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—— Abstract

Geospatial analysis has been widely applied in different domains for critical decision making. However,
the results of spatial analysis are often plagued with uncertainties due to measurement errors, choice
of data representations, and unintended transformation artifacts. A well known example of such
problems is the Modifiable Areal Unit Problem (MAUP) which has well documented effects on the
outcome of spatial analysis on area-aggregated data. Existing methods for addressing the effects of
MAUP are limited, are technically complex, and are often inaccessible to practitioners. As a result,
analysts tend to ignore the effects of MAUP in practice due to lack of expertise, high cognitive
loads, and resource limitations. To address these challenges, this paper proposes a machine-guidance
approach to augment the analyst’s capacity in mitigating the effect of MAUP. Based on an analysis
of practical challenges faced by human analysts, we identified multiple opportunities for the machine
to guide the analysts by alerting to the rise of MAUP, assessing the impact of MAUP, choosing
mitigation methods, and generating visual guidance messages using GIS functions and tools. For each
of the opportunities, we characterize the behavior patterns and the underlying guidance strategies
that generate the behavior. We illustrate the behavior of machine guidance using a hotspot analysis
scenario in the context of crime policing, where MAUP has strong effects on the patterns of crime
hotspots. Finally, we describe the computational framework used to build a prototype guidance
system and identify a number of research questions to be addressed. We conclude by discussing how
the machine guidance approach could be an answer to some of the toughest problems in geospatial
analysis.
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1 Introduction

Geospatial analysis plays a critical role in a range of domains [30]. For example, public health
professionals used geospatial analysis to track disease outbreaks and plan interventions.
During the COVID-19 pandemic, analysts used GISystems to map infection hotspots,
model transmission patterns, and allocate healthcare resources efficiently [38]. Practical
applications of geospatial analysis in these professional domains involve complicated processes
of managing multiple datasets, selecting appropriate spatial scales and methods for analysis,
and interpreting geographic patterns. This can be extremely challenging for people without
adequate GIS expertise [54] and spatial thinking skills [31, 36, 34].

Due to the unique nature of geographical data, spatial analysis results often suffer from
uncertainties in data accuracies, measurement frameworks, transformation artifacts, and
spatial heterogeneity [40]. Addressing these uncertainties is essential for ensuring reliable
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conclusions and decisions. In particular, the Modifiable Areal Unit Problem (MAUP) [20, 51]
is a well-known issue that often makes the results of a spatial analysis unreliable. Although
the concept of MAUP and related factors is well documented, most analysts choose to
ignore MAUP effects in practice due to lack of expertise, high cognitive loads, and resource
constraints [50, 26]. Even if analysts are committed to addressing the effects of MAUP, there
is very little help and guidance on how to decide the proper strategies and methods in a
specific problem-solving context.

To bridge this skill gap for addressing modifiable area unit problem in spatial analysis,
we propose a machine guidance approach that captures the knowledge and experience
necessary for dealing with MAUP into an intelligence agent. While human analysts conduct
spatial analysis, a machine guidance agent is capable of monitoring the progression of the
spatial analysis process and volunteers help and guide in two ways: (1) detect situations
where MAUP takes effect and (2) direct users to take proactively measures to mitigate its
impact on analytical results. Designing such a machine guidance agent requires that we
answer a number of research questions:

1. Why do analysts tend to ignore MAUP in spatial analysis? We identified seven (7) reasons
why people failed to address MAUP effectively (see Section 3.3). This analysis provides
us insights on opportunities for machine guidance.

2. What factors contribute to the level of MAUP effects? The effects of MAUP on analytical
results could range from negligible to serious depending on the degree of spatial autocor-
relation and spatial heterogeneity, data aggregation methods, and the choices of scale
and area units (see Section 3.1). Understanding these causal factors leads to ideas and
methods to mitigate MAUP effects.

3. What are the methods and tools available to address the effects of MAUP? We synthesize the
scattered literature and identify eight methods that are used to help analysts understand
the nature and extent of MAUP effects and minimize the effects on the analysis (see
Section 3.2). Using these methods requires a significant level of GIS expertise and is
cognitively challenging.

4. What are the opportunities and strategies of machine guidance in addressing MAUP?
Machine guidance exhibits helpful behavior that should be offered only when MAUP arises
and when users need help mitigating the effects of MAUP. We identify seven recognizable
opportunities and prescribe guidance strategies for them (see Section 4).

5. How would users (analysts) experience machine guidance? We demonstrate how users
experience guidance by presenting a scenario of use in the context of crime hotspot
analysis where the machine guidance agent helps the analyst in dealing with the MAUP.
Through the scenario, we gain insight into the expected behaviors of machine guidance.

6. How can we enable machine guidance computationally? We show how machine guidance
can be enabled computationally by a software agent that can engage with users in
collaborative problem solving. Our computational framework was inspired by guidance
research in visual analytics [10, 11], advances in mixed-initiative interfaces [53], and
intention-based interactions with GIS [9].

By answering the above research questions systematically, this paper contributes to a
theoretical foundation of machine guidance in GIScience research. Developing machine
guidance tools for geospatial analysis is our long-term goal, and we provide here an initial
framework for exploring the design challenges in both conceptual and computational levels.
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2 Machine Guidance Approach to Address the MAUP
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Figure 1 Collaborative Agent architecture of machine guidance.

Machine guidance is an active process of addressing the cognitive challenges and expertise
gaps of users that hinder their analytical progress [11]. This approach argues for solving
complex and difficult problems by bringing human and computer into a collaborative work
relationship [61]. Collaboration is a process in which two or more agents work together to
achieve a shared goal. In our case, we introduce a machine guidance agent to partner with a
human agent in spatial analytic activities.

Figure 1 shows the collaborative relationship between human analysts and the guidance
agent. A machine guidance agent is an intelligent computational agent that actively assists
users during analytical processes by offering contextual guidance, recommendations, and
feedback [12]. Tt can recognize when the analyst encounters difficulties and how to help [11]
by integrating reasoning, planning, and communication.
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Figure 2 Machine guidance Approach to Supporting Geospatial Analytic Process.

A key capability of a machine guidance agent is to monitor the progression of a spatial
analysis process and to volunteer help and guide when needed. As illustrated in Figure 2, the
process of solving a domain-specific problem using geospatial analysis generally starts with
developing a spatial representation of the problem, followed by the formulation of spatial

14:3

GlScience 2025



14:4

Guiding Geospatial Analysis Processes in Dealing with MAUP

questions and the assembly of analytical GIS workflows. Throughout this process, a machine

guidance agent works alongside to assert necessary guidance when the human analyst gets

lost in navigating the problem and solution space and to steer users away from any dangers
and risks under uncertainties.

The task of guiding analysts in dealing with MAUP effects is the responsibility of the box
labeled 'Guiding Analytical Strategies and Methods . Zooming into this box, our current
work aims at the following two objectives (also summarized in Figure 3):

Obj-1 Building awareness of MAUP effects. The guidance agent actively monitors the
analytical process to identify indicators of MAUP occurrences (such as the use of
area-aggregated data for analysis). When an MAUP issue occurs, the guidance agent
should alert its dangers and potential effects. If the analyst ignores it or is reluctant
to address it, the guidance agent plays a role in convincing the analyst to do more
exploration to understand the effects on the analytical conclusions.

Obj-2 Bridging the gaps of expertise in mitigating MAUP effects. If the analyst is
committed to addressing the MAUP effects, the guidance agent will direct or assist
the process of experimenting with multiple spatial units and scales, applying various
methods to verify and confirm the choices of area units, and prescribing GIS workflows
for proper implementation. Machine guidance simplifies this process by automating
repetitive tasks, providing statistical references, and offering immediate feedback on
potential solutions. This allows analysts to focus on steering the analysis to achieve
confident results.

Not Aware of Convince
MAUP MAUP N Alert Lack of motivation »! by exploring
occurs ”| rise of MAUP | to handle MAUP ™| 110 ctects
Committed to mitigate MAUP effect
€
h-strategies s?;%ggis;s »| Prescribe GIS
and methods workflows

Figure 3 Machine guidance objectives in dealing with MAUP.

Given the above objectives, it is important to establish a deep understanding of how
MAUP arises in spatial analysis, what factors contribute to the serenity of MAUP effects,
and what methods and tools are available to explore and mitigate MAUP effects. We will
answer the above questions through synthesizing the literature.

3 Nature of the Modifiable Areal Unit Problem (MAUP)

Many applications of geospatial analysis use area-aggregated data as the primary unit of
analysis [64, 33]. Data aggregation by area units smooths out local variations, potentially
masking important spatial patterns and heterogeneity within areal units. Spatial analysis
using area-aggregated data often relies on the assumption of internal uniformity within
each area unit. This assumption is rarely true in real world contexts, where factors such as
population density, land use, and environmental conditions can vary considerably within a
single region. A key issue stems from the wide variety of potential spatial units available
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for analysis, including administrative boundaries, census tracts, natural zones, and regular
grids. The results of spatial analyses can differ markedly depending on which of these areal
units is selected. Openshaw [49] demonstrated this phenomenon by showing how correlation
coefficients changed when smaller spatial units were aggregated into larger ones. His findings
revealed that correlation values can fluctuate between different spatial scales. This effect,
known as the Modifiable Areal Unit Problem (MAUP), undermines the credibility of analyses
based on arbitrarily chosen spatial units, casting doubt on the reliability and validity of the
resulting conclusions.

The effects of MAUP on analytical results could range from negligible to very serious.

This variability of MAUP effects can be explored by comparing analytical results on different
spatial scales (thus the scale effect [27]) or using different zoning schemes (thus zoning
effects [18]). Fotheringham and Wong [25] demonstrated that spatial aggregation introduces
biases that vary depending on the chosen scale. This highlights how the choice of spatial
scale significantly impacts analytical outcomes, emphasizing the importance of selecting
an appropriate scale for an analysis. The zoning effect, on the other hand, arises from
the specific configuration of spatial units. Even with the same number of zones, different
boundary arrangements can produce drastically different statistical outcomes. Openshaw and
Taylor [50] experimented with the use of alternative configurations of counties to compute
the strength of correlation and they showed that the results of correlation coefficients ranging
from 0.265 to 0.862, highlighting the inherent instability in spatial analysis.

3.1 Factors that Cause MAUP Effects

Although MAUP is a general concern in spatial analysis, the actual effect of MAUP on the

validity of spatial analysis results could be negligible in some cases and highly problematic

in other cases. It is very important to understand the key factors that contribute to the
magnitudes of MAUP effects. Here, we synthesize the literature and highlight four major
factors.

F1 The Nature of Boundaries of Area Units. The boundaries of area units could
be functional (e.g., natural regions, watersheds, transportation zones) or arbitrary
(for example, grids, hexigon). Spatial analysis should avoid arbitrary delineated area
boundaries and align with natural boundaries when possible [63]. For example, in crime
mapping, the use of square grids can cut through natural neighborhoods, distorting
patterns. Instead, mapping crime hotspots using police districts or neighborhoods tends
to generate more reliable results.

F2 Data Aggregation Methods. Data aggregation methods, such as summing, averaging,
or interpolation, determine how data values are combined within spatial units. Different
aggregation methods affect both the scale effect (how the results change with different
levels of aggregation) and the zoning effect (how results change with different boundary
configurations) [37]. The choice of data aggregation methods directly influences the
representation and interpretation of spatial patterns, adding another layer of complexity
to the MAUP.

F3 The Degree of Spatial Autocorrelation. Spatial autocorrelation reflects the similarity
between nearby observations. When strong positive spatial autocorrelation is present,
neighboring areas tend to have similar values. Aggregating them into larger units
inflates spatial dependence, potentially exaggerating trends [41]. The size of areal
units significantly influences the strength of spatial autocorrelation, with larger units
generally exhibiting lower levels of autocorrelation compared to smaller ones [14]. If
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F4

F5

data is aggregated into arbitrary zones, highly autocorrelated spatial data can produce
misleading results, as patterns depend on the aggregation scheme rather than the
underlying process [47].

The Scales and Complexities of Spatial Processes. Spatial processes are mecha-
nisms that generate observable patterns. Examples include natural processes (e.g. erosion
and climate change) [19, 52] or human-driven processes (such as migration and urban
expansion) [4, 3]. These processes shape spatial patterns across geographical spaces [17].
Since each process operates in a certain scale, the pattern they generate is likely to be in
similar scale. Therefore, choosing area units for analysis should consider the alignment
with the scales of the underlying processes of the observed patterns [24]. If the chosen
area unit in a spatial analysis is inconsistent with the scale of the processes, the effect of
MAUP would be worse. What complicates the above rule is that the patterns of real-
world phenomena may be the result of multiple processes at different scales interacting
in space [65]. This could make any choice of area units seem arbitrary [25].

Impact of Spatial Heterogeneity. Spatial heterogeneity refers to the variation in
spatial patterns, relationships, and statistical properties at different locations in a study
area. This implies that the processes governing spatial phenomena do not operate
uniformly across space, leading to location-dependent variations in data distributions
and relationships. Spatial heterogeneity violates the stationarity assumptions by many
statistical models, such as Ordinary Least Squares (OLS) regression, which assume
that the relationships between variables are constant across space. The degree of
spatial heterogeneity can change depending on the spatial scale or level of aggregation.
Aggregating data into larger units (e.g., counties versus census tracts) may mask local
variations and distort spatial patterns, which could lead to larger MAUP effects [37].

3.2 Methods for Addressing MAUP

Methods for addressing the MAUP target its underlying causes identified in the last section.
Some of the methods (such as sensitivity analysis and multi-scale analysis) help analysts to
understand the extent of MAUP effects. Other methods help to choose appropriate area
units to mitigate the effects of MAUP by tackling the causal factors of MAUP (as listed in
Section 3.1). We discuss a few commonly used methods and their contexts of use.

M1

M2

M3

Multi-Scale Analysis conducts analyses at multiple spatial scales. A multi-scale
analysis typically begins with small-scale spatial units and then aggregates to larger
units as necessary. This strategy ensures that event concentrations at both micro
and macro levels are captured, aligning with the analytical context and addressing
practical limitations such as data availability and collection challenges [5]. For example,
Jelinski [37] used this method to assess how changes in spatial resolution from census
tracts to counties affect statistical results.

Sensitivity Analysis. Sensitivity analysis runs the same analysis at multiple times
by systematically varying the boundary configurations (e.g., administrative zones vs.
equal-area grids vs. hexagons) of area units to test the stability of results [49]. For
example, voting analysis may be repeated on changing district boundaries to see if
electoral outcomes remain stable under different zoning schemes. The method can help
to draw the analyst’s attention to the serenity of MAUP effects [50].

Fitness of Use. Instead of seeking a single “best” unit, analysts should consider the
fitness for use as the principle when choosing area units for aggregation. For example,
analyzing crime hotspots for policing decisions should consider what spatial zones used
for deciding police dispatching decisions. If police ward precincts areas are used for
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M4

M5

M6

M7

dispatching police, then, analysis should use ward precincts areas if possible. The
condition is that the choice is adequate for fulfilling the analytical objectives in a given
context [42, 15].

Respect Scales and Boundaries of Spatial Processes. Based on our understanding
of the relationship between the nature of spatial processes and MAUP effects (F4), the
choice of area unit and aggregation scale should reflect the properties of the underlying
processes that created the patterns in the data [24]. Because application domains are
concerned with different phenomena and different analytical goals, the choice of spatial
units is likely to be domain-specific and goal-specific. If we know that a process is
operating at a particular scale, then, the choice of spatial units for analysis should
respect that scale. Similarly, if the process underlying a pattern create certain boundary
conditions, the choice of area unit boundaries for analysis should also respect the this
property to minimize the effect of MAUP due to (F1). For example, Buzzelli [7] used
census data to study the correlation of patterns between residents of chinese origin and
indian origin and he hinted on the need for interpretive skills of a human geographer to
draw insights from residential segregation processes.

Spatial Smoothing Techniques. Spatial smoothing techniques help mitigate the
effects of the Modifiable Areal Unit Problem (MAUP) by reducing abrupt variations
caused by arbitrary spatial unit definitions. For example, Kelsall and Wakefield [39]

used kernel density estimation to create continuous surfaces from discrete areal data.

Spatial interpolation techniques (e.g., Kriging and Inverse Distance Weighting) predicts
values at unsampled locations, reducing dependency on arbitrary zone definitions. This
method is to used to mitigate the effect of MAUP due to (F3).

Measuring Spatial Non-Stationarity and Local Variations. To address the impact
of spatial heterogeneity to MAUP effect, measures of spatial non-stationarity and Local
Variations, such as Geographically Weighted Regression (GWR) [6], Local Moran’s I [2],
and Getis-Ord Gi [28], provide insight on the level of local variations. This insight could
help the analysts to choose spatial units for analysis to reduce the impact of MAUP.
Exploratory Spatial Data Analysis (ESDA) techniques. ESDA methods can be
used to detect and mitigate MAUP effects by evaluating spatial patterns at multiple
scales and aggregations. For example, by computing and visualizing Moran’s I [2] for
different aggregation levels, analysts can get a sense if spatial autocorrelation remains
stable across scales. If stable, the results are less affected by MAUP. If Moran’s I
fluctuates, it suggests strong MAUP effects. ESDA techniques provides insights into
the spatial structure and helps identify appropriate scales for analysis. Visualization

methods can be used to compare and analyze differences and variations in results [50, 25].

3.3 Practical Challenges of Addressing Modifiable Areal Unit Problems

Despite the rich set of methods to understand and mitigate the MAUP effect (as reviewed in

Section 3.2), the effect of MAUP in practical spatial analysis is often overlooked, ignored,

or not adequately addressed [25, 18]. This behavior can be explained by understanding the

challenges faced by human analysts when dealing with MAUP effects. Here, we discuss

seven (7) challenges that explain why people fail to address MAUP effectively.

C1

Lack of Awareness. Human analysts keep their attention on answering analytical
questions [31]. They may not be aware at the time when an MAUP issue arises. When a
stage of spatial analysis involves the use of area-aggregated data, an analyst may not
understand how MAUP can affect their analysis. This happens to people even if they
have learned MAUP in geography and GIS courses [16, 47].
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C2

C3

c4

C5

Cé6

Cc7

Perceived Insignificance of MAUP. Even when analysts are fully aware of the
presence of MAUP-related issues in their analysis, they may choose to ignore them,
believing that the impact is too minor to justify the effort required to address it. This
belief was partially established by prior research findings. For example, Openshaw [50]
showed that the effects of MAUP are often subtle and context-dependent, making it
easy to dismiss its importance. Dark and Bram [18] found that the analyst often hold a
wrong belief that the conclusions drawn on one scale or zoning scheme will hold on for
the other, although this is rarely the case. This has led some analysts to choose not to
act on MAUP issues.

Data Availability. Exploring the effect of MAUP on spatial analytic outcome requires
the availability of data at different scales of area aggregation and different zoning schemes.
In reality, data are often available only at specific administrative or aggregated levels
(e.g., census tracts, districts), limiting the ability to analyze at finer resolutions. High-
resolution data and individual-level data can be difficult to obtain [20, 25, 60]. Wong [64]
noted that researchers frequently rely on preaggregated data due to privacy concerns,
cost, or logistical constraints, which restricts their ability to address MAUP.

Practical Constraints. Applying GIS methods (as discussed in section 3.2) to mitigate
the MAUP effects costs time, computing resources, and human effort. In real world
practices, analysts are often under pressure to deliver actionable results and have limited
time and resources, making it impractical for analysts to fully explore how scale or zoning
choices influence results [18].

Convenience of Choice on Default Spatial Units. Analysts often use default
spatial units (e.g. administrative boundaries) for convenience without considering
their appropriateness for the analysis. Dark and Bram [18] argue that administrative
boundaries are often arbitrary and may not be aligned with the underlying spatial
processes being studied.

Lack of Expertise in Applying Complex Methods. As noted in Section 3.2,
addressing MAUP requires a thorough understanding of the available methods, the
conditions under which specific methods can be applied, and how to implement them
using matched tools in a GIS. The expertise in choosing and applying the appropriate
methods to practical problems is rarely available to most analysts.

Lack of Tool Support. Methods for mitigating MAUP effects are challenging to
practice because they require support from GIS tools. Although relevant analytical
tools are available in popular GISystems, such as ArcGIS, they are not structured and
streamlined for the purpose of dealing with MAUP effects. The application-dependent
nature of MAUP effects makes it difficult to design tool support.

Machine guidance can help human analysts overcome each of the above challenges to

achieve reliable and confident analytical results. Machine guidance can monitor the spatial
analytical process and alert analysts when the MAUP effect comes into play (C1), convince
them by showing them the danger of not addressing MAUP (C2, C3, C4, C5), and provide
suggestions on proper methods and tools to mitigate MAUP effects (C6, CT).

4

When and How to Guide?

Given the inherent complexities and challenges of addressing MAUP, there are critical
moments where machine guidance can effectively assist analysts. In this section, we use the
seven key challenges in addressing MAUP (as outlined in Section 3.3) to pinpoint critical
moments when guidance is needed. Table 1 characterizes the possible guidance opportunities
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corresponding to the seven user challenges. For example, guidance can be inserted when the
system detects that the analysis involves the use of area-aggregated data in geostatistical
analysis (G1).

Table 1 Opportunities For Asserting Machine Guidance.
[Note: C1-C7 correspond to the user challenges described in Section 3.3. S1-S11 are guidance
strategies described in Table 2.]

User Challenges

Opportunities

C1: The analyst is unaware
of the MAUP.

G1: The guidance should inform the analyst that the MAUP effects
can be involved (S1) and thus encourage the analyst to explore more
on its effects (S2, S3).

C2:The analyst does not
know whether MAUP is crit-
ical in the current situation.

G2:The guidance assesses whether there is a significant effect of the
MAUP. If yes, the analyst will be convinced to address the MAUP by
showing what are the possible consequences if MAUP is not addressed

(S2, S3).

C3: Limited data availabil-
ity for exploring and mitigat-
ing the MAUP effects.

G3:The guidance can help the analyst by 1) looking for other data sets
that are disaggregated and can be applied in the context (S4), and by
2) directing the analyst to consider other data processing and modeling
methods (S5, S6).

C4: The analyst has limited
time and resources.

G4:The guidance could recommend suitable methods that are less time
consuming for the analyst to pursue (S4, S8, S9). The guidance could
take initiative to generate results of multi-scale analysis and present
them visually as an effort to alert and convince the analyst (S1, S2).

C5:The MAUP is not ad-
dressed due to convenience
of use.

G5:The guidance examines whether applied units are appropriate by
considering: 1) whether units are aligned with the spatial process in a
given context (S9), 2) how much effects are involved based on statistical
variations (S6), 3) simulating and comparing results using other units

(S7).

C6:The analyst has trouble
applying suitable methods to
address the MAUP.

G6:Guidance can help the analyst determine which methods are helpful
at the moment and automate the processing steps to reduce the com-
plexities (S6, ST7).

C7:The analyst has difficul-
ties implementing suitable
methods with GIS tools.

GT7:Guiding the analyst by recommending proper GIS workflows tools
to use (S11). If the analyst has a preference but does not know how
to perform it, the guidance will assist the trasnlation of workflows into
GIS procedures for a particular platform (S3, S6).

To take advantage of the guidance opportunities identified in Table 1, the guidance agent
must form intention to volunteer guidance and formulate a strategy to generate guidance
messages. Table 2 describes the guidance strategies we use as design rationales for our
guidance agent. For each strategy, we specify the goals that can be achieved and prescribe
a recipe for action. These guidance strategies are consistent with the guidance objectives
described in Figure 3. It is important to note that the guidance agent does not dictate how
the analyst deals with the MAUP issue. If the agent believes that the effect of MAUP should
be handled, the guidance agent will convince the analyst to do more explorations and suggest
suitable methods and operations to mitigate the MAUP effects according to the prescribed
action recipes.
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It is important to emphasize that the set of strategies prescribed in Table 2 is a significant
finding of this paper. It fills a knowledge gap between mitigation goals (Table 1) and GIS
methods (described in Section 3.2). Despite the abundance of methods available to address
MAUP, there has been little understanding of how to effectively match and apply these
methods to specific mitigation goals. For example, multi-scale analysis (M1) and sensitivity
analysis (M2) are frequently cited as methods useful for dealing with MAUP, but exactly
how to apply them is a knowledge inaccessible to most analysts.

5 How Users Experience Machine Guidance?

To illustrate how a human analyst experiences interacting with the guidance system, we
present a hypothetical scenario in which a public safety analyst uses geospatial analysis of
crime hotspots to inform police actions.

Danny, a public safety analyst at the Baltimore City Police Department, is responsible
for planning crime prevention strategies. He is charged with developing a police petrol
plan on how to dispatch officers to neighborhoods based on crime hotspot patterns.
Since the department has a limited number of police force to dispatch, it must ensure
that the dispatch plan generates a measurable reduction in crime rates. It is very
important that Danny derives reliable and trustworthy results from his analysis. He
has access to ArcGIS Desktop and crime data from the last few months.

Danny is familiar with basic concepts and methods of GIS analysis, but he is not an expertise
in GIS tools and algorithms. Danny is representative of a class of analysts who are experts
in their fields but have limited or no knowledge of geospatial analysis methods and tools
[48, 62]. These analysts lack specialized training in GIScience or have only surface knowledge
of MAUP.

Danny has access to a crime incident dataset that contains ten types of crime (see the
picture of MG 1 in Table 3). Each type of crime has different underlying mechanisms
and processes that produce the crime patterns. Criminogenic situations can vary in scale,
duration and impact, affecting entire regions or specific groups [23]. This raises challenges
with respect to the selection of an appropriate spatial unit to identify hotspot areas [44].

Based on the narrative of the scenario above, we present a hypothetical sequence of
interactions between the User (Danny) and the guidance agent (MG) in Table 3. This
hypothetical dialogue showcases how machine guidance can systematically address MAUP
by raising awareness, recommending alternative methods, and providing statistical support
to improve decision making under practical constraints.

As Danny analyzes crime hotspots in neighborhoods, the guidance agent actively monitors
the process and detects potential MAUP effects due to spatial aggregation. At step (User 3),
the system sensed that the user is unaware of the MAUP problem, an alert guidance is
initiated to warn the user about the danger. To help the user understand the risk of MAUP
effects, the guidance agent repeated the analysis using an alternative spatial unit, census
tracts, and showed the user that the result is significantly different(MG 3-a). To further
convince the user to take steps to mitigate risk, the agent computed LISA (as a prescribed
strategy S8), suggesting strong MAUP effects (MG 3-b). These maps and messages convinced
Danny to commit serious effort to mitigate the MAUP effect.

At step (User 4), Danny acknowledges the rise of a MAUP issue and decides to explore
the likely effects. However, Danny does not know how to proceed. He asks for help directly
and the guidance agent suggests using disaggregated data where available (S4) and offers
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Table 3 A hypothetical interaction session of guiding users in addressing MAUP effect.

Dialogue

Guidance Visual Messages

User 1: Let us take a look if crime patterns in
Baltimore City have changed recently.

MG 1: We found 4,983 crime incidents in
Baltimore City happened in the last two months.
The map (MG 1) shows ten types of crime.
User 2: Our police officers typically divide their
responsibilities by neighborhoods. Let us find out
where are the crime hot spots by neighborhoods.
MG 2: As show on the map (MG 2), crime
hotspots are noted by red circles. They are
derived from crime density patterns by
neighborhoods.

User 3: Ok, that is what I need. I will proceed
on using this hot spot patterns for police dispatch.
MG 3: Wait! T would like to remind you that the
pattern shown on MG 2 may not be reliable! Let
me explain. If you aggregate crimes by census
tracts (instead of neighborhoods), the hotspot
pattern will look like the one in MG 3-a, which is
significantly different. This is a well known
problem in spatial analysis on area-aggregated
data. MG 3-b shows strong local spatial
dependencies, which indicates that your
analytical results could be very unstable and
could be misleading.

User 4: This is so important to know! How can I
make sure my results are reliable?

MG 4: Let me help you to explore more. One
way to find out if the hotspots on MG 2 are
trustful is view crime density as continuous
surface. MG 4 shows a Kernal Density pattern
where A lighter color indicates higher density and
vice versa. You may compare MG 2 with this
density surface and make adjustment of hotspot
regions.

User 5: Thanks! I was able to determine those
hotspots with good confidence. However, there
are too many neighborhoods in the hotspot
regions, and I need to prioritize those
neighborhoods that are most troubled.

MG 5: Sure. I can further gauge the strength of
those hotspots using a measure called Getis-Ord
Gi. The map (MG 5) shows the Gi measure for
each neighborhood, indicating their relative
degree of confidence as a hot spot.

Crime Incidents in Baltimore City

Crime Incidents  ~
Crime Typo s
~  SHOOTING ®  AUTO THEFT d
o romsERY 4 ARsoN

. e > Aco. AssuLT

- uceny Gonsen Tracs

MG 1

Density by Census Tract

®®®

0-Mean

Mean - 2 Mean

2Mean - 3 Mean
0 3 Mean - 4 Mean

B > 4 Mean
MG 3-a

Density by Neighborhood

Density
0 - Mean
Mean - 2 Mean
2 Mean - 3 Mean
I 3 Mean - 4 Mean
I > 4 Mean

MG 2

Indicator of Autocorrelation
by Neighborhood
T AT AN

Moran's |

Moran's | <0 & ey
0 )
Moran's | > 0

MG 3-b

Hot Spots based on Gi*

KDE (S5) as an alternative method for density calculations, mitigating the distortions
introduced by arbitrary spatial units. In this stage, Danny was guided to choose mitigation
methods. He was also assisted in executing a proper GIS workflow for exploratory analysis.
For practical reasons, Danny is not free to choose any area units other than neighborhood
boundaries. The guidance agent adapted a strategy to verify the hotspots using kernal
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density surface representation (MG 4). MG 5 was generated using the Incremental Spatial
Autocorrelation tool ! to determine an appropriate spatial scale (M8), which is then applied
as the distance banding parameter for Hotspot Analysis 2 with Gi* statistics (M8). Such
statistical validation is used as additional evidence to convince Danny that he should take
measures to minimize uncertainty and improve the reliability of their conclusions.

6 Computational Framework of Machine Guidance

Our approach would not be complete without discussing the feasibility of achieving our design
goals through machine intelligence. To demonstrate the feasibility of machine guidance, we
are developing a prototype design that supports the guidance behavior demonstrated in
the scenario of Table 3. A full discussion on that prototype implementation is beyond the
scope of this paper. However, we do want to briefly describe the computational frameworks
employed and shed light on the practicality of implementing machine guidance.

6.1 An Agent-based Computational Framework

Our implementation of a guidance agent is primarily based on the SharedPlan model of
human-computer collaboration [35, 53]. This model is capable of representing the intentional

structures of agent collaborations and reasoning for planning future actions under uncertainty.

This adaptability is crucial in guiding geospatial analysis, where problem-solving evolves
dynamically with new information.
Our guidance agent is a specialized type of collaborative interface agent [46]. The guidance

agent is able to communicate and observe the actions of the human analyst and vice versa.

A crucial part of successful collaboration is knowing when a particular analytical action
has been performed and what are the intended analytical goals. SharedPlan model has
been successfully applied in geo-analytical tasks, helping GISystems infer user intent beyond
direct commands and reducing ambiguity through dialogue-based interactions [8]. Cai [9]
showed that the analytical intentions of the analyst can be recognized with certain domain
knowledge. Using the SharePlan model in a conversational agent, basic GIS analysis tasks
can be done through conversations with the interface agent. Our work extends this agent
framework for mixed-initiative guidance.

Another source of inspiration is research on guidance in the field of visual analytics
[11, 12, 10, 55]. Guidance was defined as a computational system that actively assists users
during analytical processes by offering contextual guidance, recommendations, and feedback
[11, 12]. Machine guidance identifies when help is needed and determines the type of assistance
to provide [11] by integrating reasoning, planning, and domain knowledge. Recent works such
as Lotse [58] and AdViCE [29] bridge theoretical concepts with practical applications and allow
analysts to receive better assistance in data exploration and visualization tasks. However,
designing guidance systems that scale across different data domains and user expertise levels
remains a significant challenge [22]. Practical applications to support geospatial analysis
remain limited, despite similar challenges, such as the need to make critical decisions while
lacking the expertise and tools.

! https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics—toolbox/
incremental-spatial-autocorrelation.htm

2 https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/
hot-spot-analysis.htm
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6.2 Knowledge Representation and Reasoning

Design of guidance agents must answer a number of questions: (1) What is knowledge and
expertise represented? (2) What reasoning abilities are needed? (3) What kinds of sensing
skills are needed to monitor changes in contexts? (4) What communication behaviors are
expected? These questions can be partially answered by observing the communication and
interaction patterns in the scenario presented in Table 3.
The system must actively monitor the analytical process, identify the current analysis stage,
detect whether MAUP is involved, and recognize when the analyst encounters difficulties.
This requires the system to have a sensing capability and be able to keep track of the
analytical process to determine when help is needed and what form of guidance should
be provided.
Guidance should not merely follow the analyst’s actions but must take the initiative to
intervene when necessary. This requires that the system must be able to form intention
to act based on reasoning about what is helpful to do for the user.
It is important to convince the analyst to address the MAUP effect before suggesting
mitigation methods and strategies. Thus, the system must be able to plan complex actions
based on reasoning about strategies, methods, and tools.
The system must be adaptive and context aware, tailoring guidance based on specific
analytical domains, available data, and the analytical goals of the analyst. This involves
dynamically inferring the analyst’s intentions, understanding the current analytical
context, and determining how to deliver relevant guidance.

7 Discussion and Conclusion

The Modifiable Areal Unit Problem (MAUP) continues to pose a significant challenge
in GIScience, yet discussions surrounding its causes, consequences, and solutions remain
fragmented. Although existing research has primarily emphasized the scientific implications
of MAUP, practical strategies for addressing it in real-world applications are still limited
and underdeveloped [50, 25]. Our analysis reveals that many analysts tend to overlook
MAUP or underestimate its impact, underscoring a critical disconnect between theoretical
understanding and practical implementation.

Our work contributes to a practical approach to address MAUP in geospatial analysis. We
proposed to introduce an intelligent agent to guide analysts in mitigating the effect of MAUP.
As the first step toward this long-term goal, this paper established a preliminary theory of
machine guidance by answering a number of fundamental research questions. We identified
multiple opportunities for the machine to guide the analysts by alerting to the rise of MAUP,
assessing the impact of MAUP, choosing mitigation methods, and generating visual guidance
messages using GIS functions and tools. In terms of choosing what guidance features to be
designed, we set two sets of objectives machine guidance in MAUP: (1) building awareness
(2) supplement user’s expertise in mitigating MAUP effects. This level of understanding
allows for further refinement and formalization of the related expertise in computational
systems.

MAUP in geospatial analysis poses challenges in identifying its causes, selecting mitigation
strategies, and interpreting scale-dependent results [63, 50]. Machine guidance has the
potential to provide a proactive solution for addressing MAUP by alerting analysts to potential
consequences, offering suitable methods, and facilitating executions in the GISystem. Given
the resolution-dependent nature of geographic data [32], the selection of appropriate methods
is crucial. Visual guidance, such as standardized map comparisons (Table 3), helps analysts
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interpret MAUP effects more effectively [57, 13], reducing the likelihood of overlooking its
impact [21, 59, 1]. Addressing MAUP through machine guidance demonstrates its potential
to enhance geospatial analysis in various domains by expanding its knowledge base and
integrating domain-specific solutions [45, 43, 56].

The work presented in this paper is the first step towards the goal of active machine
guidance when analysts encounter MAUP during geospatial analysis. Although we made a
convincing argument for the feasibility of machine guidance and its capacity to address MAUP,
the scientific merit of this approach needs to be assessed by the usefulness of the tool (machine
guidance agent) when it is implemented, refined, and tested. Our ongoing research focuses on
evaluating and refining the proposed strategies to ensure practical applicability. Observing
how participants interact with the system, our aim is to gain a deeper understanding of when
and how the guidance should be introduced when addressing the MAUP. We are collecting
data on user experience and feedback and identify areas for improvement. We apply a human-
centered approach to further refine both the conceptual and computational components. The
findings of the study of machine guidance are likely to inspire and inform researchers in both
GIS and Human-Computer Interaction (HCI) regarding the design of interactive components
in GISystems.
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