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Abstract
We argue that in order to justify a modeling approach for a particular purpose, we need to
better understand the experimental structure that is supposed to be represented by a given model
application. For this purpose, we introduce a logic for specifying causal as well as spatio-temporal
experiments, based on which we reinterpret Sinton’s structure of spatial information from a pragmatic,
experimental viewpoint. We illustrate the use of this logic based on a landuse modeling example,
showing to what extent remote sensing and simulation approaches can be justified by decomposing
the example into experiments required for answering its main question.
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1 Introduction

Experiments are fundamental to science. They not only serve to generate empirical knowledge,
but also constrain how information sources are used in analysis and modeling to ensure valid
results. They provide a basis for justification of knowledge and trust in scientific insights.
Understanding experimental practice thus illuminates scientific methodology bottom-up, i.e.,
from study design and data acquisition to the construction of theoretical and computational
models for addressing scientific questions [28, 23].

While machine learning based GeoAI modeling techniques [14] can simplify the design
of complex models, our understanding of the experimental basis of the knowledge that is
produced with such models still remains limited, in particular when deciding whether a given
model can support a given claim or not [22]. Consider the example of land use change in
Brazil, where increased demand for agricultural commodities such as bioethanol may drive
deforestation. The process is complex: increased demand stimulates sugarcane expansion,
yet sugarcane rarely replaces forests directly [1]. Instead, it displaces pastures, which then
encroach upon forests (Fig. 1). Additional indirect effects arise from competing land uses,
such as sugar and beef production.

Some studies claim to be able to detect and predict such indirect land use change via
remote sensing [2], while others challenge this claim [27]. While remote sensing is a powerful
tool for finding the visible traces of land use change, the images cannot directly reveal the
causal mechanisms behind them. Assessing the effects of increased bioethanol demand,
including indirect effects, requires a causal model that simulates controlled intervention
experiments. Only in a model where certain invisible factors such as demand can be
artificially controlled, fixed or left free for such a large system, we can compare two (with and
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17:2 Spatio-Temporal Experiments

Figure 1 How sugarcane expansion may cause deforestation.

without intervention) or more possible progressions of a process to find out the effects of an
intervention. In contrast to remote sensing images, spatial simulation models, such as raster
based land use change models, enable such reasoning [27]. Why is that? The disagreement in
the community seems not merely related to model selection but to a deeper confusion about
the types of experiments that different models can meaningfully represent.

Our scientific goal is thus fundamental: to clarify the role of experiments in the context
of spatio-temporal modeling. This involves, on the one hand, understanding the structure
of experiments – that is, what needs to be fixed, controlled, and measured – and how they
can be performed. On the other hand, it requires understanding how we can interpret
modeling purposes – namely, the questions a model is supposed to answer – in terms of such
experiments. We argue that this kind of knowledge – pragmatic knowledge1 [22] – is essential
for interpreting models. Since models constrain the kinds of experiments they can represent,
it is our pragmatic knowledge of the underlying experiment that allows us to judge whether
a given spatio-temporal model is valid for a particular purpose. In recent work [23], we
have suggested a way of understanding modeling purposes in terms of questions that reflect
such spatio-temporal experiments, following insights on how the inherent structure of spatial
information is a constraint to analysis, as suggested by David Sinton in 1978 [24]. However,
while Sinton’s original idea of “attributes” “held constant”, “being controlled” or “measured”
has inspired GIScientists to suggest corresponding geodata- and conceptual models [7, 3, 15],
it remains underdeveloped from a theoretic point of view [5]. The idea has neither been
rethought from the perspective of experimental design and causality, nor from a viewpoint of
pragmatics2. From this standpoint, we address the following key questions:

▶ Q. What is the role of experiments in spatio-temporal modeling?

▶ Q A. What constitutes a spatio-temporal experiment?

▶ Q B. How is knowledge about the structure of experiments inherent in spatio-temporal
modeling?

▶ Q C. Which types of spatio-temporal experiments need to be distinguished when answering
questions with a model?

For this purpose, we develop a pragmatic approach to experimental knowledge, drawing
on the methodical constructivist school of philosophy [17, 11, 18]. According to these
scholars [16, 10, 13], an experiment is an action that implements a situation (condition),

1 The notion of pragmatics originates in linguistics, particularly in speech act theory. However, pragmatic
methodology has far broader implications, placing action at the center of knowledge production [12].

2 Our title is therefore rephrasing Sinton’s paper emphasizing the role of experiments.
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initiates a process (the latter not being an action), and observes the resulting situation
(measure). We suggest a logic of experimental knowledge to make explicit the structure of
experiments underlying spatio-temporal models. To this end, we introduce a formal grammar
of situations in Sec. 2, which serves to construct the knowledge claims that must be supported
by experiments (Sec. 3). Our pragmatic logic is based on the work of the logician Paul
Lorenzen and aligns with modern causal theory [20, 28]. We then place Sinton’s ideas on
firmer pragmatic grounds by introducing classes of spatio-temporal experiments in Sec. 4.
Finally, in Sec. 5, we demonstrate how our theory can be used to decompose the land use
change example above in terms of its inherent experiments. Based on this we justify a
simulation modeling and reject a purely remote sensing-based approach.

2 A pragmatic grammar for situations and goals

In this section, we introduce a grammar for a pragmatic language following Lorenzen [17, 18]
about situations underlying experiments, including actions, processes and states, as well as
goals and imperatives which can be used to formulate requests. The language is explained
with example sentences, and specified in terms of a basic EBNF syntax:

rulename : expression

where expression may consist of words for literals (“hello world”) or terms (without quotes)
substitutable by further expressions. Expressions can be sequences (A B), alternatives (A
| B) or repetitions (A?) (zero or one) of such words. A string is parsed by applying rules
recursively to words in a sequence.

2.1 Predicators and nominators for things
We use words for kinds of things (predicators) and individual things of some kind (nominators).
In addition to predicators for space and time which range over individual locations and
moments in time (in spatial and temporal reference systems), we use the possibility of forming
amounts of space and time [25], such as regions and time intervals. The former can be used
to talk about the amount of space occupied by certain things. Similar predicators we use for
amounts of stuff or objects [23]. Furthermore, we call all these predicators for space, objects,
stuff, and their amounts endurances, meaning that they play a particular role in describing
situations: they can change in time, whereas occurrences are the things that are going on in
time, reflecting a common distinction in information ontology.

▶ Grammatic rule 1.
object : “house” | “river” | “ball” | ... | person
stuff : “energy” | matter | “heat” | ...
matter : “water” | “gold” | ...
portion : “amount of” (object | stuff | space)
endurance : object | stuff | portion | space
thing : time | endurance
predicator : thing | occurrence

Nominators allow us to refer to particular things, either by introducing names, or by using
(in a common situation of speech) indicators (“this”, “that”) together with predicators:

▶ Grammatic rule 2.
here, there : “this” space
now, then : “this” time
home : “this” house
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17:4 Spatio-Temporal Experiments

In the following we use various nominators for each predicator above, including names for
persons, objects etc.

2.2 Occurrences, actions, situations and claims
Other predicators stand for different occurrences, to say what “goes on” with things. We
distinguish dynamic from static occurrences using process predicators (involving some change
of a situation that happens at a moment in time) and state predicators (involving some
situation is static at a moment in time). Furthermore, we use a special class of predicators
for talking about what can be done (do-predicator):

▶ Grammatic rule 3. occurrence : process | state | do-predicator

▶ Grammatic rule 4. process : “generate” | “stumble” | “rain” | “grow” | ...

▶ Grammatic rule 5. state : “stay” | “linger” | “rest” | ...

Do-predicators are distinct from other occurrences, since they stand for kinds of actions that
can be attributed to the persons performing them, including their purposes [9, 12]:

▶ Grammatic rule 6. do-predicator : “make” | “measure” | “run” | “stay” | “drink” | “use”
| ...

The copula κ is used to form situations with occurrences, to say that some occurrence has
happened, and π to form situations with do-predicators, to denote action performances:

▶ Grammatic rule 7.
κ : “is” | “are”
π : “do”(“es”)?
happening : (at)? (time-nominator)? κ occurrence (“ing”)? (appredicator)?
performance : (at)? (time-nominator)? π

action : performance do-predicator (“ing”)? (appredicator)?

Appredicators are expressions that further specify the occurrence, which may use prepositions
together with nominators. A happening uses a temporal nominator and the copula κ with
some predicator for occurrences. For example:

“at that time is raining this amount of water”
“now is growing”

In a similar way, we use the copula π for reporting on action performances:

“at that time does stay at this house”
“now does run home”

Note that we can always interpret an action performance as if it was a process, i.e., a
behavior [28], since do-predicators are occurrences. Situations are either happenings or
actions that are controlled by endurance nominators, referring to those things to which this
happens/who control the action. In particular, we require a person in control of actions:

▶ Grammatic rule 8.
situation : endurance-nominator happening | (person-nominator)? action

For example:

“this person at this time does stay at this house”
“here at this time is raining this amount of water”
“this tree now is growing”
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The distinctive role of situations, which are sorts of time-dependent propositions, has been
recognized early on in artificial intelligence, where they are called fluents [19].

▶ Grammatic rule 9. proposition : situation | ...

Propositions are used to make defensible claims. From a pragmatic perspective, the latter
are speech acts, actions that can be performed by persons in a dialogue. To be able to express
such acts, we introduce a way of saying that someone makes a claim using any proposition
formed from the grammar above.

▶ Grammatic rule 10. claim : (person-nominator)? performance “(” proposition “)”

For example, Nora now makes the claim that it will be raining tomorrow:

“Nora now π(here tomorrow is raining)”

2.3 Goals and imperatives
Goals are propositions intended by persons. They can be wished without ever pursuing an
action (wishful thinking), but in the more practically relevant cases, we talk about goals that
actually can be pursued via actions. We form goals from propositions using a conjunction
“such that” or ⊩. For example, if I am traveling, I might wish to be at home at a certain
time:

“such that I then do stay at home”

We can distinguish goals based on what kind of proposition is used. Whenever we are using
a situation as a goal, we are wishing that the latter may come about:

▶ Grammatic rule 11 (goals).
⊩ : “such that”
goal : ⊩ situation | ...

An example for a modificative goal is my wish to be at home (above), meaning a modification
of the place at which I am staying. Imperatives are speech acts that prompt some action from
a person. This can be expressed either by indicating the action directly, or by requesting a
goal and leaving the action that implements the goal open to the person addressed. In order
to express imperatives, we use the copula !:

▶ Grammatic rule 12. imperative : (person-nominator)? “!” (action | goal)

For example, a mother may request from her daughter Nora to be at home in time for dinner:

“Nora ! ⊩ at this time are having dinner”
“Peter ! at this time do cycle home”

The first imperative is a request to bring about some situation using some modificative goal3.
This leaves it open to Nora how and when she takes action to meet the goal. The second
imperative, in contrast, requests an action explicitly. Following Lorenzen [18, p.45], we call
the first case final imperatives, and the second a-final imperatives. Finally, we allow for a
corresponding speech act, a request, which expresses that someone is performing a request
using an imperative.

3 “Aufforderung zur Herbeifuehrung eines Sachverhaltes”, see [18, p. 44]
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▶ Grammatic rule 13. request : (person-nominator)? performance “(” imperative “)”

For example, Nora’s mother Ellie requests Nora to run some errands later:

“Ellie now π(Nora ! today do run this errand)”,

stands for the corresponding request. If we leave away the person nominators in such acts, we
mean that the person who utters the request is requesting something from herself, meaning
the person sets herself a goal. For example, I might now set myself the goal of running
errands later today:

“now π(! today do run this errand)”

3 A pragmatic logic of experiments

In this section, we explain how the pragmatic language developed so far can be used to
construct logic formulas, expressing experimental knowledge. Formulas can be used to express
experimental norms for persons who should do something to perform an experiment, more
specifically (and recursively), who should make claims, decisions and plans. To formalize
experimental control, we introduce practical modalities. Furthermore, we use experiential
rules to express claims about experimental outcomes. Rules can be tested by experiments
and represented by knowledge bases and information models.

3.1 Knowledge of action consequences, inferences and decisions
In pragmatic philosophy, knowledge is understood as a form of know-how, meaning it must
be actionable: knowledge enables action, encompassing the skills necessary to achieve goals,
articulate and pursue interests, and ultimately navigate life within a heterogeneous society
[17, 12]. What distinguishes knowledge from mere opinion is the notion of validity: a valid
claim is a proposition that is successfully justifiable, which in turn requires the success of the
actions underlying its defense, including the successful execution of experiments.

To be valid, claims must be generalizable across multiple examples. To express such
generalizable claims, we employ standard logical connectives: disjunction (∨) for “or,”
conjunction (∧) for “and,” and negation (¬) for “it is not the case that.” These can be
combined to form complex propositions. Additionally, we use the implication operator (→)
to denote conditional statements: “if the first proposition is true, then the second must also
be true.” For example, the logical formula A ∨ (¬B ∧ (¬(C → D))) expresses a structured
claim where A, B, C, and D are arbitrary propositions.

Quantifiers extend conjunction and disjunction over arbitrarily many propositions by
introducing variables. Variables are placeholders for elements within a specified domain –
a collection of nominators that share a common predicate. To denote domains, we use
upper-case symbols corresponding to predicators in Sect. 2.1. For example, the domain
Person consists of nominators referring to individuals. Variables such as x, y, z can be
substituted by any element from their respective domains. The universal quantifier (

∧
)

generalizes conjunction across all elements of a domain, asserting that a proposition holds
for every substitution:∧

x∈Space x now is raining ∧ x now is wet

This states that it is raining and wet everywhere in space. Conversely, the existential
quantifier (

∨
) generalizes disjunction, asserting that a proposition holds for at least one

substitution:
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∧
x∈Space

∨
y∈Time x y is raining ∧ x y is wet

This expresses that at every location in space, there exists some point in time where it is
raining and wet. We refer to such quantified logical expressions as formulas. Formulas can
be used to describe complex situations involving actions or processes.

A crucial aspect of pragmatic knowledge is understanding how actions lead to consequences.
We distinguish between conditions, which must hold at the time an action is performed,
and consequences, which describe the expected results. An action is deemed unsuccessful
with respect to a goal if its consequences do not fulfill that goal. The reason for failure can
often be traced back to unmet conditions. This leads to the notion of knowledge about the
consequences of actions4. Such knowledge is formalized using consequential rules, which
capture the expected outcomes of actions under specific conditions:

▶ Schema 1 (consequential rules).∧
x,...,y∈D

(R(x, ..., y) ∧ (person-nominator)?action(x, ..., y) → EC(x, ..., y))

Here, R(x, ..., y) denotes a formula capturing requirements (conditions necessary for the
action), and EC(x, ..., y) denotes a formula capturing the expected consequences. For example:∧

x∈Candle
∧

y∈Matches Nora now uses y on x → x then is burning.

This rule asserts that lighting a candle with a match under Nora’s agency results in the
candle burning – though this claim is context-dependent. It holds for an adult on Earth but
fails for a child or in a zero-oxygen environment. In pragmatics, this only demonstrates the
need to refine requirements for assuring validity. Progression rules describe changes in state
over time due to processes rather than actions:

▶ Schema 2 (progression rules).∧
x,...,y∈D

(R(x, ..., y) ∧ (endurant)?happening(x, ..., y) → EC(x, ..., y))

The temporal ordering implicitly assumes that the antecedent conditions occur before the
consequent state. For example:∧

x∈Lake x now contains this amount of water ∧ here now raining that amount of
water) → x then contains (this + that) amount of water.

Progression rules need to be justified by experiments (see below) or derived from other
knowledge. A set of such rules forms a rule base: CRB for consequential rules and PRB for
progression rules. Together with a set of formulas describing the current situation S(t), we
obtain a knowledge base: CKBS(t) = CRB ∪ S(t) or PKBS(t) = PRB ∪ S(t). If we can infer
a formula F from such a knowledge base using logical inference, we write KB ≺ F .

In addition to knowledge about consequences of actions and progressions, we also require
knowledge about people’s behavior in terms of speech acts. These are actions like claims and
requests in which some explicit knowledge base is required. Correspondingly, we introduce
rules of inference (for actions that derive claims from other claims) as well as decision rules
(for deriving goals from other claims or other goals):

4 “Handlungsfolgenwissen” [12, 9]
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▶ Schema 3 (rules of inference).
∧

oϵPerson(o t π(KB) ∧ o t π infer → o (t + δ)π(KB′)

▶ Schema 4 (decision rules).
∧

oϵPerson(o t π(KB) ∧ o tπ(! ⊩ Sg) ∧ o t π decide →
o(t + δ)π(! ⊩ Sp)

A particularly relevant example of a decision is to plan. Pragmatically, plans are understood
as artifacts that are a result of a process of planning [8]. However, they are more than that:
Plans are also symbolic manifestations of imperatives (formalized by using a request π(!)).
For one, we plan according to a planning goal, which can be understood as a final imperative
specifying an intended situation that should be realized by a plan. The plan itself manifests
likewise a final or an a-final imperative, consisting of a series of actions to be performed or
of subgoals to be pursued in order to reach this goal. A successful plan, thus, satisfies a
conditioned imperative: it needs to successfully realize the goal whenever we follow it in an
experiment. We can express this kind of knowledge also in terms of rules.

3.2 Practical modalities
Based on such knowledge bases, we can assess what can be done. Namely in the sense of
knowing whether an expected consequence A is achievable in a given situation. The latter
can be defined based on whether A is logical implied by consequential rules in this situation:

▶ Definition 1 (A is achievable). △π
CKBS(t)

A ↔ CKBS(t) ≺ A

Literally, △π
CKBS(t)

A, or A is achievable means that some expected consequence described
by the formula A can be justified by (repeatedly) applying consequential rules from the
knowledge base to the situation S(t). When it is clear which knowledge base is meant, we
can also leave away the subscript: △πA.

The power of this practical modal logic [17, 18] is to capture everyday notions of dispositions
and action potentials relative to a situation. This becomes clear when we define the modal
variants:

▶ Definition 2 (A is avoidable). △π
A ↔ △π¬A

▶ Definition 3 (A is unachievable). △πA ↔ ¬ △π A

▶ Definition 4 (A is unavoidable). ▽πA ↔ ¬ △π ¬A

▶ Definition 5 (A is controllable). 1πA ↔ △πA ∧ △π
A

If a consequence is avoidable, this means its contrary can be achieved. If it is unachievable,
we fail to justify it can be achieved. And if it is unavoidable, we fail to justify that it can be
avoided. For example, in a situation where a state launches atomic missiles to attack another
state, which also possesses atomic missiles, an atomic war is unavoidable. This is because,
according to our knowledge of consequential rules of warfare and assuming a certain behavior,
namely that the corresponding protocols are implemented by the group of people responsible
for them, we fail to find a path of action that would not involve launching a counter-attack,
and thus we may not find a way to prevent a war in this situation.

Controllable situations are both achievable and avoidable. Sometimes we can avoid a
consequence only constructively, based on changing a situation described in a corresponding
formula using another nominator, i.e., to switch nominators. This leads to a more specific
case of value controllability:

▶ Definition 6 (A is (constructively) avoidable).
∧

D x.△π

xA(x) ↔ △π
A(x) ∧

∨
D x′.A(x′)
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▶ Definition 7 (A is (value) controllable). 1πxA(x) ↔ △πA(x) ∧ △π

xA(x)

The atomic counter-attack is a case in point, because there needs to be a switch for controlling
the missile launch, and this switch is always in some position.

In an equivalent way, we can use modal logic to reason with knowledge of a situation and
some progression model, which can be expressed as a collection of progression rules:

▶ Definition 8 (necessary). ▽PKBS(t)A(t + δ) ↔ PKBS(t) ≺ A(t + δ)

Literally, A is a necessary consequence of a given situation S(t) at time t + δ, under the
assumption that the progression rules and the situation descriptions are defendable, and if
A(t + δ) is a logical implication. By abstracting from the particular base PKBS(t), we also
write ▽A(t) for the situations that will happen as a consequence of this situation at some
time t. For example, in case we have a progression model of rainfall covering the extent of a
lake, we may be able to predict the amount of water of that lake at a time after the rainfall
stopped, given that we know its water content in the current situation. The definitions of
these so called mellontic modalities [17] are equivalent to the practical ones above, including
possible (△), impossible (△), and contingent ( 1). Contingent consequences are those that
are possible yet we still fail to show that they are logically implied. That is, based on our
progression model, we just don’t know.

3.3 Experiments
The empirical (a-posteriori) knowledge [17] that we can obtain from an experiment can be
written down in the form of experiential rules that are very similar to consequential rules
introduced above, except that they involve the triggering of a process p (grammatic rule 4):

▶ Schema 5 (experiential rule).∧
o∈P erson

∧
t∈T ime(Sc ∧ (o t π (! ⊩ t κ p))) → Sm

Literally, if we do something to start process p under the condition Sc, then we can expect
situation Sm to occur [16]. Knowledge obtained from a given experiment can include many
such rules. Experiential rules constitute both constructive building blocks and tests for
empirical theories. In the latter case, by using a theory to infer an experiential rule that
is compared with the result of a corresponding experiment, in the former case, by directly
generalizing from experiential rules.

Yet, like all actions, experiments can fail, and in consequence, rules become invalid. How
exactly can experiments fail? This depends on their purpose [10, 13]. The purpose of an
experiment [16] derives from the trans-subjectivity of empirical knowledge: it is to reproduce
the process p such that it leads to similar situations (consequences) under the same conditions,
regardless of who is triggering the process and with which instruments (under which further
circumstances). Conditions can be either fixed (not changed in the experiment) or controlled
(changed in the experiment). This means that all conditions must be achievable via actions
(definition 3), while controls need to be, in addition, controllable (can be switched on or off)
(definition 7). In addition, we often need to leave some other situations contingent (“free”,
or not pre-determined) (section 3.2, last paragraph). Conditions and contingent situations
are required to prevent the experiment from being disturbed. The situations (grammatic rule
8) that are the consequences (schema 1) of the experiment can be represented by measures.
Altogether, we call this the experimental reproducibility norm, and it has the following
general form:

GISc ience 2025



17:10 Spatio-Temporal Experiments

▶ Schema 6 (experimental reproducibility norm).
An experiment (F1, ..., Fk, C1, ..., Cn, p, M1, ..., Mu) is successful if the fixed conditions are
achievable in situation Sf , the controlled conditions are controllable (in Sc) for each particular
value c1, ..., cn, and the situation Su is contingent, and if, when achieving all conditions and
starting the process p under arbitrary circumstances s1, ..., sv, equivalent outcomes m1, ..., mu

occur (under some equivalence ≡) in the resulting situation (Sm):∨
f1,...,fk∈F

∨
c1,...,cn∈C

∨
m1,...,mu∈M

∧
s1,...,sv∈D′

△πSf (f1, ..., fn) ∧ 1πc1
Sc(c1) ∧ ... 1πcn

Sc(cn) ∧ 1

∨
∈D u1, ..., um.Su(u1, ..., um)∧

(Sf (f1, ..., fn) ∧ Sc(c1) ∧ ...Sc(cn) ∧ ((s1, ..., sv) π(! ⊩ κ p) →∨
∈M m′

1, ..., m′
u.Sm(m′

1, ..., m′
n) ∧ m′

1 ≡ m1, ..., mu ≡ m′
u)

The nominators f1, ..., fn (fixes, taken from domains Fi), c1, ..., cn (controls, taken from
domains Ci), u1, ..., um (contingents from domains Ui), m1, ..., mu (measures, taken from
domains Mi) thereby serve to identify and reproduce the respective situations.

For example, an experimental norm for a simple spatio-temporal experiment about
growing crops in a geographic region could look like this:

▶ Norm 1.
∨

r∈Region

∨
m∈AmountofBeans

∧
o∈P erson

∧
t∈T ime

1πr o t π sowing beans in r ∧ 1

∨
∈AmountofBeans u.o (t + δ) π selling u ∧

((o t π sowing beans in r ∧ o t π farming ⊩ r t κ growing beans) →∨
∈AmountofBeans m′.o (t + δ) π producing m′ ∧ m′ ≡ m)

This norm defines an experiment (Region, grow beans, AmountofBeans) to determine how
many beans can be produced in a region r, independent of who performs it (o) or when (t).
The experiment requires sowing beans in r at t (controllable situation Sc) and ensuring that
later sales (t + δ) do not interfere, avoiding market disturbances. If beans are sown and
properly cultivated (p = grow), the norm expects that by (t + δ), an approximate amount
m of beans will be produced. This norm is a priori: it does not specify the exact yield but
requires that outcomes be reproducible up to equivalence. Experiments implementing this
norm either fix or control or leave contingent conditions when triggering the process. If
reproducibility fails – e.g., due to lack of seeds, planting restrictions, or market constraints –
the experiment fails.

In case of failure, we can adjust an experimental norm to ensure valid experiential rules.
Lange [16] suggested the following principle ways to deal with such disturbances:
1. Isolating disturbances through shielding (possible in labs or simulations).
2. Cleaning up disturbances by controlling, fixing, or rendering them contingent (e.g., via

randomization).
3. Incorporating disturbances as errors, increasing the tolerance of equivalences.
These adjustments constitute what Lange calls fault avoidance knowledge (referred to as
exhaustion in [16]). For example, if bean growth depends on weather conditions or market
quotas, fixing the yearly weather conditions and removing quota constraints could make
the experiment reproducible. Note that inferential statistics, at its core, is a method for
incorporating the disturbances of repeatable experiments using stochastic models (i.e., random
generators) [18]. Methodologically, it comes after the introduction of experiments, not before.

Causal experiments play an exceptional role for science, since they allow us to determine
causes. Yet, distinguishing causes from other experimental relations likewise requires prag-
matic knowledge, an insight gained early by Georg Hendrik von Wright [28] in terms of his
interventionist causality norm, and much later picked up in contemporary causal inference
theory [20]. The corresponding experimental norm for causal experiments is more strict as it
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requires in addition a particular counterfactual situation, i.e., considering a consequential
situation that occurs if we had not taken an action [21]. The norm requires that if some
controls are not achieved, then the corresponding measures need to be different:

▶ Schema 7 (interventionist causality norm).
(Sf (f1, ..., fn) ∧ ¬(Sc(c1) ∧ ...Sc(cn)) ∧ ((s1, ..., sv) π(! ⊩ κ p)) →
¬

∨
∈M m′

1, ..., m′
u.Sm(m′

1, ..., m′
n) ∧ m′

1 ≡ m1, ..., mu ≡ m′
u)

If an experiment satisfies such a norm, there is a one-to-one correspondence between possible
control situations and measure situations. This is the case, e.g., when we run randomized
control trials, where a control group lacks the condition, and the experiment is successful
in case that group also lacks the expected consequence [21]. We can then call the control
domain a cause of the measure domain. In case of failure to satisfy such a norm, we can
clean up disturbances, i.e., by incorporating conditions, or by adding contingencies into the
norm. The corresponding strategies are well known from the causal reasoning literature [20],
including fixing confounders (common causes of conditions and consequences), and leaving
contingent intermediators (effects of controls that are causes of consequences) and colliders
(common effects of controls and consequences) [21].

Data record experiential rules in terms of the underlying nominators (in our bean growing
example (r1, m1), ..., (rk, mk)). Yet, such data records leave away many details needed
to understand the underlying experiment. This includes not only the irrelevant further
circumstances (here: time and person), but in particular, the fact that fixes and controls
uniquely determine (are keys for) measures, and the question what kind of situations are
controlled, fixed, or measured. To keep some of this information in an abbreviated form, we
use the following notation for the type of experiential knowledge base that corresponds to an
experimental norm:

▶ Definition 9 (experiential knowledge base).

EKB(f : X , c : Y , p : Process → m : Z ), where

X, Y, Z =


D, domains of situation variables in an experiment
π(KB), knowledge claims in an experiment
π(! ⊩ π(KB)), requests for bringing about situations for knowledge claims

Thus, for experiments, we usually control (c), fix (f) or measure (m) some domains D. For
experiments that include claims, we additionally control, fix or measure knowledge claims
(π(KB)) (which of course may be justified by further experiments). And for experiments
that include goals, decisions and plans, we control, fix or measure requests for bringing about
a situation in which we can make knowledge claims (π(! ⊩ π(KB)). For the fixed conditions,
we also write down constants instead of the domain from which they stem.

4 Classes of spatio-temporal experiments

All other differentiation in experiments is a consequence of taking into account different ways
of bringing about controls, triggering processes, and realizing measures [16]. An instrument
for starting the process is called experimental apparatus. Instruments for observing and
recording Sm are called measurement instruments. For measurements, we also need to control
conditions, yet only for the process started within the sensor of the measurement instrument
itself. An example for the latter would be a temperature measurement using a thermometer,
where the process is the expansion of a thermometric material in the sensor [4], and among
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the controlled conditions are, for example, the location and height above ground. A natural
or “quasi” experiment is one in which the researcher does not control or fix the conditions
of a process, but instead selects among conditions of processes that were already recorded.
For spatio-temporal experiments, we distinguish the following classes, following Sinton [24],
but enriched by more recent ideas about conceptual models of spatial information [23]. We
specify experiments5 based on their underlying experimental norms:

▶ Norm 2 (experimental norm for spatial fields).
EKB(f : Time, c : Space, p : Process → m : Endurance)

Spatial fields fix time and control space in order to measure some endurance nominators
(which could be amounts, stuff, objects). An example would be a raster map of forest density
per grid cell.

▶ Norm 3 (experimental norm for spatial coverages).
EKB(f : Time, c : Endurance, p : Process → m : AmountofSpace)

Spatial coverages fix time and control endurances in order to measure some amount of space
occupied by the endurance. An example would be a map of vector polygons of a land use,
vegetation, or soil type.

▶ Norm 4 (experimental norm for spatial lattices).
EKB(f : Time, c : AmountofSpace, p : Process → m : Endurance)

Spatial lattices fix time and control an amount of space in order to measure some endurance
controlled by this amount of space. An example would be statistical census tract data.

When using time as a control instead, we obtain various forms of time series experiments
that involve space:

▶ Norm 5 (experimental norm for temporal fields).
EKB(f : Space, c : Time, p : Process → m : Endurance)

A temporal field controls time and fixes space, resulting in a time series that records
measurements at a location over time. An example would be river discharge continuously
measured at a catchment outlet, resulting in a hydrograph.

▶ Norm 6 (experimental norm for trajectories).
EKB(f : Endurance, c : Time, p : Process → m : AmountofSpace)

Trajectory experiments serve to measure motion, including movements of (rigid) objects
(tracks) or spreadings etc. [6]. Note that spatio-temporal experiments are usually not causal,
since they do not satisfy a counter-factual, interventionist causality norm. For example,
when measuring a horizontal spatial temperature field, different locations will share the same
temperature value, thus location cannot be considered a cause for temperature change. This
is different when moving in the vertical direction (as temperature decreases with height).
Yet, we can use causal experiments together with spatio-temporal measurements in order to
infer knowledge in various ways, as illustrated in our example.

5 Note this is only a subset of possible spatio-temporal experiments.
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5 The hidden experiments in landuse simulation modeling

In our sugarcane example case, we are interested in the question: what is the effect of one or
more increased bioethanol demands on the spatial distribution of forest landuse [27]? With
hidden experiments, we mean the (largely implicit) knowledge of the types of experiments that
need to be mastered to answer this question. On the highest level of abstraction, our example
corresponds to a causal experiment, where we need to control the bioethanol demand, fix
conditions that also influence landuse (such as sugar demand), and keep contingent conditions
that occur as intermediators of landuse planning goals, in order to infer a spatial distribution
of landuse (forest) in a situation later (t + δ):

▶ Norm 7 (Bioethanol demand landuse inference).
EKB(
f : π(EKB(f : AmountofSpace, f : (t + δ), p : demand → m : AmountofSugar)),
c : π(EKB(f : AmountofSpace, f : (t + δ), p : demand → m : AmountofBioethanol)),
p : infer →
m : π(EKB(f : (t + δ), c : Landuse → m : AmountofSpace))
)

The problem is that the bioethanol demand needs to be causally controlled, meaning we need
to compare the consequences of a demand increase with a reference scenario [27] in which the
original demand remains the same, a scenario that has never been observed. Furthermore,
landuse is subject to various invisible effects and human decisions that are not represented
in observed landuse changes. Since we cannot actually control market demand, there is no
way for us to perform a corresponding experiment. Furthermore, the problem can also not
be solved by consulting past landuse images and running a remote sensing experiment over
time: A remote sensing experiment controls locations or time and measures crop land type
in terms of a field. Based on this, we can only measure landuse change over time and space
in a non-causal manner, and only under the factual conditions of changing demands in the
history of Brazil. It then becomes impossible to isolate the effects of bioethanol demand
from sugar demand [27]. What we need instead is an experiment that measures the causal
effects of invisible demands on decisions under counterfactual conditions.

For this reason, we need to construct a model of the causal experiment6, in which we can
actively control the situations that trigger the process – such as in a simulation model. And
for this purpose, we need to decompose the experiment into sub-experiments for which we
can obtain some experiential knowledge to be used in the model. And here is where the task
becomes really complex, because we have to figure out a way that these experiments feed
into each other, see Fig. 3. First of all, the knowledge about the market demand needs to be
input of a decision experiment. This experiment controls knowledge claims about the market
demand at t + δ and produces a final plan with several subgoals, including the sugarcane
production goal at t+δ for a certain spatial region. Here is a specification of the experimental
norm:

▶ Norm 8 (Sugarcane production decision).
EKB(
f : π(EKB(f : AmountofSpace, f : (t + δ), p : demand → m : AmountofSugar)),
c : π(EKB(f : AmountofSpace, f : (t + δ), p : demand → m : AmountofBioethanol)),
p : decide →
m : π(! ⊩ π(EKB(f : AmountofSpace, f : (t + δ), p : produce → m : AmountofSugarcane)))
)

6 Cf. our definition in [23], where a model of an experiment is a method that answers the same question
as the experiment.
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The result corresponds to a lattice experiment: for each region, we measure an amount
of sugarcane that it should produce. The corresponding knowledge constitutes in turn a
controllable input for a planning experiment, namely the decision of how to redistribute
landuse to reach this production goal:

▶ Norm 9 (Landuse planning).
EKB(
f : π(EKB(f : t, c : Space, p : grow → m : AmountofSugarcane)),
f : π(EKB(f : t, c : Landuse → m : AmountofSpace)),
c : π(! ⊩ π(EKB(f : AmountofSpace, f : (t + δ), p : produce → m : AmountofSugarcane))),
p : plan → m : π(! ⊩ π(EKB(f : (t + δ), c : Landuse → m : AmountofSpace)))
)

Note that in this planning experiment, the different production goals are competing because
of a collider, which is the fixed total area available for landuse. Thus, if we increase sugar
cane production, we need to decrease the production of other crops, pasture or forest. This is
what demand-driven land use change models typically do, e.g. the models CLUE-S [26] and
PLUC [27]. To perform this planning experiment, we need to fix claims about two kinds of
further experiments, one is about the sugarcane potential yield, a spatial field that indicates
for each location the potential sugarcane production density at the given time (t) (Figure 2).

Figure 2 Potential yield of sugarcane (as fraction of the maximum attainable yield) (left), initial
land use in 2006 (middle) and new locations with sugarcane cultivation in 2030 for a demand increase
of 10.2 million m3 ethanol, for the state Goiás in Brazil.

This knowledge, in turn, can be obtained by inference starting from a field of weather
information and a field of soil types (the GAEZ method by the FAO)[27]:

▶ Norm 10 (Sugarcane yield inference).
EKB(
f : π(EKB(f : t, c : Space, p : measure → m : Soil)),
f : πEKB(c : Time, c : Space, p : measure → m : AmountofHeat)), p : infer →
m : π(EKB(f : t, c : Space, p : grow → m : AmountofSugarcane))
)
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The second input condition is a knowledge claim about the current landuse coverage at time
t (Figure 2), which can be obtained from remote sensing images. The planning experiment
results in a single subgoal, namely the request to realize another landuse coverage at time
t + δ. The final step is to implement the plan and thus to realize the planned sugarcane
production.

Figure 3 Experiments required for understanding the sugarcane example. Ellipses stand for
experiments, round rectangles with thin borders denote domains, with thick borders knowledge
bases, with dashed borders goals. Black diamonds are controls, white diamonds are fixed conditions.
Black arrows denote measures. White arrows are sub-experiments.

6 Conclusion

In this paper, we proposed a formal pragmatic account of experiments to clarify their role
in spatio-temporal modeling (Q). Our broader goal is to develop a systematic way to judge
whether a given modeling approach is suitable for gaining knowledge about a particular type
of experiment – especially those represented by spatial information models.

To this end, we introduced a grammar of situations and a pragmatic logic of experiments.
This allows us to define experiments by their experimental norms, i.e., by distinguishing
which experimental conditions must be fixed, controlled, or left contingent (via a practical
modal logic), and by identifying the measured consequences as resulting from underlying
actions that trigger processes (Q A). Causal experiments follow stricter, counterfactual norms.
We then characterized experiential knowledge bases in terms of these norms, the domains
of situation variables involved, the inferences made, and the goals pursued – particularly
in contexts involving human decisions. Sinton’s structural ideas about spatio-temporal
information were reframed in terms of non-causal experimental norms (Q B).
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Using the sugarcane example, we showed how decomposing its components by experi-
mental norms clarifies why remote sensing alone is insufficient to answer the question. We
identified the need for additional experiments to assess indirect effects on deforestation, in-
cluding decision-, planning-, and inference-experiments, as well as underlying spatio-temporal
experiments – fields, lattices, and coverages (Q C).

This work lays the foundation for a theory that evaluates spatio-temporal models by
their fitness for purpose (cf. [23]), independently of implementation details. Such a theory is
urgently needed as machine learning models replace traditional approaches without accounting
for purpose or experimental logic. Future work should expand the pragmatic logic across
modeling examples, formalizing experiment decomposition and supporting reasoning about
spatial designs and sampling strategies. In this sense, our work remains preliminary.
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