a legend is and
were able to recognise different legend formats. However, mapping visual symbols to their
corresponding values is not always straightforward, especially in horizontal legends where
each colour represents a range of values. We found Claude Sonnet 3.5 to be particularly
effective at legend interpretation, providing many details.

Table 1 Constrained response accuracy per question for the map interpretation task.

Gemini 2.0

Flash GPT-4o
Claude

Sonnet 3.5
Pixtral Large

Qwen-VL-

Max Average per

questi
on

What type of map is this? 90% 80% 65% 55% 91% 76%
What is the geographic scope of the
map?

95% 95% 70% 75% 82% 83%

What is the orientation of the map? 95% 90% 90% 85% 45% 81%
What data are visualised on the map? 90% 70% 95% 80% 73% 82%
What symbols are used to visualise the
data on the map?

80% 65% 80% 45% 64% 67%

Does this map contain a legend? 70% 95% 85% 50% 82% 76%
Is the legend consistent with the visu-
alised data?

90% 90% 75% 40% 64% 72%

What is the spatial scale of the map? 30% 30% 50% 35% 55% 40%

Average per model 80% 77% 76% 58% 69%

For the map comparison task, we found the constrained response accuracy, from highest
to lowest, to be as follows: GPT-4o (86%), Gemini 2.0 Flash (85%), Qwen-VL-Max (81%),
Pixtral Large (74%), and Claude Sonnet 3.5 (73%). The constrained response accuracy
per question for the map comparison task is shown in Table 2. We can observe that the
performance in this task is better than in map interpretation. This could either be because
the second image acts as additional context or reference, helping the model to provide
accurate answers, or because the maps used for this task are less complex. The models
achieved the highest average accuracy for the question on legend similarity, further reinforcing
the impression that VLMs can effectively identify the map legend as a distinct object. All
models scored lowest on the question Do the two maps visualise the same data in the same
positions?. Our dataset included a map with data points shifted by several pixels compared
to the original, but no model identified the difference. Claude Sonnet 3.5 responded that
there was a difference in the data positions, but justified its answer by mentioning a difference
in the distribution of colours. Moreover, when we presented two maps that show the same
data but differ slightly in geographic extent (i.e. one map looks “zoomed in” compared to
the other), Pixtral Large and GPT-4o interpreted this difference as a change in the visualised
data pattern. This suggests they may be counting pixels rather than using object-based area
quantification.

All models detected a difference in the units of measurement in the legend (cm instead of
mm). GPT-4o, Pixtral Large, and Claude Sonnet 3.5 correctly identified a difference in the
font, while GPT-4o and Gemini 2.0 Flash detected a change in the base map. All of these
differences were detected by the models without explicitly asking for them in the prompt.

GISc ience 2025
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Table 2 Constrained response accuracy per question for the map comparison task.

Gemini 2.0

Flash GPT-4o
Claude

Sonnet 3.5
Pixtral Large

Qwen-VL-

Max Average per

questi
on

Are these maps about the same topic? 100% 100% 63% 79% 74% 83%
Do the maps have the same geographic
extent?

74% 84% 68% 74% 89% 78%

Do the maps have the same orienta-
tion?

89% 79% 84% 74% 79% 81%

Do the two maps visualise the same
data in the same positions?

74% 68% 58% 53% 63% 63%

Do the two maps have the same le-
gend?

89% 95% 89% 74% 89% 87%

Do the two maps use the same symbols
for the visualised data?

84% 89% 74% 89% 89% 85%

Average per model 85% 86% 73% 74% 81%

4 Discussion and Outlook

Our results show that VQA is a promising tool for assessing map reproducibility. No
model performed equally well on all questions, but the accuracy values obtained during the
evaluation suggest capabilities to assess the content of a reproduced map that go beyond
pixel-wise comparison. Another advantage of using VQA to assess reproducibility is its
independence from specific tools, as it is only the data format of the final cartographic
product that matters and not whether we have used scripts or desktop GIS to produce it.
The use of VQA for content-based map comparison offers a new approach to assessing the
equivalence of geovisualisations, not only in the context of reproducibility, but also in other
scenarios, such as creating equivalent visualisations for different audiences (e.g. the scientific
community, policy makers, the general public).

Questions where the response accuracy values are particularly low (Tables 1, 2) indicate
areas for future research so that the models can come to the point where they can be
confidently used in automated assessment workflows. Also, the reasons that affect the
performance of a model (e.g. impact of the number of parameters, training process) should
be systematically investigated in future work before its integration into these workflows.

Furthermore, two key conceptual issues must be addressed before integrating a VQA
approach into automated systems. First, ensuring transparency throughout the entire
assessment process is essential, which poses a challenge when working with VLMs/LLMs. If
integrated into an automated assessment system, a model should be explainable to ensure
fairness in automated decisions and to promote trust [2]. At the moment, the best model
is Gemini 2.0 Flash, based on both speed and constrained response accuracy. However,
relying on closed-source, proprietary models for such tasks contradicts the principles of
open science. An automated reproducibility assessment system should itself be verifiable
before it is used to verify scientific outcomes. To achieve this, we need open-source models
with better performance. Another issue to resolve before automating the reproducibility
evaluation process is determining the threshold for success. In this paper, we have based this
evaluation on the similarity of the reproduced map to the original. While this comparison
is necessary to confirm reproducibility, it is not sufficient on its own; factors such as the
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accessibility of materials and the computational effort required for reproduction also indicate
how reproducible a study is. While moving beyond pixel-based comparisons is a step forward,
the question remains: how should reproducibility and reproduction success be quantified?

Future research should continue to advance our understanding of map comparison and
VQA capabilities. One potential avenue for exploration involves investigating alternative
comparison strategies other than the yes/no question approach that we followed. For
example, we could perform text similarity computations on the answers, and examine
additional comparison dimensions such as the units of measurement or the basemap. The set
of questions used in this study was deliberately kept simple in order to have a consistent
evaluation of the VLMs’ responses across the different maps in our dataset and to establish
an initial baseline for VLM evaluation. Developing more sophisticated and context-specific
questions is part of our future work. Additionally, exploring the ability to accurately retrieve
specific data values from different positions on the map presents another promising area for
future research. It is also worth investigating the extent to which VLM responses are based
on the textual elements on the maps and how well VQA would perform on maps with no or
very little text.

Overall, the ability to get accurate descriptions of maps with VQA is remarkable not
only for map reproducibility assessment, but also because it opens up new ways for visually
impaired people to access information for the first time. It is also a step towards the
democratisation of science, where VQA can be used by the public to get explanations of
scientific geovisualisations [4].

Limitations

There are several limitations to our work. Firstly, we set the maximum number of output
tokens to 128, with an option to extend it to 160. This means that the models might
have hallucinated more (i.e. presented false information as fact [10]) or might have come
to a different conclusion if we had allowed a higher limit. It is necessary to assess the
sensitivity of the results to the maximum number of output tokens by setting different limits,
evaluating the outcomes, and determining whether the results remain consistent across
different limits. Furthermore, constrained response accuracy is only an initial measure of
the models’ performance. We did not develop specific metrics for conciseness, focus, or
completeness, only qualitative notes were taken during the evaluation. Finally, the comparison
task focused on maps varying along a single dimension, as mentioned in Section 2. The
performance of VLMs on maps that differ across multiple dimensions, which adds complexity
to this task, remains to be tested.

5 Summary

In this paper, we investigated the ability of five popular VLMs (Gemini 2.0 Flash, GPT-4o,
Claude Sonnet 3.5, Pixtral Large, Qwen-VL-Max) to discriminate, interpret, and compare
geographic maps using VQA. We compiled a set of 40 chart images (20 maps and 20 charts
of other types) to test whether the VLMs can distinguish between maps and non-maps.
Subsequently, we evaluated the VLMs using only the map images by asking questions covering
eight dimensions of map interpretation. After confirming the potential of these models for
interpreting geographic maps, we proceeded to evaluate their map comparison capabilities
by providing two maps as input and asking questions about their identified differences across
six dimensions relevant to assessing map reproduction [17]. For the comparison task, we
used 20 maps that differ in only one dimension. While preliminary, our results show that
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all five VLMs already possess spatial understanding and map reading skills. Our next steps
in this line of research will aim to improve the models’ performance and to develop more
sophisticated strategies for comparing maps and quantifying their differences. Ultimately,
we are working towards integrating VQA into systems that automate map reproduction
assessment and support scientific fact-checking, enabling reproducibility reviewers to quickly
verify scientific results.
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