
CityJSON Management Using Multi-Model Graph
Database to Support 3D Urban Data Management
Muhammad Syafiq #

3D GIS Research Lab, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Suhaibah Azri1 #

3D GIS Research Lab, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Uznir Ujang #

3D GIS Research Lab, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Abstract
The prevalence of 3D city models in urban applications is increasing due to their lightweight and
flexibility, making them adaptable to various applications. However, effective data interoperability
remains an issue. Managing 3D city models within a database can improve urban data management
applications such as data enrichment and efficient querying. Motivated by the need for better
interoperability of 3D city models, this paper proposes a novel method for storing CityJSON using
the concept of a multi-model graph database as a foundation for enriching its semantics. The
proposed approach involves decomposing CityJSON objects into smaller JSON components, which
are then abstracted into graph elements. Parent-child and other relationship attributes are modelled
to capture the hierarchical and associative structures of the CityJSON data. A specific programme is
employed to preprocess CityJSON data based on several conditions before being loaded into the graph
database. Our multi-model approach allows three types of queries: document, graph, and hybrid.
The latter combines both document and graph query. Comparative evaluation against relational
databases demonstrates that the proposed method outperforms in terms of query performance. The
improved query performance is attributed to the advantage of graph database that reduces the need
for joins and the ability to efficiently index and navigate JSON data. The findings of this study
establish a foundation for semantic enrichment of 3D city models to improve interoperability and
support advanced urban data management.

2012 ACM Subject Classification Information systems → Graph-based database models; Information
systems → Geographic information systems; Information systems → Database design and models

Keywords and phrases CityJSON, Graph Database, 3D City Model, 3D GIS, Interoperability

Digital Object Identifier 10.4230/LIPIcs.GIScience.2025.2

Funding This work is supported by the Ministry of Higher Education through the Fundamental
Research Grant Scheme (FRGS/1/2022/WAB07/UTM/02/3). The highest appreciation is offered
to UTMNexus scholarship for sponsoring the study of the first author.
Suhaibah Azri: Fundamental Research Grant Scheme (FRGS/1/2022/WAB07/UTM/02/3).

1 Introduction

Urban management reliance on 3D city models has grown steadily in recent years, driven by
their role in various urban applications such as energy demand modelling, indoor navigation,
and sustainability studies [27]. A virtual representation of city and urban data is required
for meeting the demands of modern urban applications to enable effective decision-making,
efficient resource allocation, and adept strategic planning [28, 10, 19]. 3D city models are

1 Corresponding author

© Muhammad Syafiq, Suhaibah Azri, and Uznir Ujang;
licensed under Creative Commons License CC-BY 4.0

13th International Conference on Geographic Information Science (GIScience 2025).
Editors: Katarzyna Sila-Nowicka, Antoni Moore, David O’Sullivan, Benjamin Adams, and Mark Gahegan;
Article No. 2; pp. 2:1–2:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:syafiq1999@graduate.utm.my
https://orcid.org/0009-0004-7006-8569
mailto:suhaibah@utm.my
https://orcid.org/0000-0001-7926-9608
mailto:mduznir@utm.my
https://orcid.org/0000-0001-5281-8478
https://doi.org/10.4230/LIPIcs.GIScience.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


2:2 Multi-Model Graph for CityJSON Management

primarily developed to visualise and represent urban objects [26, 14]. However, they can be
stored in a database for advanced querying, analysis, and integration of urban objects with
associated urban data.

CityJSON is a 3D city model format encoded in JSON, which serves as an exchange
format for CityGML [12]. It carries most of the schema exists in CityGML, allowing it to
represent urban objects, such as buildings, bridges, vegetation, and city furniture, in 3D and
multiple Level of Details (LoD). CityJSON is also capable of storing attributes based on their
data structure. Their data structure adopts a hierarchical and nested design that enables
clear parent-child relationships among urban objects. This organisation allows the attributes,
geometries, and semantic information to be assigned directly to their corresponding urban
objects. However, their structure can get heavily nested where querying information from the
whole document would be complex and inefficient. Therefore, decomposing their structure
into a more readable and less nested approach is a more intuitive method.

Research into storing 3D city models has explored both relational (RDBMS) and non-
relational (NoSQL) databases. In RDBMS, 3D city model components are typically stored
in tabular formats, with relationships like parent-child are handled through additional tables.
This structure introduces limitations due to the reliance on numerous joins, which reduce
efficiency and increase query complexity [16]. RDBMS also lacks native support for hierarchies
and inheritance, making it less suited for representing real-world urban objects and their
complex relationships [33, 5]. Consequently, relational databases struggle with object-oriented
representations and nested structures, leading to inefficiencies in querying 3D city model
data [4]. The lack of flexibility to represent 3D urban data in an object-oriented manner is
thus open for further research. Moreover, object-oriented approaches have been recognised
for effectively modelling complex relationships in 3D GIS, supporting urban applications and
enabling detailed structural analyses [33, 21, 11].

NoSQL databases have also been explored as a replacement to address RDBMS limitations,
particularly regarding inflexible schema. They are capable of structuring information using
object-oriented approach, which allows for modelling hierarchies and inheritance relationships.
This capability is highly relevant for managing 3D urban data that involves deep hierarchies
and complex information associations [24]. Document-based and graph-based databases have
been used to store 3D city models, with data decomposition being a common method of data
insertion. CityJSON, which is encoded in the JSON format, further facilitates data insertion
into NoSQL databases like MongoDB and ArangoDB as they readily accept data in JSON
format. This compatibility reduces the need for data format conversion as CityJSON can be
stored directly in its native format. However, storing CityJSON as a whole before unnesting
its components is cumbersome as it will further complicate querying and analysis.

This study addresses the limitations of storing CityJSON in relational databases, par-
ticularly the challenges of handling its nested structure and object-oriented modelling, by
using ArangoDB, a multi-model graph database. CityJSON components are decomposed
and stored as documents, which also serve as nodes in a Labelled Property Graph (LPG)
structure. Relationships are modelled to reflect parent-child hierarchies and the inheritance
of geometry and semantic attributes, while attributes themselves are represented as edges
linked to their respective City Objects. This graph-based transformation emphasises semantic
decomposition over geometric detail and offers improved query performance compared to
relational models.



M. Syafiq, S. Azri, and U. Ujang 2:3

2 Related Works

CityJSON is a lightweight 3D city model exchange format for CityGML designed to enhance
the interoperability of 3D city models. Its JSON-based encoding simplifies storage and parsing
compared to the XML-based CityGML format, which is more verbose and often complicated
to handle. The lightweight nature of CityJSON makes it preferred by programmers due to
reduced complexity when building applications around it [12].

Furthermore, JSON is a human and machine-readable format that simplifies the process
of data manipulation and information retrieval. This makes CityJSON more accessible
for integration with web applications, APIs, and databases that inherently support JSON.
CityJSON widespread compatibility reduces some challenges in its various applicability,
which ultimately improves the usability and interoperability of 3D city models across many
urban applications. This practical advantage underlines CityJSON as a logical, more intuitive
choice to improve the interoperability and utility of 3D city model data.

When storing information in a DBMS, relational databases are typically the first choice
following their widespread use and more functionality. 3DCityDB [29] is a relational database
schema designed specifically to store OGC-standard 3D city models. It is built based on
spatially enhanced relational databases of either PostgreSQL with PostGIS extension or Oracle
Spatial. 3DCityDB provides several functionalities including storing, managing, visualising,
analysing, and exporting 3D city models in CityGML format. The initial development of
3DCityDB did not offer support for CityJSON; however, subsequent developments introduced
the capability to import and export CityJSON. Another relational database solution to store
CityJSON is CityREST [13], which is a RESTful API designed to stream CityJSON datasets
over the web. It is built on top of PostgreSQL, which offers several key functionalities
like retrieving city objects, filtering city objects within a specified bounding box, and data
filtering. A more recent approach is CJDB, which is a relational database schema designed for
storing CityJSON built on top of PostgreSQL. It is developed as a more efficient alternative
to the 3DCityDB schema for storing and managing CityJSON data. Unlike 3DCityDB,
CJDB significantly reduces the large number of tables required to store similar datasets.
This design simplifies data management, which in turn reduces memory usage [17].

Concerns have been raised by [1] towards the unsuitability of RDBMS for storing OGC
standard data models due to the risk of impedance mismatch. This issue arises when
attempting to map object-oriented data models into relational schemas can potentially lead
to the loss of critical information or relationships. Despite its extended capabilities, ORDBMS
still depends on table joins, making it less suited for modelling the hierarchical structure
of 3D city models. For instance, representing parent-child relationships requires additional
tables and duplicating City Objects as foreign keys, which increases complexity and reduces
performance. In contrast, LPG-based graph databases handle such hierarchies more intuitively
by directly linking nodes without duplication, offering better node reusability and efficiency.
Moreover, storing and querying JSON data in relational databases involves specialised
operations that degrade performance as data size and complexity grow. Furthermore,
the storage and querying of JSON-based data in relational databases require specialised
operations. These operations may impact query performance, particularly as the complexity
and size of the data increase.

Existing solutions point towards the use of NoSQL databases that are object-oriented
to store information and relationships more efficiently than relational database that lacks
the schema and flexibility to represent a real-world entity [8]. The process of locating
object-oriented data in the tabular format relevant to relational databases can be difficult and

GISc ience 2025



2:4 Multi-Model Graph for CityJSON Management

prone to misrepresentation of information [15]. This limitation arises because of relational
databases that are not designed to manage hierarchical, nested data structures typically
found in object-oriented data like CityJSON. As a result, alternative approaches have been
developed to address the challenges of storing CityJSON in NoSQL databases.

Furthermore, NoSQL databases possess a flexible schema and the ability to naturally
model hierarchies and complex relationships. It provides a more intuitive and efficient
solution for managing the intricate structure of CityJSON data. Document and graph-
oriented NoSQL databases have been explored as alternatives to CityJSON to address the
limitations of relational databases in handling object-oriented data. Both MongoDB document
and RDF-based graph databases have been widely utilised for this purpose. MongoDB was
explored by Nys and Billen [16] and Karin et al. [22] for storing CityJSON, with evaluations
comparing its performance with PostgreSQL. Nys and Billen [16] proposed a simplified
schema for a document database where CityJSON components are decomposed into first-
order or discriminated schemas. Their work also included a visualisation framework built
using a MERN stack API architecture. Meanwhile, Karin et al. [22] focused on the querying
capabilities of MongoDB to compare the API querying of CityJSON data via GraphQL
against PostgreSQL. Both studies found that the querying performance of CityJSON data
using MongoDB is promising. This advantage is attributed to MongoDB reduced reliance on
tables and joins compared to relational database, resulting in a simpler and more efficient
query of CityJSON components.

Akin and Cömert [2] developed a converter that maps CityJSON components into RDF
triples by using CJIO to transform CityJSON into a DataFrame, which is then translated
into RDF triples in Neo4j. While their work demonstrates the potential of graph databases
for storing CityJSON, it lacks evaluation or comparison with other databases, leaving the
practical effectiveness of RDF for this purpose underexplored. RDF triples, structured rigidly
as subject-predicate-object, are less suited for representing the object-oriented and nested
nature of 3D city models. RDF also struggles with the semantic richness and hierarchical
depth of 3D city models due to its lack of internal node structure. Attributes must be
expressed as additional triples rather than embedded directly into nodes, resulting in a
more complex and verbose graph structure. This limitation hampers the representation
of semantically rich data, making RDF less ideal for dynamic urban applications [7]. In
contrast, LPG allows attributes to be directly embedded in nodes and edges, offering a more
flexible and expressive approach for preserving and enriching the semantics of 3D city models.
Additionally, RDF requires joins between triples for deep graph traversals, which increases
query complexity [20], whereas LPG supports native and efficient traversal operations, thus
enhancing performance for complex queries.

LPG graphs models consist of fundamental graph elements (i.e., nodes and edges), which
can be enriched with key-value properties. The ability to annotate both nodes and edges
enhances the expressiveness of the graph, allowing it to capture complex, object-oriented
structures more naturally. In this study, LPG graph is utilised to model and store the
nested structure of CityJSON by taking advantage of its ability to annotate both nodes and
edges with properties. This flexibility allows information to be stored contextually where
descriptive properties of each JSON object are embedded as node attributes, while associative
attributes like those linked to City Objects are captured through edge attributes. Each JSON
object is represented as an individual node, enabling a clear and expressive mapping of the
hierarchical and semantic relationships inherent in CityJSON data.



M. Syafiq, S. Azri, and U. Ujang 2:5

3 Methodology

Although RDF-based graphs have been explored for CityJSON data management, we argue
that LPGs are better suited for managing 3D city model data. As 3D city models are developed
to improve interoperability across diverse applications, storing them as attributed nodes
and edges within an LPG structure is more appropriate since it allows better expressiveness
of information compared to RDF, particularly as LPG graphs are built on a key-value
pair [30]. This approach enables the seamless association of attributes relevant to various
urban applications that facilitate the semantic enrichment of 3D city models.

Junxiang et al. [32] have raised concerns about the limitations of RDF triples for storing
and querying building information data. Specifically, RDF graphs and their query languages
lack efficiency to support graph traversals, which poses challenges for graph querying and
analysis. As a result, RDF triples often must be converted into LPG graphs to enable scalable
graph analytics and fully capture complex semantic relationships [30, 3, 18, 9]. Furthermore,
LPG graphs simplify data integration compared to RDF graphs [31]. This makes LPGs a
more effective choice for managing 3D city models that support semantic complexity and
allow efficient graph traversals and analytics. Therefore, this study aims to develop a schema
model for storing CityJSON in ArangoDB, a multi-model graph database that supports the
LPG graph structure.

3.1 Schema for Multi-Model Graph Database
Our approach focuses on managing 3D urban data using a multi-model graph database. The
structure of an LPG-based graph database is considered a more intuitive approach compared
to RDF-based graph databases and relational databases for handling complex 3D urban
data.

3D urban data are characterised by their complex structure, nested relationships, and
semantically rich attributes. Representing such data using an object-oriented approach is
more suitable, which can be achieved effectively with an LPG-based property graph. LPG
structures mirror real-world object relationships more naturally, making them ideal for 3D
spatial data where objects like buildings, geometry, and attributes can be abstracted through
graph elements.

In ArangoDB, records are stored in JSON format as documents in document collections,
while relationships between records are established and stored in edge collections where each
edge references the unique key of the connected records. This design essentially treats each
record in the document collection as a node, whereas the edges can be connected between
nodes to represent their relationships, hence the multi-model nature of ArangoDB. Storing
an entire CityJSON document as a single entity is possible in ArangoDB; however, querying
and retrieving specific information can become complex due to the deeply nested structure
of CityJSON components. Filtering data requires the query process to traverse the deep
hierarchical levels of the CityJSON document, which can be inefficient and time-consuming.
To address this issue, it is necessary to decompose CityJSON files into distinct components
and store them as separate documents within a document collection.

Therefore, we propose a schema for multi-model graph database to store CityJSON
based on three collections, one document collection, and two edge collections (see Figure 1).
The document collection gathers all the decomposed CityJSON components as individual
documents. First-level objects, such as City Objects, are stored as separate documents, while
second-level objects, including geometries nested within City Objects, and third-level objects,
like the semantics nested within geometry, are further decomposed and stored as individual

GISc ience 2025



2:6 Multi-Model Graph for CityJSON Management

documents. Additionally, each City Object ID is stored as a document to explicitly associate
City Objects with their attributes and facilitate parent-child relationships. The content of
each decomposed document is shown in Figure 2.

Figure 1 CityJSON Multi-Model Graph Database Schema.

Figure 2 Components of Decomposed CityJSON Documents.

Two edge collections are used to model relationships. The first edge collection links
City Object documents to their City Object IDs and stores attributes as edge attributes.
Attributes originally stored within the “Attributes” key of each City Object in the original
CityJSON file are separated and mapped as key-value pairs in the edge collection. This
separation of attributes aims to avoid the attributes being kept nested under their City
Objects. It ensures that attributes can be queried more efficiently, and new attributes can be
added or modified using the basic insert and update database operations. In the case where
the City Objects do not contain any attributes, the relationship between the City Objects
document and each City Object ID will still be established. This ensures that any future
attributes relevant to any City Objects can be inserted.

The second edge collection models the relationships between geometry, semantics, and
their corresponding City Objects alongside the parent-child hierarchies among City Objects.
Figure 3 illustrates the representation of the relationship between the decomposed components
of CityJSON.



M. Syafiq, S. Azri, and U. Ujang 2:7

Figure 3 Relationship Representation between Decomposed CityJSON Components.

3.2 Storing CityJSON into Multi-Model Database

A program is developed to store a CityJSON file into ArangoDB based on the schema
explained in Section 3.1. The programme workflow is shown in Figure 4.

Figure 4 CityJSON to LPG Graph Workflow.

The integration of CityJSON into the graph database process begins by setting up the
ArangoDB environment, a graph database to store and manage CityJSON data. First, the
ArangoDB graph is initialised and a dedicated database is created. Within this database, a
document collection is established to store the CityJSON components. Edge collections are
created to represent the relationships between these components. One edge collection is for
connecting CityJSON components with their parent-child relationship and other inheritance
relationship, while another edge collection is created to store CityObject attributes.

The workflow then reads the CityJSON file where the content will be decomposed
into individual components with smaller and manageable JSON scripts containing the
decomposed JSON objects. The code will analyse the file to identify and separate each
CityJSON component with the exception of CityObjects and its components, which will be
processed at a later stage. The type and version components are stored as one document
(Main document, see Figure 1), which is named based on the file name of the input CityJSON
file. Each of these identified components is then inserted as individual documents into the
document collection, which has been created at the database initialisation step.

GISc ience 2025



2:8 Multi-Model Graph for CityJSON Management

Next, the workflow proceeds to parse the City Objects and their components. The City
Object components will be analysed and decomposed based on the following considerations:
1. Each CityObject is examined to determine its individual ID (CityObjectUUID). For each

City Object ID, a document is created and inserted into the document collection.
2. The hierarchical structure of CityObjects is addressed by examining the parent-child

relationships among CityObjects. If such relationships exist, edges are created to represent
this relationship.

3. If a CityObject contains geometry information, the geometry is separated and stored in a
dedicated document and later kept in the document collection. Edges are created to link
the geometry data to its respective CityObjects.

4. If the geometry of the CityObject contains semantic information, the semantic is separated
and stored in a dedicated document and kept in the document collection. Edges are
created to link the semantic information to its respective geometry documents.

5. Edges are created between CityObject and all CityObject UUID and stored in the
attribute edge collection regardless of whether the CityObject has attributes or not. If
the CityObject contains attributes, it is inserted as edge attributes; otherwise, the edge
will act as a placeholder for future attributes.

At the end of the workflow, all CityJSON components (objects, semantics, and geometry)
and their attributes are stored as structured documents in the database. Relationships
between these components are encoded as edges, making it possible to query and analyse
the data using graph-based operations. The attributes of City Objects are stored inside a
dedicated collection, which allows users to dynamically include any information regarding the
CityObjects pertinent to any applications in the future. The integration process transforms
the CityJSON data into a form that is highly suitable for advanced applications like urban data
management and semantic querying, thus transforming urban management decision-making
towards knowledge-driven initiatives.

4 Results and Analysis

4.1 CityJSON as Graph
A graph-based representation of the CityJSON data can be constructed by adhering to the
workflow for storing CityJSON data in ArangoDB as outlined in Section 3.2 and structured
according to the schema described in Section 3.1. For implementation and evaluation, we
use three tiles of CityJSON data retrieved from the 3DBAG website 2. The dataset includes
multiple LoD, resulting in multiple geometries and corresponding semantics for each LoD.

The graph in Figure 5 shows the CityJSON data structure based on the components
and relationships outlined in Figure 3 where the City Object documents serve as central
nodes and all City Objects ID converge. It visualises how the decomposed components
are interconnected and captures the hierarchical parent-child relationships among the City
Objects as well as the inheritance of semantics and geometry back to their corresponding
City Objects. The nodes represent the main JSON objects in CityJSON. Other information
like LoD is represented as queryable attributes inside the nodes. Additionally, the graph
is capable of illustrating the multiple geometries and semantics associated with each LoD,
providing a comprehensive view of the structure of the original CityJSON dataset and its
relationships.

2 https://3dbag.nl

https://3dbag.nl


M. Syafiq, S. Azri, and U. Ujang 2:9

Figure 5 Representation of CityJSON Structure as Graph.

4.2 Evaluation against Relational Database

Our approach is evaluated against PostgreSQL based on the CJDB schema [17]. It uses
three tables to store the CityJSON components and their relationship. The first table
(city_object) stores the City Objects and the information describing the City Objects. The
second table (cj_metadata) stores the information of the imported CityJSON file. Finally,
the third table (city_object_relationship) stores the relationship between City Object,
such as the parent-child relationship. The CJDB schema is shown in Figure 6.

Figure 6 CJDB Schema.

As ArangoDB is a multi-model database, we evaluate our approach according to document-
based query, graph-based query, and hybrid query (combination of document-based and
graph-based query). It involves using three tiles from the CityJSON dataset retrieved from
the 3DBAG website. Table 1 contains a description of the CityJSON datasets used for the
implementation and evaluation of our approach, while Figure 7 illustrates the visualisation
of the datasets using Ninja CityJSON viewer 3 [25].

The data is a multiple LoD data based on the improved LoD specification by [6]. Table 2
explains the query and the query type for the evaluation of our approach.

3 https://ninja.cityjson.org/

GISc ience 2025

https://ninja.cityjson.org/


2:10 Multi-Model Graph for CityJSON Management

Table 1 CityJSON Datasets Retrieved from 3DBAG Website.

Dataset File Size (Kb) Number of City Objects LoDs
F-8-264-552 1409 396 LoD0, LoD1.2, LoD2.2,

LoD2.3
E-10-278-556 2954 892 LoD0, LoD1.2, LoD2.2,

LoD2.3
G-8-328-528 19868 6966 LoD0, LoD1.2, LoD2.2,

LoD2.3

Table 2 Queries for Benchmarking with PostgreSQL.

No. Query Query Type
Q1 Query all City Objects with “Building” type Document
Q2 Query all LoD 1.2 City Objects Document
Q3 Query all City Objects with slanted roof Graph
Q4 Query City Objects with specific child Graph
Q5 Insert “owner” attributes for all City Objects with “Building” type Hybrid
Q6 Delete “owner” attributes for all City Objects with “Building” type Hybrid

All benchmarks were conducted on a machine running on AMD Ryzen 5 CPU, 16 GB
RAM, and a 516 GB SSD. ArangoDB 10.1 and PostgreSQL v17 with PostGIS extension were
used. Each query was executed three times and the average execution time was recorded.
All benchmarks were performed under warm cache conditions.

Query 1 and Query 2 are document-based query. The City Objects’ type is stored within
City Object documents in the document collection, whereas the LoD is stored in geometry
document. In Q3, graph-based querying is employed to identify City Objects with slanted
roofs by querying the edge attributes between City Objects document and its City Object ID.
Similarly, Q4 leverages graph traversal to retrieve buildings with specific child elements by
querying the hierarchical relationship between City Object ID. Q5 and Q6 are document and
graph queries, respectively. The City Objects type is stored in the City Objects document,
while the attributes are stored as edge in the attributes edge collection. Therefore, both Q5
and Q6 must navigate the elements in the document and graph structures to complete the
query. The query performance comparison is visualised in Figure 8.

The evaluation shows that our multi-model schema excels in most evaluation cases than
PostgreSQL based on the CJDB schema. ArangoDB stores information natively in JSON
format, while CJDB stores CityJSON information in JSONB format. Although both are
stored in document-based format, ArangoDB, which is purposely built as a multi-model
database that natively supports document-based data, is inherently more efficient for querying
such data compared to PostgreSQL, which relies on its table-based schema to manage JSONB.
This advantage is evident in Q1 and Q2 where ArangoDB achieves significantly lower execution
times for querying document-based data. Additionally, ArangoDB stores information as a
single document, while PostgreSQL may rely on The Oversized-Attribute Storage Technique
(TOAST) table to store oversized data. This will introduce additional overhead as join
operation with the TOAST table is needed when accessing oversized documents. The design
advantage enables ArangoDB to store and retrieve large CityJSON documents more efficiently,
making it better suited for querying large datasets.



M. Syafiq, S. Azri, and U. Ujang 2:11

(a) F-8-264-552. (b) E-10-278-556.

(c) G-8-328-528.

Figure 7 Visualization of each Evaluation Dataset.

Q3 in ArangoDB is a graph traversal operation to retrieve City Objects attributes stored
as edge attributes. The edge points towards City Object ID, which is the object that the
attributes belong to. Edge attributes that are relevant to LPG make filtering more efficient
since the query interacts directly with the graph structure. On the other hand, relational
database relies on parsing the JSONB column and filtering its key-value pair based on JSONB
operators. This approach requires a scan or index-based lookup of the JSONB column, which
is computationally more expensive than edge filtering in ArangoDB. When compared to RDF,
they do not natively support attributes on edges and require workarounds like reification,
which will further complicating queries [30].

Meanwhile, Q4 is also a graph traversal operation to navigate the parent-child relationships
between City Objects. ArangoDB handles this straightforwardly by establishing a relationship
between a parent and their children. Meanwhile, PostgreSQL handles this by establishing
a new table to join parent and children. Therefore, the join operation is unavoidable for
PostgreSQL to query parent-child relationships, which usually will result in additional
computational overhead than graph traversals. This is evident by the execution time shown
in Table 3. Compared to RDF-graph, LPG-based graph databases are better suited for this
purpose than RDF triples as the cost of graph traversals in RDF is higher compared to
LPG [3]. RDF may require joining of multiple triples to accomplish deep graph traversal
operations. Therefore, traversing the deep hierarchical relationship between parent and child
is more efficient using LPG.

GISc ience 2025



2:12 Multi-Model Graph for CityJSON Management

(a) F-8-264-552. (b) E-10-278-556.

(c) G-8-328-528.

Figure 8 Query Performance Comparison for each Dataset.

Q5 and Q6 in ArangoDB are hybrid queries because they involve accessing data stored in
both the document collection and the edge collections. The City Object types are filtered
in the document collection, while the attributes are stored as edge attributes in the graph
structure. This dual-querying process introduces overhead following the need to navigate
multiple data structures and perform cross-collection traversals. The overhead is particularly
noticeable in Q6 (Delete operation) for the G-8-328-528 dataset where the deletion process
required slightly more time than PostgreSQL. This can be attributed to the larger dataset
size, which increases the complexity of traversing and modifying edge attributes after initial
document filtering. While ArangoDB handles graph traversals efficiently, the combination
of document filtering and edge modification introduces additional steps that slightly affect
performance in large datasets. In contrast, PostgreSQL manages the deletion operation
more efficiently in this specific case due to optimised JSONB operations for direct attribute
modification. However, performance advantage in Q6 is limited to this specific scenario as
the overall querying process still suffers from complex joins and schema rigidity in other
query types. Future work could explore strategies to optimise hybrid queries in ArangoDB,
such as pre-indexing relationships or implementing batch processing techniques to reduce
the traversal overhead in large datasets. Despite the overhead observed in hybrid queries,
ArangoDB maintains superior performance in most cases, particularly in queries involving
complex relationships and semantic enrichment.



M. Syafiq, S. Azri, and U. Ujang 2:13

5 Conclusion and Future Works

This study adopts an object-oriented approach to abstract urban components and their
relationships as graph elements using a multi-model graph database. CityJSON is decomposed
into individual JSON scripts, which are stored as document nodes and linked via unique keys.
Two edge collections are used: one connects City Object documents to their IDs for attribute
storage while the other captures parent-child and semantic-geometry relationships. Queries
are executed using document-based, graph-based, and hybrid approaches, which show better
performance compared to PostgreSQL based on the CJDB schema. This demonstrates the
scalability and flexibility of the proposed method.

The strength of our approach lies in the reusability of City Object nodes. Enrichment of
attributes can be achieved by modifying or updating the edge attributes relevant to the City
Objects to allow better expressivity. Furthermore, relationships can be established without
necessitating node duplication owing to the node reusability of City Objects. This requires
no joins of tables and allows a better query through graph operations, which have been
demonstrated to be more time-efficient compared to query on relational model.

Representing 3D city models through object-oriented abstraction simplifies their com-
plexity by reducing them into manageable, modular structures. Each component is treated
independently, allowing flexible storage, updating, and querying. Semantic enrichment is
supported by attaching attributes to nodes and edges, while topological relationships can
be modelled via edges, thus enabling spatial queries [33], [23]. Future work can extend
this approach to support spatial queries, including bounding box operations essential for
location-based urban applications. This involves computing bounding boxes for all City
Objects and storing them in the database, further enhancing spatial query capabilities for
3D city models.

References

1 Amgad Agoub, Felix Kunde, and MARTIN Kada. Potential of graph data-
bases in representing and enriching standardized geodata. Tagungsband
der, 36:208–216, 2016. URL: https://www.researchgate.net/profile/Felix_
Kunde/publication/305701542_Potential_of_Graph_Databases_in_Representing_
and_Enriching_Standardized_Geodata/links/579a93ea08ae2e0b31b1591a/
Potential-of-Graph-Databases-in-Representing-and-Enriching-Standardized-G.

2 A T Akın and Ç Cömert. "CITYJSON2RDF" A Converter for Producing 3D City Knowledge
Graphs. In Isikdag U. and Bayram B., editors, International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences - ISPRS Archives, volume 48, pages 15–20,
KTU, Engineering Faculty, Trabzon, 61080, Turkey, 2024. International Society for Photogram-
metry and Remote Sensing. doi:10.5194/isprs-archives-XLVIII-4-W9-2024-15-2024.

3 Alex Johannes Albertus Donkers, Dujuan Yang, and Nico Baken. Linked data for smart homes:
Comparing RDF and labeled property graphs. CEUR Workshop Proceedings, 2636:23–36, 2020.
URL: https://ceur-ws.org/Vol-2636/02paper.pdf.

4 Suhaibah Azri, Francois Anton, Uznir Ujang, Darka Mioc, and Alias A Rahman. Crisp
Clustering Algorithm for 3D Geospatial Vector Data Quantization, pages 71–85. Springer
International Publishing, Cham, 2015. doi:10.1007/978-3-319-12181-9_5.

5 Suhaibah Azri., Uznir Ujang., F. Anton, D. Mioc, and A. A. Rahman. 3D nearest neighbour
search using a clustered hierarchical tree structure. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July):87–93,
2016. doi:10.5194/isprsarchives-XLI-B2-87-2016.

GISc ience 2025

https://www.researchgate.net/profile/Felix_Kunde/publication/305701542_Potential_of_Graph_Databases_in_Representing_and_Enriching_Standardized_Geodata/links/579a93ea08ae2e0b31b1591a/Potential-of-Graph-Databases-in-Representing-and-Enriching-Standardized-G
https://www.researchgate.net/profile/Felix_Kunde/publication/305701542_Potential_of_Graph_Databases_in_Representing_and_Enriching_Standardized_Geodata/links/579a93ea08ae2e0b31b1591a/Potential-of-Graph-Databases-in-Representing-and-Enriching-Standardized-G
https://www.researchgate.net/profile/Felix_Kunde/publication/305701542_Potential_of_Graph_Databases_in_Representing_and_Enriching_Standardized_Geodata/links/579a93ea08ae2e0b31b1591a/Potential-of-Graph-Databases-in-Representing-and-Enriching-Standardized-G
https://www.researchgate.net/profile/Felix_Kunde/publication/305701542_Potential_of_Graph_Databases_in_Representing_and_Enriching_Standardized_Geodata/links/579a93ea08ae2e0b31b1591a/Potential-of-Graph-Databases-in-Representing-and-Enriching-Standardized-G
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-15-2024
https://ceur-ws.org/Vol-2636/02paper.pdf
https://doi.org/10.1007/978-3-319-12181-9_5
https://doi.org/10.5194/isprsarchives-XLI-B2-87-2016


2:14 Multi-Model Graph for CityJSON Management

6 Filip Biljecki, Hugo Ledoux, and Jantien Stoter. An improved LOD specification for 3D
building models. Computers, Environment and Urban Systems, 59:25–37, 2016. doi:10.1016/
j.compenvurbsys.2016.04.005.

7 Valeriy Chernenkiy, Yuriy Gapanyuk, Anatoly Nardid, Maria Skvortsova, Anton Gushcha,
Yuriy Fedorenko, and Richard Picking. Using the metagraph approach for addressing rdf
knowledge representation limitations. In 2017 Internet technologies and applications (ITA),
pages 47–52. IEEE, 2017.

8 Linfang Ding, Guohui Xiao, Albulen Pano, Mattia Fumagalli, Dongsheng Chen, Yu Feng, Diego
Calvanese, Hongchao Fan, and Liqiu Meng. Integrating 3D city data through knowledge graphs.
Geo-Spatial Information Science, pages 1–31, 2024. doi:10.1080/10095020.2024.2337360.

9 A. E.Hadi Hor, G. Sohn, P. Claudio, M. Jadidi, and A. Afnan. A semantic graph database
for BIM-GIS integrated information model for an intelligent urban mobility web application.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
4(4):89–96, 2018. doi:10.5194/isprs-annals-IV-4-89-2018.

10 Mohamad Yusoff Izham, Ujang Muhamad Uznir, Abdul Rahman Alias, Katimon Ayob, and
Ismail Wan Ruslan. Influence of georeference for saturated excess overland flow modelling
using 3D volumetric soft geo-objects. Computers and Geosciences, 37(4):598–609, 2011.
doi:10.1016/j.cageo.2010.05.013.

11 Noraidah Keling, Izham Mohamad Yusoff, Habibah Lateh, and Uznir Ujang. Highly Efficient
Computer Oriented Octree Data Structure and Neighbours Search in 3D GIS, pages 285–303.
Springer International Publishing, Cham, 2017. doi:10.1007/978-3-319-25691-7_16.

12 Hugo Ledoux, Ken Arroyo Ohori, Kavisha Kumar, Balázs Dukai, Anna Labetski, and Stelios
Vitalis. CityJSON: a compact and easy-to-use encoding of the CityGML data model. Open
Geospatial Data, Software and Standards, 4(1), 2019. doi:10.1186/s40965-019-0064-0.

13 Xiaoai Li. CityREST: CityJSON in A Database + RESTful Access, 2021.
14 Zulaikha Hana Mohd, Uznir Ujang, and Tan Liat Choon. Heritage house maintenance

using 3D city model application domain extension approach. International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,
42(4W6):73–76, 2017. doi:10.5194/isprs-archives-XLII-4-W6-73-2017.

15 Billy Montolalu, Siti Rochimah, and Daniel Siahaan. Sql and nosql object-database mapping
using property graphs in relational cases. In 2024 11th International Conference on Electrical
Engineering, Computer Science and Informatics (EECSI), pages 515–520. IEEE, 2024.

16 Gilles Antoine Nys and Roland Billen. From consistency to flexibility: A simplified database
schema for the management of CityJSON 3D city models. Transactions in GIS, 25(6):3048–
3066, 2021. doi:10.1111/tgis.12807.

17 Leon Powałka, Chris Poon, Yitong Xia, Siebren Meines, Lan Yan, Yuduan Cai, Gina Stavro-
poulou, Balázs Dukai, and Hugo Ledoux. cjdb: A Simple, Fast, and Lean Database Solution
for the CityGML Data Model. Lecture Notes in Geoinformation and Cartography, pages
781–796, 2024. doi:10.1007/978-3-031-43699-4_47.

18 Sumit Purohit, Nhuy Van, and George Chin. Semantic Property Graph for Scalable Knowledge
Graph Analytics. Proceedings - 2021 IEEE International Conference on Big Data, Big Data
2021, pages 2672–2677, 2021. doi:10.1109/BigData52589.2021.9671547.

19 Nurfairunnajiha Ridzuan, Uznir Ujang, Suhaibah Azri, and Tan Liat Choon. Visu-
alising urban air quality using AERMOD, CALPUFF and CFD models: A crit-
ical review. International Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences - ISPRS Archives, 44(4/W3):355–363, 2020. doi:10.5194/
isprs-archives-XLIV-4-W3-2020-355-2020.

20 Awny Sayed and Amal Almaqrashi. Scalable and Efficient Self-Join Processing technique in
RDF data. arXiv preprint arXiv:1409.4507, 11:43–50, 2014. arXiv:1409.4507.

21 Wenzhong Shi, Bisheng Yang, and Qingquan Li. An object-oriented data model for complex
objects in three-dimensional geographical information systems. International Journal of
Geographical Information Science, 17(5):411–430, 2003. doi:10.1080/1365881031000086974.

https://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://doi.org/10.1080/10095020.2024.2337360
https://doi.org/10.5194/isprs-annals-IV-4-89-2018
https://doi.org/10.1016/j.cageo.2010.05.013
https://doi.org/10.1007/978-3-319-25691-7_16
https://doi.org/10.1186/s40965-019-0064-0
https://doi.org/10.5194/isprs-archives-XLII-4-W6-73-2017
https://doi.org/10.1111/tgis.12807
https://doi.org/10.1007/978-3-031-43699-4_47
https://doi.org/10.1109/BigData52589.2021.9671547
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-355-2020
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-355-2020
https://arxiv.org/abs/1409.4507
https://doi.org/10.1080/1365881031000086974


M. Syafiq, S. Azri, and U. Ujang 2:15

22 Karin Staring, Stelios Vitalis, Linda Brink, and Balazs Dukai. Combination of cityjson with
postgresql, mongodb and graphql. Master’s thesis, Delft University of Technology, 2020.

23 Muhammad Syafiq, Suhaibah Azri, and Uznir Ujang. Navigating Immovable Assets: A
Graph-Based Spatio-Temporal Data Model for Effective Information Management. ISPRS
International Journal of Geo-Information, 13(9):313, 2024. doi:10.3390/ijgi13090313.

24 Uznir Ujang, Francesc Anton Castro, and Suhaibah Azri. Abstract topological data structure
for 3D spatial objects. ISPRS International Journal of Geo-Information, 8(3), 2019. doi:
10.3390/ijgi8030102.

25 S. Vitalis, A. Labetski, F. Boersma, F. Dahle, X. Li, K. Arroyo Ohori, H. Ledoux, and
J. Stoter. Cityjson + Web = Ninja. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, VI-4/W1-20(September):167–173, 2020. doi:10.5194/
isprs-annals-vi-4-w1-2020-167-2020.

26 Jochen Wendel, Alexander Simons, Alexandru Nichersu, and Syed Monjur Murshed. Rapid
development of semantic 3D city models for urban energy analysis based on free and open data
sources and software. Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities
and Urban Analytics, UrbanGIS 2017, 2017-Janua, 2017. doi:10.1145/3152178.3152193.

27 Nevil Wickramathilaka, Uznir Ujang, Suhaibah Azri, and Tan Liat Choon. Influence of
Urban Green Spaces on Road Traffic Noise Levels: - a Review. International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,
48(4/W3-2022):195–201, 2022. doi:10.5194/isprs-archives-XLVIII-4-W3-2022-195-2022.

28 Bruno Willenborg, Maximilian Sindram, and Thomas H. Kolbe. Applications of 3D City Models
for a Better Understanding of the Built Environment. In Martin Behnisch and Gotthard Meinel,
editors, Trends in spatial analysis and modelling: decision-support and planning strategies,
Geotechnologies and the Environment, pages 167–191. Springer International Publishing,
Cham, 2018. doi:10.1007/978-3-319-52522-8.

29 Zhihang Yao, Claus Nagel, Felix Kunde, György Hudra, Philipp Willkomm, Andreas
Donaubauer, Thomas Adolphi, and Thomas H. Kolbe. 3DCityDB - a 3D geodatabase solution
for the management, analysis, and visualization of semantic 3D city models based on CityGML.
Open Geospatial Data, Software and Standards, 3(1), 2018. doi:10.1186/s40965-018-0046-7.

30 Zhanfang Zhao, Sung Kook Han, and Ju Ri Kim. LPG representation of the reification of RDF.
International Journal of Engineering and Technology(UAE), 7(3.34 Special Issue 34):562–566,
2018. doi:10.14419/ijet.v7i3.34.19382.

31 Junxiang Zhu, Heap Yih Chong, Hongwei Zhao, Jeremy Wu, Yi Tan, and Honglei Xu.
The Application of Graph in BIM/GIS Integration. Buildings, 12(12), 2022. doi:10.3390/
buildings12122162.

32 Junxiang Zhu, Peng Wu, and Xiang Lei. IFC-graph for facilitating building information access
and query. Automation in Construction, 148, 2023. doi:10.1016/j.autcon.2023.104778.

33 Siyka Zlatanova, Alias Abdul Rahman, and Wenzhong Shi. Topological models and frameworks
for 3D spatial objects. Computers and Geosciences, 30(4):419–428, 2004. doi:10.1016/j.
cageo.2003.06.004.

GISc ience 2025

https://doi.org/10.3390/ijgi13090313
https://doi.org/10.3390/ijgi8030102
https://doi.org/10.3390/ijgi8030102
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-167-2020
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-167-2020
https://doi.org/10.1145/3152178.3152193
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-195-2022
https://doi.org/10.1007/978-3-319-52522-8
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.14419/ijet.v7i3.34.19382
https://doi.org/10.3390/buildings12122162
https://doi.org/10.3390/buildings12122162
https://doi.org/10.1016/j.autcon.2023.104778
https://doi.org/10.1016/j.cageo.2003.06.004
https://doi.org/10.1016/j.cageo.2003.06.004

	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Schema for Multi-Model Graph Database
	3.2 Storing CityJSON into Multi-Model Database

	4 Results and Analysis
	4.1 CityJSON as Graph
	4.2 Evaluation against Relational Database

	5 Conclusion and Future Works

