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Preface

This volume contains the full paper proceedings of the 13th International Conference on
Geographic Information Science (GIScience 2025), held at University of Canterbury, Christ-
church, with strong support from the GIScience community at the University of Auckland,
University of Otago, and Victoria University Wellington, 26th to 29th August 2025.

This is the first time the GIScience conference has been held in New Zealand and the
second time in the southern hemisphere. We received 47 submissions, each reviewed by
three to five members of the international programme committee, with 19 full papers being
accepted. In addition to these papers, 67 abstract papers, 6 demos, and 76 posters were
accepted for presentation at the conference.

The accepted papers represent a wide range of topics across GIScience, including analysis
and modelling on urban data, mobility and transportation, semantic enrichment, automated
map georeferencing and classification, statistical modelling in space and time, and environ-
mental modelling applications. Separate to the main conference programme was a group of
pre-conference workshops, eight research seminar, tutorial or other participatory events that
again covered a breadth of GIScience topics.

The entire GIScience 2025 team would like to express their gratitude to all the authors,
reviewers, and workshop organisers, and everyone else involved in the conference, including
the sponsors and keynotes.

Platinum Sponsors
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—— Abstract

At a global scale, cities are growing and characterizing the built environment is essential for deeper
understanding of human population patterns, urban development, energy usage, climate change
impacts, among others. Buildings are a key component of the built environment and significant
progress has been made in recent years to scale building footprint extractions from satellite datum
and other remotely sensed products. Billions of building footprints have recently been released
by companies such as Microsoft and Google at a global scale. However, research has shown that
depending on the methods leveraged to produce a footprint dataset, discrepancies can arise in
both the number and shape of footprints produced. Therefore, each footprint dataset should be
examined and used on a case-by-case study. In this work, we find through two experiments on Oak
Ridge National Laboratory and Microsoft footprints within the same geographic extent that our
approach of inferring height from footprint morphology features is source agnostic. Regardless of the
differences associated with the methods used to produce a building footprint dataset, our approach
of inferring height was able to overcome these discrepancies between the products and generalize, as
evidenced by 98% of our results being within 3m of the ground-truthed height. This signifies that
our approach can be applied to the billions of open-source footprints which are freely available to
infer height, a key building metric. This work impacts the broader domain of urban science in which
building height is a key, and limiting factor.
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1 Introduction

Populations are increasing at a global scale, and it is estimated that by 2050, 68% of the
global population will live in urban environments [17, 20]. Buildings are a key component
of the urban environment and their footprints have been used across a myriad of subjects
such as population density estimation [31, 32], building energy usage [12, 39], disaster
management [28], building type [1], building height [6, 25, 37] and urban heat islands
(UHT’s) [10]. Being able to characterize the built environment is imperative to address these
issues and information on building footprints, building height and urban morphology is
critical in these efforts.

Fortunately, over the past decade, there has been a dramatic increase in the amount
of open-source building footprint datum available from organizations such as Microsoft?,
Google?, and Oak Ridge National Laboratory (ORNL)*. Between these products, there are
over 3 billion footprints available for use. However, each of the aforementioned products is
generated via differing methods for the pixel extraction/segmentation to identify buildings
and the regularization process of the identified footprints. Furthermore, differences in imagery
sources and resolution as well as environmental factors such as shadows or sun angle can
also influence the footprint extraction and regularization process [13].

The processing workflow from Microsoft is described in their documentation as first
leveraging a deep neural network (DNN) to identify buildings from aerial imagery and then
converting the identified pixels into polygons representing building footprints®. The best
available information on Google’s footprint generation is from a paper in 2023 by Sirko et
al. [35]. In their report, the authors describe utilizing a U-Net model, a common approach
for segmenting satellite datum [2, 29, 38]. Once extracted, the building footprints are then
processed through a contouring algorithm that realigns groups of adjacent polygons to
regularize the building footprints [35]. The authors also provide a caveat that newer versions
(v2 and v3) of the Google Open Buildings dataset underwent further improvements that
are not documented. Of the three datasets, ORNL provides the highest level of detail in
how building footprints were both extracted and regularized from satellite datum as they
leverage a deep convolutional neural network (CNN) framework for pixel extraction and
the ArcGIS proprietary building footprint regularization module ¢ [41, 42]. However, the
ORNL footprint dataset is only available publicly in the United States (U.S.), so it lacks the
volume and spatial scale of building footprints that Microsoft and Google provide. While
Microsoft, Google, and ORNL each utilize a deep learning framework to identify, delineate,
and regularize the footprints, there are proven differences associated with the footprints
provided by each entity [8, 14].

Chamberlain et al. found substantial differences between footprint patterns displayed by
Microsoft and Google when comparing the products at a grid scale in Africa [8]. The authors
noted that consideration is needed by users regarding the suitability of the specific building
footprint dataset for its intended application. For example, in urban areas, Microsoft seemed
to have better coverage in relation to the number of matching footprints, but this pattern was
not universal. Also in Africa, Gonzales found patterns of irregularity when comparing Google

https://www.microsoft.com/en-us/maps/bing-maps/building-footprints
https://sites.research.google/open-buildings/
https://gis-fema.hub.arcgis.com/pages/usa-structures
https://github.com/microsoft/GlobalMLBuildingFootprints
https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/
regularize-building-footprint.htm
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and Microsoft, but at a building-by-building level [14]. When investigating urban areas,
Microsoft tended to generate larger footprints which may encapsulate multiple buildings
while Google seemed to have more, smaller buildings. When rural areas were investigated,
the building counts were relatively similar, showing little discrepancy. Both at scale and at a
building-by-building level, care must be taken when leveraging footprint datasets [8, 14].

Recently, research has shown that building height is obtainable based on building footprint
information alone [37]. The authors showcased a novel method to infer height at a high
accuracy using only information derived from an individual buildings footprint. Furthermore,
they did so based on footprints extracted from both lidar and satellite datum. The ability
to infer height from footprints extracted from satellite datum allows for this approach to
generate building height maps at large scale. However, the authors only demonstrated their
approach on building footprints developed by ORNL and the model inference may produce
irregular results when exposed to a different footprint source. For example, in Stipek et.
al [37] they discuss that the features with the highest impact on inferring building height
were contextual (number of neighbors) and engineered (complexity of footprint shape). It
has been proven that at both a grid [8] and building-by-building level [14], Microsoft and
Google have differing shapes and sizes which would affect the contextual and engineered
metrics generated at the building level. Therefore, it would be imprudent to assume the
approach proposed by Stipek et al. [37] can be applied to other footprint datasets without
further testing.

In this paper we demonstrate that it is possible to infer building height at a building-
by-building level, agnostic to footprint source. We prove this by comparing the inferred
heights from two distinct products, ORNL and Microsoft across 10 cities in the U.S.; with
figure 1 showcasing the spatial extent of our research. We show that regardless of differences
associated with the extraction, regularization of the footprints and other factors, such as
imagery date or environmental factors, our approach of inferring height from footprints can
be applied to ORNL and Microsoft footprints. This signifies that it is possible to leverage
the 1.2 billion footprints which Microsoft has made openly available to infer height at a
global scale. Google footprints are not currently available in the U.S. and this research only
focused on ORNL and Microsoft footprints.

2 Related Works

While the authors acknowledge a deep field of literature in relation to leveraging deep learning
on satellite datum, we would like to bring attention to works which relate to extracting
building information. Secondly, we focus on studies that have inferred height from features
derived from building footprints.

2.1 Footprint Extraction and Regularization

There have been various methods to segment and regularize footprints derived from high-
resolution satellite datum [4, 9, 23, 26, 30, 34, 35, 36, 40, 42, 43]. Shi et al. leverage a
large-scale deep learning mapping framework using Google Earth images to map 280 million
building footprints in east Asia [34]. They note in their work that existing building extraction
models primarily utilize supervised deep learning methods which lack generalization due to
differences in building morphologies. For example, buildings in east Asia are more compact
and display more diverse patterns as compared to buildings within the U.S. or Europe.
The authors further discuss the issues associated with the regularization of the identified
buildings, stating that building footprints differ based on the methods leveraged. To address

1:3
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Boston, Massachusetts

Seattle, Washington Houston, Texas

Figure 1 Map indicating the location of the ten cities used in this study, as well as views of
building footprints in Seattle, Houston, and Boston. Note the different patterns within the built
environment in each city, a visual representation of the challenges associated with modeling building
height.

for this, after the footprints are extracted from the satellite datum, they deploy a stable
boundary optimization algorithm which uses a generative adversarial learning network (GAN)
to enhance the semantic features of buildings. To regularize the footprints, they used a
post-processing method proposed by Gribov [16].

Sirko et al., in developing Google’s Open Buildings dataset, leveraged a U-Net architecture,
a deep learning encoder-decoder model for semantic segmentation for pixel identification
from imagery [33, 35]. This approach classifies each pixel of an image as either a building
or a non-building. They tested this approach using a training set of 99,902 satellite images
across the African continent and note that two of the more complex issues they faced were
smaller buildings, and buildings in densely populated areas. To address for this, they taught
their model to predict at least one pixel gap between the buildings, which they accomplished
by employing a morphological erosion operation with a kernel size of 3x3 pixels during
pre-processing. Once footprints were identified and pre-processed, they then deployed a
contouring algorithm to produce angular shapes and realign groups of nearby polygons.

For the development of the ORNL building footprint dataset, Yang et al. developed a
CNN framework to extract pixels which represented structures [41, 42]. Furthermore, the
authors also incorporated custom designed signed-distance labels which aided in improving
the building outline extraction which was especially helpful in core urban areas where there
are high densities of buildings within a small area. Once footprints were identified, they
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leveraged the ArcGIS building footprint regularization module. Using this approach, the
authors provided a simple and effective method that successfully produced a building footprint
map of the U.S.

2.2 Building Height - Machine Learning Approach from Morphology
Features

In 2017, Biljecki et al. leveraged a random forest model to infer building height from footprint
and ancillary information, such as number of floors [6]. The authors tested their approach
on 200,000 buildings in the Netherlands and found that it is possible to infer height using a
tree-based approach. However, some of the features used, such as number of floors, are a
proxy for height and this metric is not available at scale, thus limiting the scalability of their
approach. Furthermore, their analysis was done on footprints extracted from lidar datum,
thus further hindering them to areas in which lidar footprints are available.

Milojevic-Dupont built upon this work and leveraged a gradient boosting algorithm,
XGBoost, to infer height for buildings in Europe (Germany, Netherlands, France, Italy) [25].
They expanded the morphology features derived from building footprints compared to
Biljecki [6], and also used ancillary datasets, such as road networks, with a total of 152
features used in their modeling approach. However, similar to the approach by Biljecki,
they utilized footprints derived from lidar datum, thus suffering from the same constraint of
limited scalability at a continental or global scale.

Stipek et al. expanded upon the work done by the previous authors and inferred height
from building footprints without the use of ancillary information [37]. The authors leveraged
morphology features generated from individual buildings and successfully inferred height on
both lidar-derived and satellite-derived building footprints. However, they only showcased
their ability to infer height on ORNL footprints, thus limiting their approach to that singular
dataset.

3 Methods

Here, we discuss the methodology used for our research which aims to address if it is possible
to infer height based on footprints derived from satellite datum which have been identified
and regularized using varying methods. For this work we leverage 3.09 million building
records across the U.S. (Table 1). We selected 10 cities within the U.S. that had satellite
derived footprints from ORNL and Microsoft which overlapped with lidar derived footprints,
which had a height associated with the footprints (Figure 1).

3.1 Footprint Datasets

3.1.1 ORNL Footprints

This dataset contains footprints for the cities of Albany, Boise, Boston, Houston, Nashville,
Omaha, Phoenix, Portland, Seattle, and Topeka within the U.S. The footprints are derived
from satellite datum based on the approach in Yang et al. [42]. Please note that the current
version of footprints within the USA Structures dataset are lidar generated footprints after
replacement for the reasons described by Yang et al. [41]. However, we chose to use the
earlier version of the satellite derived footprints for fair comparison.

1:5
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3.1.2 Microsoft Footprints

The Microsoft dataset provides over 1 billion footprints spanning multiple continents?.
These building footprints were developed from a deep learning model which extracted pixel
information from satellite datum. The pixels, once identified as a building, then underwent
a thorough cleaning and regularization process. Microsoft has multiple releases for their
building footprint dataset and we leverage the footprints Microsoft released on 26/04/2023
for the 10 cities within the U.S. (Table S1).

3.1.3 Lidar Footprints

The lidar footprints leveraged in this research are publicly available as part of the USA
Structures dataset at the FEMA portal® [41].

3.2 Lidar Conflation

We followed the same conflation approach as proposed by Stipek et al. [37]. Conflating two
datasets collected at differing temporal scales can prove to be problematic due to periods
of growth exhibited by the area-of-interest. Therefore, we followed a strict one-to-one
relationship requirement when conflating the lidar footprints to both the Microsoft and
ORNL footprint datasets (Fig. 2). Please note this conflation process ended with a different
number of matched footprints. For example, in Albany, the matching one-to-one footprints
for lidar to Microsoft were 108,107 and 116,518 for ORNL (Table 1).

3.3 Morphology Features

We utilized morphology features generated from vector geospatial polygon layers at a building-
by-building level [18]. Morphology features have been leveraged to infer building use type,
building height, among others [1, 6, 25, 37]. The morphology feature set consists of three
types of features: geometric, engineered, and contextual (Table S2). Geometric are basic
measures of geometry like area or perimeter. Engineered features describe more complex
ideas like compactness or complexity. Contextual features describe the building and its
relationship to its neighbors, both spatially and in size. The contextual features are generated
at five different scales: 50m, 100m, 250m, 500m, and 1000m. Overall, there are 65 features
generated with table S2 providing a description of each feature. The morphology feature
set was generated for the ORNL and Microsoft footprints which were selected during the
conflation process. We also compared the morphology features generated for each of the
10 cities between the ORNL and Microsoft footprints to better understand the differences
between the two footprint datasets.

3.4 Feature Selection

All buildings less than 2m in height were removed from both datasets, a common practice
when inferring height from 2D features [25, 37]. Feature reduction was then performed for
both datasets via a recursive feature elimination (RFE). This iterative function removes
features that display lower significance in relation to the target variable [15]. The features
selected for by the RFE are bolded in table S2.

" https://www.microsoft.com/en-us/maps/bing-maps/building-footprints
8 https://gisfema.hub.arcgis.com/pages/usa-structures
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(a) Many-to-one — Microsoft. (b) Many-to-one — ORNL.

(c) One-to-one — Microsoft. (d) One-to-one — ORNL.

Figure 2 Examples of footprints which were disqualified due to being a many-to-one (top panel),
and footprints which were included in the datasets based on the one-to-one (bottom panel) conflation
method. Please note that Microsoft footprints are green, ORNL footprints are yellow, with the
ground-truth lidar footprints being the overlaid black outline.

3.5 Model Development

We applied 4 distinct models during this research and compared to a baseline metric, the
median, over which any model would be an improvement. The first model we applied, a
Linear Regression (LR) model provides a baseline initial estimate and works by assuming
there is a linear relationship between the target, height, and the training datum [19]. We next
applied a Random Forest (RF) algorithm, first introduced by Breiman [7]. The RF model
is a collection of tree-structured classifiers with each tree within a defined forest coming
to a decision independent of the other trees. After each tree has inferred a decision based
on a random subset of the training datum, a decision is then made for inferrence based on
a majority vote from the individual trees. The XGBoost Regressor (XGB) is a gradient
boosting trees algorithm in which decision trees are iteratively added and learn from the
previous tree in order to minimize error[11]. This allows for the XGB to learn from each
successive tree such that the model will reduce error and improve overall model performance.
TabNet, a novel high-performance deep learner designed to help improve tabular datum
predictions was also applied [3]. TabNet has been shown to improve run-time and display
comparable results to other gradient boosting algorithms [22]. This is the first time, to the
authors knowledge, that a deep learning framework has been applied to infer building height
from tabular datum. Each model was constructed for each of the cities for both the Microsoft
and ORNL footprint datasets and the ensuing steps were taken for each city within both
datasets, totalling 20 iterations.
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Each city was split into a training and testing dataset, with 70% used for training and

30% for testing. We then leveraged Bayesian optimization using the Hyperopt library [5].

The Bayesian optimization utilizes a prior set of hyper-parameters to inform the successive
set of hyper-parameters for testing. It iterates through this process and once complete, it
produces the optimum hyper-parameters from a pre-defined grid search space in relation
to the lowest RMSE. We selected the following hyper-parameters to fine-tune through the
Bayesian optimization: number of estimators, max depth, gamma, reg alpha, reg lambda,
colsample bytree, min child weight, and learning rate. To validate our results, we conducted a
10 fold cross validation (CV) over the entirity of the datum for each individual city. Please
note that all references to the XGB RMSE are in reference to the CV score.

3.6 Out of Sample Validation

While conducting a 10-fold CV, we acknowledge that when working with spatially diverse
datum, validation should also be applied to distinct geographic areas [24]. To account for
this, we conducted a spatial validation similar to that done by Metzger et al. [24] and Stipek
et al. [37] in which we randomly selected 3 cities (Albany, Houston, Seattle) as hold-out
validation cities for testing for both datasets (ORNL, Microsoft) (Figure S1).

4 Results

The XGB model was chosen based on its superior performance in relation to the other models
applied (LR, RF, TabNet). While we acknowledge that the RF outperformed the XGB in
certain cities, the XGB was more consistent across both datasets (ORNL, Microsoft). All
the results in the following sections are the inferred values from the XGB model. For the
results associated with the LR, RF, and TabNet models please see Supplementary Table S3.

4.1 Microsoft Footprints

Each of the 10 cities modeled within the Microsoft dataset showed improvement upon the
median value generated for both the MAE and RMSE (Table 2). The median values generated
present a baseline value for building height over which any improvement in relation to MAE
or RMSE can be considered an improvement over a baseline estimate. Phoenix showed the
highest goodness of fit, R?, with a metric of 61% with Nashville displaying the lowest, 39%.
In relation to improvement upon the median RMSE baseline, Seattle was the highest, with
—0.59m improvement, going from the median of 2.44m to a modeled output RMSE of 1.85m.
Topeka and Albany displayed the lowest improvement, displaying differences of —0.29m and
—0.35m, respectively. On average, the percentage improvement across the 10 cities from the
median RMSE to the modeled RMSE was 32%.

4.2 ORNL Footprints

The modeled ORNL footprints also showed improvement upon the median MAE and RMSE
for each of the 10 cities (Table 2). Phoenix displayed the highest R? score, 60%, with Seattle
displaying the lowest, with a score of 38%. For improvement upon the RMSE baseline, Seattle
showed the highest improvement, —0.58m, with Topeka displaying the lowest, —0.30m. The
average percent improvement from the median RMSE to the modeled RMSE across the 10
cities was 31%.
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Across all 10 cities, the largest difference between the Microsoft and ORNL footprints
in relation to RMSE was 0.09m, observed in both Albany and Nashville with the lowest
difference observed being 0.01m in Topeka. In relation to the percentage improvement upon
the median baseline for RMSE when comparing Microsoft and ORNL, the largest difference
in improvement was 7% (29% - Microsoft, 22% - ORNL), observed in Nashville with six of
the cities showing only 1% difference.

4.3 Morphology Differences

When comparing the differences between the morphology features generated for the ORNL
and Microsoft footprints, the majority of the features showed minimal differences. However,
there were some features which displayed differences, primarily the contextual and engineered
features such as complexity ps, n count, and n size mean (Table S4). For the Microsoft
footprints, the complexity ps displayed a median of 2,812 while the ORNL median was 7,717,
signifying differences within the shapes of the footprints (Table S4). For the n count 500,
Microsoft displayed a max count of 1,267, compared to 928 for ORNL, signifying a difference
in the number of footprints within a 500m radius. For n size mean 500, the max feature
displayed by Microsoft was 210,048 with a value of 102,230 by ORNL, highlighting the
differences in footprint sizes within a 500m radius. These results are similar to the research
conducted by Chamberlain et al. ([8]) and Gonzales ([14]).

4.4 Qut of Sample Validation

When testing on Microsoft footprints, Albany did not improve upon the median RMSE as
the XGB RMSE displayed a value of 1.55m and a R? score of -1% (Table S5). However,
the other cities which were tested with Microsoft footprints showed improvements upon the
median RMSE, being —0.20m in Houston and —0.35m in Seattle. All three of the cities
when tested on ORNL footprints displayed improvements upon the median RMSE, being
—0.07m for Albany, —0.22m for Houston and —0.37m for Seattle.

5 Discussion

The expansion of open-source building footprint datasets has provided the possibility for
leveraging these products to characterize the built environment. Our results show that, across
3.09 million buildings in the U.S., our method of inferring height from footprint information
alone is effective for datasets produced by ORNL as well as the much larger and globally
available dataset from Microsoft. Furthermore, our height prediction process is reliable and
agnostic to building footprint source. This finding ensures that our approach of inferring
height from footprint morphology features can be scaled to leverage other publicly available
footprints, such as Microsoft footprints. By inferring building height, this method provides
valuable contextual information for population density estimation, building energy, disaster
management, and UHD’s [10, 12, 31, 32, 39].

1:11
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(a) Boston.

(b) Houston.

(c) Seattle.

"' Figure 3 Here we display the different shapes in footprints displayed by Microsoft (green), ORNL
(yellow) with the lidar footprints a black outline. For Boston (a), the lidar height is 6.90m, with
our prediction based on the MS footprint being 8.52m and 7.82m inferred on the ORNL footprint.
In Houston (b), the lidar height is 6.19m, our prediction based on the MS footprint is 10.29m and
9.28m with the ORNL footprint. In Seattle (c), the lidar height is 38.02m, the height inferred on
the MS footprint is 18.11m and 50.86m on the ORNL fooprint.
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While the main objective of this research is to test the efficacy of leveraging open-source
footprints, we applied various models to ensure the best possible method was selected. It is
important to note that the TabNet model did not outperform either the RF or XGB for any
cities across both footprint sources. In some instances, such as in Phoenix, the difference was
-18% in relation to R? results displayed by the XGB. However, in other cities (Houston), the
TabNet outperformed the percent improvement displayed by the RF by +1% in relation to
R?. Regardless, the tree based approach consistently outperformed the TabNet model which
signifies that while deep learning models developed for tabular data have made progress
[21, 22], in this instance tree based models show higher accuracy.

While successful, our study does have limitations that need to be acknowledged. First,
the area-of-interest is only within one country, the U.S., and more work is needed to expand
this approach to additional countries. It is known that the built environment varies both
spatially and temporally and a more diverse sample set is needed to further validate this
approach [6, 25, 27, 34, 37]. Another limitation is that during our strict one-to-one conflation
process, building footprints that don’t have a one-to-one match are removed and therefore not
included in the morphology feature generation. Contextual features that look at a building’s
neighbors have been found to be influential to the model’s behaviour and therefore, the model
may not perform as well on the filtered dataset as it would on the unfiltered dataset [37]. For
example, the generated feature n count measures the number of centroids within a defined
radius surrounding a building. This was evidenced by the range of values displayed for the n
count 500 for the ORNL when compared to Microsoft (Table S4). The range in values for n
count 500 signifies that at a 500 m radius, there are differences associated with the total
number of buildings, which can influence the model’s ability to infer an individual building’s
height.

Additionally, there needs to be a formal analysis completed to understand if it is possible
to train on one distinct footprint dataset and test on another. For example, due to the
differences discussed between the Google and Microsoft datasets within Africa [8, 14], can it

be possible to train on the Google footprints to then infer height on the Microsoft footprints.

While the approach presented in this research shows the ability to infer height agnostic of
footprint source, it does not test across the sources, i.e. training on ORNL and testing on
Microsoft.

Furthermore, the differences in footprint shape based on the pixel identification and
regularization process can lead to irregularities in predicted height (Fig. 3). For example,
the complexity ratio, an engineered feature that is the shape length divided by the shape
area which shows high significance in relation to inferring height, can vary depending on
the footprint shape [37]. For example, in Boston, we display the Microsoft, ORNL and
lidar footprint for one specific building where the footprint shapes are similar and the

height prediction for the MS footprint is 8.52m and 7.82m for the ONRL footprint (Fig. 3).

However, when there are differences displayed by the building’s footprint, there can be large
differences associated with the predicted height, as evidenced in the example in Seattle
where the height inferred from the Microsoft footprint is 18.11m and 50.86m on the ORNL
footprint. Therefore, based on the shape and size of the footprint, the inferred height may
vary, as displayed in figure 3. While the majority of the morphology features showed minimal
differences in their distributions, it is important to note that some of the engineered features,
such as complexity ps showed differences (Table S4). Therefore, while the approach presented
in this research has proven it is possible to infer height from various footprint sources, it
would be irresponsible to apply without additional testing if leveraging an additional footprint
source, such as Google.

1:13
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This research has highlighted the need for multiple avenues of future work. A compre-
hensive analysis in relation to the distributions displayed by the morphological features
is necessary to truly understand the differences displayed between ORNL and Microsoft
datasets. As the scope of this paper is to investigate if it is possible to infer height from both
products, we do not fully investigate the differences displayed by the ORNL and Microsoft
footprints in relation to the engineered and contextual features. Other potential work could
explore the possibility of training on one homogeneous footprint data source and testing on
another.

6 Conclusion

In this paper, we demonstrate the ability of our method to infer height from building
footprints derived from different sources (ORNL, Microsoft). Our results show that, across
over 3 million footprints in the U.S., we successfully infer building height within 3m of the
ground truth height with 98% accuracy. More importantly, while previous work has proven
that it is possible to infer height from footprints derived from satellite datum, this is the
first time, to our knowledge, that a comparison study has been completed that indicates
a machine-learning height inference method can be applied across multiple datasets. We
believe our approach is successful due to the ability to learn from the distinct morphology
features, regardless of the footprint dataset. This is a significant finding which displays the
generalization of our method to inferring height regardless of how the building footprints
are extracted and regularized. Furthermore, this opens the door to now leverage the over 1
billion Microsoft footprints to infer building height at a building-by-building level across the
globe.
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A  Supplementary Tables

Table S1 Temporality of lidar, ORNL footprints, and Microsoft footprints.

Location Lidar ORNL Microsoft
Albany, NY, USA 10/9/2012 19/10/2019 | 26/4/2023
Boise, 1D, USA 8/3/2013 4/8/2018 26/4/2023

Boston, MA, USA | 20/5/2009 | 9/11/2019 | 26/4/2023
Houston, TX, USA | 22/1/2010 | 21/10/2021 | 26/4/2023
Nashville, TN, USA | 6/6/2006 | 6/6/2019 | 26/4/2023
Omaha, NE, USA | 24/4/2013 | 20/5/2020 | 26/4/2023
Phoenix, AZ, USA | 4/10/2014 | 27/2/2020 | 26/4/2023
Portland, OR, USA | 20/9/2010 | 27/2/2020 | 26/4/2023
Seattle, WA, USA | 6/5/2010 | 3/3/2020 | 26/4/2023
Topeka, KS, USA | 10/12/2008 | 23/11/2020 | 26/4/2023

Please note that the dates for the footprint sources are in DD/MM/YYYY format.

s

4

. Hold Out Cities

Training Cities

Figure S1 Map which displays the 3 randomly selected hold out cities for our additional validation
step.
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Table S2 Building Morphology Features.

Feature

Description

Geometric Features

shape area
shape length
sqft
sqmeters
lat dif

long dif
envel area

vertex count

geom count

Area of polygon in un-projected units

Perimeter length in un-projected units

Area in square feet

Area in square meters

Maximum latitude minus minimum latitude in un-projected units

Maximum longitude minus minimum longitude in un-projected unis

Area of bounding box of geometry in un-projected units

Count of vertices in geometry

Count of polygons in the geometry

Engineered Features

complexity ratio
iasl
vpa
complexity ps

Shape length / shape area

Inverse average segment length

Vertices per area

Complexity per segment, average complexity within each segment

Isoperimetric quotient, shape area maximization for given perimeter length

ipq
Conteztual Features

n count*® Number of building centroids within a given distance

omd* Observed mean distance from building within a given distance

emd* Expected mean distance from building within a given distance

nnd* Nearest neighbor distance from building

nni* Nearest neighbor index, overall pattern of points within a given distance
intensity™* Amount of nni occurring

n size mean*
n size std*
n size min*
n size max*

n size cv*

Average size of buildings within a given distance

Standard deviation of buildings within a given distance

Smallest building size within a given distance

Largest building size within a given distance

Coefficient of variation of building size within a given distance

* Denotes feature being calculated on multiple scales. Bolded features highlight the features selected for

use.
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Table S4 Morphology Differences — Microsoft and ORNL Footprints.

Microsoft Footprints
Metrics | Complexity PS | N Count 500 | N Size Mean 500
Mean 2,767 354 2,435
Median 2,812 295 2,029
Std 1,005 236 2,030
Min 47 2 775
25% 2,025 180 1,742
75% 3,496 487 2,457
Max 15,617 1,267 210,048
ORNL Footprints
Mean 7,673 289 2,124
Median 7,717 252 1,697
Std 2,405 176 1,779
Min 56 1 848
25% 6,240 158 1,402
75% 9,099 398 2,175
Max 21,160 928 102,320

The morphology features displayed in this table were generated in Albany, one of the 10 cities
investigated during this research.

Table S5 Out of Sample Validation Results.

Microsoft Footprints
Cities Albany | Houston | Seattle
Median MAE 1.12 m 0.92 m 1.30 m
Median RMSE | 1.55 m 1.80 m 2.44 m
XGB MAE 1.12 m 0.97 m 1.20 m
XGB RMSE 1.55 m 1.60 m 2.09 m
XGB R? -1% 13% 23%
ORNL Footprints
Median MAE 1.15 m 0.96 m 1.33 m
Median RMSE | 1.63 m 1.90 m 2.49 m
XGB MAE 1.11m 1.07 m 1.23 m
XGB RMSE 1.56 m 1.68 m 2.12m
XGB R? 6% 14% 24%

The results displayed for our out of sample validation test.
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—— Abstract

The prevalence of 3D city models in urban applications is increasing due to their lightweight and
flexibility, making them adaptable to various applications. However, effective data interoperability
remains an issue. Managing 3D city models within a database can improve urban data management
applications such as data enrichment and efficient querying. Motivated by the need for better
interoperability of 3D city models, this paper proposes a novel method for storing CityJSON using
the concept of a multi-model graph database as a foundation for enriching its semantics. The
proposed approach involves decomposing CityJSON objects into smaller JSON components, which
are then abstracted into graph elements. Parent-child and other relationship attributes are modelled
to capture the hierarchical and associative structures of the CityJSON data. A specific programme is
employed to preprocess CityJSON data based on several conditions before being loaded into the graph
database. Our multi-model approach allows three types of queries: document, graph, and hybrid.
The latter combines both document and graph query. Comparative evaluation against relational
databases demonstrates that the proposed method outperforms in terms of query performance. The
improved query performance is attributed to the advantage of graph database that reduces the need
for joins and the ability to efficiently index and navigate JSON data. The findings of this study
establish a foundation for semantic enrichment of 3D city models to improve interoperability and
support advanced urban data management.
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1 Introduction

Urban management reliance on 3D city models has grown steadily in recent years, driven by
their role in various urban applications such as energy demand modelling, indoor navigation,
and sustainability studies [27]. A virtual representation of city and urban data is required
for meeting the demands of modern urban applications to enable effective decision-making,
efficient resource allocation, and adept strategic planning [28, 10, 19]. 3D city models are
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primarily developed to visualise and represent urban objects [26, 14]. However, they can be
stored in a database for advanced querying, analysis, and integration of urban objects with
associated urban data.

CityJSON is a 3D city model format encoded in JSON, which serves as an exchange
format for CityGML [12]. It carries most of the schema exists in CityGML, allowing it to
represent urban objects, such as buildings, bridges, vegetation, and city furniture, in 3D and
multiple Level of Details (LoD). CityJSON is also capable of storing attributes based on their
data structure. Their data structure adopts a hierarchical and nested design that enables
clear parent-child relationships among urban objects. This organisation allows the attributes,
geometries, and semantic information to be assigned directly to their corresponding urban
objects. However, their structure can get heavily nested where querying information from the
whole document would be complex and inefficient. Therefore, decomposing their structure
into a more readable and less nested approach is a more intuitive method.

Research into storing 3D city models has explored both relational (RDBMS) and non-
relational (NoSQL) databases. In RDBMS, 3D city model components are typically stored
in tabular formats, with relationships like parent-child are handled through additional tables.
This structure introduces limitations due to the reliance on numerous joins, which reduce
efficiency and increase query complexity [16]. RDBMS also lacks native support for hierarchies
and inheritance, making it less suited for representing real-world urban objects and their
complex relationships [33, 5]. Consequently, relational databases struggle with object-oriented
representations and nested structures, leading to inefficiencies in querying 3D city model
data [4]. The lack of flexibility to represent 3D urban data in an object-oriented manner is
thus open for further research. Moreover, object-oriented approaches have been recognised
for effectively modelling complex relationships in 3D GIS, supporting urban applications and
enabling detailed structural analyses [33, 21, 11].

NoSQL databases have also been explored as a replacement to address RDBMS limitations,
particularly regarding inflexible schema. They are capable of structuring information using
object-oriented approach, which allows for modelling hierarchies and inheritance relationships.
This capability is highly relevant for managing 3D urban data that involves deep hierarchies
and complex information associations [24]. Document-based and graph-based databases have
been used to store 3D city models, with data decomposition being a common method of data
insertion. CityJSON, which is encoded in the JSON format, further facilitates data insertion
into NoSQL databases like MongoDB and ArangoDB as they readily accept data in JSON
format. This compatibility reduces the need for data format conversion as CityJSON can be
stored directly in its native format. However, storing CityJSON as a whole before unnesting
its components is cumbersome as it will further complicate querying and analysis.

This study addresses the limitations of storing CityJSON in relational databases, par-
ticularly the challenges of handling its nested structure and object-oriented modelling, by
using ArangoDB, a multi-model graph database. CityJSON components are decomposed
and stored as documents, which also serve as nodes in a Labelled Property Graph (LPG)
structure. Relationships are modelled to reflect parent-child hierarchies and the inheritance
of geometry and semantic attributes, while attributes themselves are represented as edges
linked to their respective City Objects. This graph-based transformation emphasises semantic
decomposition over geometric detail and offers improved query performance compared to
relational models.
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2 Related Works

CityJSON is a lightweight 3D city model exchange format for CityGML designed to enhance
the interoperability of 3D city models. Its JSON-based encoding simplifies storage and parsing
compared to the XML-based CityGML format, which is more verbose and often complicated
to handle. The lightweight nature of CityJSON makes it preferred by programmers due to
reduced complexity when building applications around it [12].

Furthermore, JSON is a human and machine-readable format that simplifies the process
of data manipulation and information retrieval. This makes CityJSON more accessible

for integration with web applications, APIs, and databases that inherently support JSON.

CityJSON widespread compatibility reduces some challenges in its various applicability,
which ultimately improves the usability and interoperability of 3D city models across many
urban applications. This practical advantage underlines CityJSON as a logical, more intuitive
choice to improve the interoperability and utility of 3D city model data.

When storing information in a DBMS, relational databases are typically the first choice
following their widespread use and more functionality. 3DCityDB [29] is a relational database
schema designed specifically to store OGC-standard 3D city models. It is built based on
spatially enhanced relational databases of either PostgreSQL with PostGIS extension or Oracle
Spatial. 3DCityDB provides several functionalities including storing, managing, visualising,
analysing, and exporting 3D city models in CityGML format. The initial development of
3DCityDB did not offer support for CityJSON; however, subsequent developments introduced
the capability to import and export CityJSON. Another relational database solution to store
CityJSON is CityREST [13], which is a RESTful APT designed to stream CityJSON datasets
over the web. It is built on top of PostgreSQL, which offers several key functionalities
like retrieving city objects, filtering city objects within a specified bounding box, and data
filtering. A more recent approach is CJDB, which is a relational database schema designed for
storing CityJSON built on top of PostgreSQL. It is developed as a more efficient alternative
to the 3DCityDB schema for storing and managing CityJSON data. Unlike 3DCityDB,

CJDB significantly reduces the large number of tables required to store similar datasets.

This design simplifies data management, which in turn reduces memory usage [17].

Concerns have been raised by [1] towards the unsuitability of RDBMS for storing OGC
standard data models due to the risk of impedance mismatch. This issue arises when
attempting to map object-oriented data models into relational schemas can potentially lead
to the loss of critical information or relationships. Despite its extended capabilities, ORDBMS
still depends on table joins, making it less suited for modelling the hierarchical structure
of 3D city models. For instance, representing parent-child relationships requires additional
tables and duplicating City Objects as foreign keys, which increases complexity and reduces
performance. In contrast, LPG-based graph databases handle such hierarchies more intuitively

by directly linking nodes without duplication, offering better node reusability and efficiency.

Moreover, storing and querying JSON data in relational databases involves specialised
operations that degrade performance as data size and complexity grow. Furthermore,
the storage and querying of JSON-based data in relational databases require specialised
operations. These operations may impact query performance, particularly as the complexity
and size of the data increase.

Existing solutions point towards the use of NoSQL databases that are object-oriented
to store information and relationships more efficiently than relational database that lacks
the schema and flexibility to represent a real-world entity [8]. The process of locating
object-oriented data in the tabular format relevant to relational databases can be difficult and
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prone to misrepresentation of information [15]. This limitation arises because of relational
databases that are not designed to manage hierarchical, nested data structures typically
found in object-oriented data like CityJSON. As a result, alternative approaches have been
developed to address the challenges of storing CityJSON in NoSQL databases.

Furthermore, NoSQL databases possess a flexible schema and the ability to naturally
model hierarchies and complex relationships. It provides a more intuitive and efficient
solution for managing the intricate structure of CityJSON data. Document and graph-
oriented NoSQL databases have been explored as alternatives to CityJSON to address the
limitations of relational databases in handling object-oriented data. Both MongoDB document
and RDF-based graph databases have been widely utilised for this purpose. MongoDB was
explored by Nys and Billen [16] and Karin et al. [22] for storing CityJSON, with evaluations
comparing its performance with PostgreSQL. Nys and Billen [16] proposed a simplified
schema for a document database where CityJSON components are decomposed into first-
order or discriminated schemas. Their work also included a visualisation framework built
using a MERN stack API architecture. Meanwhile, Karin et al. [22] focused on the querying
capabilities of MongoDB to compare the API querying of CityJSON data via GraphQL
against PostgreSQL. Both studies found that the querying performance of CityJSON data
using MongoDB is promising. This advantage is attributed to MongoDB reduced reliance on
tables and joins compared to relational database, resulting in a simpler and more efficient
query of CityJSON components.

Akin and Comert [2] developed a converter that maps CityJSON components into RDF
triples by using CJIO to transform CityJSON into a DataFrame, which is then translated
into RDF triples in Neo4j. While their work demonstrates the potential of graph databases
for storing CityJSON, it lacks evaluation or comparison with other databases, leaving the
practical effectiveness of RDF for this purpose underexplored. RDF triples, structured rigidly
as subject-predicate-object, are less suited for representing the object-oriented and nested
nature of 3D city models. RDF also struggles with the semantic richness and hierarchical
depth of 3D city models due to its lack of internal node structure. Attributes must be
expressed as additional triples rather than embedded directly into nodes, resulting in a
more complex and verbose graph structure. This limitation hampers the representation
of semantically rich data, making RDF less ideal for dynamic urban applications [7]. In
contrast, LPG allows attributes to be directly embedded in nodes and edges, offering a more
flexible and expressive approach for preserving and enriching the semantics of 3D city models.
Additionally, RDF requires joins between triples for deep graph traversals, which increases
query complexity [20], whereas LPG supports native and efficient traversal operations, thus
enhancing performance for complex queries.

LPG graphs models consist of fundamental graph elements (i.e., nodes and edges), which
can be enriched with key-value properties. The ability to annotate both nodes and edges
enhances the expressiveness of the graph, allowing it to capture complex, object-oriented
structures more naturally. In this study, LPG graph is utilised to model and store the
nested structure of CityJSON by taking advantage of its ability to annotate both nodes and
edges with properties. This flexibility allows information to be stored contextually where
descriptive properties of each JSON object are embedded as node attributes, while associative
attributes like those linked to City Objects are captured through edge attributes. Each JSON
object is represented as an individual node, enabling a clear and expressive mapping of the
hierarchical and semantic relationships inherent in CityJSON data.
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3 Methodology

Although RDF-based graphs have been explored for CityJSON data management, we argue
that LPGs are better suited for managing 3D city model data. As 3D city models are developed
to improve interoperability across diverse applications, storing them as attributed nodes
and edges within an LPG structure is more appropriate since it allows better expressiveness
of information compared to RDF, particularly as LPG graphs are built on a key-value
pair [30]. This approach enables the seamless association of attributes relevant to various
urban applications that facilitate the semantic enrichment of 3D city models.

Junxiang et al. [32] have raised concerns about the limitations of RDF triples for storing
and querying building information data. Specifically, RDF graphs and their query languages
lack efficiency to support graph traversals, which poses challenges for graph querying and
analysis. As a result, RDF triples often must be converted into LPG graphs to enable scalable
graph analytics and fully capture complex semantic relationships [30, 3, 18, 9]. Furthermore,
LPG graphs simplify data integration compared to RDF graphs [31]. This makes LPGs a
more effective choice for managing 3D city models that support semantic complexity and
allow efficient graph traversals and analytics. Therefore, this study aims to develop a schema
model for storing CityJSON in ArangoDB, a multi-model graph database that supports the
LPG graph structure.

3.1 Schema for Multi-Model Graph Database

Our approach focuses on managing 3D urban data using a multi-model graph database. The
structure of an LPG-based graph database is considered a more intuitive approach compared
to RDF-based graph databases and relational databases for handling complex 3D urban
data.

3D urban data are characterised by their complex structure, nested relationships, and
semantically rich attributes. Representing such data using an object-oriented approach is
more suitable, which can be achieved effectively with an LPG-based property graph. LPG
structures mirror real-world object relationships more naturally, making them ideal for 3D
spatial data where objects like buildings, geometry, and attributes can be abstracted through
graph elements.

In ArangoDB, records are stored in JSON format as documents in document collections,
while relationships between records are established and stored in edge collections where each
edge references the unique key of the connected records. This design essentially treats each
record in the document collection as a node, whereas the edges can be connected between
nodes to represent their relationships, hence the multi-model nature of ArangoDB. Storing
an entire CityJSON document as a single entity is possible in ArangoDB; however, querying
and retrieving specific information can become complex due to the deeply nested structure
of CityJSON components. Filtering data requires the query process to traverse the deep
hierarchical levels of the CityJSON document, which can be inefficient and time-consuming.
To address this issue, it is necessary to decompose CityJSON files into distinct components
and store them as separate documents within a document collection.

Therefore, we propose a schema for multi-model graph database to store CityJSON
based on three collections, one document collection, and two edge collections (see Figure 1).
The document collection gathers all the decomposed CityJSON components as individual
documents. First-level objects, such as City Objects, are stored as separate documents, while
second-level objects, including geometries nested within City Objects, and third-level objects,
like the semantics nested within geometry, are further decomposed and stored as individual
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documents. Additionally, each City Object ID is stored as a document to explicitly associate
City Objects with their attributes and facilitate parent-child relationships. The content of
each decomposed document is shown in Figure 2.

v v

Document Collection

Attributes Edge Collection I\C/Ii?;nObjeCtS Hierarchical/lnheritence Edge Collection
] ) o City Objects ID eometry Relationshi
Attr|butes Rlelatlonshlp (City City Objects Geometry gemanticys Relationshipp
Objects Attributes) City Objects Semantics Parents-Children
Vertices
Transform [y

| I

Figure 1 CityJSON Multi-Model Graph Database Schema.

Main » |« Version

City Objects * Type

City Objects ID

City Objects Geometry ——— > |+ City Object Type
City Objects Semantics —

Vertices .

Transform —— Tt LoD

« Geometry Type
« Boundaries

e Values
« Surfaces

% | e Scale
« Translate

Figure 2 Components of Decomposed CityJSON Documents.

Two edge collections are used to model relationships. The first edge collection links
City Object documents to their City Object IDs and stores attributes as edge attributes.
Attributes originally stored within the “Attributes” key of each City Object in the original
CityJSON file are separated and mapped as key-value pairs in the edge collection. This
separation of attributes aims to avoid the attributes being kept nested under their City
Objects. It ensures that attributes can be queried more efficiently, and new attributes can be
added or modified using the basic insert and update database operations. In the case where
the City Objects do not contain any attributes, the relationship between the City Objects
document and each City Object ID will still be established. This ensures that any future
attributes relevant to any City Objects can be inserted.

The second edge collection models the relationships between geometry, semantics, and
their corresponding City Objects alongside the parent-child hierarchies among City Objects.
Figure 3 illustrates the representation of the relationship between the decomposed components
of CityJSON.
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City Objects Attributes City Objects Geometry -Semantic: City Objects Semantics

Figure 3 Relationship Representation between Decomposed CityJSON Components.

3.2 Storing CityJSON into Multi-Model Database

A program is developed to store a CityJSON file into ArangoDB based on the schema
explained in Section 3.1. The programme workflow is shown in Figure 4.

Create one document Separate Type and
Initialize ArangoDB ——>| collection andtwo edge |——> Read CityJSON File —> Version into one
collections document

Separate any JSON object
that are not CityObjects or s h each City Objects
its component into one each CityObjects and geometry and treat as one
treat as one document
document document

Separate geometry from Separate semantics from Find each CityObject
—>| UUID from CityObject and

put as one document

I

Create edge from City
Insert CityObiects as one Insert each document into Create edge to connect Object document to each
0l I —>|  ArangoDB document |—>| parentand children City —>|  City Object UUID and
document X N o . N N
collection Objects, if exists. insert their attributes as
edge attributes

Create edges between
geometry, semantics and
their corresponding City

Objects

Store all edges into their
—> corresponding edge
collection

Figure 4 CityJSON to LPG Graph Workflow.

The integration of CityJSON into the graph database process begins by setting up the
ArangoDB environment, a graph database to store and manage CityJSON data. First, the
ArangoDB graph is initialised and a dedicated database is created. Within this database, a
document collection is established to store the CityJSON components. Edge collections are
created to represent the relationships between these components. One edge collection is for
connecting CityJSON components with their parent-child relationship and other inheritance
relationship, while another edge collection is created to store CityObject attributes.

The workflow then reads the CityJSON file where the content will be decomposed
into individual components with smaller and manageable JSON scripts containing the
decomposed JSON objects. The code will analyse the file to identify and separate each
CityJSON component with the exception of CityObjects and its components, which will be
processed at a later stage. The type and version components are stored as one document
(Main document, see Figure 1), which is named based on the file name of the input CityJSON
file. Each of these identified components is then inserted as individual documents into the
document collection, which has been created at the database initialisation step.
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Next, the workflow proceeds to parse the City Objects and their components. The City
Object components will be analysed and decomposed based on the following considerations:
1. Each CityObject is examined to determine its individual ID (CityObjectUUID). For each

City Object ID, a document is created and inserted into the document collection.

2. The hierarchical structure of CityObjects is addressed by examining the parent-child
relationships among CityObjects. If such relationships exist, edges are created to represent
this relationship.

3. If a CityObject contains geometry information, the geometry is separated and stored in a
dedicated document and later kept in the document collection. Edges are created to link
the geometry data to its respective CityObjects.

4. If the geometry of the CityObject contains semantic information, the semantic is separated
and stored in a dedicated document and kept in the document collection. Edges are
created to link the semantic information to its respective geometry documents.

5. Edges are created between CityObject and all CityObject UUID and stored in the
attribute edge collection regardless of whether the CityObject has attributes or not. If
the CityObject contains attributes, it is inserted as edge attributes; otherwise, the edge
will act as a placeholder for future attributes.

At the end of the workflow, all CityJSON components (objects, semantics, and geometry)
and their attributes are stored as structured documents in the database. Relationships
between these components are encoded as edges, making it possible to query and analyse
the data using graph-based operations. The attributes of City Objects are stored inside a
dedicated collection, which allows users to dynamically include any information regarding the
CityObjects pertinent to any applications in the future. The integration process transforms
the CityJSON data into a form that is highly suitable for advanced applications like urban data
management and semantic querying, thus transforming urban management decision-making
towards knowledge-driven initiatives.

4 Results and Analysis

4.1 CityJSON as Graph

A graph-based representation of the CityJSON data can be constructed by adhering to the
workflow for storing CityJSON data in ArangoDB as outlined in Section 3.2 and structured
according to the schema described in Section 3.1. For implementation and evaluation, we
use three tiles of CityJSON data retrieved from the 3DBAG website 2. The dataset includes
multiple LoD, resulting in multiple geometries and corresponding semantics for each LoD.

The graph in Figure 5 shows the CityJSON data structure based on the components
and relationships outlined in Figure 3 where the City Object documents serve as central
nodes and all City Objects ID converge. It visualises how the decomposed components
are interconnected and captures the hierarchical parent-child relationships among the City
Objects as well as the inheritance of semantics and geometry back to their corresponding
City Objects. The nodes represent the main JSON objects in CityJSON. Other information
like LoD is represented as queryable attributes inside the nodes. Additionally, the graph
is capable of illustrating the multiple geometries and semantics associated with each LoD,
providing a comprehensive view of the structure of the original CityJSON dataset and its
relationships.

2 https://3dbag.nl
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Figure 5 Representation of CityJSON Structure as Graph.

4.2 Evaluation against Relational Database

Our approach is evaluated against PostgreSQL based on the CJDB schema [17]. Tt uses
three tables to store the CityJSON components and their relationship. The first table
(city_object) stores the City Objects and the information describing the City Objects. The
second table (cj_metadata) stores the information of the imported CityJSON file. Finally,
the third table (city_object_relationship) stores the relationship between City Object,
such as the parent-child relationship. The CJDB schema is shown in Figure 6.

city_object_ cj_metadata
relationships + id: integer
+ version: text
0.” + source file: text
ci’ryj::biect + metadata: jsonb
+ id: integer + transform: jsonb
+ type: text cj_mmidata_m___+ srid: integer
+ object id: text ——___‘_ 1 |+ extensions: jsonb
+ attributes: jsonb 0.. + extra properties: jsonb
+ geometry: jsonb + geometry templates: jsonb
+ ground geometry: geometry + bbox: geometry
+ started at: timestamp
+ finished at: timestamp

Figure 6 CJDB Schema.

As ArangoDB is a multi-model database, we evaluate our approach according to document-
based query, graph-based query, and hybrid query (combination of document-based and
graph-based query). It involves using three tiles from the CityJSON dataset retrieved from
the 3DBAG website. Table 1 contains a description of the CityJSON datasets used for the
implementation and evaluation of our approach, while Figure 7 illustrates the visualisation
of the datasets using Ninja CityJSON viewer 3 [25].

The data is a multiple LoD data based on the improved LoD specification by [6]. Table 2
explains the query and the query type for the evaluation of our approach.

3 https://ninja.cityjson.org/
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Table 1 CityJSON Datasets Retrieved from 3DBAG Website.

Dataset File Size (Kb) | Number of City Objects | LoDs
F-8-264-552 1409 396 LoDO, LoD1.2, LoD2.2,
LoD2.3
E-10-278-556 2954 892 LoD0O, LoD1.2, LoD2.2,
LoD2.3
G-8-328-528 19868 6966 LoD0O, LoD1.2, LoD2.2,
LoD2.3

Table 2 Queries for Benchmarking with PostgreSQL.

No. | Query Query Type
Q1 | Query all City Objects with “Building” type Document
Q2 | Query all LoD 1.2 City Objects Document
Q3 | Query all City Objects with slanted roof Graph

Q4 | Query City Objects with specific child Graph

Q5 | Insert “owner” attributes for all City Objects with “Building” type Hybrid
Q6 | Delete “owner” attributes for all City Objects with “Building” type Hybrid

All benchmarks were conducted on a machine running on AMD Ryzen 5 CPU, 16 GB
RAM, and a 516 GB SSD. ArangoDB 10.1 and PostgreSQL v17 with PostGIS extension were
used. Each query was executed three times and the average execution time was recorded.
All benchmarks were performed under warm cache conditions.

Query 1 and Query 2 are document-based query. The City Objects’ type is stored within
City Object documents in the document collection, whereas the LoD is stored in geometry
document. In Q3, graph-based querying is employed to identify City Objects with slanted
roofs by querying the edge attributes between City Objects document and its City Object ID.
Similarly, Q4 leverages graph traversal to retrieve buildings with specific child elements by
querying the hierarchical relationship between City Object ID. Q5 and Q6 are document and
graph queries, respectively. The City Objects type is stored in the City Objects document,
while the attributes are stored as edge in the attributes edge collection. Therefore, both Q5
and Q6 must navigate the elements in the document and graph structures to complete the
query. The query performance comparison is visualised in Figure 8.

The evaluation shows that our multi-model schema excels in most evaluation cases than
PostgreSQL based on the CJDB schema. ArangoDB stores information natively in JSON
format, while CJDB stores CityJSON information in JSONB format. Although both are
stored in document-based format, ArangoDB, which is purposely built as a multi-model
database that natively supports document-based data, is inherently more efficient for querying
such data compared to PostgreSQL, which relies on its table-based schema to manage JSONB.
This advantage is evident in Q1 and Q2 where ArangoDB achieves significantly lower execution
times for querying document-based data. Additionally, ArangoDB stores information as a
single document, while PostgreSQL may rely on The Oversized-Attribute Storage Technique
(TOAST) table to store oversized data. This will introduce additional overhead as join
operation with the TOAST table is needed when accessing oversized documents. The design
advantage enables ArangoDB to store and retrieve large CityJSON documents more efficiently,
making it better suited for querying large datasets.
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(a) F-8-264-552.

(c) G-8-328-528.

Figure 7 Visualization of each Evaluation Dataset.

Q3 in ArangoDB is a graph traversal operation to retrieve City Objects attributes stored
as edge attributes. The edge points towards City Object ID, which is the object that the
attributes belong to. Edge attributes that are relevant to LPG make filtering more efficient
since the query interacts directly with the graph structure. On the other hand, relational
database relies on parsing the JSONB column and filtering its key-value pair based on JSONB
operators. This approach requires a scan or index-based lookup of the JSONB column, which
is computationally more expensive than edge filtering in ArangoDB. When compared to RDF,
they do not natively support attributes on edges and require workarounds like reification,
which will further complicating queries [30].

Meanwhile, Q4 is also a graph traversal operation to navigate the parent-child relationships
between City Objects. ArangoDB handles this straightforwardly by establishing a relationship
between a parent and their children. Meanwhile, PostgreSQL handles this by establishing
a new table to join parent and children. Therefore, the join operation is unavoidable for
PostgreSQL to query parent-child relationships, which usually will result in additional
computational overhead than graph traversals. This is evident by the execution time shown
in Table 3. Compared to RDF-graph, LPG-based graph databases are better suited for this
purpose than RDF triples as the cost of graph traversals in RDF is higher compared to
LPG [3]. RDF may require joining of multiple triples to accomplish deep graph traversal
operations. Therefore, traversing the deep hierarchical relationship between parent and child
is more efficient using LPG.
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Figure 8 Query Performance Comparison for each Dataset.

Q5 and Q6 in ArangoDB are hybrid queries because they involve accessing data stored in
both the document collection and the edge collections. The City Object types are filtered
in the document collection, while the attributes are stored as edge attributes in the graph
structure. This dual-querying process introduces overhead following the need to navigate
multiple data structures and perform cross-collection traversals. The overhead is particularly
noticeable in Q6 (Delete operation) for the G-8-328-528 dataset where the deletion process
required slightly more time than PostgreSQL. This can be attributed to the larger dataset
size, which increases the complexity of traversing and modifying edge attributes after initial
document filtering. While ArangoDB handles graph traversals efficiently, the combination
of document filtering and edge modification introduces additional steps that slightly affect
performance in large datasets. In contrast, PostgreSQL manages the deletion operation
more efficiently in this specific case due to optimised JSONB operations for direct attribute
modification. However, performance advantage in Q6 is limited to this specific scenario as
the overall querying process still suffers from complex joins and schema rigidity in other
query types. Future work could explore strategies to optimise hybrid queries in ArangoDB,
such as pre-indexing relationships or implementing batch processing techniques to reduce
the traversal overhead in large datasets. Despite the overhead observed in hybrid queries,
ArangoDB maintains superior performance in most cases, particularly in queries involving
complex relationships and semantic enrichment.
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5 Conclusion and Future Works

This study adopts an object-oriented approach to abstract urban components and their
relationships as graph elements using a multi-model graph database. CityJSON is decomposed
into individual JSON scripts, which are stored as document nodes and linked via unique keys.
Two edge collections are used: one connects City Object documents to their IDs for attribute
storage while the other captures parent-child and semantic-geometry relationships. Queries
are executed using document-based, graph-based, and hybrid approaches, which show better
performance compared to PostgreSQL based on the CJDB schema. This demonstrates the
scalability and flexibility of the proposed method.

The strength of our approach lies in the reusability of City Object nodes. Enrichment of
attributes can be achieved by modifying or updating the edge attributes relevant to the City
Objects to allow better expressivity. Furthermore, relationships can be established without
necessitating node duplication owing to the node reusability of City Objects. This requires
no joins of tables and allows a better query through graph operations, which have been
demonstrated to be more time-efficient compared to query on relational model.

Representing 3D city models through object-oriented abstraction simplifies their com-
plexity by reducing them into manageable, modular structures. Each component is treated
independently, allowing flexible storage, updating, and querying. Semantic enrichment is
supported by attaching attributes to nodes and edges, while topological relationships can
be modelled via edges, thus enabling spatial queries [33], [23]. Future work can extend
this approach to support spatial queries, including bounding box operations essential for
location-based urban applications. This involves computing bounding boxes for all City
Objects and storing them in the database, further enhancing spatial query capabilities for
3D city models.
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—— Abstract

Spatial representations that capture both structural and semantic characteristics of urban envir-

onments are essential for urban modeling. Traditional spatial embeddings often prioritize spatial
proximity while underutilizing fine-grained contextual information from places. To address this
limitation, we introduce CaLLiPer+, an extension of the Cal.LiPer model that systematically
integrates Point-of-Interest (POI) names alongside categorical labels within a multimodal contrastive
learning framework. We evaluate its effectiveness on two downstream tasks — land use classification
and socioeconomic status distribution mapping — demonstrating consistent performance gains of
4% to 11% over baseline methods. Additionally, we show that incorporating POI names enhances
location retrieval, enabling models to capture complex urban concepts with greater precision. Abla-
tion studies further reveal the complementary role of POI names and the advantages of leveraging
pretrained text encoders for spatial representations. Overall, our findings highlight the potential
of integrating fine-grained semantic attributes and multimodal learning techniques to advance the
development of urban foundation models.
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1 Introduction

Spatial representations form the backbone of urban analysis, serving as essential tools for
understanding and modeling complex urban systems. They underpin various applications,
including urban functional distribution mapping [9, 10], land use classification [12], socioeco-
nomic indicator estimation [11], future visitor prediction [5], and next-location prediction [8].
Traditional approaches typically encode locations as numeric coordinates or rely on spatial
proximity [14, 15, 30], effectively capturing physical distance and structure. However, they
often fail to capture the intricate functional interdependencies between places that drive
urban dynamics.

In contrast, “platial” concepts emphasize the additional layers of meaning that humans
ascribe to spaces, interpreting them through social, cultural, and functional attributes [7].
Point-of-Interest (POI) data offers a practical entry point for these attributes, as it couples
spatial coordinates with descriptive names and labels. Such semantic information elucidates
how different places function and interact within the broader urban landscape. Nevertheless,
many existing embedding methods continue to emphasize spatial distance or simple categorical
labels [9, 10, 28, 30, 31], underutilizing POI data’s finer-grained insights.
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Recent innovations in deep learning and natural language processing [17, 19, 4] facilitate
richer semantic alignments within spatial data. Notably, multimodal contrastive learning [22]
has proven effective in aligning geographic coordinates with textual descriptions, thereby
enhancing the semantic depth of spatial embeddings. A prime example is CaLLiPer [27],
which aligns POI types with spatial coordinates to yield improvements in downstream tasks.
However, CaLLiPer treats POI types as broad categorical labels, potentially overlooking the
granular detail contained in POI names. Such names often provide specific and context-rich
information, ranging from “Starbucks Coffee” to “John’s Hardware Store,” which can further
enrich location understanding and distinguish unique POIs. Yet, the systematic integration of
POI names into general-purpose spatial embeddings through multimodal contrastive learning
remains underexplored. Addressing this gap is crucial for fully capturing the nuanced
semantics of urban environments and advancing more comprehensive urban representation
models.

To enhance spatial embeddings with richer semantic detail, we incorporate POI names
alongside type labels into a multimodal contrastive learning framework. Building on the
original CaLLLiPer model, we propose an extended version called CaLLiPer+4. We evaluate its
effectiveness in two downstream tasks — Land Use Classification (LUC) and Socioeconomic
Status Distribution Mapping (SDM) — as well as in an additional location retrieval task.

Our contributions are as follows:

1. We extend the CaLLiPer framework by incorporating POI names alongside type informa-
tion, resulting in a unified model, CaLLiPer+ (§3).

2. We evaluate the enriched semantic representation on two downstream tasks, showing
consistent performance gains of 4% to 11% over POI-type-only models (§5.1).

3. We conduct retrieval experiments to assess the model’s ability to capture urban concepts,
and show that enriched semantics and advanced text encoders lead to better conceptual
understanding (§5.2).

4. We demonstrate the effectiveness of contrastive learning with a pretrained encoder for
location representation, and highlight the potential of the resulting embeddings for
downstream applications (§6).

2 Related Work

2.1 Word Embeddings and Sentence Embeddings

The advancement of natural language processing (NLP) has led to powerful embedding
techniques that transform textual data into high-dimensional vector spaces, enabling machines
to better process and understand linguistic semantics. Early word embedding models such
as Word2Vec [16] and GloVe [21] revolutionized NLP by capturing semantic relationships
between words based on their co-occurrence in large text corpora.

Building on these foundational methods, sentence embedding models like Sentence-
BERT [17] and SimCSE [6] were developed to generate dense representations of entire
phrases or sentences while preserving contextual nuances. More recently, large language
models (LLMs) such as BERT [3], GPT [23, 2, 20], and LLaMA [25] have further enhanced
text embedding capabilities, facilitating sophisticated semantic extraction across various
textual contexts, including POI descriptions and names.

These advancements in NLP offer new opportunities to incorporate linguistic semantics
into geospatial models, enabling the embedding of POI names and descriptions to enrich
spatial representations beyond purely numerical features.
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2.2 Spatial Embeddings with POls

Spatial embedding techniques aim to encode geographic entities into vector spaces, capturing
their spatial and functional relationships. POI data, which contains both geographic coordin-
ates and semantic attributes, has been widely utilized in urban studies for tasks such as land
use classification, urban function recognition, and socioeconomic mapping.

Early approaches to spatial embeddings primarily leveraged POI categories to model
urban entity co-occurrence. Yao et al. [30] proposed a method that traversed POIs
within a geographic region using shortest-path algorithms to extract co-occurrence pat-
terns. Place2Vec [28] applied a K-nearest neighbor (KNN) sampling strategy with distance
decay to model spatial proximity, while Doc2Vec [18] treated urban regions as documents
and POlIs as words, learning region embeddings based on the co-occurrence of POI categories
within predefined spatial boundaries. These methods effectively captured the functional
composition of urban spaces but treated POIs as categorical variables, overlooking their
individual characteristics and richer semantic meanings.

To provide more distinguishing information for individual POIs, recent methods have
explored integrating additional semantic attributes into spatial embeddings. Huang et al. [9]
introduced the Semantics-Preserved POI Embedding (SPPE) model, which incorporates
both spatial co-occurrence patterns and categorical semantics to enhance the representation
of POI distributions. Similarly, HGI [10] employed hierarchical graph-based embeddings to
capture multi-level semantic relationships among POIs, urban regions, and cities. While
these methods improved the semantic richness of spatial representations, they still primarily
rely on categorical classifications and predefined spatial structures, limiting their adaptability
to diverse urban environments.

Existing methods for spatial embeddings primarily aggregate POI information within
predefined regions or construct complex spatial contexts to infer urban functions. These
approaches often rely on indirect or coarse-grained representations. With the growing
availability of detailed POI datasets and advances in NLP, a more direct and efficient
approach is to embed individual POIs by leveraging their inherent semantic information,
such as names, which provide fine-grained functional and cultural context.

2.3 Multimodal Contrastive Learning for Geospatial Data

Multimodal contrastive learning has recently gained traction as an effective method for
aligning heterogeneous data sources, enabling the integration of spatial coordinates with
diverse information. This approach leverages contrastive objectives to maximize similarity
between aligned data pairs (e.g., a location and its textual description) while distinguishing
them from unrelated samples.

UrbanCLIP [29] proposed a pre-training approach for urban region representation by
generating textual descriptions for satellite images using large language models and training
an image encoder via a CLIP-like framework. Similarly, GeoCLIP [26] and SatCLIP [13]
extended contrastive learning to geospatial data by aligning satellite imagery with geographic
coordinates, supporting tasks such as geo-localization and environmental monitoring. The
CaLLiPer model [27] advanced this concept by aligning POI type semantics with spatial
coordinates through multimodal contrastive learning, demonstrating improved performance
in land use classification and socioeconomic status mapping.

Despite these advances, existing models primarily focus on solely POI type or complex
visual data, overlooking the potential benefits of simply incorporating distinguishing se-
mantics of POI names into contrastive learning settings, which contain rich, context-specific
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information that can enhance the semantic depth of spatial embeddings, offering more
nuanced insights into urban functions and structures. The underutilization of POI names in
multimodal frameworks is still a significant gap in current geospatial representation learning
research.

3 Methodology

3.1 Overview

This study builds upon the CaLLiPer framework [27], a multimodal contrastive learning
model designed to align spatial coordinates with semantic information extracted from POI
data. While the core architecture remains consistent with CaLLiPer, we introduce a key
modification: the integration of POI names into the textual descriptions, enriching the
semantic representation of urban spaces.

Figure 1 illustrates the overall architecture, which consists of three key components:
a location encoder, a text encoder, and a projection layer. These components are jointly
optimized using a contrastive learning objective to align spatial and semantic information
effectively.

Location encoder. The location encoder maps spatial coordinates into a continuous vector
space. It applies a positional encoding function to transform raw geographic coordinates into
structured representations, followed by a fully connected neural network to generate location
embeddings. In this work, we apply the Grid [14] positional encoding function.

Text encoder. The text encoder is a frozen pretrained embedding model, such as Sentence-
BERT [17], LLaMA [25], or GPT [20], which generates semantic embeddings from the enriched
POI descriptions. By incorporating POI names alongside categorical information, it captures
more nuanced semantic details, improving the discriminative power of the embeddings.

Projection layer. To facilitate direct comparison between spatial and textual embeddings, a
linear projection layer maps both of them into a common vector space of dimension d. This
projection ensures compatibility between modalities, enabling effective contrastive learning.

3.2 Enriching POI Descriptions with Names

In the original CaL.LiPer model, POI semantics are represented solely by two levels of
categorical labels from the Ordnance Survey. While effective for generalizing urban functions,
this approach overlooks the rich, context-specific information embedded in POI names.
Names often convey distinctive characteristics, such as cultural significance, brand identity, or
specialized services, which are not captured by generic type labels. For instance, “McDonald’s”
may evoke a different functional connotation compared to a generic “restaurant,” particularly
in terms of cuisine style or consumption level.

To address this limitation, we extend the POI descriptions by integrating names directly
into the semantic representation. For each POI p;, we construct a combined description d;
that incorporates the name n;, the first-level category t1;, and the second-level class t5; using
a templated format designed to enhance the model’s understanding of the spatial context:

d; = Template(n;, t1;,t2;) = “A place of [ty;], a type of [t1;], named [n;].” (1)
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Figure 1 Architecture of the CaLLiPer+ model [27].
textual descriptions processed by the text encoder, enhancing the semantic richness of the spatial
embeddings.

POI names are incorporated into the

This enriched template ensures that the text encoder can capture both general category
information and the specific nuances associated with individual POlIs.
POI names, the model captures finer-grained semantic details that improve its ability to
differentiate between places within the same category.
prestige (e.g., “Hilton Hotel” vs. “Budget Inn”), specific function within the same type (e.g.,
“The British Museum” vs. “National Gallery”), and scale or exclusivity (e.g., “local farm
market” vs. “Harrods”). This richer semantic embedding enhances the model’s capacity to
represent the diversity and complexity of urban environments more accurately.

By incorporating

This includes recognizing brand

3.3 Multimodal Contrastive Learning Framework

The multimodal contrastive learning framework aligns spatial coordinates with detailed
textual semantics in a shared embedding space. The goal is to ensure that a POI’s spatial
representation is closely aligned with its semantic description, while unrelated pairs are
pushed apart.

Each POI is represented by two embeddings:

Z(S) = fs(xi) (spatial embedding) (2)
2P = W fi(d;) (3)

where f; is the spatial encoder that transforms the geographic coordinates x; into a vector
representation, and f; is a pretrained text encoder that processes the enriched POI descriptions
d;, followed by a projection layer W; to align the dimension with spatial embedding. The
inclusion of POI names in d; ensures that the text embeddings capture both high-level

(textual embedding with name and type)

categorical information and fine-grained, context-specific details.

Contrastive learning objective. The alignment between spatial and textual embeddings
is achieved using the InfoNCE loss [22], which encourages positive pairs (i.e., a POI’s
location and its enriched description) to be similar, while pushing apart negative pairs (i.e.,
mismatched locations and descriptions). The loss is defined as:

()
Zl +Zlog
1=1

(p)
( () |

27/7)
47/7)

exp (p)/T
1e p( (s) P)/

exp(z

(4)

] 1exp
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where - denotes cosine similarity between embeddings, and 7 is a temperature parameter that
controls the sharpness of the distribution. This symmetric loss is applied to both spatial-to-
textual and textual-to-spatial alignment, ensuring consistent alignment of embeddings from
both modalities.

Advantages of enriched semantics. Incorporating POI names into the contrastive frame-
work enhances the model’s ability to capture fine-grained urban semantics. The enriched
descriptions provide the following benefits:
Improved discrimination: The model can better differentiate between places within the
same category by leveraging unique names.
Context awareness: Names often imply cultural, historical, or functional context, enriching
the model’s understanding of urban environments.
Enhanced transferability: The enriched embeddings generalize better across diverse tasks.

In summary, our approach enhances the original CaLLiPer framework by incorporating
POI names into the textual descriptions, leading to richer, more discriminative spatial
embeddings through multimodal contrastive learning.

4 Experiments

4.1 Experimental Setup

To evaluate the impact of incorporating POI names into the spatial-semantic embeddings,
we conducted experiments on two urban analytics tasks: Land Use Classification (LUC) and
Socioeconomic Status Distribution Mapping (SDM). Additionally, we performed location
retrieval to observe the model’s ability to capture high-level urban concepts.

4.2 Datasets

Point-of-Interest data. We use POI data from the Ordnance Survey via Digimap 2, covering
the Greater London area. The dataset contains approximately 340,000 POlIs, each with
geographic coordinates, a name, and categorical labels. POIs are classified into a hierarchical
taxonomy. These data provide detailed spatial and semantic insights into London’s urban
environment.

Land use data. We obtain land use data from the Verisk National Land Use Database 2,
which provides high-resolution classification of land use types. The dataset includes ten
primary land use categories. To create the evaluation dataset, we sample locations with a
200-meter radius buffer, ensuring balanced representation across categories.

Socioeconomic data. We obtain socioeconomic data from the Office for National Statist-
ics (ONS) 2021 Census 4, specifically the National Statistics Socioeconomic Classification
(NS-SeC). This dataset provides a detailed classification of socioeconomic status based on
employment type, occupational hierarchy, and educational attainment. The data are ag-
gregated at the Lower-layer Super Output Area (LSOA) level, encompassing 4,994 LSOAs
across London. Each LSOA contains proportions of 1000 to 3000 residents within different
occupational classes.

2 https://digimap.edina.ac.uk/
3 https://digimap.edina.ac.uk/roam/map/verisk
4 https://www.ons.gov.uk/
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4.3 Baselines

To assess the effectiveness of our enhanced model, CaLLiPer+, we compare it against the
following baselines:
TF-IDF [24]: A term frequency-inverse document frequency model that represents each
region based on the POI categories within it.
LDA [1]: A probabilistic topic modeling approach that infers latent topics from POI
distributions, capturing urban functional structures through topic-word distributions.
Place2Vec [28]: A spatial embedding model that learns representations of POIs based on
their spatial co-occurrence, modeling functional similarity through a skip-gram framework.
Doc2Vec [18]: A document embedding approach that treats urban regions as docu-
ments composed of POI categories, learning region representations through unsupervised
learning.
SPPE [9]: A semantics-preserving POI embedding method that captures spatial co-
occurrence patterns and topological structures of POIs through a graph-based approach.
Space2Vec [14]: A geospatial representation learning model that encodes locations
through positional encoding and neural networks, learning embeddings directly from
spatial coordinates.
CaLLiPer [27]: The original multimodal contrastive learning model, which encodes POI
categories as textual descriptions but does not incorporate POI names.

4.4 Downstream Tasks and Evaluation Metrics

We evaluate the learned spatial representations on LUC and SDM tasks. To systematically
analyze the effectiveness of the learned embeddings, we employ two types of downstream
models: (1) a linear model, implemented as a single-layer neural network, testing the raw
expressiveness of the embeddings, and (2) a nonlinear model, implemented as a multi-layer
perceptron (MLP) with a single hidden layer to capture more complex relationships.

Land use classification is a multi-class classification task that predicts the land use
type of a given spatial unit based on its learned representation. We train classifiers using
both a linear model and a nonlinear model and evaluate performance using:

Precision, recall, and F1 score: These metrics are macro-averaged across classes, provid-

ing a balanced evaluation of classification performance. Higher values indicate better

performance.

Socioeconomic status distribution mapping is a regression task that estimates the
occupational composition of urban regions using the learned embeddings. The model predicts
the proportion of residents in different socioeconomic categories at the LSOA level. We train
both a linear model and a nonlinear model to compare their effectiveness. Performance is
evaluated using:

L1 distance: Measures the absolute difference between predicted and actual socioeconomic

distributions.

Chebyshev distance: Captures the maximum absolute deviation between predicted and

actual distributions.

Kullback-Leibler (KL) divergence: Evaluates the difference between the predicted and

actual probability distributions, indicating how well the model captures the socioeconomic

structure.

By testing the embeddings across both classification and regression tasks, and using both
linear and nonlinear models, we assess their generalizability and effectiveness in capturing
the information of urban environments.
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4.5 Implementation Details

All models were implemented using PyTorch and trained on a machine equipped with an
NVIDIA A6000 GPU. The text encoder was based on Sentence-BERT by default, which
processed the enriched POI descriptions. The spatial encoder followed the same architecture as
in CaLLiPer [27], using a fully connected residual network with 128-dimensional embeddings.
The training process adopted a grid search approach to tune hyperparameters, resulting in
a batch size of 128, a learning rate of 0.0001, and a temperature parameter of 0.07. The
optimizer was Adam. The models were trained for 100 epochs with early stopping based on
validation loss, and each downstream task experiment was repeated five times with different
random seeds to ensure robustness. The reported results represent the mean performance
across these runs.

4.6 Location Retrieval

We observe the model’s ability to retrieve urban concepts based on semantic queries. This
task shows how well the learned embeddings capture urban concepts by matching textual
embeddings to spatial embeddings.

Given a natural language query, we compute its embedding using a pretrained language
model. We use two text encoding approaches: (1) a Sentence-Transformers model (all-
MiniLM-L6-v2), which generates sentence embeddings via mean pooling over contextualized
token embeddings, and (2) an OpenAl GPT-based embedding model (text-embedding-3-
small), which produces a high-dimensional representation of the query and is subsequently
projected into a 128-dimensional space for compatibility with the learned spatial embeddings.

The model then retrieves the most relevant locations by computing cosine similarity
between the query embedding and the location embeddings of urban regions. To assess re-
trieval effectiveness, we visualize the top-ranked locations using geospatial maps, highlighting
areas with the highest similarity to the input query.

4.7 Ablation Study

To evaluate the impact of different semantic components and text encoders, we conduct an
ablation study with four model variants:

CaLLiPer+ GPT: A variant that replaces the sentence transformer with GPT (text-
embedding-3-small), examining the effect of a text embedding from LLM. For fairness,
we only use the first 384 dimensions of the text embedding, which is the same as the
default sentence transformer.

CaLLiPer+: The default enhanced model that integrates both POI names and types,
using a sentence transformer (all-MiniLM-L6-v2).

CaLLiPer+ w/o type: A variant that removes POI types, using only POI names for
textual representation.

CaLLiPer: A variant that excludes POI names and relies only on POI types, which is
the original CaLLiPer.

We evaluate these models on the LUC and SDM tasks. The primary metrics used are
F1 score for classification and KL divergence for regression-based analysis. The results are
summarized in Figure 4.
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Table 1 Performance comparison on the LUC task. The best and second-best performances
are marked in bold and underlined, respectively. For better readability, all metrics are scaled by a

factor of 102.

Model Linear MLP

Precision 1 Recall 1 F1 Score T Precision T Recall 1 F1 Score 1
Random 9.6 £ 0.7 10.3 £ 0.5 9.7+ 0.5 8.8+ 1.3 10.3 £ 0.3 9.0+ 0.3
TF-IDF 315+ 0.4 32.2 +£ 0.2 31.3 £ 0.3 31.8 £ 0.6 33.3 £ 0.5 31.7 £ 0.6
LDA 30.8 £ 0.3 29.1 £ 0.2 28.4 £ 0.2 315+ 1.1 30.4 £ 0.7 29.2 £ 0.9
Place2Vec 30.9 £ 0.8 26.1 + 0.7 26.3 £ 0.7 35.1 £ 1.2 327+ 1.0 324+ 1.2
Doc2Vec 324+ 04 28.2 + 0.1 28.0 = 0.1 349 £ 0.9 33.8 £ 0.5 327+ 0.6
SPPE 30.5 + 0.4 27.0 £ 0.2 26.6 + 0.2 34.5 £ 0.9 329 £ 0.7 322 £ 0.5
HGI 33.0 £ 0.5 30.0 £ 0.6 29.9 + 0.6 33.6 +£ 0.5 32.0 £ 0.9 31.6 £ 0.7
Space2Vec 28.6 £ 0.6 28.5 + 0.8 27.4 £ 0.7 29.6 + 0.6 28.9 £+ 0.5 27.8 £ 0.3
CaLLiPer 36.5 + 0.6 353 £0.2 34.6 £ 0.3 37.7£08 35.5 £ 0.8 34.6 £ 0.8
CaLLiPer+ 37.5 + 0.7 35.5 + 0.5 35.2 + 0.6 40.0 £ 04 36.0 £ 0.5 36.6 £ 0.5
CaLLiPer+GPT | 40.5 + 0.6 36.7 &= 0.2 36.8 +£0.3 | 41.3 £ 0.7 37.8+ 0.4 37.6 = 0.3

Table 2 Performance comparison on the SDM task. The best and second-best performances
are marked in bold and underlined, respectively. For better readability, all metrics are scaled by a

factor of 102.

Model Linear MLP
L1} Chebyshev | KL | L1} Chebyshev | KL |

Random 30.31 + 0.03 9.25 £+ 0.01 7.73 £ 0.01 31.40 + 0.22 9.55 £ 0.11 8.21 £ 0.14
TF-IDF 24.79 + 0.04 7.43 £ 0.01 5.36 + 0.01 24.36 £ 0.15 7.28 + 0.05 5.20 + 0.04
LDA 26.14 + 0.01 7.84 + 0.00 5.87 + 0.00 25.85 + 0.14 77T £ 1.12 5.80 + 0.72
Place2Vec 23.47 + 0.09 6.94 + 0.02 4.81 + 0.02 22.81 + 0.06 6.81 + 0.01 4.61 £ 0.02
Doc2Vec 24.01 + 0.07 7.15 + 0.02 4.99 + 0.02 23.10 £ 0.19 6.89 + 0.06 4.75 £+ 0.08
SPPE 24.32 + 0.16 7.24 + 0.06 5.11 + 0.06 23.63 £ 0.19 7.04 + 0.06 4.91 £ 0.07
HGI 23.28 + 0.08 6.93 + 0.02 4.79 + 0.03 22.73 £ 0.05 6.80 + 0.02 4.60 £ 0.02
Space2Vec 25.13 £ 0.15 7.56 + 0.04 5.65 + 0.06 23.55 £+ 0.20 7.12 + 0.09 5.00 + 0.08
CaLLiPer 21.63 + 0.04 6.55 + 0.05 4.26 + 0.01 20.52 + 0.14 6.24 + 0.03 3.90 + 0.06
CaLLiPer+ 20.87 £ 0.02 6.35 £ 0.01 3.98 £ 0.01 19.85 £+ 0.19 6.02 + 0.06 3.63 + 0.07
CaLLiPer+GPT | 20.26 + 0.03 6.09 = 0.01 3.74 £+ 0.01 | 19.38 = 0.02 5.83 £ 0.04 3.47 = 0.01

5 Results and Analysis

5.1 Performance on Downstream Tasks

Tables 1 and 2 summarize the results for LUC and SDM tasks. Across both tasks, multimodal
contrastive learning models outperform traditional methods, demonstrating the effectiveness
of integrating spatial and semantic information. Baseline models such as TF-IDF and
LDA rely on aggregated POI type distributions within regions, limiting their ability to
capture fine-grained relationships between locations. While methods like Place2Vec and
Doc2Vec improve upon this by incorporating spatial co-occurrence structures, their reliance
on unsupervised embedding techniques without explicit spatial-semantic alignment leads to
weaker performance. In contrast, Cal.LiPer and its extensions, which align POI-based textual
representations with spatial coordinates, consistently achieve better results, confirming the

advantages of multimodal contrastive learning.
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Additionally, CaLLiPer+ achieves superior and more stable performance across all metrics.
In LUC, CaLLiPer+ consistently outperforms the original CaLLiPer model, achieving higher
precision, recall, and F1 scores across both linear and MLP classifiers. This demonstrates
that integrating POI names alongside type-based descriptions enriches the model’s semantic
understanding of urban space, allowing for better land use classification. A similar trend
is observed in SDM, where CaLLiPer+ further reduces errors across all three evaluation
metrics, suggesting that POI names provide valuable contextual information for modeling
socioeconomic distributions. Notably, CaLLiPer+ GPT achieves the best performance across
both tasks, reinforcing the importance of using more powerful text encoders for spatial
representation learning.

Third, the improvements observed with MLP over the linear model suggest that the
learned embeddings still contain complex, non-linear relationships that can be further
leveraged by downstream tasks. While baseline models such as TF-IDF and LDA show
limited gains with MLP, indicating that their representations are mostly exhausted by simple
classifiers, CaLLiPer-based models still exhibit a more notable performance boost. Cal.LiPer+
effectively aligns spatial and semantic information, and the embeddings still retain structured
patterns that require more expressive models to fully exploit, highlighting the depth and
richness of the learned representations.

These findings highlight the advantages of incorporating both POI names and stronger
text embedding models for geospatial representation learning, improving the model’s ability
to capture complex urban semantics across diverse tasks.

5.2 Location Retrieval

Location retrieval evaluates the model’s ability to associate spatial embeddings with mean-
ingful semantic queries, including specific place names and abstract urban concepts. The
results, shown in Figures 2 and 3, illustrate how different model variants respond to retrieval
tasks.

First, using POI names directly for retrieval demonstrates that including POI names
in the text encoder significantly improves the model’s ability to locate specific places. In
Figure 2, models that incorporate POI names (CaLLiPer+ and CaLLiPer+GPT) produce
more precise and concentrated retrieval results compared to the original CaLLiPer model,
which relies solely on categorical types. The use of a more powerful text encoder, such as
GPT embeddings in CaLLiPer+GPT, further enhances localization, leading to more accurate
spatial responses.

Second, for high-level conceptual retrieval, such as identifying regions characterized by
abstract urban concepts (e.g., green cover), the inclusion of POI names introduces both
benefits and challenges. As seen in Figure 3, models that incorporate POI names sometimes
exhibit increased dispersion in similarity scores when handling broad, high-level concepts.
This suggests that when the model’s semantic understanding is insufficient, in such cases,
additional name-based details can introduce ambiguity. However, when equipped with a
more advanced text encoder (e.g., CaLLiPer+GPT), the model can effectively utilize this
additional semantic information to establish clearer distinctions between different urban
functions, demonstrating improved conceptual retrieval. This improvement can be attributed
to GPT’s ability to capture hierarchical urban concepts and their interconnections, enabling
a more nuanced understanding of spatial semantics.

Overall, our results highlight the benefits of integrating POI names in location retrieval.
Name-enhanced models improve direct place retrieval and, with sufficiently strong text
encoders, also facilitate better discrimination of abstract spatial concepts.
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Figure 2 Similarity map for “The National Gallery.” The red star is the actual location of the
target, and the yellow points are the top 30 similar locations.
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Figure 3 Similarity map for “A place of park or green cover.” The ground truth is based on

green cover data from London DataStore °.

5.3 Ablation Study Results

Figure 4 presents the results of our ablation study. Both POI names and types contribute to
improving downstream tasks, as seen from the superior performance of CaL.LiPer+ compared
to CaLLiPer and CaLLiPer+ w/o type. This suggests that combining both sources of
semantic information leads to more informative spatial representations.

Interestingly, even when POI types are removed (CaLLiPer+ w/o type), the model still
outperforms CaLLiPer, indicating that POI names carry richer and more discriminative
semantic details than type labels alone. This highlights the potential of leveraging fine-grained
textual information like POI names in spatial embedding models.

Moreover, using a stronger text encoder (CaLLiPer+ GPT) further improves results
across both tasks. The enhanced semantic representation from a large language model allows
for a better understanding of the text concepts in urban semantics, reinforcing the importance
of high-quality embeddings in geospatial contrastive learning.

5 https://apps.london.gov.uk/green-cover
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Figure 4 Ablation study results comparing model variations across LUC and SDM tasks. The
left plot shows F1 score 1 performance on LUC, while the right plot presents KL divergence | results
for SDM. All metrics are scaled by a factor of 102.

6 Discussion and Conclusion

We explore the impact of integrating POI names into multimodal contrastive learning for
spatial representation. By extending the CaLLiPer framework to incorporate both POI
types and names, we introduce CaLLiPer+, which enhances the semantic richness of location
embeddings. Our experiments across land use classification, socioeconomic status distribution
mapping, and location retrieval reveal key insights into the role of enriched textual descriptions
in geospatial learning.

Effectiveness of POl names in spatial representation. The combining of POI names with
types in multi-modal contrastive learning improves downstream task performance consistently.
POI names provide more specific and context-aware semantic signals, capturing fine-grained
distinctions that categorical types alone may overlook. This effect is particularly evident in
retrieval tasks, where name-enhanced models demonstrate greater precision in identifying
specific locations.

Impact of text encoder strength. Using more advanced text embeddings, such as those
from GPT-based models, further refines spatial representation. The CaLLiPer+ GPT model
consistently outperforms others, suggesting that stronger language models contribute to a
deeper understanding of urban semantics. This aligns with findings in location retrieval, where
better text embeddings enable clearer conceptual differentiation, especially for high-level
concepts.

Limitations and future work. The quality of spatial embeddings relies on the density and
distribution of POIs across different urban areas. Regions with too sparse POI coverage
may lead to less informative representations, limiting generalizability. Also, the information
beyond the semantics still needs to be explored. Future work should incorporate additional
modalities such as road networks, street-view imagery, and mobility patterns to enrich spatial
information. Additionally, while our current downstream tasks provide initial validation,
further research should explore a wider range of urban analytics applications and develop
task-specific models that better leverage the structure of learned embeddings for improved
adaptability and performance.
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Conclusion. This work demonstrates that incorporating POI names into geospatial contrast-
ive representation learning leads to improved performance in multiple urban analytics tasks.
By aligning spatial and semantic information more effectively, CaLLiPer+ provides a more
detailed and context-aware model for understanding urban environments. The effectiveness

of semantic information highlights the potential of using pretrained multimodal models to

generate enriched spatial embeddings in advancing urban intelligence.
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—— Abstract

Geospatial Knowledge Graphs (GeoKGs) represent a significant advancement in the integration of
Al-driven geographic information, facilitating interoperable and semantically rich geospatial analytics
across various domains. This paper explores the use of topologically enriched GeoKGs, built on an
explicit representation of S2 Geometry alongside precomputed topological relations, for constructing
efficient geospatial analysis workflows within and across knowledge graphs (KGs).

Using the SAWGraph knowledge graph as a case study focused on enviromental contamination
by PFAS, we demonstrate how this framework supports fundamental GIS operations — such as spatial
filtering, proximity analysis, overlay operations and network analysis — in a GeoKG setting while
allowing for the easy linking of these operations with one another and with semantic filters. This
enables the efficient execution of complex geospatial analyses as semantically-explicit queries and
enhances the usability of geospatial data across graphs. Additionally, the framework eliminates the
need for explicit support for GeoSPARQL’s topological operations in the utilized graph databases
and better integrates spatial knowledge into the overall semantic inference process supported by
RDFS and OWL ontologies.
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1 Introduction

Geospatial Knowledge Graphs (GeoKGs) represent a key advancement in Al-driven geographic
information integration, enabling interoperable and semantically rich geospatial analytics
across diverse domains [63, 37]. They employ a flexible linked data structure wherein data
is represented as a set of interconnected entities identified by URIs that are inked to each
other via relations (denoted by predicates) to form a graph of nodes and edges. Early
geospatial linked datasets, such as OpenStreetMap [44] and Geonames [61], mainly focused
on converting geographic data into linked data using Semantic Web standards, such as the
Resource Description Framework (RDF) [47], and its semantic extensions RDFS [4] and the
Web Ontology Language (OWL2) [23]. Recent GeoKGs extend this by semantically enriching
the geographic data with other domain-specific and generalized knowledge to capture spatial,
temporal, and thematic contexts [54]. Within GeoKGs, data (i.e. facts) and knowledge
(i.e. rules that define and constrain the data schema) become interconnected. Recognizing
their transformative potential to prepare data for answering many kinds of questions, several
large-scale GeoKGs have been developed, including KnowWhereGraph [29], UF-OKN (Urban
Flooding Open Knowledge Network) [20, 31], SAWGraph (Safe Agricultural Products and
Water Graph) [19], along with many other KGs being developed under NSF’s Proto-OKN
(Open Knowledge Network) [41] and its predecessor initiatives [2]. These efforts address long-
standing challenges in geospatial data discovery and usability by transforming heterogeneous,
cross-disciplinary geospatial datasets into FAIR (Findable, Accessible, Interoperable, and
Reusable) resources [62], thus enhancing interoperability and simplifying integrated querying.

Current GeoKGs still primarily serve as semantically enriched sources of data and know-
ledge, whereas more advanced spatial analysis is left to traditional Geographic Information
Systems (GIS) [38] or relational spatial databases [49]. However, adding explicit semantics
to GeoKGs through formal ontologies [17] may allow executing many geospatial analyses
directly in GeoKGs as inferential reasoning tasks. This paper explores this hypothesis by
specifically focusing on how topologically enriched GeoKGs [56] efficiently support advanced
geospatial analysis workflows within and across such graphs. To do so, we adopt and refine
KnowWhereGraph’s approach [29, 56] of using an explicit representation of a discrete global
grid system — S2 Geometry [50] in our case — in GeoKGs together with precomputed and
materialized topological relations between geospatial entities. In our approach, here referred
to as Spatial Reference Entities with Precomputed Topological Relations (SRE+ Topology for
short) spatial entities, such as S2 cells from S2 Geometry as well as administrative regions,
serve as reference spatial entities to which geospatial features are spatially linked as a way of
precomputing approximate locations and intersections.

Using the SAWGraph KGs as a case study, we demonstrate how the SRE+Topology
framework can facilitate a broad range of geospatial analyses and overcome limitations of
GeoSPARQL [43, 3] for querying and reasoning about spatial interactions within and across
GeoKGs. In this endeavor, we concentrate on three key aspects:

1. We show how this framework supports efficient execution of fundamental GIS operations —
such as spatial filtering, proximity analysis, overlay operations, and network analysis —
directly in GeoKGs using existing KG technology without the need for GeoSPARQL,
specialized geospatial indexing, hybrid spatial reasoners, or explicit spatial query support.

2. Our example queries demonstrate how the approach integrates spatial relationships into
the regular semantic inference process that is facilitated by the semantics of RDFS and
OWL2 in any RDF-based, semantically-enabled graph database. This deeper integration
with the semantics of thematic ontologies allows easy linking of multiple geospatial
operations across graphs, often within a single SPARQL query.
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3. We illustrate how to perform advanced geospatial analyses by combining fundamental
geospatial operations, including complementary ones such as overlay analysis and network
tracing. Such integrated analyses would often become prohibitively computationally
expensive in a GeoKG if relying exclusively on GeoSPARQL.

This work goes beyond the prior efforts in KWG by using the S2 grid in a GeoKG not just to

facilitate a “follow-your-nose” exploration of spatially related data [56, 29] but to efficiently

execute advanced geospatial analyses directly as SPARQL queries within and across GeoKGs.

2 Background & Related Work

Many GeoKGs represented using RDF, RDFS and OWL2 rely on the Open Geospatial
Consortium (OGC) GeoSPARQL standard [43, 3] as vocabulary for specifying spatial geo-
metries and constructing spatial queries. Its classes geo:Feature and geo:Geometry can
describe geospatial entities and their geometries, such as points, polylines, or polygons, whose
details can be encoded using WKT (Well-Known Text) strings. Furthermore, GeoSPARQL
supports various geometric operations, including for distance computations (geof :distance),
area measurements (geof:area), and for deriving new geometries (e.g., geof :buffer,
geof:intersection, geof:convexHull). Additionally, it provides topological operations as
both relations between spatial objects (i.e., predicates) and as functions on geometries (i.e.,
query functions). They include eight relations, such as geo:sfContains, geo:sfOverlaps,
and geo:sfTouches and their functional equivalents (e.g. geof:sfContains), that are based
on the Dimensionally Extended Nine-Intersection Model (DE-9IM) [10].

Scalability Challenges of GeoSPARQL. Most of the RDF databases that support Geo-
SPARQL are only partially compliant with the standard in that they only support its
topological query functions but not its predicates [26, 46]. But a bigger concern is that
the functions are computed dynamically at query time, which poses serious efficiency and
scalability challenges [32, 16]. Even RDF databases that also implement the topological
predicates, such as GraphDB!, compute them only at query time.

Many common operations, such as arithmetic aggregations and semantic filtering, are
well-optimized for SPARQL [14, 53, 58], the query language used for RDF. This is not the case
for the spatial operations defined by GeoSPARQL, especially those involving spatial joins over
complex geometries, which remain computationally and architecturally challenging [25, 27, 34].
This is especially true for polygon-based operations in graphs that contain high-resolution
polygons or multi-polygons, which can become computationally prohibitive. The performance
of such computations is influenced by various factors, including the size of the graph and the
extent of federation across multiple graphs. However, one of the primary bottlenecks is that
geometric computations have polynomial-time complexity relative to the number of nodes in
the geometries being tested [49]. To optimize spatial querying in graph databases, various
indexing techniques can be adopted, including R-tree [30], quadtree [36], and geohashing [35].
Bounding-box approximations help further reduce expensive geometric computations [8].
Hybrid architectures, such as integrations of graph and spatial databases (e.g., GraphDB +
Elasticsearch), improve performance by adding specialized spatial indexing [9, 45]. Despite
these optimizations, spatial operations in GeoKGs remain inefficient [39]. For example, in
KnowWhereGraph [29] which contains ~29 billion statements, polygon intersection queries
frequently time out. Strategies such as graph partitioning, parallel processing (GPU, Spark),
caching, and distributed computation offer partial solutions but introduce significant overhead
and do not fundamentally resolve the inefficiencies of query-time spatial computations.

! https://graphdb.ontotext.com/documentation/10.8/geosparql-support.html
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Semantic Integration Challenges of GeoSPARQL. A second major limitation of
GeoSPARQL-based GeoKGs is that when topological relations are processed at query-time,
spatial querying is decoupled from the RDFS- and OWL2-facilitated semantic inferencing
that graph databases afford, which prevents better integration of spatial and non-spatial
knowledge. For example, while an OWL2 rule could express that “if Point A is inside region B,
then contamination at B will affect A”, current graph databases do not propagate topological
knowledge inferred from geometries, such as “point A is inside B”, via such semantic rules.
Consequently, GeoSPARQL enables spatial queries but does not support full-fledged spatial
reasoning or deeper integration with other, non-spatial semantic reasoning within GeoKGs.

The scalability constraints of GeoSPARQL’s on-the-fly spatial computations, and the
separation of topological inferencing from broader semantic reasoning underscore the need
for more scalable, semantically integrated approaches to spatial querying in GeoKGs.

3 Approach

To overcome the challenges that arise from relying on GeoSPARQL for spatial querying,
topological predicates between spatial objects can be precomputed, which allows for more
efficient direct lookup at query time. In the extreme case, this approach requires explicitly
storing all topological relations between any combination of spatial objects, which quickly
becomes infeasible for large or dynamic datasets. Instead, we seek a pragmatic compromise
by precomputing only a much smaller set of topological relations, thus tailoring the topological
enrichment method approach pioneered by Regalia et al. [48] and refined by KnowWhereGraph
(KWG) [29, 56]. Just like KWG, we choose to leverage the S2 Geometry framework [50],
which we elaborate on next, and explicitly represent it as part of the content of the GeoKG.
Then, rather than precomputing topological relations between all kinds of geometric features,
we only precompute them between the features and two types of common spatial reference
entities (SREs) — S2 cells and administrative regions — to save space and increase retrieval
efficiency. For that reason, we refer to this tailored approach by the name SRE+ Topology.
The precomputed relations are explicitly materialized in the graph to reduce the need for
computationally expensive on-the-fly geometric computations during query execution.

S2 Geometry. Google’s S2 Geometry [50] defines a hierarchical and discrete global grid
system that tessellates the Earth’s surface into a structured set of connected and well-aligned
quadrilateral cells. These cells have geodesic edges and are organized into a nested hierarchy
of cells with increasingly finer resolutions (levels). The hierarchy consists of 30 levels, where
the average area ranges from ~8.5 - 107km? (level 0) to ~0.74cm? (level 30). Each S2 cell
is recursively subdivided into four cells at each subsequent level. S2 cells are sequentially
ordered along a Hilbert space-filling curve, which projects the unit sphere’s surface onto six
cube faces. Each cell is uniquely identified by a S2Cel1ID that encodes its hierarchical level
and its position on the Hilbert curve.

Semantic Representation of S2 Geometry. GeoSPARQL-compliant RDF databases such
as GraphDB support S2 Geometry neither conceptually nor via specialized indexing data
structures. To take advantage of S2 Geometry in a GeoKG, KWG represents S2 cells and
their interrelations explicitly in the graph using a minimal ontology [54, 56] with a set of
spatial relations that mirror those of GeoSPARQL as shown and described in Figure 1.
The geometry of each kwg-ont:S52Cell is represented as a polygon with four vertices. To
account for the hierarchical structure of S2 Geometry, kwg-ont:52Cell is specialized into



K. Schweikert, D. K. Kedrowski, S. Stephen, and T. Hahmann

geo:has
—1> subclass relation Geometry

eo:Geometr ](—{ eo:Feature I
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kwg-ont:administrativePartOf), sfintersects

Figure 1 Conceptual schema of the spatial classes (rectangles) and relations from the spatial
ontology that serves as the semantic framework for realizing SRE+Topology using S2 cells and
administrative regions. The classes in green and the kwg-ont: spatial relations are adopted from
KWG. The relations reuse the names and semantics of the standard GeoSPARQL topological relations,
e.g., kwg-ont:sfContains is semantically analogous to geo:sfContains, but the KWG relations
are defined in a separate namespace to not interfere with the implementation of the GeoSPARQL
relations. In addition, the KWG relations are axiomatically related to one another as appropriate via
subproperty relations, e.g., kwug-ont:sfContains is a subproperty of kwg-ont:sf0Overlaps, which
all are declared as subproperties of the newly added connection relation spatial:connectedTo [57].

subclasses, denoted as kwg-ont:S2Cell_LevelX, where X represents the level within the
S2 hierarchy. The kwg-ont:sfContains relations are used to encode parthood (here also
parent—child) relations between S2 cells of consecutive levels, while kwg-ont : sfTouches are
used for adjacency between cells within a level. We follow the same approach with minor
adjustments to the ontology [57], but limit the S2 representation to level 13 S2 cells only as
outlined in more detail in Section 4.4.

Topological Enrichment using S2 Geometry. In addition to the explicit representation of
S2 cells, our SRE+Topology approach follows KWG by precomputing and prematerializing
topological relations between the S2 cells and all other geospatial features from thematic
data layers using the spatial relations from the refined ontology [57] (see Figure 1). Once
materialized in the graph, these new relations can be semantically reasoned over just like
any other OWL2 properties by using standard OWL2 inference rules, without relying on or
interfering with a graph database’s implementation of GeoSPARQL operations.

Using the Topologically Enriched GeoKG for Spatial Analysis. Our proposed approach
allows spatially traversing geospatial features even across graphs by relying as much as
possible on the precomputed topological relations with S2 cells and avoiding on-the-fly
computation of GeoSPARQL relations. While requiring extra space — which a spatial index
would need as well — this approach may significantly improve the efficiency and scalability of
spatial queries, especially when multi-scale or multi-polygon geometries are involved [56].

4 SAWGraph: A GeoKG to Support PFAS Analytics

The remainder of this paper will explain the general approach and utility of the SRE+Topology
framework for sophisticated geospatial analysis using the Safe Agricultural Products and
Water Graph (SAWGraph) [19]. SAWGraph is a GeoKG that ingests and links various
geospatial datasets to explore and better understand where and why per- and polyfluoroalkyl
substances (PFAS) are present in food and water systems across the United States.
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PFAS are a group of thousands of synthetic chemicals associated with various health issues
in humans. Known as “forever chemicals”, they are highly persistent in the environment
because their strong carbon-fluorine bonds resist degradation, allowing them to accumulate
in air, soil, and water. Exposure to PFAS is associated with various adverse health effects,
including elevated cholesterol levels, reduced vaccine response in children, liver enzyme
changes, pregnancy complications, and elevated risk of kidney and testicular cancer [1, 55].
PFAS contamination arises from various sources, such as chemical plants, landfills, wastewater,
biosolids applied as agricultural fertilizers, airports, and firefighting training sites. Non-point
sources, including spills and atmospheric deposition, further contribute to the widespread
environmental dispersion of PFAS. This ubiquity, combined with its significant health and
environmental risks, requires robust, integrative monitoring and mitigation efforts.

4.1 Use Cases: Environmental Contamination with PFAS

PFAS fate and transport in the environment involve complex processes, and testing is costly,
resulting in many unanswered questions for experts and decision-makers working to identify,
mitigate, and remediate contamination. To assist them, SAWGraph merges public PFAS-
related datasets from federal and state agencies into a single GeoKG. This design is based
on competency questions gathered from discussions with potential users, leading to three
main use cases, each accompanied by example competency questions:

1. Find Testing Results and Gaps: Find PFAS test results from drinking water, groundwater,
and agricultural soils and identify coverage gaps in testing. E.g.,
What water bodies are near potential contamination sources?

Where is PFAS contamination highly likely, but no testing has occurred?

2. Contaminant Tracing: Trace how PFAS may have been transported via spatial and
hydrological connections from known or suspected contamination sources. E.g.,
What potential point sources are upstream from observed high PFAS concentrations
in water, soil, or biota?
Do the test results downstream from a potential point source show measurable con-
tamination in the surrounding environment?

3. Assessing Risk and Identifying Vulnerable Populations: Identify what areas and popula-
tions are likely to be impacted the most by PFAS contamination to support equitable
access to testing capacities and mitigation resources. E.g.,

Which county subdivisions have high PFAS contamination and highly vulnerable
populations based on economic and demographic indicators?

Which areas rely on private wells and have a high risk of groundwater contamination?

Answering these competency questions requires a range of spatial analysis operations,
including proximity analysis, overlay analysis, and hydrographic network analysis. In
Section 5, we will demonstrate the implementation and chaining of these operations within
SPARQL queries using the Contaminant Tracing use case as an example. Prior to this, we
will explain the construction of the graphs that comprise SAWGraph, including the datasets,
ontologies, and precomputed topological links used in the process.

4.2 Datasets

The various use cases require ingesting and linking a diverse range of datasets, which are
summarized in Table 1. In order to support modular reuse of the data and speed up queries
that require only a small portion of the data, the data is divided into four thematically distinct
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Table 1 Examples of the thematic datasets integrated in SAWGraph.

Theme ‘ Example Dataset ‘ Description Source
Contaminant| Safe Drinking Water Inform- | PFAS testing results for | EPA
Testing and | ation System (SDWIS) drinking water
Release Environmental and Geo- | state test results in surface | Maine Dept. of Env.
Data graphic Analysis Database | and ground water and biota | Protection

(EGAD) [42]
Facilities & | Facility Registry Service landfills, airports, defense | EPA
Industries sites, etc.
Hydrological | National Hydrography Data- | streams, surface water bod- | USGS
Features set (NHD) ies, aquifers

Water Well Database [40] private water wells Maine GS
Chemical CompTox chemical formula, structural | EPA
Informatics identifiers, toxicity
Environm. Soil Survey soil composition USDA via KWG
and Social Census and American Com- | demographics Census Bureau via
Context munity Survey Datacommons

knowledge graphs, which correspond to the first four data themes in Table 1: PFAS KG, FIO

(Facilities and Industries) KG, Hydrology KG, and CompTox (Chemical Informatics) KG.

They are supplemented by a fifth graph, the Spatial KG, which captures the S2 Geometry as
well as administrative regions and serves as the spatial bridge across the graphs. Through
federated querying — as illustrated in Section 5 — SAWGraph can access other GeoKGs, such
as Geoconnex [13], KWG [29], and DataCommons [11], to retrieve additional environmental
or social context information.

4.3 Ontologies

To structure the knowledge graphs, five connected and extensible OWL 2 ontologies were
developed. They are shared at https://github.com/SAWGraph and form the semantic
backbone of the five SAWGraph KGs: a contaminant ontology (ContaminOSO [21]; coso:
for the PFAS KG), a facilities and industries ontology (fio:, FIO KG), an integrated
hydrology ontology (multiple namespaces, Hydrology KG), a PFAS chemistry ontology
(comptox:, CompTox KG), and the spatial ontology [57] summarized in Figure 1 (kwg-ont:
and spatial:, Spatial KG). The namespaces utilized in the ontologies and SPARQL queries
in Section 5 are listed in Table 2 in the Appendix, with their key upper-level classes and
relations shown in Figure 2. These ontologies adopt and extend existing standardized
ontologies as much as possible. COSO [21], for example, builds on the SOSA [59, 28],
QUDT [24], and STAD [60] ontologies, while the hydrology ontology brings together multiple
existing hydrology ontologies, including HY_Features [12], GWML2 [5, 22], and HyFO
[6, 7, 18]. Both ContaminOSO and FIO have been newly developed specifically to support
the SAWGraph project [19], but are made available for reuse by other Proto-OKN projects
and other GeoKGs.

4.4 Implementation of the SRE+Topology Approach

SAWGraph extends KWG’s spatial ontology by introducing spatial:connectedTo as a
property that subsumes all spatial contact relations (i.e., all topological relations except
kwg-ont:sfDisjoint) and by adding meta-relations (e.g. declaring inverses) between
them [57]. This additional semantic context is particularly useful for filtering data when
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Figure 2 Conceptual overview of the five connected knowledge graphs that comprise SAWGraph
and the ontologies they use. Each color represents one KG and its underlying core ontology, for
which key high-level classes and relations are shown.

more precise topological relationships are not required. For instance, a water body may be
represented as a point feature within a county or a polygon feature overlapping the county;
both scenarios can be generalized as the water body being spatially connected to the county.

A key challenge in utilizing the SRE+Topology approach is managing the trade-off
between storage and query efficiency. For example, materializing the topological relations
between features and S2 cells across multiple levels of resolution is not feasible because the
number of stored triples grows quadratically with the number of features (including S2 cells).
To address this, we only precompute topological relations with two sets of static entities —
level 13 S2 cells and level 3 administrative regions (i.e. county subdivisions in the US) — so
that each point from a feature’s vector representation produces at most two triples that
instantiate topological relations.

From S2 Geometry, SAWGraph only utilizes S2 cells of level 13. They span ~0.76-1.59 km?
with an average area of 1.3 km? in the continental United States. This resolution strikes a
balance between spatial granularity and computational and storage efficiency. It is well-suited
for regional-scale analyses, particularly for monitoring environmental phenomena. KWG
already included level 0-2 administrative regions (countries, states and counties) from the
GADM dataset [15] and their precomputed topological relations with S2 cells. SAWGraph
adds the level 3 administrative regions with the relation kwg-ont:administrativePartOf
capturing how they are nested inside coarser administrative regions, which supports efficient
lookups of geospatial features by any administrative regions up to level 3. For SAWGraph,
the level 3 administrative regions and level 13 S2 cells are the only spatial reference entities
for which topological relations with all other features are precomputed and materialized.

5 The Contaminant Tracing Case Study

PFAS contamination pathways are complex, often involving significant movement through
water, air, and soil, and accumulating in unexpected locations. Better understanding how
PFAS enters and moves through environmental systems is crucial for identifying exposure
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Figure 3 Interactive visualization of fish tissue and surface water sampling results downstream of
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paper manufacturing facilities in Maine, zoomed in on one facility close to the Kennebec River. The
radii of the sampling results correspond to the highest concentration across all PFAS detected at
the point. The full map of Maine is provided as Figure 6 in the Appendix.

and developing targeted interventions. A key way PFAS spreads is through hydrological
systems, such as rivers and groundwater [51, 33]. Contaminated water can infiltrate drinking
water supplies, agricultural irrigation, and aquatic ecosystems, creating multiple exposure
risks for humans, livestock, and wildlife. These pathways complicate source attribution,
which is essential for effective mitigation and remediation and for the design of targeted
regulations, such as restrictions on PFAS use in specific industries. In addition, improving
our understanding of contamination pathways aids in developing accurate fate and transport
models that simulate the movement of PFAS in environmental systems.

Many federal or state agencies are charged with monitoring contaminants like PFAS in
water, food and the environment. To fulfill this mission, they regularly analyze water, soil
and tissue samples for contamination. For example, Maine DEP and DACF have analyzed
hundreds of groundwater and surface water samples but also samples of fish, seafood, other
animal, and soil for PFAS. The collected data were used for prototyping SAWGraph. For the
purpose of this paper, we will demonstrate the utility of SAWGraph and its implementation
of the SRE+Topology approach to gain insights into source-to-impact pathways and the role
that particular industries or facilities play in PFAS contamination, focusing on two particular
analytic questions that evaluate the role of converted paper product manufacturing facilities —
some of which might have used PFAS for coated paper products or for the smooth operation
of their machinery — as PFAS point sources: What does the data show about fish
tissue and surface water contamination downstream of converted paper product
manufacturing facilities in Maine? (Question 1) Figure 3 shows the resulting map. We
also explore a follow-up question: Which areas downstream of paper manufacturing
facilities are not in a public water service area? (Question 2)

Answering these questions requires accessing multiple graphs to link industrial facilities to
PFAS observations through the hydrological network and spatial graph, as illustrated by the
connections between the graph’s key concepts in Figure 2. Each question can be expressed as
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Query Segment 1 Use of spatial intersection (Blocks Bla, B1b), spatial proximity (Blb, Blc), and
network tracing query (Blc) to locate facilities by industry (converted paper product manufacturing)
and administrative region (Maine); to retrieve their S2 cell neigborhoods (S2 cell and all eight
neighbors) and the stream reaches flowing through those neighborhoods; and to find all downstream
stream reaches and their S2 cells.

SELECT * WHERE {
SERVICE <repository:FIO> { # Bla: Retrieve facilities and their locations
?industry fio:subcodeOf naics:NAICS-3222 . # Converted Paper Product
Manufacturing
?facility_iri a fio:Facility ; # IRI (unique identifier) of each facility
rdfs:label 7?facility_label ; # Human-readable label (name) of each facility
fio:ofIndustry 7industry ; # Filter to selected industry
geo:hasGeometry/geo:asWKT 7facility_wkt ; # Facility geometry as WKT string
spatial:connectedTo ?s2_cell ; # S2 cell that the facility is located in
spatial:connectedTo ?countysub . # County subdivision the facility is in
}
SERVICE <repository:Spatial> { # Blb: spatially filter to State of Maine (USA.23)
?countysub a kwg-ont:AdministrativeRegion_3 ;
kwg-ont:administrativePartOf+ kwgr:administrativeRegion.USA.23 .
?s2_cell a kwg-ont:S2Cell_Levell3 .
?s2_neighborhood kwg-ont:sfTouches | owl:sameAs 7s2_cell ; # Facility S2 cell
neighborhood (S2 cell and its 8 neighbors)
geo:hasGeometry/geo:asWKT 7s2_wkt . # S2 cell geometries for visualization
?s2_ds_reach a kwg-ont:S2Cell_Levell3 ; # Downstream S2 cells
geo:hasGeometry/geo:asWKT 7s2_ds_reach_wkt . # Downstream S2 geometries
}
SERVICE <repository:Hydrology> { # Blc: tracing hydrological network downstream
?reach a hyf:HY_FlowPath ;
spatial:connectedTo ?s2_neighborhood ; # Stream reaches crossing the
facility S2 neighborhoods
hyf:downstreamFlowPath+ ?ds_reach . # Downstream stream reaches
?ds_reach geo:hasGeometry/geo:asWKT 7ds_reach_wkt ; # Stream reach geometries
spatial:connectedTo ?s2_ds_reach . # S2 cells for downstream stream reaches

a single SPARQL query but for validation and visualization purposes we often divide them.

In this paper, the example query is divided into segments that exemplify important classes

of geospatial operations familiar to GIS users. Altogether, we use five basic operations that

are essential for constructing a wide range of complex geospatial workflows, namely:

1. Spatial intersection/filtering: Find contamination point sources (e.g., converted paper
product manufacturing facilities) that are within the target region (e.g. Maine).

2. Proximity: Find all stream reaches that are near these facilities (e.g., within 1-2km?).

w

Network tracing and distance: Trace all stream reaches downstream.

4. Proximity and spatial intersection: Find all PFAS observations from surface water
and fish tissue samples near any of the downstream stream reaches.

5. Vector overlay: Find contaminated areas that are outside public water service areas.

We describe the logic and SPARQL implementation of these operations next.

5.1 Spatial Intersection: Find facilities in the area of interest

The first query retrieves all industrial facilities classified as converted paper product manu-
facturing industries (Block Bla of Query Segment 1) using the FIO graph and then spatially
filtering them to those located in the state of Maine (B1b) using the Spatial graph. More
specifically, Bla first retrieves all subindustry codes from the broad group of the NAICS
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Figure 4 Example facility with its S2 cell (red) and S2 neighborhood (grey). For comparison, the
purple and green circles show what would be included in a standard proximity search with radius
1015 m or 3264 m, which correspond to the minimum length of an S2 cell’s side or twice its longest
diagonal. See the main text for more details.

industry code 3222 (i.e., converted paper product manufacturing) because facilities are
typically associated with the most fine-grained industry labels available. These are then

used to identify facilities whose industry code matches any of those subindustries (lines 4-6).

The facilities are retrieved along with their geometries (line 7) and the precomputed S2
cells and county subdivisions (AdministrativeRegion_3) they are in (lines 8, 9). Block
B1b leverages the hierarchical structure of the administrative regions from the Spatial KG
to identify which county subdivisions are within the state of Maine (identified by its URI

kwgr:administrativeRegion.USA.23, lines 12, 13) to eliminate facilities outside of Maine.

The precomputed topological relations between S2 cells (connectedTo and sfTouches) suffice
for the spatial filtering needs here, thereby ensuring quick query responses.

5.2 Spatial Proximity: Find nearby stream reaches

Tracing where contaminants emitted by the facilities may be transported via surface water
flow requires first locating which stream reaches (i.e., hydrological flow segments, which are
represented as hyf :HY_FlowPath using the HY _Features ontology [12]) are in proximity to
the identified paper manufacturing facilities. If we were to only consider stream reaches
that intersect the S2 cell where a facility is located, nearby reaches could be missed when
the facility is close to the border of its encompassing S2 cell. To perform proximity or
similar buffering operations, it is better to leverage the metric implicitly built into the S2
grid, which is defined by the fairly uniform sizes of level 13 cells (or cells of any particular
level). For example, we can approximate the neighborhood of facilities by including the eight
neighboring cells of the S2 cell where a facility is located. If a larger distance is desired, one
could expand that to the additional 16 neighbors of the neighbors, and so on.

By including the eight S2 neighbors, we guarantee to find all stream reaches within a
radius equal to the length of the shortest side of the S2 cell, as illustrated in Figure 4 using
the shortest side of the center (red) S2 cell as radius. A circle of this radius, centered at any
point in the center S2 cell, will always be entirely within the S2 neighborhood. The green
circle has a radius equal to twice the longer diagonal of the center S2 cell to guarantee that
the entire eight-cell S2 neighborhood in fully included no matter where the circle is centered
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Figure 5 Example map results illustrating the network tracing and vector overlap operations.

within the center S2 cell. Stream reaches outside it will never be deemed “near” the facility
by the S2-based approach. Thus, the radii of the red and green circles describe the lower
and upper bound of the proximity operation’s spatial precision.

Because our approach is agnostic of where a feature is within an S2 cell, it cannot search
within a fixed radius around a point location but approximates the search area using grid
cells. It limits spatial precision but gains efficiency because it avoids the need to compute
distances or buffers on-the-fly. At query time, the set of S2 cells describing the proximal area
can be retrieved from the Spatial KG and passed on to the Hydrology KG for retrieving the
stream reaches that intersect those S2 cells (Query Segment 1, Ble, line 21).

5.3 Network Tracing and Network Distance: Trace stream reaches

The identified stream reaches from Query Segment 1 (denoted by variable ?s2_ds_reach
and shown as dark blue lines in Figure 5a) serve as starting points for our network tracing
task. The stream reaches are the smallest hydrological flow segments connected to one
another via the relation hyf:downstreamFlowPath and its inverse hyf :upstreamFlowPath
in SAWGraph, which are based on NHD’s downstream and upstream relations to define
a flow direction. They allow the construction of longer flow paths, which are directed
paths that each consist of a sequence of one or more stream reaches and can be traced
upstream (i.e., from a sink to a source) or downstream (i.e., from a source to a sink). For
our question, Block Blc of Query Segment 1 uses the Hydrology graph to trace the stream
reaches downstream (light blue lines in Figure 5a) by exploiting the transitive closure of the
hyf:downstreamFlowPath relation using SPARQL’s transitive path operator “4” (line 23).
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The same effect would be achieved by defining hyf : downstreamFlowPathTC as a transitive
superproperty thereof in the ontology (see [20]), which is propagated and prematerialized
during graph construction and, thus, even faster. Either approach provides a structured
way to navigate the hydrological network and simulate flow paths originating from a given
starting point.

It may not always be desirable to consider all stream reaches downstream of a given
feature. Because the KG stores the length of each reach, it is possible to limit downstream
reach to those within a chosen maximum flow path length. This can be accomplished by
adding the subquery shown in Query Segment 2 to Block Blc of Query Segment 1 along
with a filter to set the maximum length. The subquery takes a reach (?reach) that is near a
facility along with any of its downstream reaches (?ds_reach), and then sums the lengths of
all intermediate stream reaches (7£1). Because each stream reach is defined as downstream
of itself (for this specific purpose), the total distance includes the entire lengths of both ends
of the flow path. In the example, only flow paths shorter than 20 km are returned.

These kinds of tracing analyses can be expanded, for example, by using the S2 cells
retrieved in Query Segment 1 to also identify potential hydrological connectivity — or at least
proximity — between contaminated surface water bodies and groundwater aquifers. This
could further improve contaminant tracing by locating groundwater resources that may be
infiltrated by PFAS from nearby contaminated stream reaches.

5.4 Proximity and Spatial Intersection: Find relevant PFAS results

The final step in answering Question 1 focuses on retrieving PFAS-related data, such as
water quality measurements or fish tissue contamination levels, from samples collected
along the downstream reaches of the hydrological network. Since sampling observations
and hydrological datasets are in distinct thematic layers, we can only establish meaningful

correlations by first spatially linking them via the S2 cells as spatial reference entities.

However, stream reaches are often represented as 1-dimensional geometric approximations of
a water body’s central flow path, which exclude the width and area of the river. Consequently,
sampling points, represented as 0-dimensional geometries, that were originally within the
river’s boundaries may no longer intersect with the simplified line geometries. One approach
to mitigate this issue is to apply a buffer around the stream reaches, approximating the
river’s extent and improving the accuracy of the intersection. However, it may still miss

Query Segment 2 An optional subquery for Block Blc from Query Segment 1 to limit downstream
navigation to a specific distance (20km in this example).

{ SELECT ?reach 7?ds_reach (SUM(?fl_length) AS ?path_length) WHERE {
?reach a hyf:HY_FlowPath ;
spatial:connectedTo ?s2_neighborhood ; # Stream reaches crossing
the facility S2 cells
hyf :downstreamFlowPath+ ?fl . # Stream reaches between those
crossing a facility S2 cell and some downstream reach
?fl a hyf:HY FlowPath ;
hyf:downstreamFlowPath+ 7?ds_reach ; # Last stream reach in a chain
starting from a stream reach crossing the facility S2 cells
nhdplusv2:hasFlowPathLength/qudt:quantityValue/qudt:numericValue
?fl_length . # Flow path length
} GROUP BY ?reach ?ds_reach
} FILTER (7path_length < "20.0"""xsd:float)
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sampling points located just outside along the shore. Another approach is to calculate the
distance from each sampling point to the nearest stream reach and retrieve points within a
reasonable threshold. However, both methods involve computationally expensive geometric
operations, which can be impractical whenever the datasets become larger.

To overcome these limitations, our solution (see Query Segment 3) again leverages the S2
cells (variable ?s2_ds_reach from Query Segment 1) that intersect the downstream reach
segments. These S2 cells act as approximate spatial buffers, enabling efficient filtering of
PFAS sampling data without the need for computationally intensive geometric calculations.
The query retrieves all sampling observations whose sampling points are within those S2
cells (lines 3—4). Lines 6 and 7 then retrieve information about their material sample type
(e.g., water or fish) and Block B3b accesses the contamination observation results using the
SOSA observation-measurement-result pattern [59].

5.5 Vector Overlay: Find impacted areas without public water supply

In addition to supporting spatial filtering and proximity tasks, the SRE+Topology approach
also supports simplified and efficient proxies for more expensive spatial overlay operations
such as polygon intersection, union and difference. We demonstrate this functionality by
determining which of the reaches downstream from potentially polluting facilities are inside
(intersection) or outside (difference operation) of community water supply service areas to
address Question 2 introduced at the beginning of Section 5. It helps prioritize PFAS testing
in areas without public drinking water access where residents typically rely on private wells
that may be affected by the contaminated water table. Analogous to Query Segment 3, we
take the S2 cell neighborhoods of all downstream reaches (?s2_ds_reach) as an approximate
buffer, and overlay them with the (precomputed) S2 cells that overlap with any community
water supply service area to determine the difference between the two sets of S2 cells to
avoid computationally expensive spatial calculations.

This analysis is just one of many; Query Segment 3 could be expanded further by adding
other environmental variables, such as soil type, precipitation, and land use, via federated
querying of external graphs to put the contamination results (encoded by the variable
?measure) in context. It could guide testing and monitoring strategies by examining the

Query Segment 3 Finding PFAS sampling observations in the proximity of the stream reaches
downstream from the paper manufacturing facilities indentified in Query Segment 1 by using the S2
cell neighborhoods around the reaches.

. #Continued from Query Segment 1 and 2
SERVICE <repository:PFAS> { # B3a: Find sampling points in surface water

?sample_point a coso:SamplePoint ; # Find sampling points within ...
spatial:connectedTo ?s2_ds_reach ; # ... downstream S2 cells
geo:hasGeometry/geo:asWKT ?sample_point_wkt . # Get sampling point geometry

?material_sample coso:fromSamplePoint 7sample_point ;
coso:ofSampleMaterialType 7sample_type . # Identify type of sample

# B3b: Identify analyzed PFAS substance and measurement value

?7observation coso:analyzedSample 7material_sample ; # Get each observation
coso:ofSubstance 7substance ; # Get PFAS chemical analyzed
coso:hasResult ?measure . # Get result of the observation

?measure qudt:quantityValue ?quantity_v . # Get quantity from result

?quantity_v qudt:numericValue ?value ; # Numeric value of the quantity
qudt:unit Punit. # Unit of the quantity
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Query Segment 4 Spatial overlay for finding downstream reaches outside public drinking water
service areas.

. #Continued from Query Segment 1
SERVICE <repository:Hydrology> { #B4b: Subtract public drinking water areas
MINUS { ?s2_ds_reach spatial:connectedTo 7pws .
?pws a us_sdwis:PWS-ServiceArea .} }

correlations highly contaminated stream reaches exhibit with respect to, e.g., agricultural
activity, population density, or industrial land use; or prioritize interventions by ranking
regions by vulnerability based on observed contamination, environmental factors, and human
exposure risks.

5.6 Comparison to GeoSPARQL Operations

For comparison we also implemented and executed Question 1 using on-the-fly GeoSPARQL
functions and predicates to perform the same analysis though obtaining the precise rather
than spatially approximated results?. The geometries of our features are stored in 3-D
coordinates (latitude longitude WGS84), and therefore we use a proximity distance of 0.014
arc degrees, which is equivalent to approximately 1119.06 m in our study area at 44 degrees
North latitude. To perform the equivalents of Query Segments 1 and 3 in GeoSPARQL we
use a distance search (geof:distance) on facilities within Maine (geo:sfWithin) to find
nearby stream reaches, follow them downstream, and then buffer downstream reaches to find
sampling points within the downstream reach buffer. This query completes in 165s, compared
to our equivalent S2-based query in Section 5.4, which completes in 21s when executed on the
same server under the same conditions. The question as defined is limited to only converted
paper manufacturing facilities in Maine, which encompasses only 10 facilities. When we
expand this search to all facilities in Maine in industries suspected of using PFAS, which
encompasses a total of 354 facilities, the GeoSPARQL query completes in approximately 84
minutes (1h 23m 55s) while the equivalent S2-based query takes less than 11 minutes (10m
39s). Both S2-based queries achieve an eightfold — almost an order of magnitude — speedup.
More importantly, these improvements do not rely on using any internal quadtree or other
specialized indexing data structure for encoding the S2 geometry. Thus, we would expect
comparable performance of the SRE+Topology approach in other RDF graph databases
regardless of whether they provide any kind of geospatial indexing or GeoSPARQL support.
A much more comprehensive comparison will be part of future work.

6 Summary and Discussion

We have demonstrated how the SRE+Topology approach supports efficient execution of
advanced geospatial questions, such as about environmental contamination, directly in a
GeoKG without the need for specialized reasoners, spatial indexing, or the GeoSPARQL
geometric operations. Our example questions about environmental contamination combine
network analysis with intersection, proximity, and overlay operations. For example, knowledge
about the hydrological network for contaminant transport is leveraged together with proximity
information and spatial intersections to identify downstream contamination risks.

2 The original and optimized queries and their GeoSPARQL equivalents are available from https://github.

com/SAWGraph/public/tree/main/UseCases/UC3-Tracing/UC3-CQ15/GIScience2025-queries.
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Executing such advanced geospatial analysis questions in a GeoKG using GeoSPARQL
operations instead of the precomputed topological relations would require spatial indexing
and/or expensive spatial computations for geometric overlays, buffering, and topological
analysis across features from multiple geospatial data layers. In the SRE+Topology approach,
these spatial tasks are addressed in a unified way that relies entirely on precomputed
topological links between different features and S2 cells, eliminating the need for resource-
intensive geometric operations at query time. Querying a large GeoKG via these links
maintains computational efficiency while enabling complex analyses across large datasets
and extensive geographic ranges. The SRE+Topology approach facilitates the construction
of these queries within and across graphs using standard SPARQL constructs only, that is,
without the need for GeoSPARQL, thereby democratizing geospatial analysis via GeoKGs.
Morever, the proposed approach integrates the semantic representation afforded by GeoKGs
with the analytic capabilities afforded by conventional GIS.

Furthermore, the SRE+Topology approach allows sharing spatial reference entities (SREs),
such as S2 cells and administrative regions, across separate graphs. It offers a robust
mechanism to distribute data into separate thematic GeoKGs while ensuring their spatial
compatibility. Thereby, some of the scalability challenges related to graph construction, main-
tenance, storage, and querying experienced in KnowWhereGraph — which was constructed
as a single monolithic GeoKG — can be overcome. With SRE+Topology, different thematic
information, such as hydrological, environmental, or socio-economic information, can be
stored in separate GeoKGs, each maintained by their respective data producers or owners.
Through the precomputed topological relations between features from these independent
graphs and the shared SREs, the GeoKGs can be queried jointly using SPARQL’s federation
construct (SERVICE). This modular and distributed architecture supports the growth of these
graphs and helps accommodate more diverse and dynamic spatial datasets.

The SRE+Topology approach is, by design, a compromise between a full explicit repres-
entation of topological relationships, which would be impractical, and the classical approach
of computing spatial queries on-the-fly. This design naturally comes with some drawbacks,
which we can only outline here but that require future study. The first is the computational
and storage overhead caused by precomputing and storing the intersections of all features in
the thematic GeoKGs with the spatial reference entities. The number of additional triples
for representing the SREs is constant, thus it is critical to carefully select suitable reference
entities. In SAWGraph, we choose level 13 S2 cells and level 3 administrative regions to
strike a balance between spatial granularity and computational demands (storage and query
processing times). The number of triples for representing the topological relations only
grows linearly in terms of the number of geographic features stored across all thematic layers
and can be distributed as well. Efficient precomputation may also be more problematic for
highly dynamic datasets, as any updates require recomputing the stored topological relations,
adding potentially significant maintenance overhead.

A related limitation concerns the afforded spatial granularity and thus spatial precision,
in particular for queries that require precise geometric measures, such as distances or buffers.
The supported spatial granularity is directly tied to the choice of S2 cell or administrative
region level used as SREs. Rather than switching everything to finer-grained S2 cells (or other
SREs), which would rapidly increase storage needs, a more flexible approach could leverage
the hierarchical relations (e.g., kwg-ont:sfContains) between different levels of SREs to
allow topologically linking thematic features to the level that best reflects the granularity of
a specific thematic dataset. Another option is a hybrid approach, where the SRE+Topology
approach is used to narrow the set of potential features of interest to a small subset of all
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features (e.g., all PFAS sample locations within the S2 neighbors that overlap a stream reach)
before applying precise geometric operations, such as a distance function, to calculate the

exact distance of each such sample location from the stream reach to determine whether

to include or exclude the location. However, suitable querying approaches require careful

design and testing to verify that they actually are more storage and/or time efficient. Finally,

some spatial operations, such as those that construct new polygons from the intersection

of existing polygons rather than just determining whether they intersect, cannot be easily

implemented using only the SRE+Topology approach but would require a hybrid approach.
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A Namespaces for ontologies and SPARQL queries

Table 2 Ontology namespaces used for the queries in Section 5, the standard namespaces for
RDF, RDFS, OWL, and XSD are omitted here.

PREFIX Ontology namespace (URL)

coso: http://w3id.org/coso/v1/contaminoso#

fio: http://w3id.org/fio/v1/fio#

geo: http://www.opengis.net/ont/geosparql#

hyf: https://www.opengis.net/def/schema/hy_ features/hyf/
kwg-ont: http://stko-kwg.geog.ucsb.edu/lod/ontology/
kwgr: http://stko-kwg.geog.ucsb.edu/lod/resource/
me_egad:  http://w3id.org/sawgraph/v1/me-egad#
naics: http://w3id.org/fio/v1/naics#

nhdplusv2:  http://w3id.org/hyfo/v1/nhdplusv2#

qudt: http://qudt.org/schema/qudt/

spatial: http://purl.org/spatialai/spatial /spatial-full#
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—— Abstract

Leisure walking is a physical activity where locomotion through a natural or even urban environment
is the goal in itself, e.g., in pursuit of health and wellbeing. In contrast to destination-oriented walks
that are focused on navigation efficiency (i.e., shortest or simplest walk from source to destination),
leisure walks emphasize experiencing the environment, engaging in activities, and discovering places
that may be off route, or intermediate destinations en-route, summarily called points of interest
(POIs). POIs are key for recommending leisure walks, yet a detailed analysis of POIs in the context of
leisure walking is missing in the literature. This study extracts and annotates POlIs of leisure walking
recommendations available in WalkingMaps.com.au, creating an annotated dataset to address this
research gap and provide a first analysis of leisure walking descriptions. We classify POIs using
the verbal description provided in the dataset, match them with data available in OpenStreetMap
(OSM), and compare the POIs with nearby alternatives in OSM. Our analysis reveals thematic and
spatial patterns in POI selection, offering a machine learning approach to model POI choices for
leisure walks. We further evaluate the availability of rich data in OSM for future automated leisure
walking recommendation. This study contributes to automated systems for recommending leisure
walks, tailoring suggestions based on available information in the spatial open data, and presents an
annotated dataset to facilitate future research in this field.
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ation systems — Location based services
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1 Introduction

Leisure walking is a physical activity where locomotion through a natural or even urban
environment is the goal in itself, e.g., in pursuit of health and wellbeing. In contrast to
the everyday walks, which are destination-oriented (where the path is merely a means of
reaching the destination), leisure walks are path-oriented with a focus on the experience of
the environment along the path [20]. In other words, in leisure walks the points of interest
experienced at distance (off-route) or visited en-route as intermediate destinations, are as
important or maybe even more important than the final destination, which may be identical
with the start location.
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Destination-oriented walks prioritize efficiency, enabling walk recommendations using
optimal path algorithms (e.g., shortest or simplest paths) and spatial data typically stored in
graph structures. Such walks can be externalized into verbal descriptions focused on efficient
and effective navigation, with survey or route perspectives as the narrative strategy [25]. In
contrast, leisure walk recommendations require platial information to suggest walks that
focus on experiencing the environment [22, 23]. Leisure walk descriptions also demand a
more intricate approach, moving beyond navigation, to offer rich descriptions of where to
stop, what to see, and what activities to do, alongside narratives about places and their
social and historical significance [23, 24].

Previous studies analyzing walk recommendations and descriptions provide insights into
how people choose and communicate landmarks for navigation purposes [19, 10]. These
studies are either limited to a specific walk [20] or a specific type of environment (e.g., natural
landscape) [19], or they focus solely on route instructions [10] rather than the characteristics
of points of interest (POIs) that fundamentally shape the experience of leisure walking. A
detailed analysis of how people communicate descriptions of leisure walks and how they
select relevant POIs is thus missing in the literature. This study aims to find insights and
patterns of the characteristics of the chosen POIs in a leisure walking corpus.

The study addresses gaps in leisure walking recommendation research, particularly the
lack of a dedicated dataset for POIs in the context of leisure walking. By collecting data from
the WalkingMaps website!, a sharing platform for leisure walking experiences in Victoria,
Australia, we create an annotated dataset covering both leisure walk descriptions and
POIs. To investigate why POlIs are relevant for leisure walks, we classify the chosen POIs
in the dataset and discuss their similarities and differences compared to nearby available
POIs in OSM. Additionally, we conduct an evaluation of OSM data for leisure walking
recommendations. Using a semi-automatic matching approach, we assess the availability of
the selected POIs in OSM, contributing insights into the feasibility of automated leisure walk
recommendations using open data.

This study hypothesizes that the thematic and spatial characteristics of POIs within a
geographic extent can be used to identify patterns that describe which POIs are relevant for
a leisure walking experience. To investigate this hypothesis, the following research questions
must be addressed:

What types of POIs are selected in leisure walking recommendations?

To what extent is rich thematic and spatial information for the recommended POIs
available in OSM?

How can a machine learning model imitate the POI selection process for a given geographic
area?

In short, the contributions of this study are:

A leisure walk recommendation dataset, enriched with recommended POIs matched to
OSM objects;

A classification of the POIs in the dataset;
A preliminary analysis of the availability of rich data in OSM for such POls;

A baseline prediction model for choosing relevant POIs for a leisure walk given a geographic
extent.

! nttps://walkingmaps.com.au/
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2 Related Works

POIs are defined as locations or objects that cartographers add to maps using cartographic
symbols or labels to communicate relevant places [16]. Alternatively, POIs can be described
as specific locations that individuals might find interesting or useful [9, 3]. Both definitions
emphasize the importance of relevance and interest to the individual seeking POI recom-
mendations. Consequently, POI identification is context-dependent and inherently subjective.
For instance, POIs recommended to tourists may differ from those relevant to residents of
a neighborhood, and the concept of POIs in urban analytics varies from that in mobility
studies. Some research has narrowed the scope of POI to systematic definitions of specific
types of POIs. For example, natural POIs have been defined in tourism and conservation
management contexts using a structured rubric, with applicability demonstrated through
examples from OSM, iNaturalist?, and Scenic-or-Not> data sources [9].

Categorizing POIs has been a major focus in POl-related research, using topic modeling
in a semi-supervised manner to identify meaningful taxonomies for describing POIs in specific
datasets (e.g., [5, 21, 6, 11]). These categorizations often result in POI classes relevant to
specific domains, frequently focused on urban spaces due to the availability of rich datasets
[21, 5, 11]. The Latent Dirichlet Allocation (LDA) topic modeling method is commonly used
to identify dominant POI classes in textual datasets such as Foursquare* and Yelp® [11].
Typical POI types identified in these studies include restaurants, cafes, and bars, shops and
malls, public spaces such as parks and squares, museums, and religious and historic sites.
Additional classes depend on the dataset and method; for instance, [5] identified beach-related
categories (e.g., beaches, piers, surf spots) due to their geographic focus, while [6] included
businesses, transportation facilities, and government, health, and education-related POls.
However, these studies are predominantly focused on urban areas and do not specifically
address a leisure walk context, where POIs are locations along a route, sometimes at the
cost of few more steps from the walk, to spend a short time to view, visit, explore and
interact [17].

Other common areas in POI-related research include predicting POIs based on previously
selected POIs along a path [3, 27], efficiently storing and retrieving POIs [15], and evaluating
the availability and quality of POI datasets [26]. These studies often provide general-purpose
solutions for POI research and do not specifically address the unique challenges associated
with domains such as leisure walks. For instance, predicting POIs for leisure walks involves
distinct challenges: a walk may have a specific theme (e.g., visiting historic landmarks
or bird habitats in rural areas), influencing what should be considered relevant as a POL
Additionally, POIs for leisure walks are not necessarily tourist attractions or places selected
solely for navigational purposes but may include lesser-known places and objects discovered
through personal experiences, often appealing especially to local residents [17]. Regarding
data quality and availability, POIs associated with leisure walks often include a diverse set of
less prominent places and objects, which means general-purpose studies may not adequately
represent the specific data quality and availability conditions for these POlIs.

This study addresses these research gaps by collecting and annotating a dataset specifically
relevant to leisure walking POI research. We classify the collected POIs using a topic modeling
approach and analyze the availability and quality of leisure walk POIs in OSM, examining

https://www.inaturalist.org/
https://scenicornot.datasciencelab.co.uk/
https://location.foursquare.com/products/places
https://www.yelp.com/dataset
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how the identified classes relate to data quality aspects. Finally, we present a baseline
machine learning model to imitate human selectivity in choosing relevant POIs for leisure
walks and discuss the challenges involved in developing such predictive models.

3 Leisure Walking Dataset

WalkingMaps is a publicly available service provided by Victoria Walks Inc., a non-profit
organization dedicated to promoting walkable communities in Australia. The platform
allows users to explore and share leisure walks. Each recommended leisure walk includes
several types of information: (1) the walk, represented as a linear geometry; (2) POIs, each
represented as a point with a verbal description and optionally an image; and (3) a verbal
description of the walk, highlighting the experience and providing navigational instructions.
We utilized web scraping techniques to extract this information from the WalkingMaps
website, resulting in a dataset of 386 leisure walks and 4392 POIs®. Detailed statistics derived
from the verbal descriptions of the walks and POlIs are presented in Table 1. The table shows
that POI descriptions average about 23 words, sufficient to describe the POI and convey the
rationale for the POI recommendation.

Table 1 Statistics of collected textual data from WalkingMaps.

Item Min Median Mean Max

Walk description (word count) 7 130 181 540
Walk description (character count) 43 764 1062 3052
POI description (word count) 2 23 22 116
POI description (character count) 11 127 130 296

To further enrich the collected data, we developed a semi-automated approach to match
the POIs with OSM objects. Using the Nominatim Geocoding API provided by OSM, we
found that only 14.16% of the POI descriptions could be automatically matched to OSM data.
This low geocoding rate is attributed to the rich verbal descriptions included in the POI
data, well beyond simple names and feature types, making it challenging for the Geocoding
API to interpret and locate the corresponding objects in OSM.

To achieve more accurate matching between POIs in the WalkingMaps dataset and OSM,
we designed a simple annotation interface. This interface displays the verbal description of
a POI, its location on the OSM map, and the ten OSM objects with the highest matching
scores to the POI description, facilitating the interactive identification of relevant OSM
objects. The matching score is calculated using the cosine similarity of embedding vectors
derived from the POI verbal description and concatenated OSM key values for nearby OSM
objects. These embeddings are generated using sentence transformers [18] with the msmarco-
distilbert-dot-v5 model. We selected this model, trained on the MS MARCO dataset [1],
because its characteristics align closely with our problem of matching POI descriptions to
OSM thematic representations. In the MS MARCO dataset, queries consist of keyword-based
prompts (e.g., “largest river”) paired with natural language answers (e.g., “The Nile River
is the longest river in the world at 4,132 miles”), which aligns to our task of mapping
less structured, keyword-like OSM representations (e.g., “nature beach”) to rich textual
descriptions of WalkingMaps POIs (e.g., “Byron Bay Main Beach is a walker’s paradise. Flat,
hard sand and plenty of things to look at.”).

5 This dataset has been collected in February 2023.
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Using the annotation interface, annotators can select matches from the top ten suggestions
or explore the map to identify other relevant objects in OSM. When a match is found, the

annotator records the OSM identifier(s) alongside the corresponding POI in the dataset.

Three scenarios were observed during the annotation process: (1) no match, when the POI
is missing in OSM; (2) single match, when only one object matches the POI description;
and (3) multiple matches, when several objects align with the POI description. The third
scenario occurs when a POI description refers to an aggregate of similar objects (e.g., “there
are a couple of ponds in the garden”) or a collection of spatial objects of different types (e.g.,
“a great picnic area and playground, complete with multiple BBQs, toilets, and plenty of
play equipment”).

In total, 2385 POIs were matched with 3119 OSM objects. Due to multiple matches, the

number of matched OSM objects exceeds the number of POIs in the leisure walking dataset.

Among the 2385 matched POlIs, 2022 are single matches, while 363 are multiple matches,
associated with 1097 OSM objects. The remaining 2007 POIs could not be matched with
any OSM objects at the time of annotation (i.e., May-June 2024).

To study the subjectivity involved in matching POIs to OSM objects, 5% of the dataset
was independently annotated by another annotator. The results showed an inter-annotator
agreement of 81.2%, with 407 out of 497 POIs in complete agreement between the two
annotators. When considering partial agreements cases, where multiple matches for a POI
resulted in overlapping lists of matches between the two annotators, the agreement increased
to 88.1%, covering 438 out of 497 POls.

4  POI Classification

In the first step, we use topic modeling to categorize POIs based on their verbal descriptions
(see Figure 1). To ensure the topics are derived from the intrinsic characteristics of the
POIs (i.e., what the POIs are) rather than their geographic locations (i.e., where the POIs
are located), we pre-process the text to remove names of common places such as suburbs,
local government areas, towns, and cities. For topic modeling, we apply the BERTopic
workflow [7], which involves transforming descriptions into sentence embeddings, reducing
the dimensionality of the embeddings using Uniform Manifold Approximation and Projection
(UMAP) [14], clustering the reduced vectors with the Hierarchical DBSCAN method [2] to
minimize noise, and creating bag-of-words representations for each cluster. The clusters are
then characterized by top keywords identified using topic class-based Term Frequency-Inverse
Document Frequency (TF-IDF). This workflow results in a detailed, hierarchically organized
list of topics, each represented by a set of keywords.

Sentence Embedding
Y
Manual examination Representation of
Identified POI classes of hierarchical categories using
categories class-based TF-IDF

Figure 1 Classification workflow.

UMAP for
dimensionality
reduction

Deriving categories
using hierarchical
DBSCAN

POI Descriptions
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To identify classes based on the identified topics, we manually examine each topic within
the hierarchy. We verify whether the top-10 keywords for each topic represent a particular
type of places (i.e., well-formed topics). We then interpret the hierarchy of these well-formed
topics to label and classify them. The proposed classification of POIs, based on the 75
identified topics, includes four classes further divided into ten sub-classes (209 POIs belonging
to five malformed topics are not classified, and labeled as unknown). The four classes are:

Nature-related POIs: This class includes 22 identified topics related to nature, describ-
ing natural features such as mountains, bays, beaches, and waterfalls, as well as habitats
for flora and fauna (e.g., “the native grass trees are particularly striking”). In the dataset,
1478 POIs are classified as nature-related, 745 as natural features and 733 as habitats for
flora and fauna. Out of 386 leisure walks, 338 include at least one nature-related POI, and
125 walks have the majority of POIs (at least 50%) belonging to this class. This indicates
that nature-related POIs are the dominant class in terms of both the number of POIs
and the number of leisure walks that include these POIs. The definition of nature-related
POIs extends beyond the previous definition by [9] and encompasses places or regions
with fuzzy boundaries that describe, for example, habitats for flora and fauna.

Activity-related POIs: These POIs are described in terms of their functional roles and
what activities they offer, which is the primary reason for their recommendation. For
example, “gather your friends and start training for the WNBL or NBL by shooting some
hoops at Braybrook Park” (the (women’s) national basketball league). The four major
subclasses of this category are places that support sport-related activities (212 POIs),
aquatic activities (227 POIs), picnic and camping (482 POIs), and food and beverages
(167 POIs). This class includes 1088 POIs in the dataset, with 315 leisure walks having at
least one activity-related POI and 63 walks having the majority of their POIs belonging
to this class.

Society-related POIs: These POIs are man-made features and objects that people found
interesting and recommended for investigation during leisure walks in the neighborhood.
For example, “established by Aboriginal artist Lin Onus, this was a social and political
meeting place during the 1960s for young people influenced by the Black Power Movement.”
This class includes two major subclasses: (1) human-made landmarks (e.g., hospitals,
hotels, and law courts), and (2) places and objects with artistic, historical, and cultural
significance (e.g., native people establishments, historic gold mines, and murals). This
class includes 1070 POIs in our dataset, with 376 human-made landmarks and 694 POIs
with artistic, historical, and cultural significance. In total, 256 leisure walks include POIs
of this class, with 64 walks having the majority of their POIs belonging to this class.

Transport-related POIs: This class includes two major subclasses: (1) trails, paths,
streets, canals, and bridges that are described as POIs due to the atmosphere and
experiences they afford (e.g., “the Boardwalk is fantastic and makes for easy walking”),
and (2) transport-related facilities (i.e., lines and stations) that aid in planning commuting
to and from the leisure walk area (e.g., “start at Ringwood Railway Station fronting
Maroondah Highway”). This class includes a total of 547 POIs, with 472 related to trails,
paths, and canals, and 75 describing lines and stations. In total, 238 leisure walks include
POIs of this class, with twelve walks having the majority of their POIs belonging to this
class.
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Figure 2 Word clouds of the four POI classes.

Figure 2 shows the word clouds generated for the four POI classes. These word clouds
are created by concatenating all the POI descriptions belonging to each class. The results
highlight frequent words used in the POI descriptions for each class”. Nature-related POls

are described with frequent words such as view, lake, river, beach, bird, creek, and wildlife.

Activity-related POIs are described using words like picnic, playground, seat, BBQ), and
play, indicating a focus on the activities these places afford. This class also shows frequent
words common in other classes, such as river, water, and building, indicating conceptual
overlap in the proposed classification. The reason is mainly that activity-related POIs are
considered a separate class, even with potential overlaps to nature-related and society-related
POIs, to emphasize the importance of activities when recommending leisure walk POls.
Society-related POIs frequently include words such as building, garden, site, sculpture, and
memorial. Finally, the transport-related class shows frequent words such as track, bridge,
path, station, and walking.

Our classification shows that leisure walk POIs include a diverse set of natural POIs in
addition to urban places. This highlights the role of leisure walking context when comparing
our classification results to previous studies discussed in Section 2. For instance, the nature-
related classes (specifically habitats of flora and fauna) are mostly absent in the previous
classifications, and most of the identified classes from previous works can be considered part
of the society-related and activity-related classes in our classification. Due to the relatively
small number of leisure walks in the dataset and its restriction to the geographic extent of
Victoria, Australia, certain POI classes may be absent from our data-driven classification.
This limitation is particularly notable for POIs associated with other geographic contexts,
such as those related to leisure walks in islands, desert areas, or tropical forests. This
limitation calls for further research to extend and validate our proposed classification using
datasets from other geographical regions — our approach remains generalizable.

7 The top-ten words and counts for POI classes are provided in Appendix A, Table 9.
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5 POls and Data Quality of OSM

As discussed in Section 3, we matched the POIs from the WalkingMaps dataset to OSM
objects wherever possible. Here, we present detailed results on the matching status (no
match, single match, multiple matches) of the POI classes and subclasses. We further discuss
how these classes and subclasses are described using OSM tags (i.e., key/value pairs).

Table 2 shows the matching status of POIs based on their class and subclass. The results
reveal that most unmatched POIs belong to the nature-related class, specifically to habitats
of flora and fauna (552 POIs, roughly 75%). One reason for this missing data in OSM is the
complexity of mapping habitat regions due to their fuzzy and possibly unknown boundaries.
Table 2 shows that activity-related POIs are mostly found in OSM, but with a considerable
number of POIs in this category matched to multiple OSM objects. This is because their
POI descriptions may include several features (e.g., multiple shops in a neighborhood, or
BBQ facilities and seats in a park) or a single feature conceptualized as multiple entities in
OSM (e.g., a sports complex with multiple buildings). Society-related and transport-related
POIs are also mostly found in OSM as well. The unmatched POlIs for these classes are due
to (1) places that no longer exist (e.g., an former shop that has changed, no longer exists, or
was demolished), (2) places or features that have not been mapped, mostly trails and small
artistic objects (e.g., sculptures and murals), and (3) a difficulty in identification due to a
lack of thematic information for OSM objects related to these classes.

Table 2 Matching status for each class and subclass.

Class Subclass Matching status

Nature-related flora and fauna no match (552), single match (152),
multiple matches (29)

Nature-related natural landmarks no match (322), single match (357),
multiple matches (66)

Activity-related picnic and camping no match (158), single match (257),
multiple matches (67)

Activity-related aquatic no match (80), single match (112),
multiple matches (35)

Activity-related sport no match (76), single match (108),

multiple matches (28)
Activity-related food and beverage no match (54), single match (105),
multiple matches (8)

Society-related human-made landmarks no match (122), single match (238),
multiple matches (16)

Society-related art, history and culture = no match (351), single match (310),
multiple matches (33)

Transport-related  trails, paths and canals  no match (165), single match (258),
multiple matches (49)

Transport-related lines and stations no match (27), single match (44),
multiple matches (4)

Table 3 shows the top OSM tags for each class and subclass of the POIs matched to
the OSM database. The results indicate that for the nature-related class, the dominant
keys are natural, leisure, foot, and highway, providing information about the type of places
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and their accessibility. Activity-related POIs are mainly described using the leisure key
with values such as playground, pitch, and park, with common tags such as the building
tag also being popular. Society-related POIs are described primarily using the building
tag, along with specific tags for places of worship and the tourism key. Other popular
tags for society-related POlIs, not listed in the table, include tourism: [museum, hotell,
amenity: [school, post_office], and historic:memorial, highlighting their cultural
and historical significance. The transport-related class includes popular tags describing
types, such as bridge:yes, highway:cycleway for the trails, paths, and canals subclass, and
railway:station, train:yes for lines and stations. As shown in the table, the number of frequent
tags, except for common tags like building:yes, is much smaller than the number of actual
matched POIs for each class and subclass. This discrepancy is due to either the POls
belonging to diverse categories or the OSM records lacking sufficient key-value information
to describe them (i.e., 1078 OSM objects in this experiment only had one tag, either name
or type, without any other thematic information available).

Table 3 Popular OSM key/values for each class and subclass.

Class Subclass Most frequent OSM tags (count)

Nature-related flora and fauna leisure:park (30), natural:water (29),
highway:footway (19)

Nature-related natural landmarks foot:yes (102), highway:cycleway (102),
highway:path (70)

Activity-related picnic and camping leisure:playground (98), access:yes (58),
leisure:park (43)

Activity-related aquatic man_ made:pier (19), building:yes (13),
leisure:slipway (11)

Activity-related sport leisure:pitch (63), leisure:park (21),
building:yes (18)

Activity-related food and beverage building:yes (21), amenity:restaurant

(19), amenity:cafe (18)

Society-related human-made landmarks  building:yes (56), religion:christian (23),
amenity:place_of__worship (22)

Society-related art, history and culture  building:yes (57), addr:state:VIC (41),
tourism:artwork (31)

Transport-related  trails, paths and canals layer:1 (92), bridge:yes (90), high-
way:cycleway (67)

Transport-related lines and stations railway:station (15), train:yes (11), rail-
way:miniature (10)

The relationship between the identified classes and subclasses with OSM tags (key-value
pairs) can be numerically described using Cramér’s V categorical association [4]. Table 4
shows the measured associations between OSM keys, OSM values, and OSM key-value pairs
(i.e., tags) with classes, subclasses, and topics. It indicates that key-value pairs have a high
association value with classes (0.73) and subclasses (0.70). With both key and value available,
we can predict the corresponding class and subclass. This number is lower for individual
keys and values, especially for keys, which are often general — e.g., the leisure key can have
values such as park, fishing, garden, or pitch, describing POIs belonging to different classes
and subclasses in our classification.

5:9
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Table 4 Cramér’s V categorical association between class/subclass/topic.

OSM key OSM value OSM key-value

Class 0.43 0.68 0.73
Subclass 0.34 0.67 0.70
Topic 0.20 0.61 0.63

To demonstrate the impact of low-quality thematic information on classifying POIs
using OSM tags, we trained two baseline predictive models. The first model uses a Ridge
Classification approach with TF-IDF vectors of all concatenated key-value tags available in
OSM as input features. The second model is a Gradient Boosting Classification model trained
with the presence of popular key values as binary features (defined by a hard threshold of
at least 25 counts, resulting in 472 keys). Both classifiers were tested using 10-fold cross-
validation, showing similar results in predicting POI classes using OSM thematic information
(see Table 5). Removing OSM matches that only have a name and no further descriptive tags
significantly improves the accuracy of both models from about 0.54 to 0.72. This indicates
that even with few available tags, we can identify POI types; however, a significant number of
matched POIs do not have such descriptive tags available. The SHapley Additive exPlanations
(SHAP) values [12] of the Ridge model and the feature importance measures of the Gradient
Boosting model highlight the importance of features such as amenity, playground, viewpoint,
natural, waterfall, building, garden, and office in the thematic descriptions to predict the
correct POI classes.

Table 5 Accuracy, weighted precision, recall and F-score values of the baseline predictive models.

Accuracy Precision Recall F-score

Ridge Classifier 0.54 0.6 0.54 0.53
Gradient Boosting Classifier 0.55 0.58 0.55 0.53

6 POI Selection

In this section, we analyze the selectivity involved in choosing a POI for a leisure walk and
test a baseline machine learning (ML) method to predict whether a POI candidate is suitable
for a leisure walk (i.e., a binary classifier). We already have the selected POIs in the dataset
(the matched POIs to the OSM database with at least one tag other than name, i.e., 2367
OSM objects). To define alternative POI choices not recommended for leisure walks, we
selected all other OSM objects within 200 meters of the actual leisure walk POIs (extending
the buffer zone to 1000 meters if no alternative POI candidate was found) and filtered them
to spatial objects containing one or more of the following OSM keys (with any value) in
their tags: amenity, shop, railway, bridge, club, building, historic, tourism, place, waterway,
landuse, leisure, natural, office, boundary, highway, man__made. These keys were selected
based on the top frequent tags observed in OSM objects matched with the leisure walk POlIs.

The list of POI candidates that are not recommended by people within their leisure walk
descriptions contains 183906 spatial objects with at least one tag other than name. The
number of not recommended POls is more than 77 times larger compared to the recommended
POIs in our dataset, highlighting the selectivity and challenge of POI selection. The random
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baseline theoretically results in 1.3% accuracy, meaning only one out of 77 suggestions is a
POI recommended by people for leisure walks. Another challenge is related to the sparsity
of the data; some not-recommended POIs could be relevant for (other) leisure walks, but
due to the relatively small number of recommended walks in the dataset, their relevance is
unknown and not being captured.

To test how a baseline ML model can imitate human selectivity in recommending a
POI for a leisure walk, we trained a binary classifier model and select the best performing
model using 10-fold cross-validation. This classifier includes an ensemble of two classifiers
focused on the available thematic and spatial features of the OSM objects, respectively. Both
classifiers are trained with over-sampled data using the SMOTE technique to better model
this highly imbalanced dataset, and tested with an imbalanced unseen dataset. The test
dataset includes 10% of the whole dataset, randomly selected and stratified based on the
binary outputs to ensure it includes both positive and negative cases.

The thematic classifier is trained using the Ridge Classification method with features
being TF-IDF vectors of textual descriptions generated by concatenating OSM key-value
pairs. Table 6 shows the confusion matrix of the test dataset for predicting whether a
candidate is a relevant POI in the leisure walk context. This classifier has an overall accuracy
of 0.90, precision of 0.10, recall of 0.82, and ROC AUC of 0.86. These results indicate that
while the model performs much better than a random classifier and has a high recall, it
still struggles with precise predictions. In other words, out of 10 predicted POIs, only one
was actually recommended by people, while most of the recommended POIs are predicted
correctly (i.e., 82.3% recall). The low precision is primarily attributed to the subjectivity
inherent in POI selection and not necessarily that suggested POIs are irrelevant to the
context of leisure walk. Although several POIs may be relevant and useful for providing
a leisure walk experience, only a few are suggested by users, influenced by their personal
preferences and experiences. However, a much larger and more diverse dataset is required to
minimize the impact of subjectivity in POI selection task.

Table 6 Confusion matrix predicting relevant POIs using thematic information.

Not POI (predicted) POI (predicted)

Not POI (actual) 16597 1794
POI (actual) 42 195

The spatial classifier is built based on the Euclidean distance from POI candidates
belonging to the leisure walk, the area of POI candidates (0 for point-based and linear
geometries), and their length (0 for point-based geometries). The histogram of distances from
the recommended POIs to their leisure walks is shown in Figure 3. This figure demonstrates
that the thresholds used for creating the list of the not-recommended POI candidates are
within realistic distance ranges for the actual recommended POIs. Thus, we are not creating
a single metric that makes the prediction obvious or trivial for the model. These three spatial
features are used to train a Gradient Boosting classifier, and the confusion matrix of the
test data is shown in Table 7. The results show slightly worse performance compared to the
thematic classifier but are still much better than a random classifier. The accuracy is 0.82,
precision is 0.06, recall is 0.84, and ROC AUC is 0.83.

When we ensemble the thematic and spatial classifiers, we observe the complementary
role of these features through the improvement in prediction precision. The ensemble model
predicts a POI candidate as relevant for leisure walks if both thematic and spatial classifiers
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Figure 3 Euclidean distance between the leisure walk path and matched OSM objects.

Table 7 Confusion matrix for predicting recommended POls using spatial information.

Not POI (predicted) POI (predicted)

Not POI (actual) 15067 3324
POI (actual) 39 198

predict it as relevant. The results of this ensemble model are shown in Table 8. This model
achieves an accuracy of 0.98, precision of 0.34, recall of 0.69, and ROC AUC of 0.84. The
significant improvement in precision, from one correct prediction out of ten predicted POlIs
for the thematic model to one correct prediction out of three predictions in the ensemble
model, demonstrates the complementary role of thematic and spatial features in predicting
the relevance of a POI candidate for leisure walks using OSM data.

Table 8 Confusion matrix for predicting recommended POIs using spatial and thematic informa-
tion.

Not POI (predicted) POI (predicted)

Not POI (actual) 18072 319
POI (actual) 74 163

7 Discussion and Conclusion

In this paper, we introduced a new dataset collected from the WalkingMaps website, which
includes verbal descriptions of leisure walks, geometric representations of the walks, and a set
of POIs with their point-based representations and verbal descriptions for each leisure walk.
We further enriched the POIs by matching them with OSM objects using a semi-automated
approach and classified each POI using a topic modeling based on their verbal descriptions.
Our proposed classification includes four top-level classes: nature-related, activity-related,
society-related, and transport-related POIs. The classification further breaks down into ten
subclasses: habitats of flora and fauna, natural landmarks, places that offer food/beverages
or sport/aquatic activities, places related to picnic and camping, human-made landmarks,
places with artistic, historical, or cultural significance, transport-related places such as trails,
paths, and canals, and finally lines and stations.
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Next, we discussed the availability of OSM data for the POIs recommended in leisure

walks. We observed that only 14.16% of the descriptions can be geocoded automatically.

Even with manual inspection to find data in OSM, only 54.3% of POIs can be found in
OSM database. During the annotation process, we noticed that several POI descriptions
need to be matched with multiple OSM objects, either because these descriptions describe
multiple objects at once (e.g., BBQ and playground in a park) or because the single object
described is a complex entity modeled with multiple OSM objects (e.g., sports complexes
that include several buildings). We noticed that several POI descriptions included sensory
details (e.g., visual, auditory, olfactory, or tactile), which are highly relevant and useful in
the context of leisure walking but are often ephemeral and context-dependent. These rich,
human-centric descriptions were challenging to match with OSM records, as OSM often
provides only rudimentary thematic information compared to the richness of these narratives.
[13] conducted a detailed analysis of landscape and place descriptions incorporating sensory
information; however, in the context of leisure walks, further research is needed to analyse
these complex POI descriptions.

We further discussed the relationship between data availability and the identified classes,
noting that roughly 75% of the POIs related to habitats of flora and fauna are missing
in the OSM database. Activity-related POIs have more matches to multiple OSM objects
compared to others, as their descriptions often include multiple activities offered in an
area (i.e., multiple objects described in a description) or places with multiple buildings or
compartments, modeled as multiple objects in OSM. Most activity and society-related POIs
can be found in OSM, with missing ones mainly related to places that have changed use or
no longer exist (e.g., a cafe or restaurant described in a leisure walk that now changed to
another entity). The main reason for transport-related POIs not being matched to OSM
objects is that the POI descriptions only describe part of a mapped path or trail, while OSM
captures the whole path or trail. These parts of the paths in these cases are often important
due to the views they offer or the atmosphere and vibe of walking in there (e.g., “follow the
gravel path down towards the falls for a spectacular view”).

Finally, we study whether we can automate the POI selection for leisure walks, given
the walk area, geometry, and a set of POI candidates (both the recommended POIs in
the dataset and a large set of POI candidates from the OSM database). We trained an
ensemble model that utilizes thematic information from OSM objects (all available tags)
and their spatial features (i.e., distance to walk, area, and length). The results show the
complementary role of spatial and thematic features, with the ensemble model significantly
outperforming individual spatial and thematic models, improving from one correct guess
out of 10 suggestions to one correct guess out of three suggestions. We also highlight the
challenges of POI selection tasks due to subjectivity in the process, data sparsity (i.e., 2367
matched POIs), and highly imbalanced train/test datasets (one recommended POI for 77
not-recommended POI candidates).

This study can be further extended, by refining the methodology for classifying POIs
for leisure walks and by further verifying our findings against leisure walk POIs from
other datasets and geographies. Our focus in this paper is to provide baseline methods
for selecting POIs and demonstrate these on the Leisure Walks dataset, to discuss its
coverage and limitations. Using more sophisticated machine learning methods, we may
expect improvements in the POI selection task. This task can be reformulated in other
ways, such as predicting new POIs given a path and previous POIs. While beyond the
immediate scope of this study, the dataset presented here can be used to develop and test
such approaches. The data also have potential applications outside the leisure walking
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context, such as studying and improving the automatic identification of OSM objects based
on verbal descriptions, beyond the usual geocoding task, as here we consider multiple matches
for a single description. The task here also differs conceptually from geocoding since the
point-based location is already available and provided in the dataset. Instead of finding the
place/object’s location, we aim to find the OSM object(s) (or spatial entities in any other
spatial database) related to what is verbally and geometrically described by a person. As
described in the paper, the results of such matching may yield zero, one, or multiple objects
depending on data availability and how objects are conceptualized within the database (e.g.,
OSM). For example, a sports complex may be represented as multiple areal features in OSM,
yet described as a single entity in the verbal description.

In leisure walk descriptions research, it is essential to differentiate between two types of
POIs: those where one can visit, investigate, and engage in activities, and those that serve
as locations to view other objects of interest (e.g., a view from a hill to a distant mountain).
Leisure walking, and the inclusion of POIs in walk descriptions demands further conceptual
research to investigate the role of such POIs and why they are recommended by the authors
of descriptions. This includes examining the purpose of a POI: is it recommended to aid
navigation, for its functional role, or as a focus of attention for interest and enjoyment during
the walk.
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(154), path (148), see (130), track (116)
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—— Abstract

Over the past decade, micromobility services, particularly electric vehicles for personal short-distance
trips, have experienced significant growth. Major cities around the world now host extensive fleets of
vehicles available for short-term public rental. While previous research has examined usage patterns
within and between a few select cities, large, open, and publicly accessible data sets for analyzing
mobility across multiple cities are extremely limited. I have collected, curated, and aggregated
over twenty million e-scooter and e-bicycle trips across five major cities and are openly releasing
aggregated data for use by mobility and sustainable transport researchers, urban planners, and
policymakers. To accompany these data, I developed MODAP (Micromobility Open Data & Analytics
Platform), a geovisual analytics tool that empowers researchers to explore the temporal and regional
patterns of e-mobility trips within our open data set and download the data for offline analysis.
My objective is to foster further research into city-scale mobility patterns and to equip researchers,
community members, and policymakers with the necessary tools to conduct this work.
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1 Introduction

Analysis of urban mobility, namely investigating how people move through cities, is important
for a wide range of applications such as tracking the spread of diseases, designing equitable
and accessible cities, and mitigating the impacts of climate change. As urban populations
continue to grow [27], gaining access to real urban mobility data has become increasingly
important for policymakers, city planners and researchers [22]. While the curation of large-
scale urban mobility data sets is expanding, access often comes with significant challenges.
Traditional data sources, such as travel surveys, are costly to collect, while alternative sources,
such as ride-hailing or social media check-in data, are typically siloed by private companies
making them inaccessible to the public, researchers, and even municipal transport agencies.
In recent years, data sharing has become even more restricted due to the threat of these data
being used to train proprietary foundation models.

Urban transportation has undergone a shift over the past decade with the commercial-
ization of existing modes of transport (e.g., shared bicycles) and the emergence of new
micromobility options such as e-scooters. Shared micromobility systems, operated by private
companies, have been deployed in hundreds of cities worldwide, offering fleets of short-term
rental vehicles ranging from a few dozen to several thousand per city. Due to regulatory
efforts taken by many municipalities, micromobility operators are often required to provide
publicly accessible application programming interfaces (APIs) that report the real-time
locations of available vehicles. While originally intended for regulatory oversight and safety
compliance, these APIs have also enabled third-party integration, such as embedding them
into navigation services like Google Maps.
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Today, shared micromobility has become an integrated component of urban transportation
ecosystems, with over 172 millions trips having taken place in North America last year
alone [21]. Access to trip-level micromobility data is invaluable for understanding mobility
behavior, optimizing transportation networks, and informing policy decisions. In this work, I
introduce an open, multi-city data set of micromobility trips, detailing the data collection
process and limitations of my methodology. Additionally, I present a geovisual analytics
platform that encourages users to interactively explore the data through a web-based interface.
This platform enables users, including those without technical expertise, to visualize spatial
patterns in trip distributions, temporal variations, and differences across micromobility
modes, providing an accessible tool for urban mobility analysis. In more explicit terms, the
objectives of this work are as follows.

1. To collect, clean, curate, and publish an open mobility data set of e-scooters and e-bicycle
trips in five major cities around the world.

2. To develop a web platform to both serve the data and provide exploratory geovisual
analytics functionality with the goal of democratizing data analytics and empowering
those with limited ability or capacity to analyze the data offline.

3. To demonstrate the utility of these data through a showcase of several exploratory mobility
analyses.

T BN, < : mp Micromobility Open Data
’’’’’’ A & Analytics Platform
P

........ < .
ormosone Berlin, Germany

el a7 S =
10842062 12 g
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6

nnnnnnnn y v Download Data Source Information

Figure 1 A screenshot of the MODAP web platform located at https://platial.science/modap.
Features are numbered and described in Section 4.1.

2 Background

Micromobility research has become increasingly important in urban mobility studies as a
growing number of cities integrate the services into their transportation ecosystems. At
this point, a large body of research has explored various dimensions of micromobility,
including regional variability in usage patterns [28], equity implications [7], and the impacts
of micromobility on health [2] and safety [29]. This range of topics speaks to the importance
of understanding micromobility’s role in shaping urban accessibility, sustainability, and public
health outcomes.
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More broadly, the field of mobility analytics has emerged as a distinct subfield of data
analytics [3, 20]. City and transportation planners increasingly rely on sensor-based mobility
technologies, and the data they collect, to gain insights into urban activity patterns [9, 25].
Both public transit agencies and ride-hailing companies (e.g., Uber) utilize mobility data
and spatial analytics tools to optimize their service delivery and identify where investments
and enhancements should be made [23, 11].

Geovisual analytics platforms are a key component of the analytical landscape. Such
platforms integrate interactive data visualization, geospatial analysis, and user-focused tools
to help stakeholders identify and interpret complex spatiotemporal patterns [5]. These
platforms democratize data analytics by providing web-based, user-friendly interfaces that
require minimal coding expertise or access to specialized computer hardware. A wide range
of such platforms are in use today, empowering users to conduct analysis on a variety of
topics, from air pollution dynamics [30] or pandemic mobility patterns [6] to social network
structures [8] and place-based similarity metrics [18].

The role of open data in advancing mobility and urban research is equally important. Open
mobility data sets have facilitated transportation research for decades. They have lowered
the cost of developing transport services and supported the creation of mobility/transport
planning tools. The quintessential example of this is TriMet, Portland’s transit agency, which
in 2005 became one of the first agencies to publish its transit schedule in a machine-readable
format. This effort enabled third-party developers (and researcher teams) to build new tools
and conduct analyses based on these data [13].

Recently, researchers have put substantial efforts into producing open mobility data sets
with the objective of broadening access to critical transportation information [4, 32]. For
example, Tenkanen and Toivonen [26] published a longitudinal open travel time data set
for multiple mobility modes in Helsinki, Finland, while Kashiyama et al. [10] compiled a
comprehensive Japan-wide mobility data set from travel surveys. Complementary efforts have
focused on establishing data standards and specifications. The Open Mobility Foundation,
for instance, works with municipalities, industry stakeholders, and academic researchers to
develop standardized mobility data specifications for real-time data sharing.!

My work builds on these efforts by emphasizing the need for more open mobility data,
geovisual exploration, and open analytics platforms. By encouraging more accessible invest-
igation of mobility data, these data and tools contribute not only to advances in geographic
information science and transportation planning, but also the broader intersection of mobility,
environment, and society.

3 Data & Methodology

3.1 Data collection & cleaning

The data reported through this work were accessed from three dockless micromobility
operators, namely Tier, Lime, and Flamingo. Each of these operators runs dockless fleets
of vehicles meaning that users can start or end a trip in any public space and the vehicles
are not parked at dedicated docking stations. Data from only one operator per city were
accessed. Table 1 provides an overview of the final micromobility data sets including the
operators, number of trips, type of vehicle(s), and time period of data collection. These trip
count values are from after the data has been cleaned.

! https://www.openmobilityfoundation.org/
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Table 1 An overview of the micromobility trip data sets for the five cities.

City Trip Count  Vehicle Type Time Period Operator
Berlin, DE 11,761,219  e-scooter (92%), e-bike =~ 2020-08 — 2024-05 Tier
London, UK 1,192,227  e-scooter (46%), e-bike  2021-08 — 2024-04 Tier
Paris, FR 4,848,310  e-scooter (81%), e-bike  2020-08 — 2024-04 Tier
Washington, D.C., US 5,951,082  e-scooter (67%), e-bike  2022-09 — 2024-05 Lime
Wellington, NZ 1,052,900  e-scooter (100%) 2021-11 — 2024-05 Flamingo

The data were accessed via public-facing application programming interfaces (API). With
every request, these APIs (Table 2) return a set of all available vehicles for the requested
city, in JSON format. Relevant attribute information include vehicle identifier, geographic
coordinates for the current location of the vehicle, vehicle type, and battery level. Each
of these APIs were accessed every 60 seconds for the duration of data collection, stated in
Table 1. At time of writing, the Lime and Flamingo APIs are still operational, however, Tier
merged with another micromobility operator in mid-2024 and discontinued their API at the
end of 2024.

Table 2 URLs for the public application programming interfaces associated with each micro-
mobility operator and city.

City Operator URL

Berlin, DE Tier https://platform.tier-services.io/v2/vehicle?zoneld=berlin

London, UK Tier https://platform.tier-services.io/v2/vehicle?zoneld=london

Paris, FR Tier https://platform.tier-services.io/v2/vehicle?zoneld=paris

Washington, D.C., US  Lime https://data.lime.bike/api/partners/v1l/gbfs/washington
_dc/free_bike_status

Wellington, NZ Flamingo https://api.flamingoscooters.com/gbfs/wellington/free bike

status.json

Provided the set of available vehicles every 60 seconds, trips were identified by noting when
a vehicle disappeared from the set of available vehicles (trip start) and when it reappeared
in the set of available vehicles (trip end). Given the frequency of requests, this means that
trips are accurate to a highest temporal resolution of one minute.

Provided an initial set of trips for each city, the data were then cleaned. Specifically, all
trips where the battery level increased between the start and end of a trip were removed from
analysis as an increase in battery level suggested that these were recharging/rebalancing trips
completed by the operator. Similarly, trips where the average velocity exceeded 20km /hour
were removed. All operators in the dataset limit their vehicles to a maximum of 20km/hour.
Velocity was calculated as Euclidean distance between origin and destination divided by trip
duration. Since full trajectories are not available, average speed is likely underestimated. In
addition, trips shorter than 200m or five minutes were removed as well as those longer than
20 km or two hours in duration. This cleaning was done to remove vehicle adjustments and
outliers in the data (see [15] for further details).

It is important to mention here that since the emergence of shared micromobility services,
the ways in which data have been published via API has changed significantly. Today,
many operators obfuscated their vehicle identifiers by randomizing them with every API call.
Importantly, for all operators in the data set, I can confirm that the vehicle identifiers are
not obfuscated. Lime does obfuscate the identifier in the vehicle id field, but does not for
the vehicle identifier in the rental wuris parameter. This allows for tracking a vehicle over
API requests.
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3.2 Data aggregation

Completing the process above resulted in a set of micromobility trip for each of the five cities.
Trips included the geographic coordinates of the origin and destination as well as the start
time and end time, to the nearest minute.

I then identified three different geospatial units for aggregating the trip data. My mo-
tivation for aggregation is presented in the discussion section. The geographies include: 1.
Socio-political boundaries. These are sub-city level administration units such as neighbor-
hoods, districts, or traffic analysis zones within a city. As these are determined by the country
or city, I understand them to be organized based on the characteristics of the population or
physiographic features. 2. Hexagon grid at a 1,000 meter resolution and 3. Hexagon grid
at a 500 meter resolution. These two hexagonal grids are uniform geometries that ignore
population and physical geography. I felt it important to aggregate at a range of resolutions
as these data can be used for different purposes by different stakeholders. The origins and
destinations of all trips were intersected with the three different geographies to produce the
spatial data sets available for download and analysis.

Temporally, all trips that started or ended within a geographic region were split into
either weekday or weekend and origins were aggregated to the nearest hour. As with the
spatial aggregation, this allows for dettailed temporal trend analysis but does not allow for
the identification of individual trips or users within the data.

Table 3 Description of the contents of Trip_ OD.cswv.

Column Data Type Description

gid_o String Geographic identifier for the origin of a trip
gid_d String Geographic identifier for the destination of a trip
v_type String Type of vehicle: escooter or ebicycle

td__mean Float Mean duration of trips between two geographies
td_median  Float Median duration of trips between two geographies
t__count Integer Total count of trips between two geographies

Finally, these data were cleaned to remove all geometries that contained no trips and
all relevant data were compressed into a series of zipped folders for download. Each zipped
directory includes four files: 1. A GeoJSON file containing polygons for the selected geography;,
2. A meta data file containing relevant details on the source of the data and provenance
information, 3. A Trip_ OD.csv file containing counts and average duration between pairs of
origins and destinations, and 4. A Region__Details.csv file containing temporal distribution
of trips per geographic region. The data dictionaries for these last two files are presented in
Table 3 and Table 4, respectively. These data have been prepared for all five cities and all
three geographies and are published under a Creative Commons (CC BY 4.0) license.?

4 Platform

I developed an online, browser-based platform for visual exploration and analysis of the
micromobility data. The current platform was designed for a standard computer screens
and has not yet been adapted for small screened mobile device. It is available at https:
//platial.science/modap and was designed for two purposes.

2 https://creativecommons.org/licenses/by/4.0/
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Table 4 Description of the contents of Region__Details.csv.

Column Data Type Description

gid String Geographic Identifier

od String Origin or destination: “o” or “d”

v_ type String Type of vehicle: escooter or ebicycle

week Integer Weekday (1) or weekend (0)

hour Integer Hour of the day (0-23)

td__mean Float Mean duration of trips to/from geography
td_median Float Median duration of trips to/from geography
t__count Integer Total count of trips between to/from geography

The first purpose is to provide an accessible platform for data exploration and pattern
discovery. Given the complexity and sheer volume of data, non-technical stakeholders and
the general public may find it challenging to navigate. This tool was designed to empower
users by allowing them to explore the data independently, compare temporal variations in
specific regions against citywide trends, and focus on areas of particular interest.

The second purpose is to provide a platform through which researchers, government
agencies, and industry professionals can download the raw data to be use for detailed analyses.
Given the volume and different dimensions of the data, I felt it important offer users the
ability to first interact with the data through the platform in order to see the mobility data
“in-action” before downloading the individual data sets for analysis.

4.1 Features

The MODAP platform boasts a number of features. These features have been numerically
labeled in Figure 1 and are referenced in the following descriptive paragraphs in parentheses.

Map Pane (1). The map makes up the majority of the view and is the main point of
interaction with the spatial data. This map includes standard tools for panning and zooming,
and the ability to change the base map and toggle labels. Once a city and geography are
selected, a user is invited to click a geographic region on the map. Once selected, the mobility
data are symbolized on the map and a legend is provided. A user can click on the legend
to rotate through different color palettes. A user can then hover their mouse over different
regions to view details including number and average duration of trips that originate in the
selected region (highlighted in yellow) and finishes in the mouse-hovered region.

Selectors (2). On the right side of the platform, there are a set of drop down selectors at the
top of the page. These selectors (Green) are comprised of 1. The City Selector which allows
users to pick a city and is the first point of interaction for the platform. 2. The Geographies
Selector, allowing users to select from three possible options of geographic polygons (Figure 2).
This defaults to administrative regions. 3. The OD Selector asks users if they would like to
view trips by their origin or by their destination (defaults to origin). 4. When there is more
than one vehicle type, the Vehicle Selector asks users to select either e-scooters or e-bikes.

General Details (3). Under the Selectors are two large information panes that present the
total number of trips per vehicle type for the selected city as well as the average duration for
the selected vehicle type in the selected city.



(a) 1,000 meter hexagons. (b) 500 meter hexagons.

Figure 2 Two of the three geographic units available for spatial analysis. The third is shown in
Figure 1.

Hourly Volume Graph (4). A dynamic graph displays trip data based on hour of an
aggregated day. The average number of trips (as a percentage of all trips) is shown for
weekdays and weekends for (a) the city as a whole and (b) for the geographic region selected
on the map. This view permits users to compare selected regions to the overall hourly
mobility patterns for the city overall. Users can hover their mouse over points on the graph
to view more detailed numbers on the percentage of trips taken per hour.

Duration Graph (5). A dynamic graph showing a histogram of trip durations at five minute
intervals. As with the Hourly Volume Graph, the percentage of city trips are shown in a
lighter color with the selected geographic region trips shown in a darker purple. This allows
users to compare their selected geographic region to the overall city pattern.

Buttons (6). At the bottom right of the screen there are two buttons. The Data Download
allows users to download the data for the city they selected, aggregated to the geography
through which they are viewing the data. The Source Information provides metadata related
to the data currently being visualized. This includes trip count information, operator,
dates, etc.

4.2 Architecture

MODAP is built using completely open source software and the source code is also published as
open source at https://github.com/grantdmckenzie/modap. On the server, the platform
is running a LAPP? architecture. Specifically, Ubuntu Linux running Apache 2 as the web
server. All data are stored in a PostGreSQL relational database with the PostGIS extension
allowing for spatial queries. Requests from the client (browser) are handled by a set of
PHP scripts. Data downloads have been pre-processed, stored, and shared on the Open
Science Framework at https://github.com/grantdmckenzie/modap. The front-end is a
combination of HTML5, CSS3, and JavaScript. Two JavaScript frameworks are employed
for various features. These are Leaflet* for the web mapping functionality and Chart.js® for
the dynamic graphs. All other functionalities were developed with native JavaScript.

3 Linux, Apache, PostGreSQL, PHP
4 https://leafletjs.com
5 https://chartjs.org
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5 Data showcase

In this section I highlight a few examples of the types of analysis that can be done either
through the MODAP web platform or with the open data after downloading.

5.1 Platform-based exploratory analysis

L+ARLINGTON L+ARLINGTON

W

(a) E-scooter. (b) E-bicycle.

Figure 3 Comparing e-scooter trip duration to e-bicycle trip duration from a selected origin
region in Washington, D.C.; USA.

As previously mentioned, the platform is designed for visual exploration of micromobility
data, aiming to inspire new ideas and facilitate quick analysis of regional and temporal
differences across cities, sub-regions, and vehicle types. For instance, one can select a region
in a city such as Washington, D.C. and toggle between e-scooters and e-bicycles to identify the
difference in trip duration between the selected region and all surrounding regions. Figure 3
shows such a selection. Since the legend remains constant between vehicle types, one can
quite easily see that trips taken on e-bicycles travel to further destinations than e-scooters,
while maintaining a similar duration. This is especially true for regions in the North of the
city. By hovering over different destination regions, one can also view the mean and median
duration differences between the two vehicle types.

Other analysis might focus on the difference in micromobility temporal patterns depending
of if a region is a trip origin or a destination. Figure 4 shows a selected region in Wellington,
New Zealand. Figure 4a shows the temporal patterns for the region when it is the origin of a
trip. The dominant time period for trips originating in this region is during the morning
commute on weekdays. We can see that it is higher than the city average, as shown in lighter
blue. Compare that to the same region as a destination (Figure 4b). In this case, we find
that the dominant time period is evening commuting hours, peaking at 17:00. Based on this
exploratory analysis, one might make the initial assumption that the region is zoned to be
residential. This might then spark further investigation into land use, socio-economic data,
elevation, etc. in the selected and neighboring regions.
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(a) High morning commute as Origin. (b) High evening commute as Destination.

Figure 4 Comparing the difference in origin and destination temporal patterns for a single region
in Wellington, New Zealand.

5.2 Analysis with downloaded open data

While the MODAP web platform was designed for visual exploration and analysis of the data, a
user also has the ability to download the data sets and run their own analysis offline. These
data support a wide range of analytical approaches and research questions. Here, I highlight
a few simple examples to illustrate their potential.

One could compare the durations and times across all cities in the data sets to identify
the most similar cities and most different cities. For instance, comparing various e-vehicle
behavior has been a topic of interest recently [1, 17]. Through these open data, one can
identify the difference in trip durations between e-scooters and e-bicycles in London, United
Kingdom, for example. Figure 5 shows a density plot of each vehicle’s trip durations. This
could be compared to other cities and used to inform policymakers on the suitability of these
different vehicle types in their cities.

B E-scooter
@ E-bicycle
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Figure 5 Density plots comparing e-scooter and e-bicycle trip duration in London, UK.
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Trip Count (Origins) Percent Female
1-2 W 44.99 -47
2-6 47-48
6-71 48-49.9
m-7s 49.9-50.1
. 715-2377 50.1-52.45
W 2377-5599 W 52.45-52.89
W 5599 - 74306 W 52.89-55.83

(a) Trip Count (trip originating). (b) Percent female population.

Figure 6 Comparison between micromobility trip counts and percent female population in London,
aggregated to 1000 m hexagon cells.

One could also use these data to identify the relationship between sex (male and female)®
and micromobility trip volume in London, United Kingdom (Figure 6). To accomplish this, I
accessed the demographic data from the UK 2021 Census’ at the Middle layer Super Output
Areas (MSOA) level and ran an areal interpolation [24] of the MSOA’s data to assign male
and female population counts to the same 1,000 meter hexagon geography published through
MODAP . Then, having data at the same geospatial resolution, I ran a Bivariate Moran’s [
analysis comparing trip volume and percent female population in the city of London. The
results report a Bivariate Moran’s I value of -0.2043 (p < 0.05) with a z-score of -5.8137.
This suggests that there is a a significant inverse spatial relationship between the two data
sets, or rather that there is a strong relationship between micromobility trips and regions
with higher male residential populations. This simple analysis is meant to demonstrate how
these data could be used and further study might investigate additional factors related to
the built environment and other socio-economic factors.

Finally, one could compare micromobility usage to automobile usage in a city. In this
example I investigate spatial and temporal differences in duration of trips taken by the two
modes of travel. The ride hailing company, Uber, previously published trip duration data
at the level of Traffic Analysis Zones (TAZ) for a number of global cities through their
Uber Movement platform.® With access to these data, we can compare micromobility trip
durations to those of passenger automobile trips. The Uber Movement data reports mean
and median trip duration between all possible TAZ at every hour of either a weekday or
weekend. Given the data in MODAP is published at the same spatial and temporal resolution
(Administrative TAZ and hourly) for Washington, D.C., we can compare the two modes
of travel. Figure 7a shows the difference in median trip duration between the two modes
of travel for each origin TAZ in the city. This is calculated by subtracting the median
automobile duration from the median micromobility duration for each TAZ. The results are

6 Reported as sex identified at birth in the UK Census.
" https://www.ons.gov.uk/census
8 https://www.uber.com/en-CA/blog/kepler-data-visualization-traffic-safety/
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the difference reported in seconds. We can see that there is some spatial clustering with
the downtown core reporting the lowest difference and those on the outskirts of the city
reporting larger differences. This is in line with existing work [16] comparing these data five
years prior. Figure 7b reports these differences in duration by hour of a standard weekday.
In this case, median automobile trip duration between all pairs of TAZ are subtracted from
median micromobility trip duration and then the median of all of those is reported for each
hour. We can see that while automobile trips are faster in all cases (y-axis is difference in
seconds), the two modes of transport become more similar during peak commuting hours.
This analysis showcases the types of comparison analysis that can be conducted between
micromobility and other modes of transport within cities.
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Figure 7 Spatial and temporal comparison of micromobility trip duration to automobile trip
duration in Washington, D.C., USA.

6 Discussion & conclusions

The main objective of this paper is to highlight the importance of open access to high quality
mobility data as well as the exploratory tools necessary to analyze them. While this work is
narrowly focused on the origins, destinations, and durations of micromobility trips in five
major cities, it adds to the growing availability of open data that urban planners, academic
researchers, and the public can use to better understand mobility around the world. It
is my intention to continue to contribute to this data set and platform as I collect and
curate additional e-scooter, e-bicycle, and other sources of micromobility data (e.g., e-moped,
non-e-bicycle).

One question that I feel it was important to address is, why I did not choose to publish
the raw trip data. It took a significant amount of time and effort to collect these data
over the course of multiple years and during that time I realized that there are aspects of
the trip data that are incredibly sensitive from an individual privacy perspective. Unlike
public transit or docking station-based micromobility, users of dockless micromobility vehicles
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typically park their vehicles directly outside of their homes or near places of interest that
host activities that expose personal information about their clientele. I am also aware of
numerous legal cases related to the personal privacy of individual micromobility trip data [12].
In these cases, either precise geographic coordinates of origins and destinations are shared or
raw trajectories. As researchers with access to these highly sensitive data, I felt an ethical
responsibility not to publish the raw data, but instead preserve a level of privacy through
spatial and temporal aggregation [19].

As researchers, I also felt it was important to publish a public data set for the variety of
stakeholders who could significantly benefit from access to mobility patterns. When working
with data such as these there is always a trade-off between privacy and utility [31]. The size
and variety of the geographies chosen, the aggregation to hours of a day were all selected
with individual privacy in mind. My approach to aggregating the data is far from perfect,
but it does protect privacy while still offering valuable insight from the mobility patterns.
My team and I will continue to explore alternative geoprivacy preservation techniques with
the objective of releasing higher spatial and temporal resolution data.

There are a number of areas for improvement in both the platform and the data. First,
each city is only represented by a single micromobility operator and for most of the cities
selected for this project, there are multiple operators. While minimal, existing research has
demonstrated that there are differences between operators within the same city [16]. Second,
my analysis includes three operators over five cities making it difficult to compare both cities
and operators at the same time. Finally, I have no details on the actual riders themselves,
nor the purpose for their trips. While this is arguably outside the scope of this specific
project, not having access to user demographics or trip purpose limits the forms of analysis
that can be done with these data.

My future work on this project will involve expanding the open data set to numerous
other cities and micromobility operators. My intention is also to allow users to upload their
own data sets to the MODAP platform in order to visually and statistically compare patterns
and to help users clean their own mobility data.

Conclusion

Micromobility services have grown substantially in recent years, now constituting a not-
insignificant share of short, urban trips. As these services expand, they contribute to the
evolving landscape of urban mobility, offering an alternative to, and often complementing,
traditional transportation modes. In most cities, there is a regulatory requirement that
operators of these services provide open APIs that publish real-time data on vehicle availability.
In this work, I leveraged these data to reconstruct trips across five major cities over a three-
year period (in most cases). Through the MODAP project, I am making these trip data openly
available for download and analysis. To support these data, I developed an interactive
geovisualization platform that enables users to engage and explore these data through their
web browser. My objective is to provide researchers, policymakers, and urban planners with a
rich and open source of new mobility data. My intention is for this to support evidence-based
decision-making and contribute to the broader discourse on sustainable and equitable urban
mobility.
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The propagation of traffic congestion is a complicated spatiotemporal phenomenon in urban networks.
Extensive studies mainly relied on dynamic Bayesian network or deep learning approaches. However,
they often struggle to adapt seamlessly to diverse data granularities, limiting their applicability.
In this study, we propose a modularity-driven method to unravel the spatiotemporal congestion
propagation centers, effectively addressing temporal granularity challenges through the use of the
fast Fourier Transform (FFT). Our framework distinguishes itself due to its capacity to integrate
enhanced spatial-semantic features while eliminating temporal granularity dependence, which consists
of two data-driven modules. One is adaptive adjacency matrix learning module, which captures
the spatiotemporal relationship from evolving congestion graphs by fusing node degree, spatial
proximity, and the FFT of traffic state indices. The other one is local search module, which
employs local dominance principles to unravel the congestion propagation centers. We validate
our proposed methodology on the large-scale traffic networks in New York City, the United States.
An ablation study on the dataset reveals that the combination of the three features achieves the
highest modularity scores of 0.65. The contribution of our work is to provide a novel way to infer the
propagation centers of traffic congestion, and reveals the flexibility of extending our framework at
temporal scales. The network resilience and dynamic evolution of the identified congestion centers
can provide implications for actional decisions.
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1 Introduction

Traffic congestion is a pervasive issue in urban road networks, propagating across both time
and space. With the exponential growth of multi-source real-time geographic data enriched
with temporal and spatial information, significant efforts have been made to uncover the
spatiotemporal patterns of traffic congestion propagation. Existing studies can be broadly
categorized into two main approaches: dynamic Bayesian network (DBN) [14] and deep
learning models [1]. DBN-based approaches discretize continuous historical traffic data into
discrete traffic states and then infer congestion propagation patterns by calculating the state
transition probability between adjacent road segments [4,5,11]. However, these approaches
are often limited by the loss of information during data discretization and the reliance on
prior knowledge, which may compromise the accuracy of congestion propagation inference.
On the other hand, deep learning models, such as graph neural network (GNN) [17] and
graph convolutional network (GCN) [6,21], leverage road network topology to construct
feature matrices for congestion analysis. While these methods have shown promise, they
predominantly rely on predefined adjacency matrices based on simplistic metrics such as node
connectivity or spatial proximity. This static representation fails to capture the dynamic
and adaptive nature of congestion propagation, which evolves over time and is influenced by
multiple factors beyond mere spatial relationships.

To address these limitations, the objective of this study is to propose a modularity-driven
framework to track the evolution of traffic congestion propagation centers with enhanced
node feature fusion. Our approach introduces two key innovations that significantly advance
the state-of-the-art in congestion center analysis.

Adaptive multi-feature fusion adjacency matrix. Unlike traditional methods that rely
on static adjacency matrices, we design an adaptive multi-feature adjacency matrix
that integrates enhanced node features - including degree, spatial proximity, and the
fast Fourier Transform (TTF) of the traffic state index (TSI) — to capture the complex
interplay of factors driving congestion propagation. This matrix dynamically updates
over time, enabling a more accurate representation of the information-passing process
between road segments at different timestamps.

Fast Fourier Transform of the TSI to eliminate temporal-scale effects: To address the

potential impact of varying temporal resolutions (e.g., 5 minutes, 30 minutes, or 1

hour) on model performance, we introduce the FFT of the TSI. This transformation

eliminates the influence of time scales, ensuring that our model remains robust and
effective across different data granularities. This innovation is particularly critical for
real-world applications where data collection intervals may vary.

The significance of our work lies in its ability to provide a flexible framework for identifying
congestion propagation centers, which is independent of temporal granularity thus can be
extended at multiple scales. Experimental results on the traffic floating car datasets from
New York City (NYC), the United States, demonstrate the effectiveness of our method based
on the enhanced features, achieving an average modularity score level at 0.65. Besides, the
propagation probability and distribution of the congestion centers on different types of days
(i.e., weekdays, weekends, and holidays) are further visualized. These findings highlight the
potential of our framework to advance the traffic congestion propagation analysis and provide
actionable insights for urban transportation management.

The remainder of this paper is organized as follows. Section 2 reviews the related
works and identities some limitations. Section 3 provides the framework and details of our
proposed methodology. Section 4 presents the experiment and results. Section 5 concludes
this paper.
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2 Related works

Significant efforts have been devoted to traffic congestion propagation modeling, with existing
approaches primarily falling into two categories: dynamic Bayesian network (DBN) and deep
learning. On the one hand, DBN-based methods model traffic congestion propagation as
state transitions between adjacent road segments in a probabilistic graph [14]. For instance,
Nguyen et al. (2016) [11] constructed causal congestion trees using taxi trajectory data to
estimate causality probabilities and reveal the interactions of traffic streams. Building upon
this, Chen et al. (2018) [4] proposed the spatiotemporal congestion subgraph (STCS) based
on travel time data to describe recurring congestion propagation patterns. Similarly, Fan et
al. (2019) [5] developed a DBN-based prediction model using floating car data, discretizing
traffic speed to predict congestion diffusion states. However, these DBN-based approaches
heavily rely on prior knowledge and data discretizations, which may lead to information loss
and reduced inference accuracy.

On the other hand, deep learning models treat congestion propagation as a multi-
dimensional feature learning problem. Representative traditional models, such as LSTM [2]
and LSTM variants [15,19], have been widely applied. However, these models often fail to
incorporate road network topology, resulting in suboptimal performance. To address this
limitation, graph-based approaches, particularly graph convolutional networks (GCNs) (Kipf
and Welling, 2016), have gained traction. GCNs model traffic networks as graphs, where road
segments are represented as nodes, enabling the direct incorporation of spatial dependencies.
For example, Zhao et al. (2019) [20] proposed temporal GCN (T-GCN) to capture both spatial
and temporal dependencies, while Liang et al. (2022) [8] introduced spatiotemporal GCN
(ST-GCN) to simultaneously model spatiotemporal dependencies and heterogeneity. Zheng
et al. (2022) [21] further advanced this field by proposing dynamic STGCN (DST-GCN),
which constructs spatial-temporal graphs across time slices by connecting the latest time
slice with past slices. Notably, Luan et al. (2022) [9] integrated Bayesian inference with deep
learning to develop a dynamic Bayesian graph convolutional network (DBGCN). Despite this,
temporal granularities of the data potentially affect model effectiveness. In addition to DBNs
and deep learning models, some studies have introduced epidemiological models, such as the
susceptible-infectious-recovered (SIR) model, to analyze congestion propagation [7,12,16].
While these models provide valuable insights, they often rely on simplifying assumptions and
do not fully account for the complex topology of urban road networks. Furthermore, the
effectiveness of above methods highly relies on the spatiotemporal resolution of collected
data, as it seeks to reveal large-scale traffic dynamics by obscuring small-scale spatiotemporal
interactions [18].

3 Proposed methodology

3.1 Framework

The framework of the proposed method contains two-driven modules (Fig. 1): dynamic
adjacency matrix learning module and local search module for congestion centers detection.
In the first module, adaptive adjacency matrices are constructed by integrating three key
features: node degree, spatial proximity, and semantic information derived from traffic
spatiotemporal congestion graphs (detailed in Section 3.2). These matrices dynamically
capture the relationships between nodes in the traffic network, reflecting both structural and
contextual properties of congestion patterns.The generated adjacency matrices are then input
into the second module, where a local search algorithm (Section 3.3) is applied to identify
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congestion centers at multiple scales (e.g., C1, C2, and C3 in Fig. 1). This hierarchical
detection process enables the framework to uncover the centers of congestion propagation
process across different spatial resolutions, providing a comprehensive understanding of traffic
dynamics.
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Figure 1 Framework of the proposed method.

3.2 Dynamic multi-feature fusion adjacency matrix

To enhance the discriminative capability of relative closeness in multi-attribute decision-
making, the entropy weight (EW) method is employed, as it effectively balances the contri-
bution of diverse attributes. Leveraging this advantage, the EW approach is utilized in this
study to compute adaptive adjacency matrices. Given a spatiotemporal congestion subgraph
Gy, at timestamp t;, its adaptive adjacency matrix My, is derived through a weighted fusion
of its degree similarity D, Spatial proximity similarity D;,, and the FFT of traffic state
similarity Dy :

My, = wi; 1Dy, + wy; 25, + wy; 3Fy;, (1)

where wy; 1, wy; 2, and wy; 3 denote the EWs calculated by the information entropy of
each similarity matrix. The degree similarity Dy, is computed based on the Cosine similarity
of node degrees. FFT converts TSI in temporal domain into a frequency domain signal,
which is calculated as:
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N-—1
Fy (k)= TSI, (n)ee” ¥ k=12 N, (2)
n=0

U—’Dt

TSItj = v ja (3)

where N is the length of time series T'SI;;. T'SI;;(n) is the TSI value at the nth dimension.
e~ "%k is the kernel of Fourier Transform, representing the complex exponential signal with
frequency % v represents the free-flow speed of road segment, vy, is the actual average speed
at timestamp t;. The range of T'SI;, is [0,1], and the threshold is 0.7 [4]. Therefore, the road
segment at the timestamp ¢; is defined as a spatiotemporal congestion instance if its T'STy; is
no less than 0.7. Given a spatiotemporal congestion graph G, its adjacency matrices across J
timestamps are dynamically updated as M = [My,, My,,..., M;,], ensuring a time-sensitive
representation of congestion propagation patterns.

3.3 Local search algorithm

Based upon the adaptive adjacency matrices, a local search algorithm is employed to detect
multi-scale communities in dynamic networks. The process of local search in this study is
shown as the local search module in Fig. 2, which can be broken into the following four stages:
(i) Node value assignment. Each node u is assigned a value x,, by summing the weights of
its connected edges, derived from the dynamic adjacency matrix and the spatiotemporal
congestion graph. This creates a directed acyclic graph where each node points to its highest-
value neighbor, provided that neighbor’s value is greater than or equal to its own. (ii) Local
leader identification. Local leaders [3] are identified as nodes with incoming edges but no
outgoing edges, representing dominant points in the network’s community structure (e.g.,
nodes a, ¢, and h in Fig. 1). These leaders help reveal the network’s hierarchical organization.
(iii) Local breath-first search [13]. For each local leader u, an LBFS algorithm is used to find
the nearest local leader v with z, < x,,. LBFS is efficient, stopping once the nearest leader is
found, and provides the shortest path length between leaders, offering insights into network
connectivity. (iv) Multi-scale community detection. multi-scale communities (denoted as the
symbol C;, where i represents different levels or scales) are identified, capturing the network’s
structure at varying resolutions.

4 Case studies

4.1 Datasets

The study area is New York City, the United States. The NYC floating car data was down-
loaded from Uber Movement, covering a time period from December 1, 2018 to December 31,
2018. The time interval is 1 hour. Each record contains recording time, road segment ID,
and average speed. The free-flow speed is also acquired from the Uber Movement. It equals
to the 15th percentile value of the actual speeds of all floating vehicles on a road segment,
with speeds sorted in descending order. Therefore, a 24-dimensional time series feature over
one day can be obtained.

GlScience 2025
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4.2 Experiment results
4.2.1 Evaluation metrics

Modularity is a commonly used indicator that measures the quality of community division,
which is employed as the evaluation metric in this study. The selection of modularity is
appropriate for this study as it is a mature index to effectively quantify community structure
without predefined labels - a critical advantage given the lack of verified community partitions
in real transportation networks. The modularity, denoted as Q, is defined as the difference
between the proportion of intra community edges with the expected number of such edges in
a random graph with identical degree sequence [10], formulated as:

1 kik;
Q= %Zw Ay — 7mj(§(cicj) ) (4)

where m is the total number of edges in the network. A;; represents the weight of the
edge between nodes i and j. k; and k; are the sum of the weights of the edges attached
to nodes i and j. §(C;, C;) = 1if i and j belong to the same community (i.e., C; = C;).
Otherwise, §(C;, C;) = 0. The range of Q is [-1/2,1]. Q greater than 0.5 means the results
are convincing.

4.2.2 Ablation study

An ablation experiment was conducted to evaluate the impacts of different attribute com-
binations on model performance, i.e., node degree (D), spatial proximity (S), TSI (T),
and the fast Fourier transform of the TSI (F). By utilizing the EW method, seven types
of adaptive adjacency matrices were calculated (i.e., DS, DT, DF, ST, SF, DST, and
DSF). Fig. 2 displays the modularity based on the seven adaptive adjacency matrices:
Qpsr > Qpst > Qpr > Qsr > Qpr > Qst > Qps. Some findings can be concluded: (i)
Q@ psr secures the highest value, emphasizing the combination of spatial (i.e., node degree
and spatial proximity) and semantic information (i.e., Fast Fourier Transform of the TSI)
works best. (ii) Qpsr > @ psrt proves that the Fast Fourier Transform of the TSI improves
the modularity compared to the original TSI (iii) Qpr > Qsr and Qpr > Qg7 suggest
that the node degree is more useful than spatial proximity to detecting well-structured
communities. This is because node degree captures more inherent structural details in the
time series data. (iv) @pg is below 0.3, indicating that relying on spatial information,
without incorporating semantic information, struggles to accurately identify communities.
Based upon these results, we can rank the significance of the attributes for our model:
F>T>D>S. The results provide empirical evidence that effective community detection
requires both multi-scale structural analysis and sophisticated semantic information, instead
of feature inclusion without discrimination.

@ New York City
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Figure 2 Ablation study of the proposed method based on the different feature combinations.
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4.2.3 Propagation pathway

In this section, we analyze how the searched congestion communities algins with human
travel patterns throughout the day based on the DSF. To realize this, the communities for
each hours are firstly grouped based on the type of days (i.e., weekdays, weekends, and
holidays). Then the same communities between continuous time periods (i.e., 1 - t5) are
counted as the number of community transfers. The transfer values are normalized to a ratio
p between 0 and 1, visualized as the lines in in Fig. 3.
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Figure 3 Congestion community transfer during the same-type days.

The nodes represent community centers, labeled as C; at timestamp t; (i € [1,11],
j € [1,5]). The size of the node C; shows its proportion p;, and the thickness of the
connecting lines reflects the transfer strength. Some key findings are concluded: The scale of
communities at peak-hours on weekdays are growing from congestion bottleneck during 1:00
to 6:00. However, the size of C'1(¢2) and C1(t4) does not evolve very drastically compared
with C1(t1), implying that the increased human travel usually results in an increase in
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small-scale communities, but rarely changes the primary communities. This rule also can be
observed on weekends and holidays. Besides, by comparing the size of communities at ¢1
and t5, the relative proportions of communities at different levels are similar. This reflects
the “self-regulation” of congestion bottlenecks.

Subsequently, we visually show how the detected congestion centers distribute over time at
71 community districts. Fig. 4 shows the occurrence frequency and distribution of congestion
centers at peak hours on weekdays, weekends, and holidays, which are captured from dynamic
evolving videos of the community centers at specific time periods.
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Figure 4 Distribution of congestion communities on different days.

Three significant insights emerge from our findings: First, we observe distinct spati-
otemporal asymmetry in congestion patterns. The weekday morning peak (7:00-9:00) and
evening peak (16:00-19:00) exhibit contrasting distribution characteristics. Morning conges-
tion demonstrates higher frequency and density concentration in Manhattan, while evening
congestion shows a spatial shift towards Brooklyn with greater dispersion. This spatial-
temporal variation pattern suggests different commuting behaviors and traffic dynamics
between morning and evening rush hours. Second, our analysis reveals temporal stability in
congestion center locations, indicating consistent patterns in urban traffic flow distribution
across different time periods. This stability has important implications for urban planning
and traffic management strategies. Third, the study demonstrates network resilience through
the scalability of congestion center identification. The methodology successfully maps road
segment-level congestion patterns to community district scales, highlighting its adaptability
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across different network resolutions. This multi-scale analytical capability provides valuable
insights for urban transportation planning and infrastructure development. These findings
contribute to the understanding of urban traffic dynamics by quantifying and visualizing the
complex spatiotemporal patterns of congestion centers, offering practical implications for
traffic management and urban planning strategies.

5 Conclusion

This study proposes a modularity-driven framework that effectively unravels congestion
centers by integrating node degree, spatial proximity, and the fast Fourier Transform of the
TSI. Our framework is distinguished by its temporal granularity independence and scalability
across multiple spatial scales. The incorporation of FFT-enhanced TSI features significantly
improves the model’s ability to capture congestion propagation patterns, regardless of the
temporal resolution of the input data. This kind of enhanced node feature fusion approach
allows to uncover congestion propagation centers regardless of temporal granularity of the
datasets. Our approach demonstrated a significant improvement in detecting congestion
centers, achieving a modularity score of 0.65 on NYC floating car dataset. The congestion
centers identified by our framework offer two advantages over traditional methods: (i) Multi-
scale network resilience analysis. Unlike conventional single-scale approaches, our framework
leverages road-segment-level data to reveal congestion propagation patterns at broader scales,
such as community districts. This multi-scale capability allows for flexible extension to
other spatial resolutions, including blocks and boroughs, providing a more comprehensive
understanding of urban traffic dynamics. (ii) Dynamic spatiotemporal evolution: Our
framework captures the continuous evolution of congestion centers across both time and
space, moving beyond static snapshots to provide a more nuanced representation of traffic
patterns.

The practical implications of our model and the detected congestion centers are manifold.
Firstly, urban planners and authorities can leverage the framework to identify critical con-
gestion hotspots and prioritize infrastructure investments. By understanding the multi-scale
resilience of the congestion centers, they can design targeted interventions that reduce bot-
tlenecks. Secondly, The framework’s ability to track the dynamic evolution of congestion
propagation centers across time and space supports the development of adaptive, real-time
traffic management systems. Moreover, the modularity-driven approach of our framework
ensures that the detected congestion centers are accurate and interpretable. The interpretab-
ility is crucial for stakeholders who need to make informed decisions based on the model’s
outputs.

6 Declaration of Competing Interest

The author(s) hereby declare that they have no potential conflicts of interest with respect to
the research, authorship, or publication of this work. The authors affirm their commitment
to maintaining the integrity and objectivity of the research process, ensuring that the work
adheres to the highest ethical standards in academic and scientific practice.

7 Data availability

The average hourly speed data in New York City was downloaded from the Uber Movement
in March, 2023. But Uber Movement no longer open this data to the public now. The
community districts were downloaded from NYC Open data. We are glad to share all above
data on request.
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—— Abstract

Understanding human mobility is essential for applications in public health, transportation, and
urban planning. However, mobility data often suffers from sparsity due to limitations in data
collection methods, such as infrequent GPS sampling or call detail record (CDR) data that only
capture locations during communication events. To address this challenge, we propose BERT4Traj,
a transformer-based model that reconstructs complete mobility trajectories by predicting hidden
visits in sparse movement sequences. Inspired by BERT’s masked language modeling objective and
self-attention mechanisms, BERT4Traj leverages spatial embeddings, temporal embeddings, and
contextual background features such as demographics and anchor points. We evaluate BERT4Traj on
real-world CDR and GPS datasets collected in Kampala, Uganda, demonstrating that our approach
significantly outperforms traditional models such as Markov Chains, KNN, RNNs, and LSTMs. Our
results show that BERT4Traj effectively reconstructs detailed and continuous mobility trajectories,
enhancing insights into human movement patterns.
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1 Introduction

Understanding human mobility is crucial for various applications, including public health,
transportation, and urban planning [12, 2, 15]. With the increasing availability of location
data from GPS devices, mobile phones, and other portable technologies, human mobility
analysis has gained significant attention. However, despite the abundance of location data,
data sparsity remains a persistent challenge. For example, Call Detail Records (CDRs)
capture locations only when calls or text messages occur, leaving significant gaps in a user’s
movement trajectory [4]. Similarly, GPS data may be sparse due to battery-saving modes,
signal loss, or intermittent sampling. Consequently, there exist places that individuals have
visited but are not recorded in the data, which we refer to as “hidden visits” [1]. The presence
of hidden visits impedes the ability to reconstruct a complete view of an individual’s daily
movement, posing substantial challenges to understanding human mobility. Thus, identifying
hidden visits to address data sparsity and reconstructing continuous, detailed, and complete
mobility trajectories is a necessary and meaningful research problem.
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Early trajectory reconstruction methods primarily relied on Markov Chains and
interpolation-based techniques [6, 16, 8, 7]. Markov Chain models, such as the one proposed
by [8], incorporate activity changes to enhance mobility prediction but struggle with long-
range dependencies and complex movement behaviors due to the adopted Markov assumption.
Interpolation-based approaches leverage spatial-temporal correlations to estimate missing
points. For instance, [7] use linear and cubic interpolation to reconstruct human mobility
from mobile phone data. However, such assumptions fail to capture real-world non-linear
travel patterns effectively.

With advancements in machine learning, researchers have increasingly adopted deep
learning models for trajectory reconstruction [3, 9, 10, 14]. Backpropagation (BP) neural
networks, as proposed by [10], reconstruct mobility trajectories from sparse Call Detail
Records (CDR) to estimate hourly population density. However, this method assumes
predictable movement patterns, overlooking detours and irregular trajectories.

More recently, Transformer-based approaches have demonstrated superior performance
[13, 5]. TrajBERT, introduced by [13], applies BERT-based trajectory recovery with spatial-
temporal refinement to address implicit trajectory sparsity. While effective in predicting
missing locations, TrajBERT lacks external context modeling, such as user characteristics,
dynamic temporal variations, or real-world events, limiting its adaptability for high-accuracy
trajectory prediction.

To overcome these challenges, this paper introduces BERT4Traj, a novel Transformer-
based model for trajectory reconstruction. By leveraging BERT’s bidirectional self-attention
mechanism, BERT4Traj effectively captures spatial-temporal dependencies, improving traject-
ory prediction accuracy. The model is applied to reconstruct complete movement trajectories
from both CDR and GPS datasets, demonstrating its robustness in handling data sparsity
across different mobility data types. Through context-aware trajectory reconstruction,
BERT4Traj enables a more detailed and accurate representation of human mobility patterns,
offering valuable insights for applications in public health, urban planning, and transportation
analytics.

2 Methodology

To address the challenge of data sparsity and reconstruct continuous and detailed mobility
trajectories, we propose a transformer-based architecture, BERT4Traj, inspired by BERT.
This model predicts hidden visits in user mobility trajectories by treating each user’s daily
trajectory as a sequence analogous to a sentence in Natural Language Processing (NLP),
where locations correspond to ordered words. The objective is to infer missing locations
within this sequence using spatial, temporal, and user-specific demographic information.

The core idea of BERT4Traj is inspired by the masked language modeling in BERT,
where predictions are made based on contextual information from surrounding tokens. In
the context of human mobility, locations visited on the same day provide contextual clues
to infer missing visits. In addition to known locations, background information such as
demographic characteristics (e.g., age, gender), key life anchors (e.g., home and workplace),
and temporal context (e.g., weekday vs. weekend, holidays) further enrich the representation
of an individual’s mobility behavior.

As illustrated in Figure 1, BERT4Traj incorporates a BERT-like masking and prediction
mechanism. A subset of locations in a trajectory sequence is randomly masked — for example,
location P2 in the figure — and the model learns to predict these missing locations using the
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context provided by the rest of the sequence. This bidirectional prediction process enables
BERT4Traj to develop a deep understanding of how visited locations relate to one another
in varying contexts.

The input sequence consists not only of the trajectory data but also of unmasked
context tokens that provide additional background information, including temporal attributes,
user demographics, and travel characteristics. During training, the model learns intricate
relationships between visited locations and contextual features, allowing it to accurately
predict missing locations at specific times in a day. Ultimately, this approach reconstructs
an individual’s movement trajectory with finer temporal granularity, effectively addressing
data sparsity issues in mobility datasets.
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Figure 1 The overall framework of the BERT4Traj model.

~——————

2.1 Data Representation and Embeddings

Each user’s daily trajectory consists of a sequence of visited locations with corresponding
timestamps. To represent this information in the model, we define location embeddings and
time embeddings which are analogy word embeddings and position embeddings in the classic
BERT model. Each visited location x; € R? is embedded as a vector of dimension d, i.e.,
1; € R%. Here, i is the index of the location in the trajectory. The location embeddings encode
geographical information (latitude, longitude) and may also include semantic attributes, such
as Points of Interest (POI) types or travel modes, if available.

To model temporal dependencies, a time embedding t; € R? is generated based on
the timestamp capturing the time of the visit. The time embedding functions similarly to
positional embeddings in NLP models, providing temporal context to the trajectory sequence.

In addition to trajectory embeddings, we incorporate background tokens represent-
ing demographic features, anchor points, and temporal attributes. Specifically, B =
[Wage; Weender; - - -] represents the demographic embeddings, where w,ge and Wgender de-
note the age and gender embeddings, respectively.

Anchor points, such as home and workplace locations, are encoded as A = [Wprimary;
Waecondary; - - - |, Where Wprimary a1d Weecondary represent embeddings for primary and second-
ary anchor points.

Temporal context, including whether the day is a weekday, weekend, or holiday, is represen-
ted as T = [Wyeekday; Wweekend; - - - |, WHere Wyeekday a1d Wyeekend denote the corresponding
time-related embeddings.
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To form the final input to the Transformer encoder, we concatenate these background
tokens with the spatiotemporal trajectory tokens. Each trajectory token is constructed by
performing element-wise addition of the location embedding 1; and its corresponding time
embedding t;, effectively combining spatial and temporal context into a single vector.

The complete input sequence is formulated as:

X =[B;A;T;1; +t1;1lo + to;.. .51, + t,]. (1)

2.2 Masking Mechanism

A portion of the location tokens in the trajectory sequence is randomly masked. The objective
is to predict these masked locations using unmasked locations and contextual embeddings.
Let M € {0,1}" be a binary masking vector, where M; = 1 if the location 1; is masked and
M, = 0 otherwise. The masked sequence is represented as:

Xmasked = [B7 A; T; (Ml : 11) + tl; ceey (Mn : ln) + tn} (2)
This ensures that spatial and temporal relationships are preserved while training the model
to infer missing locations.

2.3 Transformer-Based Sequence Encoder

The masked sequence is processed by a Transformer encoder consisting of multiple self-
attention layers. The self-attention mechanism computes dependencies between different
locations in the trajectory:

Attention(Q, K, V) = softmax | 250 ) v/ (3)
ention(Q, = softmax
) \/@ )
where @, K,V represent the query, key, and value matrices derived from the input sequence,
and dj, is the dimensionality of the key vectors.
Multi-head attention further enhances the model’s ability to capture diverse mobility
patterns:

MultiHead(Q, K, V) = Concat(heady, . .., head),)W©. (4)

The output of the encoder is a sequence of hidden states H = [hy, ha, ..., h,], where each h;
encodes contextual information about its corresponding location.

2.4 Masked Location Prediction

In our approach, predicting masked locations is formulated as a classification task rather
than a regression problem. This is because the model selects the most likely location from a
predefined set of discrete spatial units (e.g., tower IDs for CDR data or grid IDs for GPS
data) rather than predicting continuous latitude and longitude values. For each masked
location 1;, the model predicts its most probable value using the output hidden states:

I, = softmax(Wh;), (5)

where W e RIPI*4 ig a weight matrix, and I, represents the predicted probability distribution
over the possible locations P. Since each masked location must be assigned one discrete label
from a finite set of locations, this naturally aligns with a multi-class classification problem.
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The model is optimized using a cross-entropy loss function:

L=-> loghl]. (6)

ieM

Where M denotes the set of masked locations. Minimizing this loss encourages the model to
correctly predict masked locations, improving its ability to reconstruct missing trajectory
data.

3 Application of BERT4Traj to CDR and GPS Data

The BERT4Traj framework is highly flexible and can be extended or modified to reconstruct
mobility trajectories across different types of mobility data, such as GPS and CDR. Depending
on data availability, additional background information can be incorporated to enhance the
model’s ability to capture mobility behavior and patterns. In this study, to evaluate its
effectiveness, we adapted and applied BERT4Traj to two distinct location datasets: Call
Detail Records (CDR) collected from 248 cell phone users and GPS data collected from 586
portable watch users in Kampala, Uganda. All participants — both cell phone and watch
users — provided self-reported information, including age, gender, anchor points (such as
home, workplace, and school locations), education, and income.

3.1 CDR Data

CDR data captures the tower location and timestamp when a communication event occurs,
such as a call or text message. Due to its event-driven nature, CDR data is sparse, In our
dataset, each individual has records spanning an average of 34 days, but only around five
location records per day resulting in significant gaps in their mobility trajectories. To address
this, BERT4Traj predicts hidden visits during unrecorded periods, enhancing trajectory
completeness.

Each input trajectory is represented as a sequence of tower locations with timestamps.

We generate location embeddings using Space2Vec [11], which provides continuous vector
representations based on geographical coordinates:

eloc(l;) = Space2Vec(x;), (7)

where x; denotes the latitude and longitude of the ith tower location.

For time embeddings, we divide the 17-hour time window (from 6:00 AM to 11:00 PM)
into 34 half-hour slots, assigning an index from 1 to 34 to each slot. We apply sinusoidal
positional encoding to preserve temporal relationships:

sin < 5 2J> , if j is even
ti _ 10000 4 (8)
cos | —i+7 |, if jis odd
10000

where s; is the time slot index (ranging from 1 to 34), j is the embedding dimension
index, d is the total embedding dimension. This encoding ensures that nearby time slots have
similar embeddings, allowing the model to recognize the temporal structure of the sequence
effectively.
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Additional context, including age, gender, primary and secondary anchor points, and
temporal indicators (e.g., weekday vs. weekend), is incorporated into the model. These
background tokens are combined with trajectory tokens and then fed into the Transformer
encoder. BERT4Traj predicts tower IDs for the half-hour time slots where no records exist,
reconstructing a temporally detailed trajectory.

3.2 GPS Data

GPS data provides higher temporal resolution than CDR, but still contains missing records
due to device-related issues such as power-saving modes, signal loss, or shutdowns. In our
GPS dataset, each individual has an average of 197 days of records, with a mean time interval
of 18 minutes between points. To construct continuous trajectories, we apply BERT4Traj to
predict the missing locations during these gaps.

The input GPS trajectory consists of exact coordinate points (latitude, longitude) recorded
at each timestamp. However, to facilitate prediction and ensure spatial consistency, these
exact coordinates are mapped to a 200m x 200m grid. Each grid cell has a unique Grid ID,
which serves as a spatial unit for the model. To ensure spatial coherence, we derive location
embeddings using Space2Vec, following the same approach as with the CDR data.

For time encoding, we use normalized time encoding to preserve the full timestamp (hour,
minute) in a continuous and periodic manner. First, we normalize the time to a fraction of
the day:

hour x 60 4+ minute

tnorm = 1440 (9)

where 1440 is the total number of minutes in a day.
Then, we apply sinusoidal encoding to capture periodicity:

Sin (27t porm )
t; = 10
{ cos(27tnorm ) (10)

This encoding ensures that time is represented in a continuous way, maintaining smooth
transitions between consecutive timestamps while preserving cyclic properties.

Similarly, we incorporate background tokens representing demographic attributes, anchor
points, and temporal indicators. BERT4Traj then reconstructs continuous trajectories by
predicting the most likely location (Grid ID) at any given time.

3.3 Model Evaluation

The effectiveness of BERT4Traj was evaluated against several baseline models, including
Markov Chain, RNN, LSTM, and KNN, using both CDR and GPS datasets. Performance is
assessed using the following metrics:

Accuracy: The proportion of correctly predicted locations.

Top-3 Accuracy: Whether the correct location is among the top three predictions.

Top-5 Accuracy: Whether the correct location is among the top five predictions.

Since the goal of this study is to reconstruct mobility trajectories for known users, we
adopt a trajectory-level data split, where each user’s daily trajectories are partitioned into
80% for training, 10% for validation, and 10% for testing. For both the CDR and GPS
datasets, we apply a random masking strategy during training, where 20% of the location
tokens in each trajectory are masked. The model is trained to predict these masked locations
using the remaining context and background information. During testing, the same masking
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ratio (20%) is applied to the trajectories in the test set. The trained BERT4Traj model is
then used to predict the masked locations in these test sequences. Model performance is
evaluated by comparing the predicted locations against the true masked labels using metrics
such as accuracy, top-3 accuracy, and top-5 accuracy

Table 1 summarizes the performance comparison.The results clearly demonstrate that
BERT4Traj outperforms all baseline models across both datasets. In the CDR dataset,
BERT4Traj achieves an accuracy of 87.1%, significantly surpassing LSTM (74.5%) and
RNN (70.6%), highlighting its superior ability to handle sparse mobility data compared
to recurrent models. Similarly, in the GPS dataset, BERT4Traj attains 71.4% accuracy,
outperforming LSTM (62.1%) and RNN (60.3%). The lower accuracy observed in the
GPS dataset compared to CDR is due to the fundamental difference in prediction tasks
— CDR reconstruction predicts locations within predefined half-hour time slots, whereas
GPS trajectory reconstruction requires continuous predictions across time, making the task
inherently more challenging. Despite this, BERT4Traj still achieves notable improvements
over baseline models, demonstrating its robustness in handling missing data.

Among the baseline models, Markov Chain and KNN exhibit the lowest accuracy, par-
ticularly in the GPS dataset, where their accuracy remains below 55%. This indicates
that these simpler models struggle to capture sequential dependencies and complex spatial-
temporal relationships, reinforcing the advantage of deep learning approaches in trajectory
reconstruction.

Table 1 Comparison with baselines in Accuracy, Top-3 Accuracy, and Top-5 Accuracy.

CDR CDR Top-3 | CDR Top-5 GPS GPS Top-3 | GPSTop-5
Model Accuracy %) %) Accuracy (%) (%)
(%) (%)

Markov Chain 62.1 65.2 67.8 52.7 53.9 55.3
RNN 70.6 73.4 74.9 60.3 61.2 62.8
LSTM 74.5 77.6 80.1 62.1 64.5 66.4
KNN 67.2 70.4 72.3 54.2 55.4 57.1

BERTA4Traj 87.1 89.8 91.2 71.4 73.4 74.8

To examine the contribution of different contextual background features, we conducted
an ablation study where demographic information, anchor points, and date information were
individually removed from BERT4Traj. The results of this analysis are shown in Table 2
below.

Table 2 Ablation Study: Effect of Removing Contextual Features on Model Accuracy.

Feature Removed CDR Accuracy (%) GPS Accuracy (%)
No Demographics 82.7 69.5
No Anchor Points 84.3 71.2
No Date Information 81.5 68.1
Full Model (BERTA4Traj) 87.1 71.4

The findings show that removing any contextual feature leads to a decline in model
performance. The most significant drop occurs when removing date information, reducing
accuracy to 81.5% in the CDR dataset and 68.1% in the GPS dataset. This suggests
that temporal context plays a crucial role in predicting missing locations. The removal of
demographic data also results in a notable accuracy drop, indicating that user characteristics
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contribute valuable information for mobility prediction. Similarly, excluding anchor points
reduces accuracy, highlighting their importance in modeling an individual’s movement
behavior.

Overall, these results demonstrate that incorporating spatial, temporal, and demographic
background information enhances the accuracy of BERT4Traj in reconstructing mobility
trajectories.

4 Conclusion

This study introduced BERT4Traj, a Transformer-based model for reconstructing complete
mobility trajectories from sparse location data. The model effectively captures spatial
and temporal dynamic relationships, enabling more accurate trajectory reconstruction.
Additionally, BERT4Traj enhances location prediction accuracy by incorporating multi-
faceted contextual embeddings, including demographic, anchor point, and temporal features,
enriching the representation of human mobility patterns. Moreover, BERT4Traj provides
a scalable and adaptable framework for mobility datasets, making it applicable to public
health, urban planning, and transportation analytics.

Despite its advantages, BERT4Traj has limitations. Its generalizability across different
regions requires further validation, as mobility behaviors vary across geographic and socioeco-
nomic contexts. Privacy concerns also emerge when reconstructing detailed trajectories,
necessitating robust safeguards. Future research should explore multi-source mobility data
integration, efficiency optimization, and privacy-preserving techniques. Addressing these
challenges will enhance BERT4Traj’s reliability and applicability in human mobility research
and decision-making.
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—— Abstract

Effective resilience analysis of road networks is fundamental to building sustainable and disaster

prepared cities. Identifying which road segments share similar vulnerabilities is important for
pinpointing high-risk areas within the network and implementing measures to safeguard them against
future disruptions. Graph-based community detection can be applied to group together areas of
the network sharing similar structural vulnerabilities. However, current graph-based community
detection methods either struggle with integrating node features during partitioning or do not account
for the path-based dependencies in road networks. This paper introduces the Path-based Community
Embedding (PCE) model, an approach that leverages path-based embeddings to overcome these
limitations. PCE combines the strengths of graph attention networks and Long Short-Term Memory
models (LSTMs) to learn representations that incorporate both local neighborhood information
and long-range path dependencies. Our results on the Santa Barbara road network show that PCE
improves community detection performance for resilience analysis, thus offering a powerful tool
for urban planners and transportation engineers to preemptively identify vulnerabilities in road
networks.
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1 Introduction

Road networks serve as the backbone of economic and social development by facilitating
the flow of people, goods, and services. With the rapid increase in urbanization, continuous
improvement of urban road systems is essential for maintaining the efficiency of transportation
infrastructure [11]. A fundamental challenge in transportation engineering is evaluating
the resilience of road networks, defined as their inherent capacity to recover performance
when faced with disruptive events [16]. Resilience in road networks is crucial for ensuring
stable mobility, minimizing economic losses, and enhancing emergency response capabilities
in the face of disruptions caused by natural disasters, infrastructure failures, or congestion
events [1].

The use of graph theory, where intersections can be represented as nodes and road
segments can be represented as edges (or vice versa in a dual graph), has allowed researchers
to ask and answer questions revolving around road networks and their resilience [2]. By
modeling road networks as graphs, structural properties such as connectivity, centrality [7],
and traffic flow can be quantitatively analyzed to assess a network’s vulnerability to failures [1].
In particular, community detection in road networks has gained attention as an effective way
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to identify areas that exhibit similar properties [6]. Community detection in graph theory is
the process of identifying elements of the network that are closely connected to each other
or share similar characteristics. This process reveals the underlying structure of a network
by decomposing it into a set of subgroups, called communities or clusters [8]. For resilience
analysis, partitioning roads into different communities can provide insights into which areas
of the network share structural vulnerabilities or respond similarly to disruptions. During
events such as flooding, roads in low-lying areas and near waterways are more susceptible
to closures. If these areas can be identified beforehand as part of the same vulnerability
community, transportation agencies can implement strategies to allocate resources efficiently
to mitigate the effects of a disruption [17].

Traditional community detection methods leverage the structure of the network and
partition the nodes into distinct groups by optimizing certain criteria. For instance, modularity
maximization methods assign nodes to communities by maximizing the density of connections
within the group compared to a random baseline [18]. Spectral clustering uses the eigenvalues
of the graph’s Laplacian to identify communities by minimizing the number of cuts between
groups [20]. Hierarchical clustering recursively divides nodes according to their connectivity
patterns to form a tree structure that reveals different levels of the community [6]. Although
effective, these approaches often struggle to incorporate information from nodes such as traffic
flow dynamics, road capacity, historical data of disturbance and spatial dependencies [1].

With the rise of big data, modern approaches have leveraged the power of machine
learning models on graphs to overcome these limitations by learning embeddings that encode
both structural information and node (or edge) features. Models such as graph convolutional
networks (GCNs) [13], graph attention networks (GATs) [21], and graph autoencoders
(GAEs) [12] have enabled more adaptive community detection by integrating node and edge
attributes along with temporal patterns. Additionally, machine learning models tend to be
more flexible than traditional models, which rely on fixed assumptions about network topology.
For example, spectral clustering implicitly assumes that the cluster structure is encoded in
the leading eigenvectors of the graph’s Laplacian, which holds when the Laplacian has a
few small eigenvalues corresponding to well-separated communities [20]. Unlike traditional
approaches, machine learning models can identify patterns in how disruptions affect different
segments of a road network without many assumptions. Leveraging these methods can help
identify communities that not only reflect connectivity patterns, but also resilience related
properties (e.g. vulnerability, centrality, proximity to fire, distance to flood risk areas, etc.)
in a data-adaptive manner. While these advancements have improved adaptive community
detection, they mainly focus on local connectivity patterns and typically overlook the broader
structural dependencies that influence network behavior during disruptions. Incorporating
path-based embeddings addresses this limitation by capturing sequences of interconnected
nodes rather than neighborhoods to create a more comprehensive representation of road
network topology.

In this paper, we highlight the role of machine learning, particularly graph-based neural
architectures, in road network community detection to quantify disruption resilience. Addi-
tionally, we introduce a model that accounts for path-based dependencies in order to reveal
structural patterns linking roads with similar resilience characteristics. We evaluate our
approach on a real world road network in Santa Barbara, California to assess its effectiveness
in community detection compared to the baseline methods.

The rest of this paper is structured as follows: section 2 describes our methodology,
including data preprocessing, the embedding generation, and the proposed clustering approach;
section 4 presents experimental results, the analysis, and the discussion; and section 5 discusses
conclusions and future directions.
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2 Methods

This section introduces our proposed Path-based Community Embedding (PCE) model and
formalizes the problem of generating embeddings for community detection.

Given a road network represented as a graph G = (V, E), where V = {vy, v, ..., v, } is
the set of nodes (i.e., intersections) and E C V x V is the set of edges (i.e., road segments),
the goal is to learn node embeddings that facilitate community detection. A community
is defined as a set of nodes that exhibit strong structural and functional similarity, which
we infer from the graph-based embeddings and agglomerative clustering. Each node v; has
a feature vector x; € R?, and the network structure is captured by an adjacency matrix
A € R™*", where A;; =1, if (v;,v;) € E, otherwise A;; = 0.

The proposed model consists of three main components: a Graph Attention Network
(GAT) encoder [21], a path-based LSTM embedding module [10], and a reconstruction-
based decoder. The GAT encoder generates node embeddings by aggregating features from
neighbors with learned attention weights:

Z; =0 Z OéijWXj , 1€V (1>
JEN (i)

where z; represents the learned embedding for node 4, which is computed by aggregating
information from its neighbors in A/ (¢), the term x; is the input feature vector of node j, and
W is a trainable weight matrix that transforms the input features into a new feature space.
The function o(+), the ReLU activation function, is applied element-wise to introduce non-
linearity in the learned embeddings. The attention coefficient c;; represents the importance
weight assigned to the feature vector of the neighbor node j when aggregating information
for the node ¢, which is defined as [21]:

B exp(LeakyReLU(a” [Wx;||[Wx;]))
Zke./\/(i) exp(LeakyReLU(a” [Wx;|[Wxy]))

Qi (2)
To capture long-range dependencies, paths P = {p1,p2,...,pm} are sampled from the
network, where each p; is a sequence of nodes. The embeddings along a path are aggregated as:

zpj:szU, j=1,...,m (3)

These path embeddings are processed using a bidirectional LSTM to extract sequential
dependencies, producing refined path embeddings h,,. The final node embeddings are then
obtained by aggregating the node embeddings and the path embeddings that the node
participates in:

zfmal — 5.y | Pti)l Z, h,,1(i € p;) (4)

PLEP(4)

where P(i) is the set of paths that node i belongs to and I(i € p;) is the indicator function
that equals 1 if node 7 is in path p; and 0 otherwise.

To ensure the embeddings capture meaningful structure, a decoder reconstructs the
original node features using a linear transformation followed by a non-linear activation
function. This maps the learned embeddings back to the input feature space. To ensure the
community structure is learned, the model is trained in an unsupervised manner using a
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joint loss function that combines reconstruction and disruption risk contrastive components.
Let x; denote the input features for node i and X; the reconstructed features. Next,
we compute a composite risk score r; for each node using normalized signals: betweenness
centrality b;, distance to fire boundaries czﬁrw', and distance to flood zones d’ﬂoodﬁ‘. Specifically,
ri = wy - b; + wo - (1- dﬁre,i) +ws - (1— d’ﬂood’i% where wy, ws, and w3 are scalar weights.
We define a contrastive loss over pairs of nodes (4, j) where |r; — ;| > § which is given by:

1

N
1
an:a'7§ )A(ifxi2+ :
total Ni:1 || ||2 /6 |P|

Z max (0, cos(z;,2;) — T) (5)

(i,5)EP

where P is the set of high risk difference node pairs and «, 5, and 7 are hyperparameters
controlling the tradeoff between reconstruction and risk aware separation.

After training, agglomerative clustering is applied to zi"#i € V to detect communities.
This is a hierarchical clustering method which iteratively merges the most similar node
embeddings based on the Euclidean distance and Ward’s linkage criterion [22], which
minimizes the variance within each cluster at every merging step. This clustering method
helps preserve spatial continuity while allowing for flexible determination of the number of
communities based on the road network topology.

3 Experiments

To evaluate the proposed model, we use a road network representing the downtown Santa
Barbara area in California. The city of Santa Barbara is a south-facing coastal town, situated
between the Santa Ynez Mountains and the Pacific Ocean. The downtown area, depicted in
Figure 1 is located in the lower coastal plain where there is a historic flood risk (shown in
blue), while the higher grounds in the foothills are closer to chaparral and forest areas with
heightened wildfire risk based on historical fires (shown in orange). The road network is typical
of a coastal city in California with restricted geography, featuring Interstate Highway 101
running through the city and serving as a major transportation corridor. The highway closely
parallels the coastline, connecting the downtown area to nearby regions while navigating the
narrow space between the mountains and the ocean. The road network data, derived from
OpenStreetMap (OSM) using OSMnx package [4], consists of 2105 nodes (intersections) and
4234 edges (roads), includes all road types, from major highways to residential streets. For
each road segment (edge), we incorporated several features relevant to community resilience
and vulnerability, including: proximity to previous fire perimeter boundaries, proximity
to historical flood risk zones, betweenness centrality (measuring the importance of a road
segment for network flow), closeness centrality (measuring the accessibility of a road segment
to all other segments), degree centrality (the number of connections a road segment has).
These features were chosen to capture both the topological characteristics of the road network
and its exposure to various hazards. The betweenness, closeness, and degree centrality
measure were each calculated using the formulas as specified in [19] and are implemented
using the NetworkX Python package [9].

The proximity values are obtained by measuring the shortest Euclidean distance from
each intersection (node) in the road network to the nearest boundary of the fire perimeter or
flood risk zone. Figure 1 presents a map of these boundaries in the city of Santa Barbara.
Each intersection is treated as a single point and the distance was computed to the closest
edge of the respective hazard polygon. The fire and flood data were obtained from the Santa
Barbara County historical fire database and the Federal Emergency Management Agency
(FEMA) 100 and 500 year flood risk zones for Santa Barbara, which were both accessed from
DataBasin [5].
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Figure 1 Downtown Santa Barbara with historic fire and flood risk zones, generated from
DataBasin.

To evaluate the performance of our model, we compare it against several community
detection models. First, the K-means clustering, which partitions nodes into different clusters
by minimizing intra-cluster variance in the feature space [15]. It is noted that the K-means
clustering method does not consider the graph structure nor does it produce embeddings. The
Louvain algorithm is a hierarchical method that iteratively merges nodes into communities
to maximize modularity [3]. This method does not require specifying the number of clusters
in advance, thus we tune the resolution parameter which controls the granularity of the
Region2Vec is a spatially-aware graph embedding method that
incorporates both node attributes and spatial interactions to detect communities in spatial
networks [14]. It uses Graph Convolutional Networks (GCNs) to generate embeddings that
balance structural connectivity and spatial proximity before applying clustering to detect
regions with similar properties. Graph Autoencoder (GAE) is an unsupervised model that

detected communities.

learns node embeddings by reconstructing the graph’s adjacency matrix using a GCN [12].

The Spatial Graph Autoencoder (SGAE) extends GAE by simply weighting neighboring
nodes based on their spatial proximity, which helps enforce spatial contiguity in the learned
embeddings. For each model, we chose the number of clusters to be four for all models except
Louvain, since pre-defining this hyperparameter is not supported. This number of clusters
provides a good balance between interpretability and meaningful distinctions in the road
network’s structure.
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We compare the models using three key metrics following the convention used in [14].
The first is cosine similarity, which measures the angular similarity between two node
embeddings. The resulting value ranges from —1 to 1, where 1 indicates identical vectors
(perfect similarity), 0 indicates orthogonality (no similarity), and -1 indicates completely
opposite vectors. Second, Join Count Ratio (JCR) [14] measures the proportion of edges
within the road network that connect nodes belonging to the same community. Given a
graph G = (V, E) and a community assignment function C' : V — {1,2,..., K}, we define:

Jsame
JOR = Jsarne + Jdiff7 (6)
where Jsame 18 the number of edges (u,v) € E where C(u) = C'(v), and Jgig is the number of
edges where C(u) # C(v). A higher JCR indicates that the detected communities are more
spatially contiguous. Third, Modularity (Q) [18] evaluates the strength of the community
structure by comparing the fraction of edges within detected communities to the expected
fraction in a random graph with the same degree distribution. It is defined as:

1 kik;
Q=g.2 {AU o

i,J

o, 7)

where A;; is the adjacency matrix of the graph, k; and k; are the degrees of nodes ¢ and
Jj, m is the total number of edges in the graph, and §(C;, C;) is an indicator function that
equals 1 if nodes ¢ and j belong to the same community and 0 otherwise. Higher modularity
values correspond to structurally cohesive communities, since they show a greater presence of
intra-community edges compared to inter-community edges.These metrics allow us to assess
the quality of the embeddings along with the spatial contiguity and structural strength of
the predicted communities.

4 Results and Discussion

Figure 2 presents the detected communities using our proposed Path-based (PCE) Community
Embedding model, compared to other baseline community detection models: K-Means,
Louvain, Region2Vec, Graph Autoencoder (GAE). Table 1 presents a quantitative comparison
across the three metrics described in Section 3. The results indicate that the PCE model
outperforms most baselines across the three evaluation metrics which can highlight its
usefulness in capturing community structures in the road network. It exhibits the highest
cosine similarity, which means the embeddings effectively capture the similarity structure
of nodes. Additionally, it achieves the highest modularity score and the second highest
Join Count Ratio, hence the detected communities form strongly connected groups while
maintaining spatial contiguity. The overall results from the community detection across
different methods is shown in Figure 2.

The Louvain method, a modularity-based community detection algorithm, achieves the
highest JCR. Unlike other models, it relies solely on network topology and excels at preserving
connectivity, which may cause it to miss higher-level feature similarities. Thus, it is highly
effective at grouping nodes into spatially contiguous regions. Interestingly, although the
Louvain method is designed to maximize modularity, the GAE, SGAE, and PCE models
achieve higher modularity.Region2Vec and the Graph Autoencoder (GAE) have strong
performance across all metrics. Region2Vec, trained to capture spatial proximity and network
structure, performs particularly well in cosine similarity and JCR. The K-Means algorithm
has the lowest performance across all metrics, particularly modularity and join count ratio.
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This highlights an expected limitation of feature-space clustering methods applied to road
networks: they often disregard the underlying graph structure. Because K-Means ignores
connectivity constraints, it may assign distant nodes to the same cluster based on feature
similarity, leading to fragmented and spatially disjoint communities. This is reflected in
its results, which highlight that clustering methods that overlook graph topology are not

Figure 2 Results from all community detection methods for the Santa Barbara road network.
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Table 1 Comparison of community detection methods. Highest values are bolded.

Method Cosine Similarity Join Count Ratio Modularity
K-Means — 0.7614 0.3825
Louvain — 0.9468 0.6060
Region2Vec 0.9314 0.8559 0.5972
GAE 0.8908 0.8669 0.6152
SGAE 0.9820 0.9374 0.6478
PCE 0.9883 0.9432 0.6641

well-suited for road network community detection.
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PCE’s strong performance can be attributed to its hybrid approach. Its GAT encoder
allows nodes to selectively aggregate information from relevant neighbors, while the LSTM-
based path encoder captures long-range dependencies in order to ensure that detected
communities align with observed connectivity patterns. The integration of neighborhood-
based and path-based embeddings ensures that communities are both spatially contiguous
and structurally meaningful (respecting graph topology). PCE’s high modularity suggest that
it detects highly interconnected subgraphs, which are less vulnerable to isolated disruptions.
This is ideal in the context of disruption resilience where communities should represent
network regions that can maintain connectivity and functionality during disruptions. In
applications like traffic flow management where it’s important to ensure that disruptions in
one region don’t severely impact connected areas, this model and other machine learning
approaches can potentially help identify regions needing reinforcement to maintain network
stability.

Furthermore, the physical and spatial characteristics of the detected communities (Fig-
ure 2) offer valuable insights into their resilience profiles. In the visualization of the clusters
obtained from PCE in Figure 2f, the densely connected Cluster 3 (yellow) is located in
a suburban area with inherent capacity to absorb localized disruptions due to its strong
internal connectivity. Conversely, the more dispersed Cluster 0 (blue) shows a community
potentially more vulnerable to fire disruptions along critical connecting routes, despite its
geographical spread. The core of the network represented by Cluster 1 (red) has high
internal connectivity since it contains the roads with the highest centrality, which can provide
alternative routing strategies to prevent cascading failures in the event of major disruptions.
Finally, Cluster 2 (green) is the one situated closest to the water and the flood risk zones
which may mean increased flood risk vulnerability. These clusters demonstrate PCE’s ability
to not only identify community structures but also reveal information about their strengths
and weaknesses under disruptive events. Our findings suggest that our model can effectively
capture the underlying structural characteristics that contribute to resilience in road networks
which is valuable for targeted interventions and resilience planning.

5 Conclusion

In this paper, we tackled the challenging problem of community detection in road networks,
focusing specifically on identifying communities with shared resilience characteristics. We
introduced a novel graph-based embedding model that effectively captures both local and
global structural information within the network. Our model PCE leverages Graph Attention
Networks to learn local patterns and path-based LSTM to learn long-range global dependen-
cies. This allows the model to understand how nodes are connected across the network, which
captures broader structural relationships that are crucial for identifying resilient communities.
The combined embeddings that incorporate both local and global perspectives are then used
to reconstruct the original node features in a self-supervised manner. Finally, we employ
agglomerative clustering on these learned embeddings to reveal the community structure.

Our key contribution lies in the unique combination of local and global graph information,
enabling the identification of communities that are not only spatially contiguous but also share
resilience properties due to their structural organization. We demonstrated the effectiveness
of our approach on the Santa Barbara road network, where we were able to identify distinct
communities. These findings suggest that our model can effectively capture the underlying
structural characteristics that contribute to resilience in road networks. Furthermore, the
unsupervised nature of our approach makes it applicable to a wide range of road network
analysis tasks, even when labeled data is scarce or unavailable.
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There are several limitations to this study, the main one being the computational

complexity of the model and the calculated features, namely betweenness and closeness
centrality. As the size of the network increases (e.g. over 100,000 nodes), the computation
time will skyrocket and thus may be infeasible. Future work could explore ways to decrease

the time complexity of computing these metrics and the model itself to enhance the scalability

and assess the generalizability of the model. The model can also be further extended to

incorporate dynamic network information (e.g, real-time movement flows) to further enhance

its ability to identify resilient communities.
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—— Abstract

The exponential growth of interactive geovisualizations on the Web has underscored the need for

automated techniques to enhance their findability. In this paper, we present the Geovicla dataset
(2.5K instances), constructed through the harvesting and manual labelling of webpages from a broad
range of domains. The webpages are categorized into three groups: “interactive visualisation”,

“‘no interactive visualisation”. Using this dataset, we compared

“interactive geovisualisation” and
three approaches for interactive (geo)visualization classification: (i) a heuristic-based approach
(i.e. using manually derived rules), (ii) a feature-engineering approach (i.e. hand-crafted feature
vectors combined with machine learning classifiers) and (iii) an embedding-based approach (i.e.
automatically generated large language model (LLM) embeddings with machine learning classifiers).
The results indicate that LLM embeddings, when used in conjunction with a multilayer perceptron,
form a promising combination, achieving up to 74% accuracy for multiclass classification and 75%
for binary classification. The dataset and the insights gained from our empirical comparison offer
valuable resources for GIScience researchers aiming to enhance the discoverability of interactive

geovisualizations.
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1 Introduction

Interactive visualisations are becoming increasingly available on the Web and techniques are
needed to facilitate their findability [11]. Since maps are “one of the most valuable document
for gathering geospatial information about a region” [17], finding and accessing this type
of data is relevant for tasks such as information synthesis and hypothesis generation about
places during the early phases of the research data lifecycle. Currently, finding interactive
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maps for specific tasks remains challenging, though there are some solutions — in the form
of online platforms — that offer limited cataloging functionalities (e.g. Observable [30] and
ArcGIS Online Gallery [15]).

The focus of this work is on the automated classification of interactive geovisualizations
of the Web. While different approaches to classifying webpages have been proposed in the
literature (see [7, 19, 31, 41] for examples and [9, 34] for reviews), the categorization of
interactive visualization and interactive geovisualization has, so far, received less attention.
Interactive (geo)visualization classification can be seen as an instance of genre classification,
which, as discussed in [9], is about categorizing webpages based on functional factors, unlike
subject-based classification that focuses on their topic. In general, the practical relevance of
automated classification of resources in the context of spatial information search is at least
twofold: resource selection [8, 10] and results presentation [28] (e.g. in the form of structured
and actionable results).

“Resource selection” is a task in distributed information retrieval (a.k.a federated search),
which consists in finding the most relevant data sources for a user’s query in a heterogeneous
collection. Resource selection, in this context, has the potential to improve users’ satisfaction
during interactive (geo)visualization search through the identification of the most related
types of target entities to their search intent. This is particularly relevant in the context of
scientific [4] and spatial data infrastructures [13], which feature heterogeneous collections of
(geoinformation) resources. Besides, the identification of the type of search targets is key to
structured result presentation and actionable results presentation.

“Structured results presentation” and “actionable results presentation” are two patterns for
the design of search user interfaces, as discussed in [28]. Both approaches enable users to access
the information they need without having to open complete result pages. “Structured results
presentation” is concerned with using rich snippets (e.g. maps, timelines) to communicate
the structure of search results (e.g. spatial structure, temporal structure) in addition to
simple text snippets (e.g. title, description). “Actionable results presentation” involves
providing the means to perform tasks as an integral part of the result presentation process
(e.g. zooming/panning an interactive map, playing/stopping an animated geovisualization).

This article presents an exploratory study that addresses the research question: Which
classification methods are best suited for identifying webpages containing interactive geo-
visualisations? In line with Koehler [24], webpages are defined throughout this article as
collections of Internet objects navigable without hypertext links; they are web documents
that can be scrolled through. Websites consist of one or more webpages unified by a common
theme or organizing principle. The contributions of the work are twofold: First, we present
the Geovicla dataset, which was constructed through the harvesting and manual labelling
of webpages from a broad range of domains (e.g. sustainability, health, technology, human
rights and politics). The dataset includes 2.5K annotated webpage instances from diverse
domains and provides labels for three categories, namely “interactive visualisation” (IV),
“interactive geovisualisation” (IGV) and “no interactive visualisation” (noIV).

Second, we compared three approaches for the automated interactive (geo)visualizations
classification: (i) a heuristic-based approach, (ii) a feature-engineering approach and (iii) an
embedding-based approach. Approach (i) uses manually derived rules and heuristics to
identify TV and IGV based on the webpages’ code; approach (ii) utilises hand-crafted feature
vectors in combination with a machine learning classifier and approach (iii) automatically
extracts embeddings using a large language model (LLM), which are subsequently used to
classify the web content.
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2 Background

The focus of the article is on web-based interactive (geo)visualizations, which at their core,
are web documents as discussed in [11]. Here, we briefly touch upon previous work on static
map search and classification, as well as interactive map search and classification.
Regarding Static Map Search and Classification, existing approaches have tackled
the issue from different perspectives, often with very different goals. For example, Goel et
al. [17] used a Content-Based Image Retrieval (CBIR) approach to classify static images

extracted from PDF files and the Web as maps or nonmaps, achieving an F1 score of 74%.

Tan et al. [36] investigated the classification of figures in digital documents as maps or
nonmaps and used several variants of support vector machines (SVM) for the classification
task. They reported F1 measures of up to 90%. While the two articles mentioned above have
a stronger focus on image classification in digital documents, others emphasize Web image
harvesting and classification. For instance, Beagle [3] mines the Web for SVG-based (Scalable
Vector Graphics) visualizations and automatically classifies them by type (e.g. bar charts,
line charts, maps, ...). The authors reported an accuracy of 85% across 24 visualization types.
Bone et al. [5] proposed a Geospatial Search Engine that harvests Web Map Services and
ArcGIS services (among others) to provide enhanced searchability. Finally, Walter et al. [38]
tested several approaches to automate the harvesting of maps in the shapefile format on the
Web. They found that the combination of a crawler and a search engine is more efficient than
the use of a crawler alone and reported a hit rate during search between 0.18% and 1.5%.
We use a search engine during our harvesting workflow in line with this finding (Section 3).

Concerning Interactive Map Search and Classification, a research agenda for
findable online geovisualization was proposed in [11], highlighting three aspects: knowledge
representation aspects, user interface design issues, and technical considerations during the
publishing of online geovisualizations. Previous work has focused on user interaction aspects
and publishing aspects mostly. For example, Degbelo et al. [12] examined design elements for
the search of map layers in map-based applications, while Hiiffer et al. [21] compiled users’
wishes regarding search tools for interactive (geo) visualizations through participant interviews.
Regarding the publishing of online geovisualizations, Lai and Degbelo [26] compared the
impact of speech-based and typing modalities for the creation of metadata for web maps
and provided empirical evidence about their complementarity for effective geovisualization
annotation. Thompson et al. [37] proposed the MIAGIS standard to facilitate the publication
of maps according to the FAIR principles and illustrated how the standard can be used
to publish maps generated within ArcGIS Online. We argue here that while these works
are valuable, progress regarding knowledge representation is equally important to advance
current research on findable online geovisualizations. Classification, i.e. finding the semantic
type (a.k.a. category) of web documents, is a key aspect of knowledge representation and is
the subject of this article.

3 The Geovicla Dataset

Open datasets about interactive (geo)visualizations are desirable to advance research on

interactive (geo)visualization search but are still lacking. The generation of the Geovicla

dataset to address this gap considered the following three categories of web documents.

Interactive visualisation (IV): An interactive visualisation is a webpage, which displays at
least one visualisation that affords computer-mediated interaction. Interaction in this
context is defined in line with [14, 35] as the dialogue, involving a data-related intent,
between a human and a data interface.
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Interactive geovisualisation (IGV): An interactive geovisualisation is a webpage, which
shows at least one geovisualization that affords computer-mediated interaction. Interaction
is defined as stated above; a geovisualization is a digital artefact whose visual properties
encode geographic data [11].

No interactive visualisation (nolV): This category is used to refer to webpages that do not
contain an IV or IGV, as defined above.

The generation of the dataset involved three tasks, namely search term generation, web
document search and web document labelling.

Search term generation: To generate search queries with a high possibility of finding in-
teractive visualisations and interactive geovisualisations, we employed the commonly
available ChatGPT model [32], with GPT version 3.5. In particular, this model was
used to generate synonyms for the phrases “interactive visualisation” and “interactive
geovisualisation”; as well as a set of random topics to query for webpages. Examples of
these topics include: climate change, sustainable agriculture, wildlife conservation, geo-
political tensions and antibiotic resistance. Each search query had the form “SYNONYM
TOPIC”, where SYNONYM denotes a synonym/type of interactive (geo)visualization (as
suggested by the LLM) and TOPIC refers to a theme (taken from the pool generated
from the LLM as well). Examples of search queries are “Interactive mapping tool Roman
Empire” and “GIS dashboard Vietnam War protests”. The full list of topics and search
queries is available on GitHub.

Web document search: Searches with the Google Custom Search API [18] were done to
retrieve urls that have a higher chance of containing an IV or IGV. The retrieved urls
were saved in a MongoDB database.

Web document labelling: A Python script was created to facilitate the annotation. It
launches an interactive command line that automatically takes an unlabelled webpage
from the database, opens it in the browser and asks the user to provide a label. Irrelevant
webpages can be also deleted from the database through the interactive command line.

The labelling of the webpages faced a few challenges. For instance, some webpages took
several minutes to load and show their content, which impedes effectiveness when classifying
thousands of items. Also, some pages could not be opened and were therefore unusable.
These webpages were deleted from the database. Another challenge was the low recall in
the early stages. After running the first set of search queries and labelling 171 items, the
percentages of classifications were only around 5.8% (IV) and 2.9% (IGV) respectively. This
is an improvement compared to the 0.05% reported in [3], but still not high enough for
scalable dataset generation. As mentioned above, the first set of queries followed the template
“SYNONYM TOPIC”. Initially, the queries were slightly verbose in the hope that these
would lead to a better matching of the entities of interest, e.g. “Interactive geovisualizations
Satellite technology for Earth observation”, “Map-based data exploration The Great Wall of
China construction” (see the full list on GitHub). Many webpages returned after this first
set of queries contained long scientific texts, notably in the form of PDF documents. In light
of these initial results, the approach was changed towards more simplified search queries.
Both SYNONYM and TOPIC were made more concise, e.g. “interactive map weather” and
“dynamic map air pollution”. After these changes regarding the search queries, the percentage
of IV classifications went up a bit to 10%. For further improvements, the data collection
approach evolved once more to focus on dashboards. Dashboards used include Carto,
Ceros (ceros.com), Esri (arcgis.com/apps/dashboards), Highcharts (highcharts.com/demo),
Infogram (infogram.com), Plotly (plotly.com) and Tableau (tableau.com). It should be noted
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Table 1 Descriptive information about Geovicla: #code and #embed signal the availability of
the original HTML code and their embeddings values; #featureinformation denotes semi-structured
information (extracted post-harvesting) available in the dataset.

#count | #avglen | #sdlen #minlen | #maxlen | #code | #embed | #featureinformation
NolV | 1153 224094.8 | 329201.2 | 52 4711499

url, content, description,

v 476 158247.7 | 169970.4 | 1186 1323808 . .
— . Yes Yes external links, external scripts,

IGV 910 111248.5 | 249832.6 | 52 2906885 div_ids, class_ids

All 2539 171305 282034 52 4711499

that the webpages were not solely collected from these dashboards. A portion of the dataset
stems from the search results and pages linked to them. Indeed, it was often the case that a
webpage contained links to other webpages with IVs or IGVs. When this was noticed while
labelling the webpage, these webpages were added to the database as well.

Table 1 shows some information about the resultant dataset, which is available in two
formats for reuse: CSV (Comma-Separated Value) and JSON (JavaScript Object Notation).

4  Automated Classification

As discussed in previous work [9], the automated classification of web-based documents
involves two steps: webpage representation (i.e. transforming the webpage into a feature
vector) and webpage classification (where machine learning models are trained/used to learn
the classification function for a set of features). This section briefly presents the two steps.

4.1 Representation

Two approaches were considered to extract features from the websites, namely a feature-
engineering approach and an embedding-based approach.

Feature-engineering approach: The gist of the feature-engineering approach is the
presence or absence of selected keywords in some portions of the web document, notably:
content, description, external links, external scripts, div_ids and div_ classes. Following
Hiffer et al. [21] four types of keywords were considered: names of frameworks (e.g.
highcharts, d3, leaflet), IDs of HTML elements (e.g. apexcharts, map, globe), classes
of HTML elements (e.g. tableau, esri-map, mapboxgl) and sentences (e.g. interactive,
geovisualization, Datenvisualisierung). The full list of keywords considered is extended
from [21] and is available on GitHub. The presence/absence of these keywords is encoded
using one-hot encoding, leading to a sparse vector with 74 entries. The three classes of
target entities (IGV, IV and nolV) are encoded using label encoding (and more precisely
the LabelBinarizer from the scikit-learn library).

Embedding-based approach: Text embeddings encode text into dense vectors that
capture the meaning and are useful for measuring the relatedness of text snippets. While
the feature-engineering approach generates a small, transparent set of features for training
machine learning models (see above), the features generated by text embedding models
are opaque, as they are produced automatically. We considered both open-source and
proprietary large language models for generating the embeddings. The Massive Text
Embedding Benchmark [29] (MTEB) guided the selection of the open-source model.
Our goal was to identify the optimal trade-off between model performance and model
context length. With these aspects in mind, the model stella 1.5b (with 1024 dimensions)
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was chosen?. It has a memory footprint of approximately 6 GB, ranks under the first
10 models concerning classification as a task and has a token limit of 131,072 (which
is the second highest of all models). BERT and GPT2 used in previous work [22] for
geometry and spatial relation representations have a much lower token limits (512 and
1024 tokens respectively) and hence were not considered in this work. The same goes for
recent text embedding models by OpenAl, which have a context length of about 8200
tokens [33]. About one-third of the webpages have more characters than the context
length of the stella model. Hence, to assess the sensitivity of the results to context length,
we report the classification results for two settings: (1) all web documents (referred to as
Embedding-based I), and (2) web documents shorter than the token limit (referred to as
Embedding-based II).

4.2 Classification and experimental setup

We considered five models from different families of classification algorithms: k-nearest
neighbors (kNN; instance-based learning [39]), support vector machine (SVM) [39], Naive
Bayes (Bayesian Network [25]), random forest (ensemble) and multi-layer perceptron (neural
network [25]).

kNN: The value of k was determined using a grid search on the training set. The best
parameters obtained were: k = 3, weight = uniform (feature-engineering); and k=5,
weights=distance (embedding-based).

SVM: We compared the performance of the linear and the radial basis function (rbf) kernels.
The rbf kernel led to no or only very minimal improvements so that the linear SVM was
selected due to its simpler kernel function and its faster training time (Occam’s razor
principle).

Naive Bayes: We compared a Gaussian model and a Bernoulli model. Based on the results,
we selected the Bernoulli model for the feature-engineering approach and the Gaussian
model for the embedding-based approach. This is also in line with theoretical considera-
tions: The Bernoulli model relies on binary occurrence information whereas the Gaussian
model assumes that values of features are normally distributed [40].

Random Forest: The best parameters obtained using grid search were: n_ trees = 200
(feature-engineering) and n_ trees = 400 (embedding-based).

Multi-layer Perceptron: A grid search was used to identify the best-performing architecture.
The outcome was an architecture with hidden layer sizes of (36, 18, 9) for the feature-
engineering approach and a shallow network with a single hidden layer with 512 neurons
for the embedding-based approach.

We used the F1 score with macro averaging for decision-making in all cases because
we have an imbalanced dataset. The grid search for hyperparameter fine-tuning was done
using a 10-fold cross-validation. Model comparison for selection was done using 10-fold
cross-validation as well. Besides, we tested two classification strategies: multiclass (IGV,
IV, nolV) and binary (IGV vs nolGV), as we are primarily interested in the automated
classification of web-based geovisualizations. We also assess the impact of balancing and
the representation strategy (feature-engineering vs embedding-based) on performance. At
last, we explore the sensitivity of the results to the threshold of the context length of the
LLM-generated embeddings. We used a 80/20 % train and test data split in the experiments.

2 https://huggingface.co/dunzhang/stella_en_1.5B_v5. Though the model is accessible in multiple
dimensions, 1024 provided a good compromise between size and performance as of December 2024.
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Tables 2 and 3 present the results for multiclass classification and binary classification
respectively. The confusion matrices for the models are available as supplementary material
at https://doi.org/10.6084/m9.figshare.28238885. To compare our results to the state-
of-the-art, we include the results from a heuristic-based (i.e. rule-based) approach from [21],
which was suggested for multiclass classification. The values obtained were 49% (accuracy),
54% (precision), 47% (recall), and 42% (F1 score). Finally, we used permutation feature
importance, introduced originally in [6], to investigate the contributions of each feature to
the overall classification accuracy in the case of the feature-engineering approach. The tests
were done for the random forest and the multi-layer perceptron models, and the results are
available in the supplementary material as well.

Table 2 Results of the multiclass classification (IGV vs IV vs nolV). Best values are in bold.
Embedding-based I = all documents; Embedding-based II = documents fitting Stella’s context
length.

Accuracy | Precision | Recall | F1 ROC-AUC

Feature-engineering | Imbalanced | knn | 62% 71% 55% 56% | 0.66
svm | 62% 71% 55% 55% 0.66

nb 57% 66% 53% 55% 0.65

rf 62% 69% 55% 56% | 0.66

mlp | 61% 69% 55% 56% | 0.66

Balanced knn | 35% 63% 35% 46% | 0.63
svim | 29% 67% 32% 43% 0.62

nb 31% 75% 31% 41% 0.63

rf 36% 71% 36% 47% | 0.64

mlp | 34% 73% 35% 46% | 0.64
Embedding-based I | Imbalanced | knn | 69% 70% 1% 70% | 0.78
svi | 54% 73% 53% 61% 0.71

nb 29% 52% 85% 64% 0.73

rf 67% 76% 65% 69% 0.77

mlp | 62% 76% 59% 66% 0.74

Balanced knn | 70% 70% 1% 69% | 0.78
svi | 69% 70% 70% 70% 0.78

nb 40% 63% 88% 2% 0.79

rf 67% 74% 67% 69% 0.78

mlp | 71% 73% 5% | 74% | 0.81
Embedding-based II | Imbalanced | knn | 65% 65% 2% 67% | 0.77
svim | 67% 67% 74% 69% | 0.78

nb 39% 56% 75% 64% | 0.71

rf 63% 65% 69% 66% 0.76

mlp | 69% 70% 74% 71% | 0.80

Balanced knn | 63% 65% 65% 64% | 0.74
svm | 62% 62% 66% 63% 0.73

nb 30% 56% 83% 66% | 0.74

rf 62% 67% 63% 64% 0.74

mlp | 65% 64% 67% 65% 0.75

4.3 Discussion

We now discuss the different effects assessed in the work: effect of the representation strategy,

of the classification model, of the classification strategy, of balancing and of context length.

Effect of the representation strategy: In nearly all instances, the embedding-based
performances were higher than those obtained using the feature-engineering approach (F1
and ROC-AUC scores). This suggests that the embeddings were likely better at condensing
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Table 3 Results of the binary classification (IGV vs noIGV). Best values are in bold. Embedding-

based I = all documents; Embedding-based II = documents fitting Stella’s context length.

Accuracy | Precision | Recall | F1 ROC-AUC

Feature-engineering | Imbalanced | knn | 72% 73% 63% 63% | 0.63
svim | 73% 78% 62% 61% 0.62

nb 73% 74% 63% 63% | 0.63

rf 72% 76% 62% 61% | 0.62

mlp | 73% % 63% | 62% | 0.63

Balanced knn | 67% 69% 67% 67% | 0.67
svim | 65% 69% 65% 64% 0.65

nb 65% 69% 65% 64% 0.65

rf 67% 70% 67% 66% | 0.67

mlp | 66% 69% 66% 65% 0.66
Embedding-based I | Imbalanced | knn | 77% 5% 73% 74% | 0.73
svim | 77% 76% 72% 73% 0.72

nb 68% 67% 69% 67% 0.69

rf 79% 79% 74% 75% | 0.74

mlp | 78% 7% 74% 75% | 0.74

Balanced knn | 72% 73% 2% 2% | 0.72
svm | 74% 74% 74% 74% 0.74

nb 68% 68% 68% 67% 0.68

rf 73% 73% 73% 73% 0.73

mlp | 75% 5% 75% | 75% | 0.75
Embedding-based II | Imbalanced | knn | 67% 67% 66% 66% | 0.66
svim | 69% 69% 68% 68% | 0.68

nb 59% 59% 59% 58% 0.59

rf 68% 69% 67% 67% 0.67

mlp | 71% 1% 71% 71% | 0.71

Balanced knn | 62% 58% 56% 55% 0.56
svin | 64% 62% 61% 61% | 0.61

nb 56% 58% 58% 56% 0.58

rf 67% 65% 65% 65% | 0.65

mlp | 67% 65% 64% 64% 0.64

relevant features to separate the different types of entities than the hand-crafted features.
Also, these results remind of the “black box conundrum” [27] — model interpretability
and predictive power are often competing goals for (Geo)Al models. Another aspect to
mention in the comparison of the two approaches is that the embedding-based approach
is more time/resource-consuming. For example, computing one single embedding takes
around 20 seconds (on a laptop with an AMD Ryzen 7 7840U processor (3.30 GHz),
integrated Radeon 780M Graphics, 32 GB of RAM, and 1 TB of storage, on Windows 11),
which is the reason why the embeddings were pre-computed and included in the final
dataset. Features from the feature-engineering approach can be computed at run-time as
the feature extraction algorithm only takes a few milliseconds to run.

Effect of the classification model: As the tables suggest, all models have comparable
performance for the feature-engineering approach. The relatively low F1 scores (40%-60%)
indicate the need for further research exploring “intelligent hints” [1] for the separation
of the three types of entities considered. Regarding the embedding-based approach, the
Naive Bayes family exhibited the strongest recall (=probability of detection) for the
multiclass classification task. The MLP exhibited a good performance across all settings
often having the highest or second-highest F1 score. Values obtained were in the range
[66%—75%)] (imbalanced dataset) and [64%—75%] (balanced dataset). As the architectures
used for testing were slightly different depending on the results of the grid search, the
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recurrent good performance of MLP suggests the relevance of this model family for the
issue at hand and recommends it as a starting point for further work. There are more
families of classifiers that were not considered in this work (e.g. discriminant analysis,
bagging, decision trees, see [16]) and more kernel functions (e.g. polynomial kernels for
support vector machines) that could be further explored in future work.

Effect of the classification strategy (all vs binary): There was no notable impact of
the classification strategy on the performance. SVM and Naive Bayes seem to have
performed better regarding the feature-engineering approach, but slightly less so for the
embedding-based approach.

Effect of balancing on performance: The balancing led at times to improvement, and
at times to deterioration in performance. The dimension does not seem to impact the
results and may be dropped in subsequent studies.

Effect of context length: As mentioned above about one-third of the web documents
considered had a size greater than the context length. Details of how exactly the Stella
model treats those could not be found in the model’s documentation. Besides, the
definition of what exactly a token is varies (e.g. characters, words, subwords). Hence
an empirical assessment of the impact of the context length was done. It appears from
the results that there are small drops in performance (F1 scores, ROC-AUC scores) for
several models when the dataset contains web documents within the context length only
(Embedding-based IT). This issue deserves further investigation in future work.

Limitations. Although the dataset is 30 times bigger than the one from previous work [21],
it is still relatively small compared to standard machine learning datasets and could be
extended in future work. Furthermore, though the webpages were inspected thoroughly, some
visualisations were challenging to find and could have been missed because 1) some webpages
have the policy that interactive charts are only available on screens of a specific size (i.e.
large screens), and 2) some webpages had a dense hierarchical organization and several levels
of nested content, which increased the difficulty of checking every interaction possibility. At
last, we mentioned in Section 3 that a portion of the dataset came from dashboards. The
extent to which these dashboards bias the performance results needs a systematic assessment
in future work.

5 Conclusion and Future Work

Given the increasing availability of (interactive) maps on the Web, there is a need for
techniques to automate their findability. While previous work has offered techniques for the
classification of static maps (e.g. figures in digital documents, SVG-based maps, shapefile-
based maps), there is still a need for the automated classification of interactive maps. To
address this gap, we have compiled a dataset to study the automated classification of inter-
active (geo)visualizations and performed a preliminary assessment of models’ performances
at the classification task. The results obtained show that interactive (geo)visualization
classification is indeed a challenging problem for existing models and deserves more attention
in future research.
Follow-up work to this article can be done along the following lines:

Dataset: The work in this article was exploratory and hence the dataset was collected and
annotated manually by one researcher only. The low hit rates observed during harvesting
call for further work to improve the efficiency of the harvesting workflow. Besides, previous
work [21] suggested that a crowd-sourcing approach to collect interactive geovisualization
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annotations could be workable, but a large-scale dataset is still lacking. Hence, looking
into crowd-sourcing-based approaches for the annotation task is an important direction
for further work. The challenge here lies in simultaneously maintaining systematicity
during collection, diversity of visualization types and themes, quality of the annotations,
as well as producing more fine-grained annotations (e.g. the annotation should state not
only if there is a visualization, but how many there are and where these are located in
the web document if appropriate).

Representation and Classification: Regarding the feature-engineering approach, we only
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—— Abstract

This paper presents a novel approach to automatically georeferencing historical maps using an
algorithm based on salient line intersections. Our algorithm addresses the challenges inherent in
linking historical map images to contemporary cadastral data, particularly those due to temporal
discrepancies, cartographic distortions, and map image noise. By extracting and comparing angular
relationships between cadastral features, termed monads and dyads, we establish a robust method for
performing record linkage by identifying corresponding spatial patterns across disparate datasets. We
employ a Bayesian framework to quantify the likelihood of dyad matches corrupted by measurement
noise. The algorithm’s performance was evaluated by selecting a map image and finding putative
angle correspondences from the entirety of Aotearoa New Zealand. Even when restricted to a single
dyad match, >99% of candidate regions can be successfully filtered out. We discuss the implications
and limitations, and suggest strategies for further enhancing the algorithm’s robustness and efficiency.
Our work is motivated by previous work in the areas of critical GIS, critical cartography and spatial
justice and seeks to contribute to the areas of Spatial Data Science, Historical GIS and GIScience.
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1 Context

Introduction

Historical maps are a cartographic record of where a place was and perhaps still is. They
offer a window into the past that can support indigenous communities to reconnect with
their histories, language and places. Specifically, historical cadastral maps provide a record of
the evolution of land interests during the colonisation of Aotearoa New Zealand in the 19th
and 20th centuries. Given that georeferencing is typically a manual and time-intensive task,
these rich resources are often inaccessible to most except for those who are familiar with
cartography or the local histories of the places that were mapped. By labelling points in the
map and calculating their real world coordinates, georeferencing enables a broader level of
accessibility to the map image and the histories embedded therein. We propose an algorithm
Koki Tauriterite (translated simply as determining angle equality) that leverages the ease of
detecting intersecting lines in the map image and digital cadaster to perform robust record
linkage between the two sources for the purposes of large scale automatic georeferencing of
historical maps in Aotearoa New Zealand.
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De-colonial inspirations

For New Zealand Maori, historical maps allow one to locate traditional places of food
gathering, villages and burial grounds that are no longer visible in today’s landscape due to
successive generations of te muru me te raupatu (land confiscation and dispossession), where
historical and contextual knowledge of said places generally exists in the minds of a few [4].
Therefore historical maps enable one to do what most cannot; locate these cultural sights of
significance in space. Attempts to revitalise and make accessible this knowledge are visible
around the country and the utilisation of computational tools are aiding in that process of
revival, for example Ngai Tahu’s community generated atlas tool K& Huru Manu [11].

The processes that lead to the creation of the map in the Aotearoa New Zealand context
represent a traumatic colonial history for Maori communities [4]. Power structures in the
colony which sought to benefit the colonising power were perpetuated while simultaneously
assimilating indigenous relationality to place via the creation of the map [12]. The role that
maps played in the dispossession of Maori and their resources through the Native Land
Court and other various mechanisms of the state [6] highlights a contradiction evident with
the elevation of the map as an important archival record of Maori language and geographic
history [5], particularly (for one of us) as a descendant of Parihaka ploughmen who were
imprisoned without trial and forced into hard labour for ploughing their own confiscated
land [14].

However, those same symbols of paternalistic control can also play an important role
in the retrieval, preservation and eventual dissemination of Maori relationality and re-
connection with place, and subsequently aid in helping to make visible that rich history to the
communities from which those places belong and vise versa. Therefore, the rematriation [10]
of historical maps as records of place, via the provision of wider, open access to them
for indigenous communities represents a form of spatial data justice [15] that inspires and
motivates this work.

2 Method

Challenges

The task amounts to record linkage between these two very different sources of data. Source 1
is a digitised image of a map — those of interest are not currently georeferenced. The state of
the map and quality of digitisation is variable and, in addition, neither overall orientation nor
scale can be assumed for the map since there are often scarce metadata records to accompany
the map. This necessitates an approach that is therefore scale and rotation invariant. Source 2
is essentially a large list of polygons and associated geospatial information, henceforth “the
cadaster”. The task of georeferencing a map amounts to finding plausible corresponding
locations for an individual map, within the (large) cadaster. However the two sources use
completely different representations in their raw data (images, and polygons respectively).
Contrast this with astrometry for example, where both image and stellar catalogue naturally
result in lists of 2d vectors which are able to be compared [13]. An effective solution will
involve making a defensible correspondence between features identifiable in both map images
and the cadaster.

Record linkage of cadastral data and historical map images presents a significant challenge
due to inherent discrepancies between analogue and digital-borne data [16]. While both
sources purportedly depict the same geographic area, they capture it at different points in
time, resulting in variations in geometry present in both the survey record and the map
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Figure 1 Map image and cadaster of the same location (NZMS13 1899, Taranaki region of New
Zealand, and the current parcels retrieved from LINZ 2025 respectively).

image. Temporal changes in land use as well as cartographic conventions complicate the
process of establishing accurate correspondences between the two sources of data [17]. In
Aotearoa New Zealand, the cadaster is a chronological record of land title administration that
has been recorded, digitised and made public by the government agency Toitu Te Whenua
Land Information New Zealand (LINZ), a process which began in the mid-1980s [19]. This is
the primary dataset that contains millions of polygons that represent all current parcels in
Aotearoa New Zealand [18].

Herein lies another major challenge in conducting historical record linkage. While the
current survey record reflects the present-day cadastral landscape, the historical map offers a
snapshot of a past configuration of land ownership. Consequently, the LINZ Parcels Dataset
contains numerous parcel records that are absent from the historical map due to subsequent
partitions of new parcels. Therefore, the historical map may depict parcels that no longer
exist in the contemporary LINZ Parcels Dataset. These disparities necessitate a robust
record linkage approach accounting for the inevitable attrition of records across the temporal
divide. Record linkage in this case being the process of matching and combining records
from multiple sources into a single space and then subsequently assessing whether or not
they are in fact describing the same object.

Cadastral features such as parcel boundary intersections are persistent to changes over
time. Parcels of land are more often partitioned than they are amalgamated as a result
of accelerated urban development in Aotearoa New Zealand during the 20th century [1].
Although the polygonal shape that is created by the parcel is generally orthogonally segmented
over time, the original shape of the parcel remains identifiable in the cadaster. The original
parcel may simply now have a number of lines drawn through it, for example parcel 22
in 1 is partitioned in the cadaster. These straight lines that depict parcel boundaries and
the adjacent parcels they intersect with will be the basis for our analysis since there is no
complete ground truth yet developed that could represent all land parcels from a particular
point in time when a given map was created. Therefore a common representation space
(defined below) is required to be developed upon which comparison can be performed between
the two sources.
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Our proposed algorithm makes use of the fact that straight lines are particularly salient
in both sources (respectively via the Hough Transform [7, 3] for images and simple geometric
processing for the cadaster). This supports ready identification of line intersections in either
source, and characterisation by their internal angles. Agreement between sets of internal
angles is useful but not diagnostic: it does not provide sufficient specificity on its own to
match maps to locations. However any pair of intersections (which we call a “dyad” in what
follows) furnishes another pair of angles defining their relative orientation, which provides a
much more finely grained basis on which to argue for a match.

A “distance” that is low for good matches is simply the sum of squared differences in
these two sets of angles, © from the map and ® from a potential site in the cadaster:

1
a©,@) = —— || - 6| (1)

noise

Although intuitively appealing, Equation 1 requires some justification. In Section 3, we
derive it from considering a Bayes factor for the probability of a match being correct, given
the respective angles © and ®, and taking careful account of their various dependencies.

Related work

In our pursuit of an effective method for georeferencing historical map images using data
from the cadastral record, we explored several approaches before developing our current line
intersection-based algorithm. These preliminary investigations, while ultimately not preferred,
did highlight the challenges inherent in this domain. Use of image segmentation and shape
recognition techniques to match full parcel polygons is one such option, but our experience has
been that these methods are not robust enough to the variability inherent to historical maps, as
well as the fundamental differences in spatial object representation between the cartographer’s
approach and modern GIS practices that form the current cadastral record. The discrepancies
in boundary delineation and feature abstraction between these two distinct technologies
rendered direct shape-matching approaches unreliable. Subsequently, we explored point-based
methods, employing point-finding algorithms coupled with triangulation techniques such as
the Delaunay triangulation [8]. This approach, while theoretically appealing, was also found
to be unsuitable, largely due to the noise present in the map images. The arbitrary addition
and removal of points caused by image artifacts and inconsistencies in feature representation
led to unstable and unreliable triangulations.

We also considered leveraging toponyms extracted through Optical Character Recognition
(OCR) techniques in order to conduct direct georeferencing of the historical map. As is
evident in Figure 2, this approach faced limitations due to the temporal disconnect between
historical and contemporary place names. Many toponyms present on historical maps have
since fallen into disuse or been replaced in the process of the colonisation of Aotearoa New
Zealand [2]. Text on historical maps also tends to be heavily occluded, and/or follow the
geography of the feature that it is describing, introducing even more complexity into the text
extraction process [9]. Nevertheless, we found value in using the more persistent toponyms,
such as major town names, street names or key geographic features as a means to estimate
the general location of the map and thereby reduce the search space for our dyad matching
pipeline (described below). These exploratory efforts underscore the complexity of the task
at hand and the need for robust, noise-resistant methods in historical map analysis and
record linkage.
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Figure 2 Screenshots of two map images from series NZMS13 (circa 1899) and NZMS1 (circa
1959). These authoritative maps describe the same area, each printed 60 years apart. The traditional
homestead Hokorima (see NZMS13 1899, red circle) is only present on the 19th century map, as
well as other visible toponyms that are either no longer present or are occluded.

monad A monad B c.f. edge case

Figure 3 Definition of the angles characteristic of a pair of intersecting lines. Left: The figure
shows one dyad, and the angles for one of the monads (intersections). 6; is the smaller of the two
internal angles. Any potential second monad (here, B) creates the possibility of identifying a further
“relative” angle 6, for each monad to be the angle formed by beginning from the line connecting the
two intersections and rotating clockwise to the first line encountered. Luck could easily result in 6;
values being matched within another source, but getting both 6, correct as well becomes much less
likely, for false associations. Right: If one dyad is displaced, both relative angles change. Here, we
see that 0, could change abruptly as monad B is shifted.

Feature extraction

In either source, we refer to a single intersection of two straight lines as a “monad”, to
contrast with “dyads” (which are pairs of intersections) that provide the main discriminating
features on which our matching algorithm is based — see Figure 3 for an example. Where the
intersecting line segment does not extend past another but instead generates a “T” junction,
we can still treat this as an “X” shape in effect. Each monad has a characteristic angle,
defined to be the smaller of the two internal angles. This is denoted 6; if the source is the
map, and ¢; if it is from the cadaster. Clearly 6; < 7/2 and similarly for ¢;.

Internal angles generated by intersecting parcel boundaries are biased toward 90°, as
is evident from Figure 4. Similarly parcel boundary intersections in the cadaster result in
internal angles close to 0°, due to small line segments generated by parcels that, for instance,
follow the course of a winding river or are located in urbanised areas. Furthermore, the
very definition of an intersecting parcel boundary in the cadaster lends itself to complexities
with respect to feature extraction since it is difficult to determine whether or not a given
point in the coordinate sequence of a polygon doesn’t merely sit along a straight line. For
instance in most general contexts a square shaped polygon would likely produce four unique
coordinates, but in the cadaster this cannot be assumed and so two parcels could intersect
along an almost straight line, producing an angle very close to 0°. The very different nature
of the two datasets (the historical map image being cartographic and the cadaster being
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Figure 4 Relative frequencies of internal angles across all monads derived from the cadaster:
a large proportion of junctions are close to 0° or 90°. There are about ~ 1.6 x 10° in the range
5% < ¢y < 85°.

generated computationally via survey measurements) leads to different complexities with
respect to feature extraction since different methods for feature are required for the different
datasets. Figure 4 confirms this very skewed distribution across the entire LINZ Parcels
Dataset. The higher likelihood of seeing orthogonal or close to parallel lines reduces their
discriminating power for the proposed algorithm, which relies on “suspicious coincidences” of
angular relationships to attribute matches between dyad pairs.

A dyad is a set of two unique monads from the same source-this induces two further
angles that are relative bearings to the line joining the monads, as illustrated in Figure 3.
The range for the relative angle so defined is 6, < 7 — ;. Collecting these angles then, a
given dyad D extracted from the map image source, generated by the two monads A and
B consists of © = (9;4, 64, 6B 6B), and similarly for a dyad extracted from the cadaster
(which is a possible match for ©) we have ® = ( f‘/, qbf/,(;ﬁfg/,gbf/). Monads and dyads are
the primary features extracted from both sources. This extraction allows for comparison to
be made between the two sources thereby acting as a common representational space for
matching across the sources.

Koki Tauriterite: Monad and Dyad Matching Pipeline

We first pre-filter candidate matches on the basis of monad evidence alone, in order to reduce

the computational burden of matching each component part of the dyad. This reduces the

search space for subsequent, more computationally intensive comparisons. The pipeline can

be summarised as follows:

1. Monad matching: For each monad in the map and cadaster, identify putative matches
where internal angles differ by no more than ¢ degrees.

2. Relative angle calculation: For each plausible pairing of monads, compute the relative
bearing angles 6, and ¢,

3. Correct for edge cases: Apply Algorithm 1 to 6, and ¢,.

4. Dyad comparison: For each candidate dyad pair, compute a similarity score d(©, @)
based on all internal and relative angles.

5. Best match selection: Select the dyad match with the lowest distance score as the
most likely correspondence.
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The first step filters on the #; angles of each monad from both sources to generate a set
of putative monad-monad matches where pairs meeting the filtering condition |0; — ¢;| < o
are considered, with o set to 6°. This exclusion seeks to increase computational efficiency,
although we note some potential unlikely matches are overlooked. The algorithm then
calculates the relative bearing 6, or ¢, between pairs of monads leveraging the identified
putative 6; or ¢; angle matches.

Algorithm 1 is applied at this point to relative angles, in order to correct for dramatic
shifts in 6, that can occur, should the noise present in the map image (or the cadaster)
completely change the 6, angle (or ¢, respectively). As depicted in Figure 3, this needs
to be dealt with because the 6, angle from the connecting line to the next line segment,
proceeding clockwise, can either become very small or very large given only a small amount of
noise. To ameliorate this fragility we check if 6, is very close (in either direction) to the line
segments that constitute the monad, or 0. If so, we generate an edge case alternative value

for 0, referred to as 6,,, which is then later computed during the distance step alongside 6,.

The best score resulting from the comparison of these two is treated as the true 6,. This
algorithm effectively handles the edge cases for 6, (and similarly ¢, ), adjusting 6, based on
its proximity to the edge of the monad’s line segments, while accounting for a noise factor.

Having generated putative monad matches between the two sources, the dyad selection
stage can begin. This step creates the list of relative bearing angle combinations between
filtered pairs of monads that each have an inter-source putative match. The algorithm then
finds potential inter-source dyad matches and can therefore start to build out potential valid
inter-source tuples of dyads where each constituent monad has a putative monad match that
is contained in the alternative putative dyad.

Algorithm 1  Edge Case Adjustment for 0, (and similarly for ¢,).
The sections mentioned are those of the monad that generate the respective internal angles (6; or
the other, which is w — 6;), and b is the line that connects the two monads to generate the relative
angle 6,. If 6, isn’t close to either boundary it is returned unaffected.

procedure FINDEDGEADJUSTEDTHETAR(C, 6,6, 0)
91} — T — 91
0y, < 0,
if IntersectsWithSectionlI(b) then
if 0, < o2 then
Op, <~ m—0;—0
else if 6; — 0, < o2 then
0, o
end if
else if IntersectsWithOtherSection(b) then
if 0, < o2 then
are — Hl — o2
else if 6, — 6, < 02 then
0, « o
end if
end if

return 0,

2

end procedure
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3 Derivation of an appropriate distance for dyads

Here we derive Equation 1 from the standpoint of a generative model of dyads. Despite the
apparent simplicity of the end result, care is needed as the relative angles are conditioned on
the internal ones.

Suppose we have a single dyad from the map image source, characterised by angles O,
and a single dyad from the cadaster, characterised by angles ®. In addition, we have a
putative association between the constituent monads delivered by the pre-processing stage:
A~ A'B ~ B’ where A, B are monads from a map and A’, B’ are from the cadaster.
Taking the logarithm of the Bayes Factor (i.e., the ratio of probabilities for and against a
match) yields a natural score, which quantifies the relative evidence in favour of a match on
a logarithmic scale. Ignoring the prior degree of belief in a match (which just adds a constant
anyway), we have a score S for a match between dyads that is the log of a likelihood ratio:

p(0©,® | same)

5(0,@) =los = o5 T

where “same” and “diff” refer to ground truth: the two pairs are in fact the same locations,
as asserted, or are not. Using the product rule, this is

p(O© | same) p(® | ©,same)

— Jog AT 15ANG) | o P 1 2, 5AY)

PO Tdim B p@ [ e,di
——

1
p(¢?, ¢ | 64,07 same)

=1
%8 p(¢7, D [ 67,65, diff)

which factors into an A and a B term

p(qSA/ | 0A,same)
p(e4" | 04, diff)

p(¢P | 67, same)

=1
o8 p(¢B" | 0B, diff)

+ log

and we can unpack the two angles within each + BB’ equivalents...

(o7 o | 67,04, AA” same)

1 07T

(67, 68 [ 02,63, AA' diff)

(2

= log

Using the product rule again,

p(o | 64,024, AA" same) N (o2 | o2, 04,04, AA’ same)

10T 7 174 2Yr

PO | 02,02, AN diff) | ° p(of | o, 68,04, AA’ diff)

7 7Y% r 7 *Yg 2 Vr o

= log

Consider the first term: because (;5;4' is independent of 62, the latter can be dropped from
the conditioning. And continuing to do this for the others as well, terms simplify to:

p(¢A | 02, AA’ same) o P2 | o, 04, AA" same)
(o | AAT diff) & (oA | o AA' diff)

= log

We next define these four probabilities one by one, for just the AA’ pair:
p((ﬁf | 04, AA’ same): Here, we expect the two angles to be the same apart from

k2
measurement noise, so the probability for ¢ should be a narrow distribution centred on 6,

for example N(¢2; = 024 02,..).

noise
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p(qbf‘/ | AA’ diff): uniform in the range 0 to 7/2 (although in practice we ignore angles
close to 7/2, as noted earlier).

p(qbfl | ¢fl, AA’ diff): Given that A and A’ are independent, at first sight one might
imagine this to be uniform in the range 0 to 7, but this is not quite correct due to an
internal dependence on ¢;:

, if 0, <0,
if 6, between 6; and ™ — 6; (2)

elsewhere.

2

s
p(0-10:;) = { £,
0,
(A | ¢, 04, AA’ same): Tn most cases, similar to the comparison of internal angles

. 7
for monads, we can model this as V(¢ ; 4 = 02, 02 .0

The point made in the third item above applies to the fourth as well: if ¢,. < ¢;, the
probability of seeing ¢, is twice what it would be were ¢, > ¢;. Therefore both the numerator
and denominator (bullets 3 and 4) should be doubled when ¢, < ¢;. However every time
this applies, it cancels perfectly, and so somewhat surprisingly we are left with just

S(©*,0%) =log (N (67 1 = 67, 72 ie)

i noise

+ log (N(djf,’ = 9;4’ O-rzloise)) + const.

Logs of Gaussians yield quadratic terms. Including the BB’ as well, we arrive at:

202

1 A’ AN2 A’ A\2 B’ B\2 B’ B\2
5(0.0) =~ (68— 62 + (0 — 027 + (@ ~ 092 + (0F —08)
noise
Equation 1 is thus the negative log Bayes factor, which can be thought of as a distance or
error. Despite the various subtleties involved, the end result is simple and intuitive: to score
a match we take the sum of squared differences between (suitably defined) angles. Moreover,
Ur210ise
possible matches, whatever its assumed value. In preferring matches that are close according

appears as a multiplier throughout, and so will not affect the relative rankings of

to this measure, we are maximising the log of a likelihood ratio, under a Gaussian noise
generative model for the joint distribution over angles.

4 Evaluation

To evaluate Koki Tauriterite, we tested whether it could correctly localise a single historical
map image (Figure 1) within Aotearoa New Zealand. We constructed a grid of 15,870 squares
covering the country, with each grid square matching the dimensions of the map image’s
bounding box (5.05 km x 3.725 km). This grid served as a spatial index: for each square,

we queried the LINZ Parcels Dataset and extracted the corresponding monads and dyads.

This allowed nationwide coverage with a single comparison per region.

For each grid square, similarity scores were computed using the dyad matching pipeline.

For the reasons given earlier, we excluded matches involving internal angles outside the range
5° < 0; < 85°. A low distance score indicates that internal and relative angles between dyads
in the grid and the map image align closely, suggesting a strong match. Despite the scale of
the search — covering over 1.6 million monads in the restricted range — the algorithm correctly
identified the true location of the map as one of the top-ranking candidates, scoring in the
top 0.7% of all grid squares (Figure 5). This result confirms that even a single dyad match
can serve as a reliable signal, enabling accurate georeferencing across tens of thousands of
possible locations.
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Figure 5 Distribution of the best dyad match scores (the logarithm of equation 1) across all grid
squares. The score of the correct region is highlighted with a red dashed line and ranks in the top
0.7% of all candidates. Note the z-axis’s overall scale and offset are irrelevant as they depend on
(unknowns) omnoise and the prior probability of a match, respectively.

5 Conclusion

Evaluation of the algorithm’s performance against the entire cadastral record of Aotearoa
New Zealand highlights early success for the proposed approach. The result presented here —
identifying the correct region comfortably within the top 1% of all grid squares — was achieved
using only a single dyad and no additional “clues” beyond a rough estimate of scale. This
suggests that the angular relationships extracted from map and cadaster are sufficiently
distinctive, even at national scale, to support robust matching under favourable conditions.

Nonetheless, further improvements are needed to increase robustness and scalability in
more challenging settings. In densely partitioned urban areas, the sheer number of potential
dyads increases the likelihood of coincidental matches, due in part to the highly skewed angle
distributions shown in Figure 4. In such saturated regions, the discriminative power of a
single dyad may be insufficient to distinguish true matches from plausible distractors.

We propose two complementary strategies to address these limitations. First, the search
space can be constrained by leveraging persistent toponyms extracted from the map image
using OCR. These can be cross-referenced against gazetteers or other open geographic
datasets, enabling the algorithm to focus only on regions plausibly represented in the map.

Second, the scoring framework can readily incorporate multiple dyads. As described in
Section 3, the current algorithm assigns a score to each dyad pair based on the angular
similarity of their constituent monads. Under a probabilistic interpretation, the inclusion
of an additional, spatially independent dyad multiplies the strength of the match, because
the likelihood of two such matches occurring by chance is the product of their individual
probabilities. This compounding effect suggests multiple dyads may significantly reduce false
positives and sharpen the algorithm’s discriminative power. Each additional dyad imposes
another independent constraint, tightening the inference and improving localisation.

We are currently investigating these extensions as part of ongoing work, as they represent a
natural progression toward generalising the algorithm across a wider range of maps, including
those with more noise, distortion, or limited cadastral distinctiveness.
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—— Abstract

Millions of biological sample records collected in the last few centuries archived in natural history

collections are un-georeferenced. Georeferencing complex locality descriptions associated with these
collection samples is a highly labour-intensive task collection agencies struggle with. None of the
existing automated methods exploit maps that are an essential tool for georeferencing complex
relations. We present preliminary experiments and results of a novel method that exploits multi-
modal capabilities of recent Large Multi-Modal Models (LMM). This method enables the model
to visually contextualize spatial relations it reads in the locality description. We use a grid-based
approach to adapt these auto-regressive models for this task in a zero-shot setting. Our experiments
conducted on a small manually annotated dataset show impressive results for our approach (~1 km
Average distance error) compared to uni-modal georeferencing with Large Language Models and
existing georeferencing tools. The paper also discusses the findings of the experiments in light of an
LMM’s ability to comprehend fine-grained maps. Motivated by these results, a practical framework
is proposed to integrate this method into a georeferencing workflow.
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1 Introduction

Georeferencing is the process of relating or interpreting information to a geographic location
[20, 7, 19]. Informal georeferencing is the association of information with a location using
place names (also called toponyms) or location descriptions from ordinary human discourse.
On the other hand, formal georeferencing refers to exact locations using formal quantitative
representations such as latitude and longitude coordinates or other spatial referencing
systems [20]. The task of converting an informal georeference to a formal georeference can
be challenging due to reasons such as colloquial place names, outdated names, historical
places, the use of vague relative spatial relations, and differences in place representations in
different gazetteers (geospatial databases).

A vast amount of information is locked up in extensive collections of unstructured
textual data that is yet to be systematically georeferenced. These collections include but
are not limited to web pages, social media articles, academic research articles, biological
collection specimen records, and memoirs. The ubiquity of georeferencing has led to numerous
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georeferencing techniques adopted in various application domains. For example, attempts
have been made to georeference social media posts, social media images, satellite and aerial
images, web documents, and collection records from natural history archives [61, 18, 44, 19, 37].
In this study, we focus on georeferencing textual locality descriptions in records of natural
history specimens found in museum and herbarium archives, where it is estimated that of the
order of 3 billion records are preserved [4]. It is also estimated that manual georeferencing of
digital records without coordinates held globally could take over 5000 person-years [49].

A locality description is a textual description of the location at which a biological or
other sample was collected. These descriptions are part of the information recorded about
the specimen or sample by the collector and, for millions of pre-GPS collection records, they
can be the only detailed information about the collection location. Georeferencing such
locality descriptions for purposes of biodiversity studies is a considerable challenge, especially
due to their sheer volume and the descriptions themselves often employing quite complex
language with one or more relative spatial relations [36]. Much of the published literature on
georeferencing entire sentences has focused on social media posts, with the more advanced
methods using various forms of language models including transformer models [56]. Methods
developed for georeferencing social media posts can also rely heavily on metadata, such as
the user network. The locality descriptions with which we are concerned differ significantly
from the text of social media postings in their frequent use of relative descriptions often with
multiple reference named places, and where the described location is separate (offset) from
that of the finer-grained place names. Several studies have focused on the development of
methods to georeference such relative locality descriptions in natural history records but
little progress has been made to date on the application of current deep learning methods.

Figure 1 provides an example of a locality description. Given this quite specific locality
description, a human georeferencer can locate this collection location to a high degree of
certainty. Manual georeferencing uses the place names in a locality description to focus on a
map that covers the local area to which the description applies. Visualization of the spatial
configuration of the named places is vital to a human georeferencer in identifying a point or
region of space that appears to correspond to the described location [36]. However, none
of the existing automated textual georeferencing methods exploit maps directly. Gazetteer
lookup methods only rely primarily on locations of place names, though they can be combined
with methods that compute spatial relations [18, 8]. Current deep learning based methods for
georeferencing can use pre-trained language models like BERT [11] that have been pre-trained
on masked language modeling and next sentence prediction. They rely on fine-tuning these
pre-trained models exposing them to large numbers of example texts with their associated
locations [44, 30]. Although language models can be adept at learning textual relations,
being trained only on language tasks, they do not intrinsically grasp spatial dimensions.
The models also do not comprehend spatial extents of the features they are working with.
Furthermore, a georeferencing language model trained on one region or country can not be
used to infer localities from a different region, requiring more fine-tuning and large volumes
of verified data from each region. Additionally, no research appears to have been published
to date on using the latest Large Language Models (LLM) for this task.

Here we present initial investigations of the potential of Large Multi-Modal models
(LMM), that can support tasks combining language and vision, to assist in the georeferencing
process for complex locality descriptions. With an LMM’s multi-sensory skills, we experiment
with a prompting approach that emulates the way that a human might geofererence such

! https://www.landcareresearch.co.nz/tools-and-resources/collections/allan-herbarium/
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J.K. Donald Wildlife Reserve, L. Wairarapa -

Figure 1 A well defined example locality description from a collection held by the Allen Hebarium®.
Green and purple indicate place names and relative spatial indicators respectively. Here, “lake” is a
coreference to Lake Wairarapa.

descriptions. The intuition in this study is to combine conventional text-based prompting
with a map excerpt corresponding to the described location. This exploits the LMM'’s
superior language capabilities while testing its vision encoder for its map reading ability.
As current state-of-the-art LMMs excel in language generation and do not perform image
segmentation, we superimpose on the map a grid with labelled cells and prompt the LMM
to identify the grid cell of the target location. The LMM is given the locality description,
the map and the size of the grid cells. We present the results of this study comparing to
an existing method, designed for interpreting locality descriptions, and other approaches to
using LLMs. Motivated by these results, we design and describe a workflow that can be used
to practically automate georeferencing. While the complete workflow is work-in-progress,
the core georeferencing module and other elements are already in use for experiments.

Section 2 of the paper will present the related work, after which we will discuss the
framework developed to use LMMs in georeferencing in Section 3. Section 4 presents the
experiments, results and discussion followed by the conclusion in Section 5.

2 Related work

2.1 Georeferencing

The earliest methods for georeferencing text were based on detecting and geocoding place
names in the text, which could then be used to assign one or more spatial footprints.
Numerous methods for this detection and geocoding process (sometimes referred to jointly
as geoparsing) have been developed [16, 58], and some of these have used deep learning
approaches. In the case of [15], input to a convolutional neural network included the place
names, context words and target name, and a vector representation of a pixel map of
place name instances, that assisted the disambiguation process. Document georeferencing
methods are currently dominated by language modelling approaches that treat all terms
in a text document as evidence for its location [37]. The initial language models used
Bayesian modelling to associate words with locations, where the locations could be grid cells
[46, 62], or clusters [55], where the latter included snapping the location to the most similar
already georeferenced existing document (in their case a social media posting). More recently,
transformer language models have been adopted either to infer coordinates with a regression
approach [44] or to classify a location as a geographic region [47], or a point of interest [30].

None of the methods above were specifically intended to deal with relative location
descriptions such as commonly occur in archived natural history records. Several studies
have presented rule-based approaches to georeferencing natural history specimen locality
descriptions that use relative spatial relations to specify an offset relative to a reference place
name. Different sorts of offset include simply distance from a named object, distance in a
specified cardinal direction, and distance along a path. Typically these methods include
some or all of detecting place names and spatial relational phrases, disambiguating and hence
geocoding the place name, applying the offset distance, and computing some measure of
uncertainty. The point radius method [61] was developed to achieve this, in which offsets
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were calculated relative to a representative point of a feature while also taking account of its
extent. The uncertainty of an inferred point-based georeference was expressed as a radial
distance that is a function of the six factors of extent of the locality, distance precision,
direction precision, unknown datum, coordinate measurement precision and map scale.

The point radius approach was refined in [18, 34], by defining several types of density
based uncertainty fields, that take into account the shape of the reference object and which
can be combined for complex descriptions. [53] computed distance and direction offsets,
accompanied by the spatial minimality toponym disambiguation method [27], and applying
a confidence measure based on matching the target record to already geofererenced records
of the same survey expedition, and to the nearest location of other archived records that
have the same species.

Georeferencing of descriptions of locations that use spatial relations and which were
generated in a human subject experiment was described in [8]. This is one of the few
examples of developing and experimenting with geospatial models of spatial relations in
natural language expressions outside of the natural history domain. The approach combined
models of the applicability of different sorts of relative spatial relations and required the prior
existence of a place graph of the spatial relationships between places mentioned in the texts.

2.2 LMMs and Geospatial Use Cases

With the recent rapid development of LLMs such as GPT4 [1], Llama [52], PaLM [10],
Flamingo [2], and DeepSeek’s V3 [32] and R1 models [17], adding other modalities, including
vision, was seen by many as the next improvement. This led to the development of LMMs
such as GPT-4Vision [40], Qwen-vl [5], PALM-E [12], Gemini-Pro Vision?, Sphinx and Janus
Pro [9]. However, there exist Vision-Language models that predate these LMMs such as
CLIP [41], LLaVa [33] and BLIP [29] that combine the two modalities. These models have
set benchmarks in various Vision-language tasks such as Visual Question Answering (VQA)
[3, 24], image captioning [45, 39], visual language navigation [48] and visual reasoning [65].

LMDMs have been applied in several geospatial applications. Vision capable models like
GPT-4 Vision, Gemini Pro Vision, and Sphinx have been tested for tasks like map element
recognition, where GPT4Vision has proved superior [63]. This study also tests GPT4Vision’s
comprehension of thematic maps, point pattern, and time series analyses. GPT4Vision has
also been tested in its ability to understand weather charts and make forecasts [26]. Although
not using vision capabilities, LLM’s abilities to carry out spatial tasks like mapping using
code and external tools like MapBox?®, spatial reasoning, and describing interior locations
have been tested [21, 31]. Perhaps the study closest to ours in use case is [71], although
they do not use Language-Vision models. This study focuses on geolocating images. They
consider maps and image embeddings as two modalities in their multi-modal fusion approach,
where they use maps to build a point-cloud representation that can be fused with embeddings
from images to exploit heights of buildings to better geolocate images. To the best of our
knowledge no method attempts to goereference textual locality descriptions or any form of
text documents with LMMs using maps as inputs. We were also unable to find any literature
attempting to georeference textual documents using LLMs.

2 https://aistudio.google.com/
3 https://www.mapbox.com/
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Figure 2 Workflow of the complete automated georeferencing process.

3 Methodology

Figure 2 presents the overall workflow of our proposed framework to utilize large multi-modal
models to accurately georeference locality descriptions using gridded maps. We present a
detailed description of the proposed method and the individual modules in this section.

3.1 Textual Information Parsing

As illustrated in Figure 2, the first step of the process is to extract the names of the places.

Grounding named places is the most effective and simplest form of georeferencing and this is
vital to our workflow. Named Entity Recognition (NER) [38] is an extensively researched
problem in Natural Language Processing (NLP). Place names or locations are one of the
classical semantic types that NER uses to assign labels to tokens or words [28], making
most NER solutions accessible for this step of our framework. Off the shelf NER tools such
as spaCy?, StanfordNER, [14], NLTK [6], and attention [56] based pre-trained transformer
models [70, 50] or modern LLM based approaches [22, 13, 66] can be leveraged for the
recognition of place names. Coreference resolution [51] can be beneficial when parsing
relations as illustrated in Figure 1. The extracted entities are used for Relation Extraction
(RE) and finally passed to the Feature Extractor module.

The subsequent step is the extraction of spatial relations between entities. As illustrated
in Figure 1, a single locality description may contain multiple relation clauses in the form of
< locatum, spatial indicator, relatum > triples that relate a location or located object (the
locatum) to a reference object or location (the relatum) with a phrase or clause denoting the
spatial relationship (spatial indicator). It is also common in locality descriptions to have

4 https://spacy.io/
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degenerate spatial relations where the locatum is not explicitly mentioned in text but is often
the final location being described [23]. RE is also a thoroughly studied area. In addition to
generic RE methods [70, 57, 67] used in information extraction and NLP, more geospatial
relation oriented RE methods have also been developed [25, 35]. Relation triples extracted
using these methods will then be passed to the Map Generator module (see Figure 2).

3.2 Geospatial Feature Extractor

Gazetteers and geospatial databases serve as fundamental resources for the grounding of
place names, providing structured and authoritative spatial references. This module will be
responsible for extracting relevant features from these knowledge bases, disambiguating them,
and selecting the preferred representation of the place instance. While individual states often
maintain authoritative gazetteers, several prominent sources provide global coverage. These
include, but are not limited to OpenStreetMap® (OSM), GeoNames® and, Google Places
API 7. These sources can vary in their coverage of different place categories (e.g., natural
features vs. artificial structures) and in the type of geometric representations they offer,
ranging from point-based locations to more complex polygonal and linear footprints. The
reliability and completeness of these sources can also vary as some of them are authoritative
while others are community-based volunteered information. As the collection country and
region are usually included in the records held by collection agencies, we are also able to
exploit country-specific gazetteers, allowing us to draw from more authoritative and accurate
sources. Conflating these sources provides the most comprehensive set of features for place
names mentioned in a locality description.

First, we query the spatial databases with the place names returned by the previous
module. The country name and region of collection can be used for disambiguation. If
multiple candidates from the same region from the same source remain, a spatial clustering
disambiguation is carried out (¢f [27]). This clusters all place names mentioned and selects
the candidates that form the strongest cluster, filtering out outliers. Subsequently, we are
left with a single feature from each source per place name. In our conflation of sources, we
prioritize features with complex geometries as this preserves information like extent and
boundaries required for visual georeferencing. Preference is also given to authoritative sources.
Finally, the selected features are passed on to the Map Generator module.

3.3 Map generation

For the effective application of LMMs in georeferencing, the creation of a map excerpt that
is likely to contain the ground truth sample collection location is essential. As the first
step of the map generation process, our map server will overlay the features returned from
the Feature Extractor on a suitable basemap. Also vital to accurate georeferencing using a
vision-based approach is the scale of the map. The map excerpt should be created with all
essential landmarks and features necessary for an accurate georeferencing. It should also not
be too coarse-grained, to avoid very large grid cells and high uncertainty. We propose the
following steps to create the map excerpts:
1. In alocation description with two or more named places, x, y where location x is completely
contained in y, the full extent of ¥ need not be included in the map extract. Take for
example, the following locality description: North Island, Bay of Islands County.

5 https://www.openstreetmap.org/
5 https://www.geonames.org/
" https://developers.google.com/maps/documentation/places/web-service
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Ca 2km north of Puketi. In this example, North Island contains Bay of Islands County
and the county contains Puketi, a small locality. We avoid creating a much coarser
grained map by not including the whole extent of the North Island or the Bay of Islands
region and focusing on the most fine grained location (Puketi). However, the parent
entity is used for disambiguation purposes when retrieving the child entity.

2. If there are two or more independent locations at the same level, the map extract must
include the full extent of all such features. e.g.: Fiordland, Mount George, south
shore of lake at head of Elizabeth Burn, 2km north of peak. In this example,
both Elizabeth Burn and Mount George are included in the map excerpt. The full extent
of Fiordland does not need to be included as per 1. above.

3. If the description includes an absolute distance based spatial relation, we ensure the map
excerpt includes a buffered spatial extent of the relatum.

4. We ensure features are clearly visible in contrast to the base map. i.e. distinct boundaries
for polygon features, clearly highlighted linear and point features.

5. We ensure legible labels for all identified and retrieved places.

Subsequently, we superimpose a labeled square grid on the map excerpt. We also record
the size of the map grid cells as this is used during inference to calculate relative distances.

3.4 Multi-modal Georeferencer

The Georeferencer, essentially a Large Multi-modal Model pre-trained on both language and
vision tasks, is the core of the proposed framework. This module takes as input the original
locality description that is to be georeferenced along with the gridded map excerpt created
by the Map Generator and attempts to predict a grid cell that is most likely to contain the
location described in the locality description. Similar to LLMs, LMMs can be sensitive to
the prompts used.

3.4.1 Prompt Design

We experimented with several prompts to choose the most effective prompt for this multi-
modal georeferencing task.
1. Simple Zero-Shot Prompting [42]:

What grid cell/cells represent the following location description?
Location Description:

2. Automatic Chain-of-thought [68, 59]:

Based on the gridded map given, what grid cell/cells represent the following
location description? Think step by step.
Location Description:

3. Logical Chain-of-Thought Prompting [69]:

Based on the gridded map given, what grid cell/cells represent the following
location description?

Think step by step. Identify the locations mentioned and use the relative spatial
relations mentioned in the description.

Location Description:

12:7
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4. Logical Chain-of-Thought Prompting with grid size:

Based on the gridded map given, what grid cell/cells represent the following
location description?

Each grid cell is <grid size> x <grid size>.

Think step by step. Identify the locations mentioned. If a distance is mentioned
in the description, use the grid sizes to calculate the relative distances.
Location Description:

. 7

5. Persona [60] with Logical Chain-of-Thought Prompting with grid size:

You are a language and cartography expert. Based on the gridded map given,
what grid cell/cells represent the following location description?

Each grid cell is <grid size> x <grid size>.

Think step by step. Identify the locations mentioned. If a distance is mentioned
in the description, use the grid sizes to calculate the relative distances.
Location Description:

. v

Our preliminary analysis of these prompting patterns indicated that the Logical Chain-
of-thought prompt enhanced with the grid size produced the best results. We will carry out
the rest of the experiments with this prompt.

The whole framework proposed in this section is highly reliant on the capability of an
LMM to effectively and accurately georeference locations with the aid of a visual map. We
present the experiments we conducted to gauge the potential of a multi-modal approach and
the merits of diverging from traditional uni-modal text based approaches in the next section.

4 Experiments

4.1 Data

For our preliminary experiment, collection records were obtained from Global Biodiversity
Information Facility® (GBIF). GBIF collection records report accurate coordinates for 83%
of the georeferenced records held in it [64]. Short location descriptions are more likely to
contain only a single place name or a sequence of place names and no explicit spatial relations
(though a comma separated sequence could represent a containment hierarchy). In the
absence of descriptive spatial relations, any georeferencing method can, in the best case, only
provide the coordinates of the place name mentioned (similar to a gazetteer lookup method).
Therefore, the data were first filtered to collect location descriptions that were 60 characters
or longer in length, allowing us to gauge the methods’ performances on descriptive spatial
relations. Given the vast number of collection records and collection types in GBIF, we
limited the data to floral specimen collection records from New Zealand provided to GBIF
by the Allen Herbarium. The place names and relations were manually annotated as the
Text Parser was not implemented at the time of experiment.

For the purposes of this preliminary study, we randomly sampled 25 records to create
cartographic map snippets. For this manually curated dataset, we only used OSM to identify
named places that are overlaid on the standard OSM base map. For this experiment, we

8 http://www.gbif.org


http://www.gbif.org

K. Wijegunarathna, K. Stock, and C. B. Jones

manually checked the excerpts to ensure that the ground truth location was contained within
the map excerpt. In our dataset of 25 examples, we observed that the ground truth location
was consistently included within the map excerpt generated using the aforementioned steps,
without needing any further manual intervention. However, it was observed that in examples
with linear features extending over large geographic extents such as highways and rivers, the
map excerpt was too coarse grained. In these cases, we manually zoomed in on the non-linear
features in the description, making sure to preserve some sections of the linear feature. We
will analyse the affects of this manual manipulation in Section 4.5.2.

Finally, each data item, e;, in our dataset can be characterised as follows:
e; = {text;, country;, region;, map;, location;,label;, scale; }, (1)

where text is the locality description, country and region are fields acquired from GBIF,
map is the grid-labeled map, location is the ground truth point location of collection as
recorded in GBIF (latitude and longitude coordinate pair), label is the label of the grid cell
that contains the location and scale is the size of the grid cell in the map. We manually
annotated label for each of these examples after the grid is superimposed. To the best of
our knowledge, this is the first publicly available dataset® for fine-grained cartographic map
comprehension for LMMs.

4.2 Baselines

Geolmp [54] is perhaps the most recent georeferencing tool for biological specimen georeferen-
cing but unfortunately it is no longer available online. The most effective methods developed
for social media post georeferencing (such as Tweets) rely on the metadata and social network
information and are therefore unsuitable for our task. GEOLocate [43] is an easy-to-use
georeferencing system designed specifically for georeferencing natural history collection data,
accessible both as a standalone software and an online service. We use this as one of our
baselines. GEOLocate enables multiple predictions for each location description, but we only
use its best prediction for this study. Additionally, as we are testing the performance of
LMDMs, we implement our own LLM baselines. All baselines compared against our LMM
based generative approach are listed here:

1. GEOLocateie.:: We use GEOLocate’s batch processing function over their online
service. We only provide the textual description, text;, to the service.

2. GEOLocateteqptiregion: With this baseline, in addition to the text to georeference, we
provide GEOLocate the country; and region; from our dataset.

3. ChatGPTcys: Zero-shot georeferencing with OpenAI’s ChatGPT!?. We use their flag-
ship model, GPT-40. We manually prompt it adapting a persona prompting pattern [60]:

You are a language and geography expert.

Georeference the following location description. Answer with coordinates in
decimal degrees.

Location Description: {text;}

9 https://doi.org/10.6084/m9.figshare.29093882.v1
Onttps://chatgpt.com/
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4. ChatGPT ecxttregion: This method takes a similar approach to ChatGPT;.,; but
enriches the prompt with more context by explicitly providing it with the country and
region of collection.

You are a language and geography expert.

Georeference the following location description. Answer with coordinates in
decimal degrees. The country and the district of the location are provided.
This location is in {region;}, {country;}.

Location Description: {text;}

J

5. GPT-40¢¢4:: We use the same prompt as the ChatGPT;.,; and the same underlying
model (GPT-40) but instead of using the web browser, we use the OpenAI’s API. The
distinction between the two methods is that ChatGPT;.,; has the capability to search
the web and retrieve the coordinates of the place names and related information, whereas
GPT-404¢4¢, accessed via the API, lacks this functionality.

6. GPT-40¢cpttregion: Prompts the GPT-40 model through OpenAI’s API using the
region and country enhanced prompt as seen in ChatGPTyeqt+region-

4.3 Evaluation Metrics

While distance to ground truth location from the prediction is a straight-forward measure
of error for methods that predict coordinates, the measurement of error is slightly more
complicated for comparing grid cells with coordinates. We implement three Euclidean
distance metrics to calculate the distance error given the correct grid cell label, label;, a
predicted grid cell label, pred;, and scale;:

centroid — distance = \/|x2 —z12 4 ly2 — y1]? X scales, (2)
max — distance = \/(|x2 —z1] +1)2+ (Jy2 — y1| +1)? x scale;, (3)
min—distance = \/mm(ng —z1| =1, |z2 —z1])2 + min(|ly2 — 1| — 1], ly2 — y1])? X scale;,

(4)

where (x1,y1) and (z2,y2) are two dimensional indices of the grid cells of label; and pred;,
respectively. Each grid cell is a unit square such that (x1y1), (z2,92) € NT x NT. The
centroid — distance calculates the Euclidean distance between the two grid cell centroids,
where one centroid is considered the ground truth point of collection and the other is
the predicted point. The maxz — distance indicates the upper bound of error, while the
min — distance gives the error in the best case scenario. max — distance records an error of
\/2 x scale? even if both ground truth cell and predicted cell are the same and calculates the
distance between the two furthest corners of the given cells. Conversely, min — distance gives
an error of zero if the predicted cell and the ground truth cell are the same or are adjacent
to each other, calculating the minimum distance between the two cells. For GEOLocate and
the generative LLMs, we use the mean Simple Accuracy Error (SAE) between coordinate
pairs. We also compare the methods on the percentage of predictions that lie within a 1km,
3km, 10km and scale; radius of the actual location.
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Table 1 Average distance errors and percentage of predictions within range of ground truth
across the dataset.

Method Average % acc@ % acc@ % acc@ % acc@

distance (km) 1km 3km 10km scale;
GEOLocatetest 107.23 16.0 28.0 52.0 8.0
GEOLocatetezt+region 107.23 16.0 28.0 52.0 8.0
ChatGPTiext 10.91 8.0 16.0 64.0 4.0
ChatGP T ext+region 10.12 8.0 16.0 68.0
GPT-40text 155.82 4.0 16.0 40.0 8.0
GPT-40tcat+region 39.98 0 12.0 56.0 0
min 0.42 84.0 96.0 100 88.0
Our method max 2.16 24.0 80 100 0
centroid 1.03 60.0 96.0 100 32.0
4.4 Results

Table 1 reports the performance of all methods tested. Both methods utilizing GEOLocate
produced identical results, signaling that the region and country attributes do not contribute
meaningfully to the georeferencing process. This may vary in other regions, such as the
United States, where the state-based administrative system is more relevant as indicated in
the documentation of GEOLocate. Out of the baselines, ChatGPTtcqt+region Shows the
best results with an average error of 10.12km. ChatGP Tzt follows closely behind with no
significant reduction in average distance. This indicates the LLM’s ability to disambiguate
places to a high degree of accuracy even without the region or country information. GPT-
40¢e,t produces the highest distance error. However, enhancing the prompt with the region,
as in GPT-40¢cqt4region, significantly improves results. This suggests the LLM’s use of
region for disambiguation. The stark difference in performance between the browser versions
(ChatGPT epitregions ChatGPTyey) and the same model accessed via the API (GPT-404¢44,
GPT-40ep1+region) Taise an important issue: the inability to browse the web in the API
versions significantly hinders the quality of georeferencing. This is also observed in some of
the reasoning provided by the model when producing the results. Versions with internet
access are able to produce accurate coordinates for named places in the locality descriptions.
This also leaves room for further improvement of the LLM based approaches. Providing
precise and accurate locations for the named places may result in better quality. However,
these improvements are not within scope of this paper.

Another interesting observation is the change of % acc at various distances. Although
ChatGPT epi+region and ChatGPTy.,; produced lower errors (out of the baselines), the %
acc@lkm, and % acc@3km are worse than those of GEOLocate methods. Although able
to correctly disambiguate the places and predict within the vicinity, all the LLM based
approaches struggle to make a fine-grained prediction. This is to be expected as these
methods only predict using point coordinates. Especially for large features such as rivers,
mountains, and reserves, a point alone is an inadequate representation for an accurate
georeferencing. Furthermore, these results indicate the LLM’s inability to take adequate
consideration of the rich spatial relations commonly found in these locality descriptions.

The LMM we used for this experiment to test our approach is the OpenAl gpt-40-2024-
08-06 model accessed through their API. As previously discussed in Section 3.4.1, our prompt
for the LMM does not limit the prediction of multiple grid cells. In our experiments, when
the model predicts multiple cells, we only consider the first cell predicted. Our proposed
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(a) Locality of Lake Wairarapa (b) Locality of Mount Azimuth & Courrejolles point

Figure 3 Map excerpts, their labels and their predictions for two locality descriptions: (a) J.K.
Donald Wildlife Reserve, NE shore of L. Wairarapa — about 400m from lake & (b) Mount Azimuth,
cliffs between Azimuth and Courrejolles Point near low point in ridge. The grid sizes for (a) and
(b) are 1.88km and 0.7 km respectively. The red point indicates the exact point of collection. The
green cell indicates the grid cell containing this point. The blue meshed cell indicates the first and
primary cell predicted by the model and the other blue cells indicate the secondary predictions. The
two place names mentioned in (b) are highlighted for visual clarity and the red cells indicate some
of the cells considered during the reasoning of the model.

approach significantly outperforms the baselines. The centroid-distance of the LMM is an
order of magnitude more accurate than the best-performing baseline. Max-distance, which
is the upper bound for error given two grid cells, is also markedly lower than all baselines.
This indicates our method’s ability to consider intricate spatial relations when producing
georeferences. When considering a centroid-centroid distance, 60% of the predictions lie
within 1km range of the actual location of collection. This level of accuracy is crucial
when manually retrieving biological specimens. 32% of the predictions made by our multi-
modal approach fall exactly in the correct grid cell as the original location. These results
clearly demonstrate the significantly superior performance and usefulness of our grid-based
multi-modal approach.

4.5 Discussion
4.5.1 Spatial extent and terrain understanding

A unique advantage of a multi-modal approach to georeferencing is its potential to understand
spatial extents without being limited to simple coordinates. We analyzed the results to
identify if the model is indeed capable of understanding extents of features. Figure 3(a)
demonstrates an example where the model accurately identified the correct grid cell containing
the point of collection. This is the map excerpt and prediction for the locality description
shown in Figure 1. OSM did not find a match for J.K. Donald Wildlife Reserve and the
model was restricted to only looking at the lake and its locality. Despite this, the model’s
ability to correctly predict the grid cell demonstrates the model’s ability not only to identify
the boundaries of the lake but also the distance from the border where the collection may
have taken place (i.e. the “shore” in the locality description). Also of interest is the reasoning
it produced for the prediction. The LLM response stated that it considers the green area
that looks like a “vegetation patch” to be the J.K. Donald wildlife reserve. This shows the
model’s ability to identify and reason with topographic features on the base map. Although
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the LLM’s mentioned feature identity is questionable (as OSM’s name for that patch is
Wairarapa Moana Wetland), this highlights a capability that could be highly beneficial for
map-based spatial reasoning.

Figure 3(b) provides another similar example. In this case, the prediction is far from
the actual collection location. However this is understandable when we analyse the locality
description: Mount Azimuth, cliffs between Azimuth and Courrejolles Point near
low point in ridge. Without contour lines or other altitude information, the phrase “low
point in ridge” is indiscernible. What is of interest is the calculation the model made for
“between”. The initial reasoning calculations made by the model predicted the cells marked
in red as the cells that represent “between Azimuth and Courrejolles Point”. However, it
later disregarded these cells in favour of the grids marked in blue. Although not explicitly
stated, it seems to have avoided predicting a place in the ocean. This may also have been
helped by the mention of an unnamed cliff. This ability of understanding terrain as shown in
both examples opens the door to incorporating species-related habitat information into our
approach. This could include characteristics such as whether a species inhabits land or water
and even probabilistic heat maps on a species’ preferential ecosystem.

4.5.2 Linear Features

As mentioned earlier during the creation of the gridded map dataset, manual intervention

was needed in the case of linear features. 9 out of the 25 samples contained linear features.

Figure 4 demonstrates this issue, presenting two map excerpts for the following locality
description: “North Canterbury, Napenape Scenic Reserve, 3km south of mouth
of Blythe River on coast.”. Including the complete linear feature resulted in a vastly
coarser grained map where the subsequently applied grid cells were 1.25km in scale. The
map excerpt relevant for the accurate georeferencing would produce much finer grained cells
of size 450m, allowing the model to not only pay attention to the river and the reserve but
also differentiate grid cells based on whether they lie close to the coast or not. The proposed
framework will benefit from further experiments on limiting the extent of the map especially
with regard to linear features. A potential avenue is the exploration of distances to the other
mentioned features and using these relations to limit the scope of the map.

Another observation on linear features was the vision encoder’s difficulty in comprehending
the continuity of the linear features. Some confusion was observed when one road meets
another at a junction but continues to be the same road after it. However, this can be
remedied by custom labels placed at regular intervals of the linear feature.

4.5.3 Enhancing vision models’ map comprehension

Along with the confusion with linear features, we also noticed a tendency of the model
to misrecognize the location of a feature using the label on the map instead of the icon
or marker. This is contrary to findings in coarser grained maps [63]. These issues persist

due to models like GPT-40(Vision) not being specifically trained for map comprehension.

Despite these inaccuracies, the performance of this zero-shot multi-modal approach is vastly
superior to text only approaches. However, there is still space for improvement through
fine-tuning, which would the take into account the considerable variation in the forms of
locality descriptions. The large numbers of natural history records collected from many
different countries around the globe with detailed locality descriptions present an invaluable
source of information to fine-tune (or perhaps even use during pre-training) vision models
on map comprehension. Maps created using our framework can easily be annotated using
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(a) Full extent of linear feature (b) Excerpt relevant for georeferencing

Figure 4 Two map excerpts for the same locality description. The inclusion of the full extent of
the river (highlighted in red), as shown in (a) produces a much coarser map compared to (b). The
Napenape Scenic Reserve is segmented in purple for visual clarity.

existing vision models: thus the framework could be used to create a version of the map with
the point of collection prominently marked. Existing multi-modal models can then be used
for the labelling (“Which grid cell contains the <Red Marker>7") of these maps. These
labels can subsequently be used for fine-tuning vision capabilities of other LMMSs using the
version of the map where the point of collection is removed. Alternatively, this can be used
to pre-train open source vision encoders jointly with smaller open weight LLMs'! to build
LMDMs specialized in map reading. This framework, of distantly supervised learning with
cheap machine annotated data, can be regarded as analogous to masked language modeling
or next sequence prediction for uni-modal language models.

5 Conclusion

This paper presents a novel method for georeferencing textual locality descriptions using
LMDMs to combine text understanding with map reading. The accuracy of this method
is tested against existing tools and the current state-of-the-art LLMs where our method
demonstrates greatly superior results. The distance error improves by an order of magnitude
compared to the best baseline. Motivated by these results, a framework and workflow were
designed to practically integrate LMMs for the task of georeferencing locality descriptions.
Along with the model’s unique abilities and current shortcomings, the study also revealed
avenues for future research that can be used to build powerful models capable of true map
comprehension, taking one more step towards GeoAl.
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—— Abstract

Reproducibility is a key principle of the modern scientific method. Maps, as an important means

of communicating scientific results in GIScience and across disciplines, should be reproducible.
Currently, map reproducibility assessment is done manually, which makes the assessment process
tedious and time-consuming, ultimately limiting its efficiency. Hence, this work explores the extent
to which Visual Question-Answering (VQA) can be used to automate some tasks relevant to map
reproducibility assessment. We selected five state-of-the-art vision language models (VLMs) and
followed a three-step approach to evaluate their ability to discriminate between maps and other
images, interpret map content, and compare two map images using VQA. Our results show that
current VLMs already possess map-reading capabilities and demonstrate understanding of spatial
concepts, such as cardinal directions, geographic scope, and legend interpretation. Our paper
demonstrates the potential of using VQA to support reproducibility assessment and highlights the
outstanding issues that need to be addressed to achieve accurate, trustworthy map descriptions,
thereby reducing the time and effort required by human evaluators.
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1 Introduction and Background

Maps play a key role in information visualisation, serving as an essential tool for com-
municating insights from geographic and spatial data. Geographic maps are published in
various outlets, from scientific journals to newspapers, which makes them accessible to a
wide range of audiences. Maps in scientific outlets, in particular, should represent the world
truthfully and accurately within known limits of precision [14], and ideally be reproducible
in order to provide reliable evidence for findings and facilitate the communication of science
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to society. Take, for instance, the field of environmental sciences, where climate change
debates have grown increasingly polarised. Maps can be powerful tools in these discussions,
but they can also be used to promote competing agendas. If inaccurate or misleading, maps
can lead to serious consequences, including poor decision making and hindered climate
action. This example illustrates a larger point: the need for transparent and reproducible
map making standards that can be applied across domains to support informed decision
making and maintain scientific integrity. Current practices of overpublishing that favour
quantity over quality in research publications [1], combined with the explosion of generative
artificial intelligence (AI), have made reproducibility increasingly important for establishing
the credibility of published research, for verifying results, and for enabling current studies to
be reused and built upon.

Reproducibility is defined as the ability to reach the same results previously obtained
by other researchers after repeating a scientific experiment based on the same data and
methods [18]. This can only be achieved if the data and software that underpinned a study are
transparent and accessible, but even then it is often not possible in practice to achieve exactly
the same results as the original study, especially when it comes to reproducing visualisations.
Inadequate documentation, the use of different software packages, and the reliance on implicit
system configurations are common causes of discrepancies between the reproduced results
and the original findings [15, 16, 19]. To ensure that a study is reproducible, the reproduced
results must be evaluated against the original results [12, 15, 17, 24].

Basing the evaluation of reproduced results on numerical values is generally a straightfor-
ward process: if all numbers are identical, the reproduction is considered successful. However,
visualised results, e.g. in the form of diagrams or maps, are easier to grasp for human
observers, but pose several challenges when used to assess reproducibility. Variations in
graph curves, missing key numbers, and different aspect ratios can make it difficult for
readers to determine if reproduced figures accurately reflect the original results, even when
the numerical data is identical [15]. In addition, an increased effort required for map reading
can negatively impact the evaluator’s assessment of the success of the map reproduction [17].
Therefore, computational support is essential for assessing reproduced maps in order to
increase efficiency and accuracy, as well as to facilitate the examination of geovisualisations
illustrating complex datasets. Besides, multiple maps can be derived from a single dataset
during scientific exploration. Nonetheless, reproducible map making focuses on creating a
faithful visual copy of an original map, without introducing any significant variations that
alter the map’s interpretation [16]. Hence, only two maps are of interest during reproducibil-
ity assessment: the original and its copy. The goal is to identify similarities or differences
between them - using supporting data, software, and documentation - without concern for
the map’s ontological status (e.g. as truth, social construct, or mappings [13]). Of course,
graphical excellence and graphical integrity [21] remain essential to ensure that both the
original and the copy do not distort effects in the underlying source data.

Question-answering (QA) can serve as a method for extracting and evaluating map
content [20]. Visual question-answering (VQA), the computer vision task of teaching machines
to comprehend the content of a picture and to answer questions about it in natural language,
can now be supported by vision language models (VLMs), which are multimodal large
language models (LLMs) capable of processing and understanding both text and image. For
example, Bendeck and Stasko [3] explored the potential of VLMs for the visual interpretation
of charts, confirming their capabilities while also highlighting their current limitations in
this task. Thus, we can infer that maps, as a specialised type of chart with explicit spatial
relationships between the depicted elements, could also benefit from these advancements.
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In order to investigate to what degree this is true in practice, we examined the ability of
five state-of-the-art models to support tasks related to map reproduction assessment. Our
goal was to assess whether VLMs can assist an independent reproducing researcher or a
reproducibility reviewer to verify that a map has been successfully reproduced. In particular,
we examined three tasks: map discrimination (distinguishing between map and non-map
images), map interpretation (answering questions about a map image accurately), and map
comparison (assessing the similarity of two maps based on a set of questions).

Recent studies in GIScience have explored the understanding of LLMs for spatial concepts.
For instance, Ji and Gao [11] evaluated the ability of LLMs (GPT-2, BERT) to represent
geometries and their spatial relations using LLM-generated embeddings. The results showed
the potential of LLMs to capture geometry types and spatial relations, while there is room
for improvement in estimating numerical values and retrieving spatially related objects.
The capacity of LLMs for spatial reasoning was also confirmed by Cohn and Blackwell [6].
However, they concluded that LLMs are not reliable for drawing conclusions about cardinal
directions and perform better in factual recall tasks rather than in spatial reasoning tasks.
Hojati and Feick [9] tested the performance of various LLMs in answering spatial questions
and providing methodological steps for arriving at each answer, both in natural language
and in SQL. Feng et al. [7] connected the prompt to an external knowledge base to develop
a Geographic Question Answering (GeoQA) pipeline, thereby extending the capabilities of
LLMs. Moving from text-only to multimodal input (i.e. text accompanied by images), Xu
and Tao [23] found that GPT-4V could retrieve information and perform basic analysis tasks
with maps. Griffin and Robinson [8] used the ChatGPT prompt to generate accessibility
descriptions for map input. While the aforementioned studies demonstrate encouraging
results, multimodal input has yet to be systematically tested for spatial concepts.

Our research addresses this challenge, setting the context of QA in relation to the
assessment of map reproducibility. The key contribution of this paper is the empirical
evaluation of five state-of-the-art VLMs for three key tasks related to map reproducibility
assessment: map discrimination, interpretation and comparison. Our findings demonstrate
that, albeit with certain limitations, VLM-enabled VQA can streamline the verification of
reproduced scientific results displayed on maps. In addition to its benefits in automating
reproducibility assessment, map VQA also has the potential to improve accessibility as it
opens up new possibilities for visually impaired readers to access information in figures.

2 Experimental Design

To examine the interpretation capabilities of VLMs for maps, we selected five state-of-the-art
VLMs based on performance and diversity. Specifically, we considered the models with the
highest scores on the vision leaderboard in the Chatbot Arena [5], ensuring that no two
models were from the same provider (e.g. Google or OpenAl). We did not consider models
that might be subject to rate limits or withdrawn without prior notice, such as those labelled
as experimental or preview. The selection was done at the beginning of January 2025 and
this led to the following five models: Gemini 2.0 Flash-001, GPT-40 (2024-11-20), Claude
3.5 Sonnet (20240620), Pixtral Large (latest), and Qwen-VL-Max. We narrowed down the
scope of this study by focusing solely on thematic maps and followed a three-step approach
to evaluate the map reasoning skills of the selected VLMs:
Step 1 — Map Discrimination The ability to distinguish between different types of charts -
between maps and non-maps in this case - is necessary for automating the reproducibility
assessment of visualisations. We considered this step a prerequisite for confirming that
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the VLM understands the concept of a geographic map and can therefore be used to
automate subsequent tasks related to the reproducibility assessment of geovisualisations.
Hence, we tested the ability of the models to differentiate between maps and other types
of charts. We assembled a dataset of 40 images, consisting of 20 maps and 20 charts of
other types, including pie, line, bar and point charts, and posed the question Is this image
showing a map?. To account for the diversity of maps encountered in different outlets,
we sourced maps from Our World in Data, which targets broader audiences, and from
the scientific Journal of Maps. The selected maps cover a range of geographic scopes,
from regional to global; different layout and legend styles; and different applications, from
geological to socio-economic indicators. All the images we sourced were licensed under
CC BY.

Step 2 — Map Interpretation Extracting and evaluating information from maps is essential
for assessing the equivalence between one map and another. Therefore, we tested the
VLM’s ability to read and interpret geographic maps. We asked eight questions about
map interpretation on the map subset from the map discrimination task, each question
addressing one of the following dimensions: map type, spatial scale, geographic scope,
orientation, visualised data, symbology, legend recognition, and legend-data consistency.

Step 3 — Map Comparison The final step in assessing reproducibility is to compare the
reproduced result with the original, as mentioned in Section 1. Therefore, we evaluated
the VLMs’ map comparison capabilities. For this step, we used a dataset of 20 maps that
differ from each other in only one dimension, such as orientation, symbology, or legend,
to assess whether the models can identify subtle visual nuances that are relevant in
geographic information visualisation. We provided two maps as input to the models and
asked six questions about their differences, following the guidelines on the importance of
visual differences in assessing map reproducions provided by [17]. The questions addressed
similarities in the topic, geographic extent, orientation, positions of the visualised data,
legend, and symbology. All questions were formulated to be answerable with yes or no,
so that a human evaluator could quickly skim through the automated responses and
determine whether any significant differences were identified.

The aforementioned steps were implemented using the models’ APIs in Python scripts.
In the API calls, we set the models’ attributes temperature to “0” and, if applicable, seed to
the same random integer (“123”) to make the model as deterministic as possible. We also set
the maximum number of tokens in the model’s response to 128, assuming that this number of
tokens should be sufficient to provide a focused answer. If the model exhausted this limit for
most answers, we reran the test and set a new maximum number of 160 tokens. We did not
extend the token limit beyond this number. Additionally, we measured the time each model
took to respond to each prompt and calculated the mean completion time per output token.

A sample of the dataset for all three steps is shown on Figure 1. The entire dataset and
the scripts created for this experiment can be accessed at https://doi.org/10.17605/0SF.
I0/W4BQG.

Evaluation

We evaluated the accuracy of the map discrimination task based on the model’s ability
to correctly answer yes or no, without further analysing the responses. For the map
interpretation and comparison tasks, we evaluated the models’ constrained response accuracy
by classifying an answer as correct if all the information provided within the specified token
limit was accurate; otherwise, it was classified as incorrect. This metric indicates the model’s
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Figure 1 A selection of images from the dataset we compiled. Images are sourced from Our World
in Data (https://ourworldindata.org/data) and Vlkova et al. [22] under the CC BY license,
and our own creations. The map comparison figures were generated by systematically varying one
dimension (e.g. color, orientation, or symbology) of an existing map image.

ability to provide an accurate answer to the question within the specified token limit, without
including any false information. For example, if the model gave a correct answer but provided
a false justification or included any incorrect information along with the answer, we marked
it as incorrect. Similarly, if the model provided several true facts but failed to explicitly
answer the question within the token limit, we also marked it as incorrect. Our guiding
principle for the evaluation was whether the model could be trusted to provide accurate
information without requiring our supervision. During the evaluation process, we kept a log
of issues that arose and could help further characterise the use of VLMs for this purpose,
but that could not be quantified in terms of correct/incorrect percentages. We also did this
to gain a qualitative impression of the models’ strengths and weaknesses.

Prototype

As mentioned in Section 1, automated tests are a desirable asset for map reproducibility
assessment. With the best performing model, we built a browser-based tool that allows
users to upload two map images, run the evaluation process, and determine if the second
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image has been successfully reproduced. The evaluation process is based on the questionnaire
we created for the map comparison task. Additionally, we implemented a simple overall
evaluation function that counts the number of yes and no answers, and returns a successful
status if more than half of the questions were answered with yes and unsuccessful otherwise.
We also integrated the calculation of cosine similarity based on the image embeddings of
the two input images as an initial quantitative indicator of their similarity. The code of the
prototype can be found at https://doi.org/10.17605/0SF.I0/W4BQG.

3 Results

We ran all the experiments from the same Ethernet cable endpoint, which theoretically
provides a 1000 Mbps Internet connection. In practice, we measured 936.71-937.38 Mbps for
download and 874.27-933.74 Mbps for upload. We found the average completion time per
output token, from shortest to longest, to be as follows: Pixtral Large (0.06 seconds), Gemini
2.0 Flash (0.08 seconds), Qwen-VL-Max (0.10 seconds), Claude Sonnet 3.5 (0.11 seconds),
and GPT-40 (0.15 seconds). However, Gemini 2.0 Flash had the fastest overall completion
time, as it provided shorter answers compared to the other models.

In the map discrimination task, all models were able to differentiate perfectly between
maps and non-maps. It is worth mentioning that one of the geographic maps in this dataset
included pie charts illustrating the ratio of mountain area to land surface for each continent,
and all five models correctly classified this image as a map. It should also be noted that Qwen-
VL-Max rejected nine of the 20 map images used as input for the map discrimination and map
interpretation tasks. The error message returned was: “Input data may contain inappropriate
content.” We were unable to identify any pattern related to map topic, geographic extent, or
image resolution.

For the map interpretation task, we found the constrained response accuracy, from highest
to lowest, to be as follows: Gemini 2.0 Flash (80%), GPT-4o (77%), Claude Sonnet 3.5 (76%),
Qwen-VL-Max (69%), and Pixtral Large (58%). The lower performance of Pixtral Large
is mostly due to an inability to give concise answers within the token limit, rather than
providing factually inaccurate information. Qwen-VL-Max and Pixtral Large appear to
rely heavily on Optical Character Recognition (OCR), as they seem to repeatedly use the
text extracted from the image in their responses. This, combined with the text generation
module, can lead to vague answers. Pixtral Large also tends to continue describing the
entire image even after answering the question. The constrained response accuracy per
question for the map interpretation task is shown in Table 1. We can observe that almost all
models performed worst on the question What is the spatial scale of the map?. We accepted
answers related to the scale bar as correct; however, the models often ignored the scale
bar, misinterpreted it, or referred to the geographic extent instead. Conversely, the models
achieved the highest average constrained response accuracy on the question regarding the
geographic scope.

The models were able to identify and distinguish between several types of maps beyond
thematic, including choropleth, topographic, tectonic, proximity, land cover and habitat
suitability maps. GPT-40 provided the most diverse responses to this question. All models
were able to identify inset maps, although they were not explicitly asked to do so. Moreover,
the models are already performing some level of fact-checking, such as identifying the location
of the highest mountain peaks. The generative nature of VLMs is also evident, as they tend
to elaborate on aspects that were not the subject of the question. Gemini 2.0 Flash exhibited
this behaviour the least.
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To answer the question What data are visualised on the map?, the models essentially
parsed and repeated the legend. They showed a good understanding of what a legend is and
were able to recognise different legend formats. However, mapping visual symbols to their
corresponding values is not always straightforward, especially in horizontal legends where
each colour represents a range of values. We found Claude Sonnet 3.5 to be particularly
effective at legend interpretation, providing many details.

Table 1 Constrained response accuracy per question for the map interpretation task.
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What type of map is this? 90% 80% 65% 55% 91% 76%
What is the geographic scope of the 95% 95% 70% 75% 82% 83%
map?
What is the orientation of the map? 95% 90% 90% 85% 45% 81%
What data are visualised on the map? 90% 70% 95% 80% 73% 82%
What symbols are used to visualise the  80% 65% 80% 45% 64% 67%
data on the map?
Does this map contain a legend? 70% 95% 85% 50% 82% 76%
Is the legend consistent with the visu- 90% 90% 75% 40% 64% 72%
alised data?
What is the spatial scale of the map?  30% 30% 50% 35% 55% 40%
Average per model 80% 7% 76% 58% 69%

For the map comparison task, we found the constrained response accuracy, from highest
to lowest, to be as follows: GPT-40 (86%), Gemini 2.0 Flash (85%), Qwen-VL-Max (81%),
Pixtral Large (74%), and Claude Sonnet 3.5 (73%). The constrained response accuracy
per question for the map comparison task is shown in Table 2. We can observe that the
performance in this task is better than in map interpretation. This could either be because
the second image acts as additional context or reference, helping the model to provide
accurate answers, or because the maps used for this task are less complex. The models
achieved the highest average accuracy for the question on legend similarity, further reinforcing
the impression that VLMs can effectively identify the map legend as a distinct object. All
models scored lowest on the question Do the two maps visualise the same data in the same
positions?. Our dataset included a map with data points shifted by several pixels compared
to the original, but no model identified the difference. Claude Sonnet 3.5 responded that
there was a difference in the data positions, but justified its answer by mentioning a difference
in the distribution of colours. Moreover, when we presented two maps that show the same
data but differ slightly in geographic extent (i.e. one map looks “zoomed in” compared to
the other), Pixtral Large and GPT-4o interpreted this difference as a change in the visualised
data pattern. This suggests they may be counting pixels rather than using object-based area
quantification.

All models detected a difference in the units of measurement in the legend (cm instead of
mm). GPT-4o0, Pixtral Large, and Claude Sonnet 3.5 correctly identified a difference in the
font, while GPT-40 and Gemini 2.0 Flash detected a change in the base map. All of these
differences were detected by the models without explicitly asking for them in the prompt.
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Table 2 Constrained response accuracy per question for the map comparison task.

20 sG> ©
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Are these maps about the same topic?  100% 100%  63% 79% 74% 83%
Do the maps have the same geographic ~ 74% 84% 68% 74% 89% 78%
extent?
Do the maps have the same orienta- 89% 79% 84% 74% 79% 81%
tion?
Do the two maps visualise the same  74% 68% 58% 53% 63% 63%
data in the same positions?
Do the two maps have the same le- 89% 95% 89% 74% 89% 87%
gend?
Do the two maps use the same symbols ~ 84% 89% 74% 89% 89% 85%
for the visualised data?
Average per model 85% 86% 3% 74% 81%

4 Discussion and Outlook

Our results show that VQA is a promising tool for assessing map reproducibility. No
model performed equally well on all questions, but the accuracy values obtained during the
evaluation suggest capabilities to assess the content of a reproduced map that go beyond
pixel-wise comparison. Another advantage of using VQA to assess reproducibility is its
independence from specific tools, as it is only the data format of the final cartographic
product that matters and not whether we have used scripts or desktop GIS to produce it.
The use of VQA for content-based map comparison offers a new approach to assessing the
equivalence of geovisualisations, not only in the context of reproducibility, but also in other
scenarios, such as creating equivalent visualisations for different audiences (e.g. the scientific
community, policy makers, the general public).

Questions where the response accuracy values are particularly low (Tables 1, 2) indicate
areas for future research so that the models can come to the point where they can be
confidently used in automated assessment workflows. Also, the reasons that affect the
performance of a model (e.g. impact of the number of parameters, training process) should
be systematically investigated in future work before its integration into these workflows.

Furthermore, two key conceptual issues must be addressed before integrating a VQA
approach into automated systems. First, ensuring transparency throughout the entire
assessment process is essential, which poses a challenge when working with VLMs/LLMs. If
integrated into an automated assessment system, a model should be explainable to ensure
fairness in automated decisions and to promote trust [2]. At the moment, the best model
is Gemini 2.0 Flash, based on both speed and constrained response accuracy. However,
relying on closed-source, proprietary models for such tasks contradicts the principles of
open science. An automated reproducibility assessment system should itself be verifiable
before it is used to verify scientific outcomes. To achieve this, we need open-source models
with better performance. Another issue to resolve before automating the reproducibility
evaluation process is determining the threshold for success. In this paper, we have based this
evaluation on the similarity of the reproduced map to the original. While this comparison
is necessary to confirm reproducibility, it is not sufficient on its own; factors such as the
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accessibility of materials and the computational effort required for reproduction also indicate
how reproducible a study is. While moving beyond pixel-based comparisons is a step forward,
the question remains: how should reproducibility and reproduction success be quantified?

Future research should continue to advance our understanding of map comparison and
VQA capabilities. One potential avenue for exploration involves investigating alternative
comparison strategies other than the yes/no question approach that we followed. For
example, we could perform text similarity computations on the answers, and examine
additional comparison dimensions such as the units of measurement or the basemap. The set
of questions used in this study was deliberately kept simple in order to have a consistent
evaluation of the VLMs’ responses across the different maps in our dataset and to establish
an initial baseline for VLM evaluation. Developing more sophisticated and context-specific
questions is part of our future work. Additionally, exploring the ability to accurately retrieve
specific data values from different positions on the map presents another promising area for
future research. It is also worth investigating the extent to which VLM responses are based
on the textual elements on the maps and how well VQA would perform on maps with no or
very little text.

Overall, the ability to get accurate descriptions of maps with VQA is remarkable not
only for map reproducibility assessment, but also because it opens up new ways for visually
impaired people to access information for the first time. It is also a step towards the
democratisation of science, where VQA can be used by the public to get explanations of
scientific geovisualisations [4].

Limitations

There are several limitations to our work. Firstly, we set the maximum number of output
tokens to 128, with an option to extend it to 160. This means that the models might
have hallucinated more (i.e. presented false information as fact [10]) or might have come
to a different conclusion if we had allowed a higher limit. It is necessary to assess the
sensitivity of the results to the maximum number of output tokens by setting different limits,
evaluating the outcomes, and determining whether the results remain consistent across
different limits. Furthermore, constrained response accuracy is only an initial measure of
the models’ performance. We did not develop specific metrics for conciseness, focus, or
completeness, only qualitative notes were taken during the evaluation. Finally, the comparison
task focused on maps varying along a single dimension, as mentioned in Section 2. The
performance of VLMs on maps that differ across multiple dimensions, which adds complexity
to this task, remains to be tested.

5 Summary

In this paper, we investigated the ability of five popular VLMs (Gemini 2.0 Flash, GPT-4o,
Claude Sonnet 3.5, Pixtral Large, Qwen-VL-Max) to discriminate, interpret, and compare
geographic maps using VQA. We compiled a set of 40 chart images (20 maps and 20 charts

of other types) to test whether the VLMs can distinguish between maps and non-maps.

Subsequently, we evaluated the VLMs using only the map images by asking questions covering
eight dimensions of map interpretation. After confirming the potential of these models for
interpreting geographic maps, we proceeded to evaluate their map comparison capabilities
by providing two maps as input and asking questions about their identified differences across
six dimensions relevant to assessing map reproduction [17]. For the comparison task, we
used 20 maps that differ in only one dimension. While preliminary, our results show that
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all five VLMs already possess spatial understanding and map reading skills. Our next steps
in this line of research will aim to improve the models’ performance and to develop more
sophisticated strategies for comparing maps and quantifying their differences. Ultimately,
we are working towards integrating VQA into systems that automate map reproduction

assessment and support scientific fact-checking, enabling reproducibility reviewers to quickly

verify scientific results.
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—— Abstract

Geospatial analysis has been widely applied in different domains for critical decision making. However,
the results of spatial analysis are often plagued with uncertainties due to measurement errors, choice
of data representations, and unintended transformation artifacts. A well known example of such
problems is the Modifiable Areal Unit Problem (MAUP) which has well documented effects on the
outcome of spatial analysis on area-aggregated data. Existing methods for addressing the effects of
MAUP are limited, are technically complex, and are often inaccessible to practitioners. As a result,
analysts tend to ignore the effects of MAUP in practice due to lack of expertise, high cognitive
loads, and resource limitations. To address these challenges, this paper proposes a machine-guidance
approach to augment the analyst’s capacity in mitigating the effect of MAUP. Based on an analysis
of practical challenges faced by human analysts, we identified multiple opportunities for the machine
to guide the analysts by alerting to the rise of MAUP, assessing the impact of MAUP, choosing
mitigation methods, and generating visual guidance messages using GIS functions and tools. For each
of the opportunities, we characterize the behavior patterns and the underlying guidance strategies
that generate the behavior. We illustrate the behavior of machine guidance using a hotspot analysis
scenario in the context of crime policing, where MAUP has strong effects on the patterns of crime
hotspots. Finally, we describe the computational framework used to build a prototype guidance
system and identify a number of research questions to be addressed. We conclude by discussing how
the machine guidance approach could be an answer to some of the toughest problems in geospatial
analysis.
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Keywords and phrases Machine Guidance, Geo-Spatial Analysis, Modifiable Areal Unit Problem
(MAUP)

Digital Object Identifier 10.4230/LIPIcs.GIScience.2025.14

1 Introduction

Geospatial analysis plays a critical role in a range of domains [30]. For example, public health
professionals used geospatial analysis to track disease outbreaks and plan interventions.
During the COVID-19 pandemic, analysts used GISystems to map infection hotspots,
model transmission patterns, and allocate healthcare resources efficiently [38]. Practical
applications of geospatial analysis in these professional domains involve complicated processes
of managing multiple datasets, selecting appropriate spatial scales and methods for analysis,
and interpreting geographic patterns. This can be extremely challenging for people without
adequate GIS expertise [54] and spatial thinking skills [31, 36, 34].

Due to the unique nature of geographical data, spatial analysis results often suffer from
uncertainties in data accuracies, measurement frameworks, transformation artifacts, and
spatial heterogeneity [40]. Addressing these uncertainties is essential for ensuring reliable
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conclusions and decisions. In particular, the Modifiable Areal Unit Problem (MAUP) [20, 51]
is a well-known issue that often makes the results of a spatial analysis unreliable. Although
the concept of MAUP and related factors is well documented, most analysts choose to
ignore MAUP effects in practice due to lack of expertise, high cognitive loads, and resource
constraints [50, 26]. Even if analysts are committed to addressing the effects of MAUP, there
is very little help and guidance on how to decide the proper strategies and methods in a
specific problem-solving context.

To bridge this skill gap for addressing modifiable area unit problem in spatial analysis,
we propose a machine guidance approach that captures the knowledge and experience
necessary for dealing with MAUP into an intelligence agent. While human analysts conduct
spatial analysis, a machine guidance agent is capable of monitoring the progression of the
spatial analysis process and volunteers help and guide in two ways: (1) detect situations
where MAUP takes effect and (2) direct users to take proactively measures to mitigate its
impact on analytical results. Designing such a machine guidance agent requires that we
answer a number of research questions:

1. Why do analysts tend to ignore MAUP in spatial analysis? We identified seven (7) reasons
why people failed to address MAUP effectively (see Section 3.3). This analysis provides
us insights on opportunities for machine guidance.

2. What factors contribute to the level of MAUP effects? The effects of MAUP on analytical
results could range from negligible to serious depending on the degree of spatial autocor-
relation and spatial heterogeneity, data aggregation methods, and the choices of scale
and area units (see Section 3.1). Understanding these causal factors leads to ideas and
methods to mitigate MAUP effects.

3. What are the methods and tools available to address the effects of MAUP? We synthesize the
scattered literature and identify eight methods that are used to help analysts understand
the nature and extent of MAUP effects and minimize the effects on the analysis (see
Section 3.2). Using these methods requires a significant level of GIS expertise and is
cognitively challenging.

4. What are the opportunities and strategies of machine guidance in addressing MAUP?
Machine guidance exhibits helpful behavior that should be offered only when MAUP arises
and when users need help mitigating the effects of MAUP. We identify seven recognizable
opportunities and prescribe guidance strategies for them (see Section 4).

5. How would users (analysts) experience machine guidance? We demonstrate how users
experience guidance by presenting a scenario of use in the context of crime hotspot
analysis where the machine guidance agent helps the analyst in dealing with the MAUP.
Through the scenario, we gain insight into the expected behaviors of machine guidance.

6. How can we enable machine guidance computationally? We show how machine guidance
can be enabled computationally by a software agent that can engage with users in
collaborative problem solving. Our computational framework was inspired by guidance
research in visual analytics [10, 11], advances in mixed-initiative interfaces [53], and
intention-based interactions with GIS [9].

By answering the above research questions systematically, this paper contributes to a
theoretical foundation of machine guidance in GIScience research. Developing machine
guidance tools for geospatial analysis is our long-term goal, and we provide here an initial
framework for exploring the design challenges in both conceptual and computational levels.
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2 Machine Guidance Approach to Address the MAUP

Analyst Guidance agent

@ communicate
N Pl

Geospatial data
and tools

Figure 1 Collaborative Agent architecture of machine guidance.

Machine guidance is an active process of addressing the cognitive challenges and expertise
gaps of users that hinder their analytical progress [11]. This approach argues for solving
complex and difficult problems by bringing human and computer into a collaborative work
relationship [61]. Collaboration is a process in which two or more agents work together to
achieve a shared goal. In our case, we introduce a machine guidance agent to partner with a
human agent in spatial analytic activities.

Figure 1 shows the collaborative relationship between human analysts and the guidance
agent. A machine guidance agent is an intelligent computational agent that actively assists
users during analytical processes by offering contextual guidance, recommendations, and
feedback [12]. Tt can recognize when the analyst encounters difficulties and how to help [11]
by integrating reasoning, planning, and communication.
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Figure 2 Machine guidance Approach to Supporting Geospatial Analytic Process.

A key capability of a machine guidance agent is to monitor the progression of a spatial
analysis process and to volunteer help and guide when needed. As illustrated in Figure 2, the
process of solving a domain-specific problem using geospatial analysis generally starts with
developing a spatial representation of the problem, followed by the formulation of spatial
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questions and the assembly of analytical GIS workflows. Throughout this process, a machine

guidance agent works alongside to assert necessary guidance when the human analyst gets

lost in navigating the problem and solution space and to steer users away from any dangers
and risks under uncertainties.

The task of guiding analysts in dealing with MAUP effects is the responsibility of the box
labeled 'Guiding Analytical Strategies and Methods . Zooming into this box, our current
work aims at the following two objectives (also summarized in Figure 3):

Obj-1 Building awareness of MAUP effects. The guidance agent actively monitors the
analytical process to identify indicators of MAUP occurrences (such as the use of
area-aggregated data for analysis). When an MAUP issue occurs, the guidance agent
should alert its dangers and potential effects. If the analyst ignores it or is reluctant
to address it, the guidance agent plays a role in convincing the analyst to do more
exploration to understand the effects on the analytical conclusions.

Obj-2 Bridging the gaps of expertise in mitigating MAUP effects. If the analyst is
committed to addressing the MAUP effects, the guidance agent will direct or assist
the process of experimenting with multiple spatial units and scales, applying various
methods to verify and confirm the choices of area units, and prescribing GIS workflows
for proper implementation. Machine guidance simplifies this process by automating
repetitive tasks, providing statistical references, and offering immediate feedback on
potential solutions. This allows analysts to focus on steering the analysis to achieve
confident results.

Not Aware of Convince
MAUP MAUP N Alert Lack of motivation »! by exploring
occurs ”| rise of MAUP | to handle MAUP ™| 110 ctects
Committed to mitigate MAUP effect
€
h-strategies s?;%ggis;s »| Prescribe GIS
and methods workflows

Figure 3 Machine guidance objectives in dealing with MAUP.

Given the above objectives, it is important to establish a deep understanding of how
MAUP arises in spatial analysis, what factors contribute to the serenity of MAUP effects,
and what methods and tools are available to explore and mitigate MAUP effects. We will
answer the above questions through synthesizing the literature.

3 Nature of the Modifiable Areal Unit Problem (MAUP)

Many applications of geospatial analysis use area-aggregated data as the primary unit of
analysis [64, 33]. Data aggregation by area units smooths out local variations, potentially
masking important spatial patterns and heterogeneity within areal units. Spatial analysis
using area-aggregated data often relies on the assumption of internal uniformity within
each area unit. This assumption is rarely true in real world contexts, where factors such as
population density, land use, and environmental conditions can vary considerably within a
single region. A key issue stems from the wide variety of potential spatial units available
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for analysis, including administrative boundaries, census tracts, natural zones, and regular
grids. The results of spatial analyses can differ markedly depending on which of these areal
units is selected. Openshaw [49] demonstrated this phenomenon by showing how correlation
coefficients changed when smaller spatial units were aggregated into larger ones. His findings
revealed that correlation values can fluctuate between different spatial scales. This effect,
known as the Modifiable Areal Unit Problem (MAUP), undermines the credibility of analyses
based on arbitrarily chosen spatial units, casting doubt on the reliability and validity of the
resulting conclusions.

The effects of MAUP on analytical results could range from negligible to very serious.

This variability of MAUP effects can be explored by comparing analytical results on different
spatial scales (thus the scale effect [27]) or using different zoning schemes (thus zoning
effects [18]). Fotheringham and Wong [25] demonstrated that spatial aggregation introduces
biases that vary depending on the chosen scale. This highlights how the choice of spatial
scale significantly impacts analytical outcomes, emphasizing the importance of selecting
an appropriate scale for an analysis. The zoning effect, on the other hand, arises from
the specific configuration of spatial units. Even with the same number of zones, different
boundary arrangements can produce drastically different statistical outcomes. Openshaw and
Taylor [50] experimented with the use of alternative configurations of counties to compute
the strength of correlation and they showed that the results of correlation coefficients ranging
from 0.265 to 0.862, highlighting the inherent instability in spatial analysis.

3.1 Factors that Cause MAUP Effects

Although MAUP is a general concern in spatial analysis, the actual effect of MAUP on the

validity of spatial analysis results could be negligible in some cases and highly problematic

in other cases. It is very important to understand the key factors that contribute to the
magnitudes of MAUP effects. Here, we synthesize the literature and highlight four major
factors.

F1 The Nature of Boundaries of Area Units. The boundaries of area units could
be functional (e.g., natural regions, watersheds, transportation zones) or arbitrary
(for example, grids, hexigon). Spatial analysis should avoid arbitrary delineated area
boundaries and align with natural boundaries when possible [63]. For example, in crime
mapping, the use of square grids can cut through natural neighborhoods, distorting
patterns. Instead, mapping crime hotspots using police districts or neighborhoods tends
to generate more reliable results.

F2 Data Aggregation Methods. Data aggregation methods, such as summing, averaging,
or interpolation, determine how data values are combined within spatial units. Different
aggregation methods affect both the scale effect (how the results change with different
levels of aggregation) and the zoning effect (how results change with different boundary
configurations) [37]. The choice of data aggregation methods directly influences the
representation and interpretation of spatial patterns, adding another layer of complexity
to the MAUP.

F3 The Degree of Spatial Autocorrelation. Spatial autocorrelation reflects the similarity
between nearby observations. When strong positive spatial autocorrelation is present,
neighboring areas tend to have similar values. Aggregating them into larger units
inflates spatial dependence, potentially exaggerating trends [41]. The size of areal
units significantly influences the strength of spatial autocorrelation, with larger units
generally exhibiting lower levels of autocorrelation compared to smaller ones [14]. If
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F4

F5

data is aggregated into arbitrary zones, highly autocorrelated spatial data can produce
misleading results, as patterns depend on the aggregation scheme rather than the
underlying process [47].

The Scales and Complexities of Spatial Processes. Spatial processes are mecha-
nisms that generate observable patterns. Examples include natural processes (e.g. erosion
and climate change) [19, 52] or human-driven processes (such as migration and urban
expansion) [4, 3]. These processes shape spatial patterns across geographical spaces [17].
Since each process operates in a certain scale, the pattern they generate is likely to be in
similar scale. Therefore, choosing area units for analysis should consider the alignment
with the scales of the underlying processes of the observed patterns [24]. If the chosen
area unit in a spatial analysis is inconsistent with the scale of the processes, the effect of
MAUP would be worse. What complicates the above rule is that the patterns of real-
world phenomena may be the result of multiple processes at different scales interacting
in space [65]. This could make any choice of area units seem arbitrary [25].

Impact of Spatial Heterogeneity. Spatial heterogeneity refers to the variation in
spatial patterns, relationships, and statistical properties at different locations in a study
area. This implies that the processes governing spatial phenomena do not operate
uniformly across space, leading to location-dependent variations in data distributions
and relationships. Spatial heterogeneity violates the stationarity assumptions by many
statistical models, such as Ordinary Least Squares (OLS) regression, which assume
that the relationships between variables are constant across space. The degree of
spatial heterogeneity can change depending on the spatial scale or level of aggregation.
Aggregating data into larger units (e.g., counties versus census tracts) may mask local
variations and distort spatial patterns, which could lead to larger MAUP effects [37].

3.2 Methods for Addressing MAUP

Methods for addressing the MAUP target its underlying causes identified in the last section.
Some of the methods (such as sensitivity analysis and multi-scale analysis) help analysts to
understand the extent of MAUP effects. Other methods help to choose appropriate area
units to mitigate the effects of MAUP by tackling the causal factors of MAUP (as listed in
Section 3.1). We discuss a few commonly used methods and their contexts of use.

M1

M2

M3

Multi-Scale Analysis conducts analyses at multiple spatial scales. A multi-scale
analysis typically begins with small-scale spatial units and then aggregates to larger
units as necessary. This strategy ensures that event concentrations at both micro
and macro levels are captured, aligning with the analytical context and addressing
practical limitations such as data availability and collection challenges [5]. For example,
Jelinski [37] used this method to assess how changes in spatial resolution from census
tracts to counties affect statistical results.

Sensitivity Analysis. Sensitivity analysis runs the same analysis at multiple times
by systematically varying the boundary configurations (e.g., administrative zones vs.
equal-area grids vs. hexagons) of area units to test the stability of results [49]. For
example, voting analysis may be repeated on changing district boundaries to see if
electoral outcomes remain stable under different zoning schemes. The method can help
to draw the analyst’s attention to the serenity of MAUP effects [50].

Fitness of Use. Instead of seeking a single “best” unit, analysts should consider the
fitness for use as the principle when choosing area units for aggregation. For example,
analyzing crime hotspots for policing decisions should consider what spatial zones used
for deciding police dispatching decisions. If police ward precincts areas are used for
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M4

M5

M6

M7

dispatching police, then, analysis should use ward precincts areas if possible. The
condition is that the choice is adequate for fulfilling the analytical objectives in a given
context [42, 15].

Respect Scales and Boundaries of Spatial Processes. Based on our understanding
of the relationship between the nature of spatial processes and MAUP effects (F4), the
choice of area unit and aggregation scale should reflect the properties of the underlying
processes that created the patterns in the data [24]. Because application domains are
concerned with different phenomena and different analytical goals, the choice of spatial
units is likely to be domain-specific and goal-specific. If we know that a process is
operating at a particular scale, then, the choice of spatial units for analysis should
respect that scale. Similarly, if the process underlying a pattern create certain boundary
conditions, the choice of area unit boundaries for analysis should also respect the this
property to minimize the effect of MAUP due to (F1). For example, Buzzelli [7] used
census data to study the correlation of patterns between residents of chinese origin and
indian origin and he hinted on the need for interpretive skills of a human geographer to
draw insights from residential segregation processes.

Spatial Smoothing Techniques. Spatial smoothing techniques help mitigate the
effects of the Modifiable Areal Unit Problem (MAUP) by reducing abrupt variations
caused by arbitrary spatial unit definitions. For example, Kelsall and Wakefield [39]

used kernel density estimation to create continuous surfaces from discrete areal data.

Spatial interpolation techniques (e.g., Kriging and Inverse Distance Weighting) predicts
values at unsampled locations, reducing dependency on arbitrary zone definitions. This
method is to used to mitigate the effect of MAUP due to (F3).

Measuring Spatial Non-Stationarity and Local Variations. To address the impact
of spatial heterogeneity to MAUP effect, measures of spatial non-stationarity and Local
Variations, such as Geographically Weighted Regression (GWR) [6], Local Moran’s I [2],
and Getis-Ord Gi [28], provide insight on the level of local variations. This insight could
help the analysts to choose spatial units for analysis to reduce the impact of MAUP.
Exploratory Spatial Data Analysis (ESDA) techniques. ESDA methods can be
used to detect and mitigate MAUP effects by evaluating spatial patterns at multiple
scales and aggregations. For example, by computing and visualizing Moran’s I [2] for
different aggregation levels, analysts can get a sense if spatial autocorrelation remains
stable across scales. If stable, the results are less affected by MAUP. If Moran’s I
fluctuates, it suggests strong MAUP effects. ESDA techniques provides insights into
the spatial structure and helps identify appropriate scales for analysis. Visualization

methods can be used to compare and analyze differences and variations in results [50, 25].

3.3 Practical Challenges of Addressing Modifiable Areal Unit Problems

Despite the rich set of methods to understand and mitigate the MAUP effect (as reviewed in

Section 3.2), the effect of MAUP in practical spatial analysis is often overlooked, ignored,

or not adequately addressed [25, 18]. This behavior can be explained by understanding the

challenges faced by human analysts when dealing with MAUP effects. Here, we discuss

seven (7) challenges that explain why people fail to address MAUP effectively.

C1

Lack of Awareness. Human analysts keep their attention on answering analytical
questions [31]. They may not be aware at the time when an MAUP issue arises. When a
stage of spatial analysis involves the use of area-aggregated data, an analyst may not
understand how MAUP can affect their analysis. This happens to people even if they
have learned MAUP in geography and GIS courses [16, 47].
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C2

C3

c4

C5

Cé6

Cc7

Perceived Insignificance of MAUP. Even when analysts are fully aware of the
presence of MAUP-related issues in their analysis, they may choose to ignore them,
believing that the impact is too minor to justify the effort required to address it. This
belief was partially established by prior research findings. For example, Openshaw [50]
showed that the effects of MAUP are often subtle and context-dependent, making it
easy to dismiss its importance. Dark and Bram [18] found that the analyst often hold a
wrong belief that the conclusions drawn on one scale or zoning scheme will hold on for
the other, although this is rarely the case. This has led some analysts to choose not to
act on MAUP issues.

Data Availability. Exploring the effect of MAUP on spatial analytic outcome requires
the availability of data at different scales of area aggregation and different zoning schemes.
In reality, data are often available only at specific administrative or aggregated levels
(e.g., census tracts, districts), limiting the ability to analyze at finer resolutions. High-
resolution data and individual-level data can be difficult to obtain [20, 25, 60]. Wong [64]
noted that researchers frequently rely on preaggregated data due to privacy concerns,
cost, or logistical constraints, which restricts their ability to address MAUP.

Practical Constraints. Applying GIS methods (as discussed in section 3.2) to mitigate
the MAUP effects costs time, computing resources, and human effort. In real world
practices, analysts are often under pressure to deliver actionable results and have limited
time and resources, making it impractical for analysts to fully explore how scale or zoning
choices influence results [18].

Convenience of Choice on Default Spatial Units. Analysts often use default
spatial units (e.g. administrative boundaries) for convenience without considering
their appropriateness for the analysis. Dark and Bram [18] argue that administrative
boundaries are often arbitrary and may not be aligned with the underlying spatial
processes being studied.

Lack of Expertise in Applying Complex Methods. As noted in Section 3.2,
addressing MAUP requires a thorough understanding of the available methods, the
conditions under which specific methods can be applied, and how to implement them
using matched tools in a GIS. The expertise in choosing and applying the appropriate
methods to practical problems is rarely available to most analysts.

Lack of Tool Support. Methods for mitigating MAUP effects are challenging to
practice because they require support from GIS tools. Although relevant analytical
tools are available in popular GISystems, such as ArcGIS, they are not structured and
streamlined for the purpose of dealing with MAUP effects. The application-dependent
nature of MAUP effects makes it difficult to design tool support.

Machine guidance can help human analysts overcome each of the above challenges to

achieve reliable and confident analytical results. Machine guidance can monitor the spatial
analytical process and alert analysts when the MAUP effect comes into play (C1), convince
them by showing them the danger of not addressing MAUP (C2, C3, C4, C5), and provide
suggestions on proper methods and tools to mitigate MAUP effects (C6, CT).

4

When and How to Guide?

Given the inherent complexities and challenges of addressing MAUP, there are critical
moments where machine guidance can effectively assist analysts. In this section, we use the
seven key challenges in addressing MAUP (as outlined in Section 3.3) to pinpoint critical
moments when guidance is needed. Table 1 characterizes the possible guidance opportunities



G. Cai and Y. Hao

corresponding to the seven user challenges. For example, guidance can be inserted when the
system detects that the analysis involves the use of area-aggregated data in geostatistical
analysis (G1).

Table 1 Opportunities For Asserting Machine Guidance.
[Note: C1-C7 correspond to the user challenges described in Section 3.3. S1-S11 are guidance
strategies described in Table 2.]

User Challenges

Opportunities

C1: The analyst is unaware
of the MAUP.

G1: The guidance should inform the analyst that the MAUP effects
can be involved (S1) and thus encourage the analyst to explore more
on its effects (S2, S3).

C2:The analyst does not
know whether MAUP is crit-
ical in the current situation.

G2:The guidance assesses whether there is a significant effect of the
MAUP. If yes, the analyst will be convinced to address the MAUP by
showing what are the possible consequences if MAUP is not addressed

(S2, S3).

C3: Limited data availabil-
ity for exploring and mitigat-
ing the MAUP effects.

G3:The guidance can help the analyst by 1) looking for other data sets
that are disaggregated and can be applied in the context (S4), and by
2) directing the analyst to consider other data processing and modeling
methods (S5, S6).

C4: The analyst has limited
time and resources.

G4:The guidance could recommend suitable methods that are less time
consuming for the analyst to pursue (S4, S8, S9). The guidance could
take initiative to generate results of multi-scale analysis and present
them visually as an effort to alert and convince the analyst (S1, S2).

C5:The MAUP is not ad-
dressed due to convenience
of use.

G5:The guidance examines whether applied units are appropriate by
considering: 1) whether units are aligned with the spatial process in a
given context (S9), 2) how much effects are involved based on statistical
variations (S6), 3) simulating and comparing results using other units

(S7).

C6:The analyst has trouble
applying suitable methods to
address the MAUP.

G6:Guidance can help the analyst determine which methods are helpful
at the moment and automate the processing steps to reduce the com-
plexities (S6, ST7).

C7:The analyst has difficul-
ties implementing suitable
methods with GIS tools.

GT7:Guiding the analyst by recommending proper GIS workflows tools
to use (S11). If the analyst has a preference but does not know how
to perform it, the guidance will assist the trasnlation of workflows into
GIS procedures for a particular platform (S3, S6).

To take advantage of the guidance opportunities identified in Table 1, the guidance agent
must form intention to volunteer guidance and formulate a strategy to generate guidance
messages. Table 2 describes the guidance strategies we use as design rationales for our
guidance agent. For each strategy, we specify the goals that can be achieved and prescribe
a recipe for action. These guidance strategies are consistent with the guidance objectives
described in Figure 3. It is important to note that the guidance agent does not dictate how
the analyst deals with the MAUP issue. If the agent believes that the effect of MAUP should
be handled, the guidance agent will convince the analyst to do more explorations and suggest
suitable methods and operations to mitigate the MAUP effects according to the prescribed
action recipes.

14:9

GlScience 2025



Guiding Geospatial Analysis Processes in Dealing with MAUP

:10

14

spotjow [ed1jATeuy
uouswouayd pue UTRWOP UO 93Pa[MOUY]

"dNVIN oY) Suissappe

AyI[Iqe[reae vye(] | UT MOPS[IOM IO S[OO} S[(RIINS PUSTUTIOIY] MMOPSLION PUE S[003 O] RHNS PUSTHIOooY s
spot[jou [BOI)SIJRIS pUe UO011e3eIS3Y puy o.pﬁwmw/wﬁ Mﬁﬂw\wmﬂwﬂ%wwmpmwmgz SHUN 9[RS PUSTIUIOINY 0IS
ssoooad [eryedg
. d d
uouswousyd pue UTeWOP UO d3Pa[mouy| (FIN) ssoooi1d Teryeds e —— 6S
Aiqereae eye( oY) UM pouSI[e aIe Jey) SUN 9S00y : :
uouswouayd pue UTRWOP UO 93Pa[MOUy] “(¢IN) 1208 [eonAreue T —
oSpajmouy [enjxequoy 9} Y}IM pouSIre aIe jey) S}un 9S00y # [qeams p el 8S
(N “TIN) sHrun yuatoyIp
spot[joul [eOIJATRUY SuIsn USYM SUOIJRLIRA [BIIISIIRIS O SHIUN 9[qe)INS PUSTIUIOIN LS
SULIOPISUOD A SITUN S[QRIINS PUSTITIOIY
spotjowt Fuippow eryedg *(LIN) suoryeLrea [ed0] oY} I9PISUOD 100110 S
Ayiqerese eye(y 09 $o1)s19e)Ss pue s[ppou [erjeds os)) 1089 dIVIN 913 932oBIN 98
spotjewr Suryjoows [eryedg
AYI[Iqe[TeA. BYR(]T "(9IN) senbruyoay Suryjoows osp) 3090 JNVIN 23 0yesHIN gS
Ayqiqerreae eye(g “(GIN) peegsur ejep pojedai1dsesip os() s109p° JNVIN 92U} 913N ¥S
SpOY3jou [ed1ysIye)s pue uonedorddy | -(gry) sjoepe aiqrssod wiIojul pue SINSEAU
: : £
AyIqerreae eye(] 07 SIOYRIIPUI [BII)SIIR])S OSTL PUR 9)R[NO[R)) oI0UL H10[AXD 03 SA[PUT O3 SOUAUOD) €S
uouswoudyd pue UIRWOP U0 dFPIAMOUI] | -(g[y) s1079€] pajorIdIur pue uouswOusTd o1OM SI0TdX6 01 15KIBTE BT1 SOTIALO
Aypiqerreae eye( reryeds oty jo suiogyed oYy ozifensip I asAL {3 SOTATOD ¢S
SPOT1oU UOTIRZI[eNSIA PUL UOIRIIIZTY “(8IN) pesn ore sjun [eryeds JueIoPIp 6 SOULISIXS 5T 110
Aymqerrear eye( UM suorjeLIRA MOYS 0} sdewr as() dOVIN S 151X 93 301V s
a3pa[mousy] aulyde]N padinbayg uo1joy JIoj adioey [eoon A39yeI)g

"T o[qry, ut senrunjroddo souepng a1ow 10 auo UO 30v 0} pardde oq wed £399RI)s YORY "SOURPING SUIYOIRW 9] JO SOIS9)RI)S PI[IRIS(] ¢ d|qeL




G. Cai and Y. Hao

It is important to emphasize that the set of strategies prescribed in Table 2 is a significant
finding of this paper. It fills a knowledge gap between mitigation goals (Table 1) and GIS
methods (described in Section 3.2). Despite the abundance of methods available to address
MAUP, there has been little understanding of how to effectively match and apply these
methods to specific mitigation goals. For example, multi-scale analysis (M1) and sensitivity
analysis (M2) are frequently cited as methods useful for dealing with MAUP, but exactly
how to apply them is a knowledge inaccessible to most analysts.

5 How Users Experience Machine Guidance?

To illustrate how a human analyst experiences interacting with the guidance system, we
present a hypothetical scenario in which a public safety analyst uses geospatial analysis of
crime hotspots to inform police actions.

Danny, a public safety analyst at the Baltimore City Police Department, is responsible
for planning crime prevention strategies. He is charged with developing a police petrol
plan on how to dispatch officers to neighborhoods based on crime hotspot patterns.
Since the department has a limited number of police force to dispatch, it must ensure
that the dispatch plan generates a measurable reduction in crime rates. It is very
important that Danny derives reliable and trustworthy results from his analysis. He
has access to ArcGIS Desktop and crime data from the last few months.

Danny is familiar with basic concepts and methods of GIS analysis, but he is not an expertise
in GIS tools and algorithms. Danny is representative of a class of analysts who are experts
in their fields but have limited or no knowledge of geospatial analysis methods and tools
[48, 62]. These analysts lack specialized training in GIScience or have only surface knowledge
of MAUP.

Danny has access to a crime incident dataset that contains ten types of crime (see the
picture of MG 1 in Table 3). Each type of crime has different underlying mechanisms
and processes that produce the crime patterns. Criminogenic situations can vary in scale,
duration and impact, affecting entire regions or specific groups [23]. This raises challenges
with respect to the selection of an appropriate spatial unit to identify hotspot areas [44].

Based on the narrative of the scenario above, we present a hypothetical sequence of
interactions between the User (Danny) and the guidance agent (MG) in Table 3. This
hypothetical dialogue showcases how machine guidance can systematically address MAUP
by raising awareness, recommending alternative methods, and providing statistical support
to improve decision making under practical constraints.

As Danny analyzes crime hotspots in neighborhoods, the guidance agent actively monitors
the process and detects potential MAUP effects due to spatial aggregation. At step (User 3),
the system sensed that the user is unaware of the MAUP problem, an alert guidance is
initiated to warn the user about the danger. To help the user understand the risk of MAUP
effects, the guidance agent repeated the analysis using an alternative spatial unit, census
tracts, and showed the user that the result is significantly different(MG 3-a). To further
convince the user to take steps to mitigate risk, the agent computed LISA (as a prescribed
strategy S8), suggesting strong MAUP effects (MG 3-b). These maps and messages convinced
Danny to commit serious effort to mitigate the MAUP effect.

At step (User 4), Danny acknowledges the rise of a MAUP issue and decides to explore
the likely effects. However, Danny does not know how to proceed. He asks for help directly
and the guidance agent suggests using disaggregated data where available (S4) and offers
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Table 3 A hypothetical interaction session of guiding users in addressing MAUP effect.

Dialogue

Guidance Visual Messages

User 1: Let us take a look if crime patterns in
Baltimore City have changed recently.

MG 1: We found 4,983 crime incidents in
Baltimore City happened in the last two months.
The map (MG 1) shows ten types of crime.
User 2: Our police officers typically divide their
responsibilities by neighborhoods. Let us find out
where are the crime hot spots by neighborhoods.
MG 2: As show on the map (MG 2), crime
hotspots are noted by red circles. They are
derived from crime density patterns by
neighborhoods.

User 3: Ok, that is what I need. I will proceed
on using this hot spot patterns for police dispatch.
MG 3: Wait! T would like to remind you that the
pattern shown on MG 2 may not be reliable! Let
me explain. If you aggregate crimes by census
tracts (instead of neighborhoods), the hotspot
pattern will look like the one in MG 3-a, which is
significantly different. This is a well known
problem in spatial analysis on area-aggregated
data. MG 3-b shows strong local spatial
dependencies, which indicates that your
analytical results could be very unstable and
could be misleading.

User 4: This is so important to know! How can I
make sure my results are reliable?

MG 4: Let me help you to explore more. One
way to find out if the hotspots on MG 2 are
trustful is view crime density as continuous
surface. MG 4 shows a Kernal Density pattern
where A lighter color indicates higher density and
vice versa. You may compare MG 2 with this
density surface and make adjustment of hotspot
regions.

User 5: Thanks! I was able to determine those
hotspots with good confidence. However, there
are too many neighborhoods in the hotspot
regions, and I need to prioritize those
neighborhoods that are most troubled.

MG 5: Sure. I can further gauge the strength of
those hotspots using a measure called Getis-Ord
Gi. The map (MG 5) shows the Gi measure for
each neighborhood, indicating their relative
degree of confidence as a hot spot.

Crime Incidents in Baltimore City

Crime Incidents  ~
Crime Typo s
~  SHOOTING ®  AUTO THEFT d
o romsERY 4 ARsoN

. e > Aco. AssuLT

- uceny Gonsen Tracs

MG 1

Density by Census Tract

®®®

0-Mean

Mean - 2 Mean

2Mean - 3 Mean
0 3 Mean - 4 Mean

B > 4 Mean
MG 3-a

Density by Neighborhood

Density
0 - Mean
Mean - 2 Mean
2 Mean - 3 Mean
I 3 Mean - 4 Mean
I > 4 Mean

MG 2

Indicator of Autocorrelation
by Neighborhood
T AT AN

Moran's |

Moran's | <0 & ey
0 )
Moran's | > 0

MG 3-b

Hot Spots based on Gi*

KDE (S5) as an alternative method for density calculations, mitigating the distortions
introduced by arbitrary spatial units. In this stage, Danny was guided to choose mitigation
methods. He was also assisted in executing a proper GIS workflow for exploratory analysis.
For practical reasons, Danny is not free to choose any area units other than neighborhood
boundaries. The guidance agent adapted a strategy to verify the hotspots using kernal
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density surface representation (MG 4). MG 5 was generated using the Incremental Spatial
Autocorrelation tool ! to determine an appropriate spatial scale (M8), which is then applied
as the distance banding parameter for Hotspot Analysis 2 with Gi* statistics (M8). Such
statistical validation is used as additional evidence to convince Danny that he should take
measures to minimize uncertainty and improve the reliability of their conclusions.

6 Computational Framework of Machine Guidance

Our approach would not be complete without discussing the feasibility of achieving our design
goals through machine intelligence. To demonstrate the feasibility of machine guidance, we
are developing a prototype design that supports the guidance behavior demonstrated in
the scenario of Table 3. A full discussion on that prototype implementation is beyond the
scope of this paper. However, we do want to briefly describe the computational frameworks
employed and shed light on the practicality of implementing machine guidance.

6.1 An Agent-based Computational Framework

Our implementation of a guidance agent is primarily based on the SharedPlan model of
human-computer collaboration [35, 53]. This model is capable of representing the intentional

structures of agent collaborations and reasoning for planning future actions under uncertainty.

This adaptability is crucial in guiding geospatial analysis, where problem-solving evolves
dynamically with new information.
Our guidance agent is a specialized type of collaborative interface agent [46]. The guidance

agent is able to communicate and observe the actions of the human analyst and vice versa.

A crucial part of successful collaboration is knowing when a particular analytical action
has been performed and what are the intended analytical goals. SharedPlan model has
been successfully applied in geo-analytical tasks, helping GISystems infer user intent beyond
direct commands and reducing ambiguity through dialogue-based interactions [8]. Cai [9]
showed that the analytical intentions of the analyst can be recognized with certain domain
knowledge. Using the SharePlan model in a conversational agent, basic GIS analysis tasks
can be done through conversations with the interface agent. Our work extends this agent
framework for mixed-initiative guidance.

Another source of inspiration is research on guidance in the field of visual analytics
[11, 12, 10, 55]. Guidance was defined as a computational system that actively assists users
during analytical processes by offering contextual guidance, recommendations, and feedback
[11, 12]. Machine guidance identifies when help is needed and determines the type of assistance
to provide [11] by integrating reasoning, planning, and domain knowledge. Recent works such
as Lotse [58] and AdViCE [29] bridge theoretical concepts with practical applications and allow
analysts to receive better assistance in data exploration and visualization tasks. However,
designing guidance systems that scale across different data domains and user expertise levels
remains a significant challenge [22]. Practical applications to support geospatial analysis
remain limited, despite similar challenges, such as the need to make critical decisions while
lacking the expertise and tools.

! https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics—toolbox/
incremental-spatial-autocorrelation.htm

2 https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/
hot-spot-analysis.htm
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6.2 Knowledge Representation and Reasoning

Design of guidance agents must answer a number of questions: (1) What is knowledge and
expertise represented? (2) What reasoning abilities are needed? (3) What kinds of sensing
skills are needed to monitor changes in contexts? (4) What communication behaviors are
expected? These questions can be partially answered by observing the communication and
interaction patterns in the scenario presented in Table 3.
The system must actively monitor the analytical process, identify the current analysis stage,
detect whether MAUP is involved, and recognize when the analyst encounters difficulties.
This requires the system to have a sensing capability and be able to keep track of the
analytical process to determine when help is needed and what form of guidance should
be provided.
Guidance should not merely follow the analyst’s actions but must take the initiative to
intervene when necessary. This requires that the system must be able to form intention
to act based on reasoning about what is helpful to do for the user.
It is important to convince the analyst to address the MAUP effect before suggesting
mitigation methods and strategies. Thus, the system must be able to plan complex actions
based on reasoning about strategies, methods, and tools.
The system must be adaptive and context aware, tailoring guidance based on specific
analytical domains, available data, and the analytical goals of the analyst. This involves
dynamically inferring the analyst’s intentions, understanding the current analytical
context, and determining how to deliver relevant guidance.

7 Discussion and Conclusion

The Modifiable Areal Unit Problem (MAUP) continues to pose a significant challenge
in GIScience, yet discussions surrounding its causes, consequences, and solutions remain
fragmented. Although existing research has primarily emphasized the scientific implications
of MAUP, practical strategies for addressing it in real-world applications are still limited
and underdeveloped [50, 25]. Our analysis reveals that many analysts tend to overlook
MAUP or underestimate its impact, underscoring a critical disconnect between theoretical
understanding and practical implementation.

Our work contributes to a practical approach to address MAUP in geospatial analysis. We
proposed to introduce an intelligent agent to guide analysts in mitigating the effect of MAUP.
As the first step toward this long-term goal, this paper established a preliminary theory of
machine guidance by answering a number of fundamental research questions. We identified
multiple opportunities for the machine to guide the analysts by alerting to the rise of MAUP,
assessing the impact of MAUP, choosing mitigation methods, and generating visual guidance
messages using GIS functions and tools. In terms of choosing what guidance features to be
designed, we set two sets of objectives machine guidance in MAUP: (1) building awareness
(2) supplement user’s expertise in mitigating MAUP effects. This level of understanding
allows for further refinement and formalization of the related expertise in computational
systems.

MAUP in geospatial analysis poses challenges in identifying its causes, selecting mitigation
strategies, and interpreting scale-dependent results [63, 50]. Machine guidance has the
potential to provide a proactive solution for addressing MAUP by alerting analysts to potential
consequences, offering suitable methods, and facilitating executions in the GISystem. Given
the resolution-dependent nature of geographic data [32], the selection of appropriate methods
is crucial. Visual guidance, such as standardized map comparisons (Table 3), helps analysts
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interpret MAUP effects more effectively [57, 13], reducing the likelihood of overlooking its
impact [21, 59, 1]. Addressing MAUP through machine guidance demonstrates its potential
to enhance geospatial analysis in various domains by expanding its knowledge base and
integrating domain-specific solutions [45, 43, 56].

The work presented in this paper is the first step towards the goal of active machine
guidance when analysts encounter MAUP during geospatial analysis. Although we made a
convincing argument for the feasibility of machine guidance and its capacity to address MAUP,
the scientific merit of this approach needs to be assessed by the usefulness of the tool (machine
guidance agent) when it is implemented, refined, and tested. Our ongoing research focuses on
evaluating and refining the proposed strategies to ensure practical applicability. Observing
how participants interact with the system, our aim is to gain a deeper understanding of when
and how the guidance should be introduced when addressing the MAUP. We are collecting
data on user experience and feedback and identify areas for improvement. We apply a human-
centered approach to further refine both the conceptual and computational components. The
findings of the study of machine guidance are likely to inspire and inform researchers in both
GIS and Human-Computer Interaction (HCI) regarding the design of interactive components
in GISystems.
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—— Abstract

The paper describes modifications to spatial and temporal varying coefficient (STVC) modelling,
using Generalized Additive Models (GAMs). Previous work developed tools using Gaussian Process
(GP) thin plate splines parameterised with location and time variables, and has presented a space-
time toolkit in the stgam R package, providing wrapper functions to the mgcv R package. However,
whilst thin plate smooths with GP bases are acceptable for working with spatial problems they are
not for working with space and time combined. A more robust approach is to use a tensor product
smooth with GP basis. However, these in turn require correlation function length scale or range
parameters (p) to be defined. These are distances (in space or time) at which the correlation function
falls below some value, and can be used to indicate the scale of spatial and temporal dependencies
between response and predictor variables (similar to geographically weighted bandwidths). The
paper describes the problem in detail, illustrates an approach for optimising p and methods for
determining model specification.
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1 Introduction

Previous research has described the use of Generalized Additive Models (GAMs) [13, 12]
with Gaussian Process (GP) smooths as an approach for spatially varying coeflicient (SVC)
modelling [5, 6]. The proposed geographical GP-GAM has been shown to have all of the
advantages of the SVC brand leader, geographically weighted regression (GWR) [2] and its
multiscale variant (MGWR) [18, 15, 11] in modelling and capturing any spatial dependencies
between the target variable and individual predictor variables (hence multiscale), and none
of the disadvantages: GWR-based approaches are subject to local collinearity, they generate
a collection of local models rather than a single one, until recently MGWR was only specified
for Gaussian responses, MGWR is unable to support out of sample predictions and all GWR-
based approaches re-use individual observations in multiple local models. Ideas extending
the use of GAMs with GPs for SVC model constriction into space-time analyses for spatial
and temporally varying coefficient (STVC) models have been proposed [4] and, at the time of
writing, are currently under review [7]. In parallel the stgam package [8] was developed to
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provide a framework for informed SVC and STVC model construction, through functions that
wrapped around the mgcv packages gam() function [17] to fit a range of spatial, temporal,
and spatiotemporal varying coefficient models, to investigate the nature of any space-time
dependencies present in the data and to inform SVC and STVC model specification.
However, we have subsequently become aware of a number of problems with simply
extending the stgam approach to SVC modelling to STVC models. This paper describes
these, some potential solutions and their potential implementation in a revised stgam package.

2 Background

2.1 The original big idea

Increasingly the space-time data we analyse and use are not collected under some grand
over-arching experimental design, nor for the purposes we indend to use them for. As
such, the big idea behind stgam workflows is that it is naive to construct models that make
assumptions about the presence and nature of data space-time dependencies, whether for
the purposes of prediction or inference (process understanding). Instead these need to be
explicitly examined and the most appropriate model form determined. This position is in
contrast to a classic statistics perspective where data are considered to be a realisation of
carefully considered data collection activity, constructed in such a way as to allow specific
hypothesis to be tested.

In this context, most widely used approaches for capturing spatial and temporal de-
pendencies in data and process heterogeneity are flawed because they assume the presence
space-time interactions and dependencies. Examples include the alignment of lagged re-
sponses to nearby lagged variables in autoregressive moving average models, and existing
GAM-based approaches that consider variable interaction over space but with only the aim
of model selection and penalization and not process inference [10].

GAMSs can be specified with smooths or splines to model non-linear relationships. These
are constructed from basis functions that can include single or multiple predictor variables. If
a predictor variable is included in a smooth with geographic location (X and Y) then non-linear
relationships over space can be modelled - an SVC model. If the smooth is specified with
geographic location and time of observation (X, Y and T) then an STVC model is specified.
To illustrate this, consider each predictor variable in a SVC or STVC model. It can be
specified in 3 different ways:

i. It is excluded from the model.
ii. It is included in the SVC / STVC model as a standard parametric response (as in an
OLS regression).
iii. It is included in the SVC / STVC model in a smooth with location (X and Y) but not
time.

There are a further 3 ways that each covariate can be specified in an STVC model:

iv. It is included in the STVC model in a smooth with time (T) but not location.

v. It is included in the STVC model in a smooth with location and time (X, Y and T).

vi. It is included in in the STVC model in 2 separate smooths, one with location (X and Y)
and the other with time (T).

The intercept is treated in a similar way, but without it being absent. Thus for any SVC
with k predictor variables there are 2 x 3¥*! potential models and for any STVC there are
5 x 61 potential models.
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2.2 The stgam R package

The stgam package [8] was created to provide a wrapper around GAM functionality in the
mgcv package [17], and to allow the user to investigate the different ways each predictor
variable could be specified within the GP smooth (as described above), and thus model
selection and specification. Its workflow determines the most plausible model given the data
and it includes functions that i) create multiple SVC and STVC models defined in different
ways as described above, ii) determine the probability of each being the correct model given
the data, iii) combine multiple plausible models and, iv) generate spatially and temporally
varying coeflicient estimates.

stgam is underpinned by 2 core concepts. First, the need to test for the presence and
nature of any spatial and temporal dependences and thus to determine whether to include
each predictor variable in the model, including within GAM smooths, thereby informing
SVC / STVC model specification. In stgam and related initial work [3], this is done by
creating multiple models with each predictor variable specified in different ways, as described
above. The probability of each model being the best model given the data is then determined
and the most probable model is selected. The second core concept in stgam is to evaluate
the probability of each potential model being the correct model given the data. This is
determined from the model Bayesian Information Criterion (BIC) value [16]. It has been
shown elsewhere that the marginal posterior probability of observing the data D given
the model M; — Pr(D|M;) — can be approximated using BIC [3], and used to derive the
probability of any individual model M; being the correct model given the data. Of course
this is under the assumption that the true model, although unknown, is one of the potential
models being evaluated. If multiple models are highly probable, then model averaging can
be performed with model weighting from the BIC-derived posterior beliefs in each model.

However, since the release of the first version of the stgam package and paper submission
to conferences and peer reviewed journals, some issues with the approach to STVC model
construction have been identified. These derive from the way that the approach for SVC
modelling GAM with GP smooth was extended to STVC models and the use of GP basis
from the mgcv package. Whilst mgecv GP bases may be appropriate for spatial problems
and SVC model construction, they are not for STVC models. This is because the mgcv GP
basis results in spatial models with a potentially suboptimal estimate of the length scale
of the correlation basis functions used in the GP basis, and thus temporal models that are
erroneous for all time series except those with the longest of length scales.

2.3 The problem in a bit more detail

The substantive problem with the mgcv GP basis is that it only fits within the penalized spline

class of models that can be estimated by mgcv if the basis function parameters are specified.

The critical parameter here is the correlation function length scale or range parameter, p
which may be specified as spherical, power exponential, or as one of three forms of Matérn
correlation with k equal to 1.5, 2.5, or 3.5. The p parameter determines the distance at
which the correlation function falls below some value. If p is not supplied, then mgcv fits a
smooth using Matérn correlation functions with x = 1.5 and p = max;;||x; — x;|| as the basis
functions, for any pair of points z; and z;, following [14]. If an order penalty is specified
then one of the correlation functions is implemented but again using Kammann and Wand’s
recommendation for the length scale, the maximum distance attained by any pair of points
z; and x;.
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Evidently for SVCs (and similar spatial analyses) this is unlikely to be problematic
except in the presence of long or short spatial dependencies. However, for temporal and
spatiotemporal data, this specification of length scale in this way is problematic: it implies
that the correlation between pairs of points will only fall below some small value when those
points are separated by an amount of time equivalent to the time series itself. A space-time
GP smooth specified in this way will be isotropic, with similar levels of non-linearity in all
dimensions, such that the spatial heterogeneity is equal to temporal heterogeneity. This
is clearly not correct but the current implementation of stgam has no way to control this,
because the functions that create different models hardcode a GP basis in the smooths, and
there is currently no option to specify an order penalty or p. The result is GP smooths
specified with pure Kammann and Wand basis functions, despite their unsuitability for time
series or space-time problems.

3 Methods

3.1 Proposed improvements

The proposed high level solutions to these problems are 1) to allow users to specify the
length scales of the different components, and 2) to fit the spatio-temporal terms via a tensor
product smooth of a marginal spatial smooth and a marginal time smooth, both specified
with a GP basis, and effectively allowing space-time to be treated in a three-dimensional
way. This can be done by specifying a 2D spatial GP smooth for the first margin of the
tensor product, and a 1D temporal GP smooth for the second margin. These two bases
will smoothly interact creating the desired spatio-temporal varying term due to the tensor
product construction.

In mgev syntax, the change in how the GP smooths for each predictor variable var are
specified as follows:

# FROM: a mgcv smooth with GP basis

s(x, y, t, bs = "gp", by = var)

# TO: a mgcv tensor product smooth with GPs

te(x, y, t, d = c(2, 1), bs = rep("gp", 2), by = var)

The tensor product smooth requires the marginal basis dimensions to be specified (d
above). Here the space-time smooth contains 3 covariates composed of a tensor product of a
2-D thin plate regression spline basis for location, and 1-D basis for time.

However, the correlation function length scale or range parameter, p also needs to be
specified as, both in terms of its form (spherical, power exponential, etc) and distance. In
the mcgv GAM implementation this is done for each of the margins through the m argument
passed to the tensor product smooth. This expands the specification of the tensor product
smooth with GPs to:

# TO: a mgcv tensor product smooth with GPs

# WITH: user specified scale form & length

te(x, y, t, d = c(2, 1), bs = rep("gp", 2), by = var,
m = 1list(c(3, rhol), c(3, rho2)))

Here rho1 is the length range for the spatial marginal smooth and rho2 is that for the
temporal marginal. Both are specified with a power of 3, indicating the distance decay of the
range. For the spatial margin intervals of 100km for a case study in a large country (USA,
China, Brazil, etc) could be explored, 10 km for a small country (UK, Germany, Vietnam,
etc) or 1km for a local one. These may be the equivalent of predictor variable bandwidths
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in MGWR. For the temporal dimension, intervals of 1, 2, 3 etc years could be explored,
depending on how time was recorded in the data. The revised stgam package will support
investigation of different forms and length scales for spatial and temporal margins.

The ability to vary the scales and lengths ranges in the tensor smooths as above allows
each each predictor variable to be specified in a way that treats implicitly space-time as
three-dimensional. Therefore a second set of investigations will be supported in the revised
stgm package to allow users to determine which of the possible six forms described above
is the appropriate way to include each predictor variable in SVC and STVC models. For
example an alternative to the mgcv tensor product smooth with GPs, and illustrated above
is one that has separate 2-D spatial smooths and 1-D temporal ones:

te(x, y, d = 2, bs = "gp", by = var, m = c(3, rhol)) +
te(t, d c(3, rho2))

1, bs = "gp", by = var, m

Essentially, this replaces the investigation of different model forms using mgcv smooths

specified (s () in mgev), with ones specified with mgev tensor product smooths (te () in mgev).

The analysis undertaken in this short paper describes initial work investigating how both of
these considerations (space-time lengths and predictor variable form) can be optimised and
potentially included in a revised stgam package.

3.2 Data and model

The stgam package includes two datasets describing annual economic productivity for the 48
contiguous US states (with Washington DC merged into Maryland), 1970 to 1985 from the plm
R package [9] and the spatial dataset of the 48 contiguous US states spData package [1]. The
productivity data contains variables describing Private Capital stock (privC), Unemployment
% (unemp) and Public capital investment (pubC). The Unemployment variable over time is
shown in Figure 1, with 1986 not plotted for aesthetic reasons. The aim of the analysis was
1. to determine optimal p values for the correlation function length scales, p, a 2D spatial
margin and a 1D temporal margin (ps and p;, rhol and rho?2 respectively in the above
code snippet).
2. to then determine the most appropriate STVC model of Private Capital stock (privC),
with Unemployment and Public capital investment as predictor variables, specify the
tensor product smooths in different ways as described in Section 2.1.

In both cases, p and model form were evaluated from the model BIC.

4 Results

The optimal p values were determined by creating multiple GAM models with tensor product
smooths with GP bases, each with different p,, for the 2D spatial margin and p; for the 1D
temporal margin. After investigation of the distances and time series lengths in the data,
values for ps from 0 km to 4,500 km in steps of 250 km were explored with values for p; from
0 to 17 years in 1 year steps. A total of 42 models were created with different combinations
of ps and p;, and the BIC value for each model extracted. The top p values are shown in
Table 1 and indicate a ps of 250 km and p; of 9 years. What is interesting is that 250 km
is the optimal spatial length range in all of the top 10 models and there is some similar
consistency in the temporal length range.

These values for ps and p; specify the length ranges, could be plugged into to a model with
each parameter specified in the manner indicated in Section 3.1. However this still assumes
that the predictor variables exhibit simultaneous dependencies space-time dependencies with
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Unemployment %

5 10 15

Figure 1 The % unemployed over US States, 1970-1985.

Table 1 The values of rhol and rho2 that resulted in the best 10 models.

rhol rho2 BIC
250 9 5074.882
250 10 5074.893
250 7 5075.093
250 8 5075.252

250 11 5075.675
250 12 5076.220
250 13 5076.938
250 6 5077.692
250 14 5077.719
250 15  5078.704

the target variable (option v. in the list in Section 2.1 - in a smooth with location and
time (X,Y and T)). The second stage in the analysis evaluated different model forms, with
each predictor variable specified in one of 6 ways, and the intercept in one of five ways
(i.e. 180 models). The models were evaluated using BIC from which the probabilities of the
model being the best model were determined in the approach outlined in [3]. The results are
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shown in Table 2 and indicate that there is a 4.5% chance that the second ranked model
is better than the first, suggesting that the top ranked model can be used. This omits the

unemployment predictor variable (unemp) and specifies space-time tensor product smooths.

It is possible to extract the spatially and temporally varying coefficient estimates from these
and to examine the nature of the spatial and temporal dependencies in the data. This is left
for future research.

Table 2 The 10 best models, and how the predictor variables were specified within the model,
where “—” indicates the absence of a predictor, “Fixed” that a parametric form was specified,
“te_S” a spatial tensor product smooth, “te_T” a temporal tensor product smooth and “s_ST” a

spatio-temporal tensor product smooth.

Rank Intercept unemp pubC BIC Pr(M)

1 te_ST — te_ ST 4920.984 -
2 te ST Fixed te_ ST 4927.090 0.045
3 te ST te_ T te_ ST 4942.752  0.000
4 te_S — te_ ST 4963.511 0.000
5 te_S Fixed te_ ST 4971.211 0.000
6 te ST te_S te_ ST 4972.547 0.000
7 teT+te S — te_ ST 4975.040 0.000
8 te_ST te_ T +te S te_ ST 4976.802 0.000
9 te_ T+ te_S Fixed te_ ST 4981.094 0.000

10 te_S te_T te_ ST 4982.354 0.000

5 Discussion

This short paper describes the next stage in the evolution of an approach for varying coefficient
modelling based on GAMs with smooths. It unpicks work described in some published papers
[5, 6, 7] for undertaking spatially and temporally varying coefficient modelling, wrapping
functionality from the mgcv package [17]. Initial work developed spatially varying coefficient
(SVC) models using Gaussian Process (GP) smooths that included observation locations,
and this framework was extended to include observation location and time. The focus of this
extension into space-time modelling was to determine the most appropriate way to specify
space-time interactions (dependencies) in the smooths, for example in a single combined
space-time smooth or in separate ones for space and for time. However, the type of the
smooth is also important. Whilst GP smooths are appropriate for location, they are not for
space-time interactions due to assumptions. This is because of the default way that the GP
basis correlation function length scale or range parameters (p (the distance at which the
correlation function falls below some value) are determined in the mgcv GP basis if they are
not specified.

This paper details a revised approach to STVC modelling using GAMs with tensor
product smooths. Combining a 2D marginal spatial smooth and a 1D marginal time smooth
each specified with a GP basis, within tensor product smooth is a more robust way to treat
space-time interactions and dependencies. The correlation function length scale, p, still
needs to be specified. The first part of the analysis optimally determined p for both the 2D
spatial margin and the 1D temporal margin. In this illustrative case study, these were found
to be 250km and 9 years. The second part of the analysis sought to determine the most
appropriate model form as described in Section 2.1, with using tensor product smooths and
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the optimally determined p values. Here the model with the greatest probability of being
correct was one with a combined tensor product smooth for the Intercept and for the pubC
(public capital) predictor variable, and that omitted unemployment from the model.

The determination of the optimal p values and the probability of each model being the
correct model given the data, both used the model BIC value as described in [7, 3]. However
this is not without controversy, as there is a potential lack of a theoretical foundation for
the use of BIC for penalized spline models of the form fitted by mgcv. For future work,
it will be important to establish the viability of a BIC approach to model selection and p
determination. A second issue is that for many researchers undertaking model selection
based on optimising some fit, parsimony or error measure is itself fallacious. The counter
argument is that users should just fit the most complex model that they believe is valid
for their task in hand. If their understanding of the process being examined is that it is a
spatio-temporally varying process then a model specifying that interaction should be fitted.
However a counter argument is that increasingly researchers and analysts are working with
secondary data, collected for a different purpose and actually part of their job is to determine
what kind of spatial, temporal and space-time dependencies are present in the data. Finally,
the optimisation of p for both the 2D spatial margin and the 1D temporal margin in the
tensor product smooths is exciting as this indicates the nature of scales of interactions
between the predictor variables and the target variable in the same way that bandwidths do
in geographically weighted approaches. Future work will explore how these can be optimised
for each predictor variable in a similar way to multiscale geographically weighted approaches
and of course their interaction with model selection.
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—— Abstract

Inundated by the rapidly expanding Al research nowadays, the research community requires more
effective research data management than ever. A key challenge lies in the evolving nature of concepts
embedded in the growing body of research publications. As concepts evolve over time (e.g., keywords
like global warming become more commonly referred to as climate change), past research may become
harder to find and interpret in a modern context. This phenomenon, known as concept drift, affects
how research topics and keywords are understood, categorized, and retrieved. Beyond temporal drift,
such variations also occur across geographic space, reflecting differences in local policies, research
priorities, and so forth. In this work, we introduce the notion of spatio-temporal concept drift to
capture how concepts in scientific texts evolve across both space and time. Using a scientometric
dataset in geographic information science, we detect how research keywords drifted across countries
and years using word embeddings. By detecting spatio-temporal concept drift, we can better align
archival research and bridge regional differences, ensuring scientific knowledge remains findable and
interoperable within evolving research landscapes.
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1 Introduction

The questions of what, when, and where permeate our daily conversations. When scheduling
a group meeting, for instance, we agree on the topic of discussion (e.g., a proposal, what),
the time (e.g., 10 a.m., when), and the location (e.g., a café, where). In communicating such
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information, we implicitly agree on a particular reference system. For time, we have temporal
reference systems such as the Gregorian calendar, the yyyy-mm-dd date format, the 24-hour
clock, and so on. For space, we have various geodetic datums, such as WGS 84 and NAD 83,
as well as known place names we can refer to. For the what question, namely the thematic
information, we also need a semantic reference system [23]. In this reference system, an
ontology can help ensure that, by “proposal”; we are referring to a research proposal rather
than a marriage proposal.

When it comes to ontology modeling and engineering, concepts are often represented as
static entities [17]. For example, this is common in a foundational ontology (e.g., DOLCE [15])
to ensure a coherent view and interoperability across domains. In the real world, however,
concepts are constantly evolving [19], and their meanings can vary across different social
contexts and locations, as seen in the evolving sociocultural definitions of gender nowadays.
Research in the Semantic Web and the broader knowledge representation and reasoning
(KRR) communities has focused on concept drift to capture the dynamics of evolving concepts.
In this respect, previous work in KRR [49, 14, 44, 8] focused mainly on the temporal aspect
of a concept, i.e., the changing meaning of a concept over time, and overlooked the spatial
perspective that often accompanies it.

In geographic information science (GIScience), constructing an ontology that maps
geospatial concepts has always been challenging because of their unique spatio-temporal
properties [12, 9]. Geospatial concepts, such as Mountain and Forest, are different from
other general concepts because they do not have clearly defined boundaries nor can they be
distinguished in bona fide fashion from neighboring concepts, e.g., Hill and Woods [42, 43].
For instance, the difference between Lake and Pond can be affected by seasonal water level
variations [28]. This would make downstream tasks, e.g., question answering [33], more
challenging. Furthermore, the conceptualization of such landscape concepts may also vary
and evolve across languages, cultures, and regions [47, 11].

These challenges are not limited to modeling the aforementioned concepts that are vague
geographic features. They also extend to research topics and keywords (e.g., urban planning,
climate change), which we see as signifiers of concepts (i.e., mental representations that
categorize areas of research [4]). Although many concepts in this regard exhibit concept drift,
geospatial concepts are particularly susceptible due to their inherent dependence on physical,
environmental, and sociopolitical contexts. To give a concrete example, the definition of
disasters could vary significantly depending on local environmental conditions, infrastructure,
and response systems. What qualifies as a natural disaster in one region (e.g., an earthquake
with a magnitude of 6.0 in Haiti) may be labeled differently in another region (e.g., the
United States) because of differences in local resilience. In comparison, concepts like the
speed of light exhibit less spatial variability because of their underlying physical principles.

As Kuhn et al. [24] suggested, we should move space and time from merely being in
application domains to becoming foundational aspects of ontologies. While the inherent
vagueness in geographic features is not fully resolved, ontologies such as the GeoNames
ontology? offer structured representations for these features. However, these efforts have yet
to cover more abstract geospatial concepts embedded in research, such as those represented by
keywords. Same as geographic features, these concepts are dynamic and spatially grounded,
yet they are even more susceptible to societal changes and technological advancements (e.g.,
the coining of the concept GeoAI [21]). In this work, we look into these concepts in scientific
research with explicit study areas. We propose an approach to quantify their fluidity and
context-dependence across space and time via word embeddings. Our long-term goal is to

2 https://www.geonames.org/ontology
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develop an ontology that can address the dynamic nature of these concepts in scientific
texts. This contributes to the FAIR principles (Findability, Accessibility, Interoperability,
and Reusability) [50] by improving retrieval, reuse, and ensuring the long-term relevance of
research [38].
The contributions of this work are as follows:
We introduce spatio-temporal concept drift, which expands the previous notions of concept
drift that focused mainly on temporal changes by incorporating both space and time.
We propose a novel approach to detecting spatio-temporal concept drift in scientific texts
via word embeddings.
We demonstrate how accounting for spatio-temporal concept drift enhances the under-
standing of concepts in scientific texts, improves recall in FAIR-based research data
management systems, and lays the groundwork for ontology learning with large language
models (LLMs) in dynamic contexts.

The remainder of this paper is structured as follows. Section 2 introduces the theoretical
background of our work. Section 3 reviews related work regarding word embeddings, with a
focus on their ability to capture and quantify spatio-temporal variations in semantics. We
describe our case study in Section 4, where we use a scientometric dataset in the field of
GIScience to assess spatio-temporal concept drift. Section 5 presents the results. Section 6
discusses geographic bias within embeddings and future directions in ontology learning with
LLMs. Finally, we conclude our work in Section 7.

2 Background

This section provides the theoretical background for the study on concept drift in knowledge
representation. Here, we introduce the notion of spatio-temporal concept drift. This
notion adds a spatial dimension to existing definitions of concept drift in the literature. In
addition, we discuss the broader implications of spatio-temporal concept drift for research
data management (RDM).

2.1 Concepts and Their Representation

The notion of concept has many different definitions across or even within domains, such
as in linguistics, psychology, computer science, and cognitive science [35]. In this work, we
adopt the definition by Stock [45] in information science, which defines a concept as a class
containing objects that share certain properties.?

Concepts are fundamental units of meaning and serve as the building blocks of ontologies
that help structure knowledge, enable reasoning, and facilitate interoperability. In terms
of representation, previous work [49, 44] typically characterized a concept by its label (i.e.,
name), intension (i.e., defining properties), and extension (i.e., instances that fall under it),
in the form (label(C),int(C), ext(C)) for a concept C. However, this would only apply to
concepts that already existed in predefined ontologies. Verkijk et al. [48] proposed to use
embedding techniques to derive vector representations of concepts. While their work focuses
on knowledge-graph data, they showcased the ability of embedding techniques to capture
flexible, context-aware representations of concepts for natural language data as well, in the
form (label(C), context(C)).

3 It is worth noting that this definition of concept is closer to what cognitive scientists would call a
category.
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In this work, we treat keywords in research publications as representations of underlying
concepts. Unlike established ontological categories, research keywords are rapidly evolving
as science and society change. This makes them particularly relevant for studying spatio-
temporal concept drift. Here, we focus on research keywords also with the aim of developing
a structured ontology that can capture their changing meanings over time and space. Such an
ontology could contribute to RDM by improving metadata organization, literature retrieval,
question answering, and knowledge graph construction in scientific databases.

2.2 Spatio-Temporal Concept Drift

Adding a temporal dimension to concept representation accounts for changes in their meaning
over time. The study of concept drift, as defined by Wang et al. [49], aims to capture these
changes in concept meaning over time. For example, the keyword global warming was once
the dominant term in research publications, referring to the rise in Earth’s temperature.
Over time, climate change became more widely used to capture broader climate-induced
impacts [26] and account for the fact that warming is not uniform. To model a concept C
with a temporal component, it can be represented in the form (label;(C),int;(C), ext,(C))
or (labely(C), context,(C)) at time t. Extending this notion to a spatio-temporal dimension
means that a concept’s meaning may change both over time and space, e.g., at different rates.
Here, we define this phenomenon as spatio-temporal concept drift. In this case, a concept
can be represented as (label; (C),int, o(C), ext, s(C)) or (label; s(C), context, s(C)) for a
concept C at time ¢ and region s.

Figure 1 illustrates how a concept moves in both time and geographic space. More
abstractly, this can be thought of as the trajectory of a concept in a space-time prism [35].
The color gradient indicates (semantic) concept similarity [36, 39, 34, 22], thereby reflecting
changes in its thematic dimension over time and space. Take the keywords global warming
and climate change as an illustrative example. Region s; may have already adopted the use
of climate change since time t1, while s, still has a mixed use of both terms. Note that, here
at t1, the variation in the thematic dimension between s; and s, represents spatial variability,
which differs from spatio-temporal concept drift, as it captures regional differences without
a temporal dimension [25]. Later by t3, sy adopts the distinct use of climate change and
global warming, aligning its concept representation with s;. Over time, as concepts evolve,
their meanings may change gradually, showing a concept drift from ¢ to t3 in s1, or change
so much that they diverge into two, showing a concept split? in region s,. Ultimately, the
two concepts may converge into a shared understanding for both regions (indicated by the
semantic similarity between C; and C] at t3).

Even with the advent of semantic search [18], which allows for more flexible query
interpretation, concept drift remains a challenge, particularly in RDM and other archival
systems. If the past and present keywords are not properly linked, search results may still
be skewed toward more recent ones, simply because of their pertinence. This would lead to
either incomplete retrieval results or misinterpretation of archival documents. Addressing
spatio-temporal concept drift helps ensure that evolving knowledge remains accessible and
meaningful across different time periods and regions. It could therefore enhance semantic
interoperability overall and support the FAIR principles.

4 Definitions of concept drift and concept split are provided in our earlier work [40].
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Figure 1 Representation of concepts drift and split over geographic space and time. The intensity
of color indicates concept similarity.

3 Related Work

This section reviews existing work that provides means for measuring the latent semantics
underlying words in their embeddings, with a spatio-temporal focus.

3.1 Spatial and Temporal Information in Word Embeddings

With the introduction of Word2Vec [29], word embeddings have revolutionized representation
by converting words into dense vectors in a high-dimensional space,® where semantically
similar words are close to each other. Such representation enables a more flexible study
of temporal and spatial variations in lexical semantics, offering an advantage over directly
comparing different ontology versions. Early pre-trained word embeddings, such as GloVe [32],
provide static representations, where each word is assigned a single vector, independent of
context. Later, more advanced models like BERT [10] provide context-aware embeddings that
capture more variations in meaning based on surrounding text using attention mechanisms.

Several studies [3, 20, 37] have explored the enrichment of word embeddings with temporal
and spatial information. For example, Zhang et al. [54] focused on temporal counterpart
search that detects semantically similar terms over time. The authors later also investigated
the geographic variations in lexical semantics [55], e.g., showing that typhoon in Japan would
be the most similar term to hurricane in the United States. Gong et al. [16] further extended
this idea and proposed a model that conditions word embeddings on time or location (i.e.,
generating time- and location-specific embeddings). Their findings included word similarities
over time (e.g., bitcoin in 2015 and stocks in 1992) and locations (e.g., president in the
United States and prime minister in Canada). A few other studies in GIScience explored

5 Note that some literature uses the term “low-dimensional space” here when comparing the dimensionality
to a one-hot encoding. We use the term here to signify that the resulting embeddings are in a, say,
300-dimensional vector space.
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the representation learning of places via word embeddings, thereby using spatial information
alone. Yan et al. [52] applied word-embedding techniques to learn embeddings of places
based on their types and distances. Later, Zhai et al. [53] extended this approach to the
representation learning of functional regions.

While these approaches captured variations in lexical semantics along one dimension
effectively, they did not jointly consider spatial and temporal dimensions. As a result, they
would fail to capture spatial-temporal lexical similarity, such as chancellor in Germany in
2010 and prime minister in the United Kingdom in 1980. Such similarity is centered in
our study on spatio-temporal concept drift, which accounts for both dimensions at the same
time.

3.2 Word Embedding Association Test

The Word Embedding Association Test (WEAT) [7], inspired by the Implicit Association
Test in psychology, is a widely used method for quantifying semantic associations in word
embeddings. It calculates association scores by comparing cosine similarities between two
sets of target words (e.g., man and woman) and two sets of attribute words (e.g., doctor
and gynecologist). For example, associations between man and doctor versus womar and
gynecologist can be assessed using vector arithmetic [6, 30], expressed as man — woman, ~

doctor — gynecologist. The resulting WEAT score indicates the degree of association between
the two groups in the embedding space. WEAT provides a standardized measure and allows
for statistical significance testing of observed changes. By adapting this method, we can
compute the cosine similarities between different temporal snapshots and geographical regions,
e.g., (hurricane to Mexico, 2005) and (typhoon to China, 2015). Note that 2005 and 2015
are not treated as vectors themselves but rather indicate the time periods associated with
these concept-region pairs. If in a vector space, hurricane — typhoon ~ Mexico — China,

this would allow us to quantify concept changes across space and time and reveal geographic
prototypes underlying word embeddings. However, applying WEAT to spatio-temporal
analysis also presents challenges, particularly in maintaining statistical power when data is
sparse across certain regions or time periods.

4 Case Study: Geographical Information Science Publications

We employ a scientometric dataset from Wu et al. [51] to detect the spatio-temporal concept
drift in a real-world dataset. This dataset includes research publications in the field of
GIScience from 1991 to 2020, sourced from Scopus®. As the dataset focuses on international
journals and conferences that publish exclusively in English, all included publications are
in English. Here, we explicitly focus on papers that mention locations in their abstracts,
including geopolitical entities (GPEs) — such as countries, states, and cities — as well as
nationalities (NORP), using the spaCy transformer-based named entity recognition pipeline’.
Table 1 presents the summary statistics of the dataset after filtering for these papers. For
reference, we provide the full names of conference and journal abbreviations in Appendix A.

5 https://www.scopus.com/
7 https://spacy.io/models
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Table 1 Summary statistics of research publications with location mentions in abstracts.

Type Name Time Range Number of Papers Number of Keywords
Conference  COSIT 1993-2019 22 100
Conference  GIScience 2006-2020 18 78
Journal CEUS 1999-2020 622 3177
Journal CaGIS 1991-2020 196 1002
Journal EPB 1998-2020 352 1744
Journal Geol 1997-2020 61 305
Journal 1JGIS 2005-2020 550 2640
Journal JGS 1996-2020 196 922
Journal JOSIS 2010-2020 21 133
Journal SCC 2003-2020 19 92
Journal TGIS 2007-2020 50 237
Total 1991-2020 2107 10430

4.1 Spatio-Temporal Dimensions of Concepts

As with the what, when, and where questions, we argue that each concept has thematic,
temporal, and spatial dimensions. In this dataset, we treat each keyword as signifying an
individual concept® and represent these three dimensions accordingly.

To represent the (1) thematic dimension, we use the associated abstract, which
provides contextual information of each concept. Since Scopus is an abstract and citation
database without guaranteed full-text access, abstracts — being more consistently available
across publications — are a practical choice for large-scale analysis. For the (2) temporal
dimension, we use the publication year of the paper associated with each concept. Lastly,
for the (3) spatial dimension, we use OpenStreetMap Nominatim? to geocode the identified
locations and extract the corresponding country for sub-national locations (e.g., cities). For
location mentions like “East African”, we retain them at the continent level. If multiple
countries are mentioned in an abstract, we document all of them. After retrieving 2,112
publications with location mentions, we manually reviewed 16 unidentified cases, assigning
them to the country level or removing them where necessary. This resulted in a final dataset
of 2,107 publications.

Table 2 includes examples of abstracts with location mentions and the extracted countries
(or regions). The distribution of the 10 most mentioned countries in publications within our
dataset is visualized in the heatmap in Figure 2. From this heatmap, we can observe that
the United States and China lead in the number of publications, followed by other English-
speaking countries (e.g., the United Kingdom, Canada, and Australia) and several European
countries. Along the temporal axis, we also observe a notable increase in publications since
2005 in this scientometric dataset.

4.2 Spatio-Temporal Concept Drift in Embedding Space

With the defined spatial and temporal dimensions of each concept, we leverage word em-
beddings to capture their variations in the thematic dimension. We employ the pre-trained
SciBERT model [5], which is designed for scientific texts, to compute embeddings. We use

8 The distinction between a symbol and a concept can be explained using the triangle of reference [31].
9 https://nominatim.org
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Table 2 Exemplar location mentions and extracted countries in abstracts.

Year Abstract Excerpt Location Mentions Country

1999  “We illustrate...based on the street [French] [France]
pattern of a small French town.”

2008  “A dataset describing...in New York [New York City] [United States]
City is analyzed to...the technique.”

2017  “Using Austria and Slovenia as a [Austria, Slovenia] [Austria, Slovenia]
study area,...modified IL.”

United States (597)- 1 5 2 1 2 2 5 4 1 3 8 11 12 7 19 14 21 32 24 29 2329 45 67 48
China(366)- 0 0 0 0 0 O O O O 1 1 1 0 O 4 2 2 3 8 10 16 16 21 19 EPAR308 52 54 52

% UnitedKingdom (203)- 0 0 0 0 0 1 1 2 3 6 4 10 4 1 11 7 6 7 6 5 7 13 9 14 10 12 11 17 22 14
E Canada (93)- 0 0 1 001 2 1 1 1 0 0 1 1 4 0 3 3 5 5 1 4 8 10 8 9 4 6 10 4
© Australia(82)- 0 0 0 1 0 0 0O 0 0 2 2 1 3 1 3 4 4 0 2 1 5 7 4 7 2 6 7 4 4 12
e Netherlands (81)- 0 0 0 0 0 0 0 3 2 1 2 2 1 3 4 4 0 2 7 7 4 7 107 4 3 1 4 3
*E Germany(70)-0 0 0O 0 0 O 0 1 3 0 1 1 2 0O 2 1 2 0 2 2 3 5 4 10 8 5 3 5 3 7
5 Spain(66)- 0 0 0 0 O 0 O O 0 0O 0O 0 O 0 1 1 0 1 2 5 1 5 13 8 6 4 6 6 4 3
ltaly(60)- 0 0 0 O 0 0 O O 4 1 0 1 0 0 O 2 2 2 7 1 5 2 5 4 3 3 6 4 3 5
France(54)- 0 0 1 0 0 O 0 0O 2 0 2 1 1 1 1 0 1 0 0O 1 0O 4 3 5 3 2 5 5 10 6
@q\’ w“& x“& quv ~°’qﬁ @qb &q« w"’q% «9@ '1900 '\9& w°& "9& "P& "P@ "Pcb 'P& ’LQQ% "P@ m@'e ﬁ?o ”PO ”PO "9& "9@ "v&b "PQ "P& "P& W&Q
Year
B
0 10 20 30 40 50 60

Figure 2 Distribution of publications for the 10 most mentioned countries over time.

context-aware representations of concepts in natural language, i.e., (label(C), context(C')) for
a concept C, as discussed in Section 2.1. Here, we compute these two types of embeddings
for concepts (in this case, keywords): (1) label embedding, which is static and derived
from the keywords themselves, and (2) context embedding, which is context-aware and
based on their associated abstracts with location mentions.

Additionally, we investigate the sensitivity of context embeddings to location mentions by
computing (3) context embedding without locations as well. This embedding is derived
from associated abstracts of a concept, where each identified location mention is replaced
with the placeholder “[Location]”. For instance, in the first example in Table 2, the sentence
would become “We illustrate...based on the street pattern of a small [Location] town.” This
helps reveal whether explicit geospatial references influence the context-aware representation
of concepts.

For each keyword/concept C in a given year ¢ and country (or region) s, we first average
its context embeddings across all relevant abstracts, to ensure a single embedding for each
unique keyword-year-country combination. We then integrate this with the label embedding
through a convex combination to obtain the composite embedding C; 5, formulated as:

Cis =0 label(C)+ (1 —a) - . Z context(C,d) (1)

|Dt,s| deDy s
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where label(C) is the embedding of the keyword itself through its label; context(C,d) is
the embedding of the abstract in document d containing the keyword; D; ; is the set of
documents that contain the keyword from year ¢ and country s; and |D, | is the number
of such documents. The parameter a determines the weight assigned to the label versus
context embeddings.

To quantify how a concept C' drifts across different space-time combinations, we use cosine
similarity between their respective composite embeddings. Given two concept representations,
e.g., Cy, s, and (Y, s,, their similarity is computed as:

Ct1,81 i Ct2,52

im(Ch, o Choa)) = 2
$1m(Cri,ss Crasa) = 5 (G ] @)

5 Results

To start, we visualize these keywords in the embedding space. Figure 3 shows the distribution
of keyword embeddings across countries and selected years (2000, 2005, 2010, 2015, and
2020), generated using t-Distributed Stochastic Neighbor Embedding (t-SNE) [46]. The
label embedding weight « is empirically set to 0.3 to place greater emphasis on the context
embedding while retaining sufficient label information. Higher values of a tend to produce
overly label-driven clusters, whereas lower values may cause semantically related keywords
to diverge (see Appendix B for examples).

From the figure, we can observe a cluster of keywords with location mentions of China
over the years (represented by triangles of different colors in the middle left of the figure),
and those with location mentions of European countries like Germany and the Netherlands
appear closer to each other.

The t-SNE visualization provides an overview of keyword distributions; we then look into
how individual keywords move along their semantic trajectories across different countries over
the years. Note that all keywords are standardized to lowercase and American spelling. They
are also lemmatized and expanded to their full forms (e.g., DEM to digital elevation model),
with the exception of GIS, which we retain as an abbreviation due to its ambiguous reference
to GI Science or GI System. For each keyword, we quantify its spatio-temporal coverage by
multiplying its time span (in years) by the number of unique countries it is associated with,
yielding a coverage score to reflect both its temporal persistence and geographic distribution.
Table 3 presents the top 10 keywords ranked by their spatio-temporal coverage. From these,
we plot the semantic trajectories for selected keywords — GIS, urban planning, spatial analysis,
and cellular automaton — in Figure 4, using principal component analysis (PCA) [1] to reduce
the dimensionality of their embeddings.

From these trajectories, we can notice that the extracted embeddings of GIS (Figure 4a)
are quite consistent across Italy, Germany, Australia, and the UK in the early years of
1999 and 2000. Afterward, English-speaking countries, including the UK, the US, Canada,
and Australia, along with China, have their embeddings clustered together. In contrast,
European countries, e.g., Spain, France, and Italy, form a separate cluster between 1999 and
2015. This reflects that these countries might take different approaches to GIS theories and
applications. Contrary to GIS, the semantic trajectories for urban planning (Figure 4b) and
spatial analysis (Figure 4c) vary significantly across different countries. This indicates that
these two keywords exhibit strong region-specific embeddings, reflecting that the research
under these two keywords in our scientometric dataset is potentially more influenced by
local policies, socioeconomic conditions, and so on. Their variations across countries also
suggest that, even based on the same theoretical foundation, the practical applications of
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Figure 3 A t-SNE visualization of keyword embeddings with selected years and countries.

these concepts can vary and lead to country-dependent interpretations. Compared with
urban planning and spatial analysis, cellular automaton (Figure 4d) shows similar semantic
trajectories and clustered embeddings across countries. This country-wise consistency is
likely attributed to the stronger mathematical and computational foundations of cellular
automaton, which makes it potentially less influenced by local policies or conditions. This
observation also indicates a more widely shared understanding and development of theories
and applications in cellular automaton.

Table 3 The top 10 keywords by spatio-temporal coverage.

Keyword Time Span Unique Unique Total Coverage

Years Countries Count Score
GIS 1993-2020 (27) 26 45 138 1215
Geographic Information System  1994-2020 (26) 20 36 72 936
Remote Sensing 1995-2020 (25) 17 29 48 725
Land Use 1995-2020 (25) 20 26 55 650
Model 1999-2020 (21) 12 28 41 588
Urban Planning 1998-2020 (22) 15 25 47 550
Spatial Analysis 1998-2020 (22) 18 25 54 550
Cellular Automaton 2000-2020 (20) 19 25 63 500
Visualization 1997-2019 (22) 14 20 39 440
Cadastre 2001-2020 (19) 8 20 24 380
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Figure 4 PCA visualization of the semantic trajectory of keywords by country over time. Only the
top 10 countries are included for visual clarity. We use the first and the second principle components
for PCA visualization.

While semantic trajectories trace how a single keyword (used as a proxy for an underlying
concept) evolves over time and across countries, they do not capture how it relates to other
keywords in semantic space. Table 4 presents selected examples of keywords in different
country-year combinations and how their meanings evolve. For each unique keyword-country-
year combination, we identify its three most similar keywords from the other years, calculated
based on Equation 2. For GIS in Austria (1999), its closest semantic matches are found in the
UK and Australia to itself and integrated model in the Netherlands. The temporal distance
between these matches is small, suggesting that the conceptualization of GIS remained
relatively stable across these countries during this period. In contrast, machine learning in
France (2003) follows a different pattern. It shares the strongest similarities with ontology
and temporal management in Spain (2012) but also aligns with machine learning in Czechia
(2020). This indicates that the early machine learning concept was probably integrated into
various domains of GIScience over time. Lastly, urban planning in China (2011 and 2019)
show a rather location-stable pattern that the strongest similarities are all found within China
across different years and with related planning keywords. This suggests a more internally
consistent evolution of urban planning concepts within the Chinese research community.
In contrast, urban planning in Australia (2004 and 2018) shows similarities across many
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countries (the US, the UK, Netherlands, and Finland). This indicates a more dynamic and
globally connected evolution of the underlying concept. We can infer from this comparison
that the concept of urban planning may drift slower and more localized in China, while at a
faster rate and more international in Australia.

Table 4 Selected cases of the top three similar keywords and their similarity scores across
countries and years.

Query Keyword Top 3 Similar Keywords Sim.
GIS (Austria, 1999) GIS (United Kingdom, 2000) 0.931
Integrated Model (Netherlands, 2000) 0.894
GIS (Australia, 2000) 0.892
Machine Learning (France, 2003)  Ontology (Spain, 2012) 0.916
Temporal Management (Spain, 2012) 0.916
Machine Learning (Czechia, 2020) 0.909
Urban Planning (China, 2011) Urban Planning (China, 2019) 0.942
Geographic Information System (China, 2016) 0.939
Planning Support System (China, 2020) 0.938
Urban Planning (China, 2019) Urban Spatial Dynamic (China, 2020) 0.953
Scenario Planning (China, 2020) 0.948
Urban Land Use (China, 2020) 0.948
Urban Planning (Australia, 2004) Urban Planning (Finland, 2020) 0.947
Urban Planning (United States, 1998) 0.937
Urban Planning (Netherlands, 2016) 0.936
Urban Planning (Australia, 2018)  Urban Data (United States, 2019) 0.928
Urban Land Use Change (United Kingdom, 2014)  0.927
Urban Scaling Law (Europe, 2020) 0.924

Finally, we perform a sensitivity analysis on countries with at least 100 associated
keywords to evaluate the impact of explicit location mentions on the extracted context
embeddings. Using a two-tailed permutation test (with 1,000 permutations), we find that
the average cosine distance (1 — cosine similarity) between embeddings with and without
location mentions (0.010) is significantly smaller than what would be expected by chance
(permutation mean = 0.242, std = 0.0005, p < 0.001). This indicates that explicit location
mentions have minimal impact on the semantic representation of concepts in our case study.
This is likely because geographical context is implicitly encoded in the text. We discuss this
in more detail in the discussion section.

6 Discussion

This section discusses the challenges of defining spatio-temporal dimensions of concepts and
the potential biases introduced in our case study. We also discuss findings from the sensitivity
analysis, outline future research directions and the implications of spatio-temporal concept
drift for ontology learning with large language models (LLMs).

6.1 Challenges in Defining Spatio-Temporal Dimensions of Concepts

Understanding spatio-temporal concept drift in scientific texts requires linking keywords
(and their underlying concepts) to geographic locations and time, but this process inherently
introduces biases.
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In our case study, we use publication year as the temporal dimension of a concept.

However, the publication year could be different from the actual study period (e.g., a paper
published in 2010 on East Africa in the 1970s). We attribute spatial dimensions of concepts
(keywords) based on location mentions in their associated abstracts. However, not all location
mentions correspond to the actual study area; some may appear as examples, comparisons,
or even counterexamples. We then aggregate these locations to use the country as the spatial
unit of concept drift, overlooking regional variations within the country level. Take the
concept of urban planning as an example. Its interpretation could differ significantly for New
York City (e.g., a walkable, transit-oriented city) versus Los Angeles (e.g., a car-centric city)
over the years. These regional disparities would become particularly pronounced in larger

countries (e.g., the United States) with diverse geographic and socioeconomic conditions.

Our spatial aggregation approach implicitly assumes concept homogeneity at the country
level, which introduces biases into the learned embeddings.

Future work could explore improved spatio-temporal scoping techniques to capture study
periods and areas more accurately; it should also include different spatial levels — cities,
countries, and continents — to measure variations.

6.2 Sensitivity to Location Removal in Context Embeddings

Our sensitivity analysis reveals varying effects across countries when removing location
mentions. For example, keywords associated with Japan show slightly larger differences in
their embeddings, though the overall differences remained small. Here, several factors may
complicate the interpretation of these results. First, the dataset has a substantial imbalance,
with publications mentioning the United States far outnumbering those that mention other
countries. When extracting unique country-year combinations, this imbalance leads to sparse
samples for less represented countries, thus masking meaningful patterns. Second, we did not
account for the proportion of location mentions within abstracts, e.g., some abstracts contain
a list of study areas, while others mention one location briefly. The observed differences
in embeddings with and without locations may be due to the removal of more contextual
information rather than an inherent sensitivity to geographic reference. These factors need a
more fine-grained analysis to quantify the impact of explicit location mentions on embedding
representations in future work.

6.3 Implication for Ontology Learning with Large Language Models

Since large language models (LLMs) become more commonly used for ontology learning
tasks [27, 2, 41], we need to ensure geographic and temporal variations in knowledge are
accounted for to have more context-aware representations. Current LLMs are trained on vast
corpora of text that usually lack explicit spatial and temporal structuring [13], which would
likely overlook the spatio-temporal variations in concept representations unless specified in
the prompt. Our findings show that concepts in scientific texts evolve differently across
geographic space and over time. This suggests that ontologies derived from LLMs may inherit
hidden geographic biases. For instance, when an LLM processes the concept of smart city,
its interpretation might be overly influenced (and represented) by temporally and regionally
dominant implementations (e.g., the recent decade in Singapore) if the training data is
dominated by publications from this region and time period.

Our observations show that concepts in scientific texts can vary across geographic space
and time, and suggest the need for a more context-aware mechanism when using LLMs
for ontology learning. This could be achieved with region-specific knowledge validation
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and/or the development of geographically aware prompting strategies. To capture the
spatio-temporal dynamics in scientific concepts, future work could include the design of more
few-shot learning approaches, where examples are carefully selected to represent diverse
temporal and geographic interpretations of concepts.

7 Conclusions

Space and time are central to the study of geography and GIScience. These dimensions
not only shape our daily physical interactions of when and where, but also influence the
abstract representation of concepts in scientific knowledge. With the ever-increasing volume
of research publications, we need methods to better structure concepts embedded in scientific
research for organization and retrieval purposes. Encoded in an ontology, we could also
account for the spatio-temporal dynamics of concepts, which are constantly evolving — often
at varying rates across regions — due to technology and societal changes, for more effective
research data management (RDM).

In this work, we introduce the notion of spatio-temporal concept drift. We complement
previous work on concept drift by including the spatial dimension, and propose a novel
approach using word embedding techniques to capture this drift over space and time. Using
a scientometric dataset in the field of GIScience, we demonstrate that keywords (used as
proxies for underlying concepts) show varying drift patterns over time and across countries.
Spatially grounded concepts, such as urban planning (as compared to cellular automaton),
can have substantial differences in meanings for different countries and over time.

The implications of this work extend beyond improving the understanding of concepts
in scientific texts to enhancing FAIR-based RDM systems. This reminds us, for example,
that concepts like cellular automaton may require less user intervention, while concepts like
urban planning may need query enrichment to account for local and temporal variation to
better match a user’s keyword. Given the observed spatio-temporal concept drift and the
increasing use of ontology learning with large language models (LLMs), we also suggest
that LLM-based ontology learning mechanisms should explicitly account for the spatial and
temporal dimensions of concept representation. Making RDM systems and ontology learning
approaches more sensitive to these variations will help improve retrieval and maintain the
relevance of knowledge in scientific texts.

—— References

1 Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary
reviews: computational statistics, 2(4):433-459, 2010. doi:10.1002/wics.101.

2 Hamed Babaei Giglou, Jennifer D’Souza, and Séren Auer. LLMs4OL: Large language models
for ontology learning. In International Semantic Web Conference, pages 408—427. Springer,
2023. doi:10.1007/978-3-031-47240-4_22.

3 David Bamman, Chris Dyer, and Noah A Smith. Distributed representations of geographically
situated language. In Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 828-834, 2014. doi:10.3115/v1/p14-2134.

4 Lawerence Barsalou. Concepts and meaning. In L. Barsalou, W. Yeh, B. Luka, K. Olseth,
K. Mix, and L. Wu, editors, Chicago Linguistic Society 29: Papers From the Parasession on
Conceptual Representations, pages 23—61. University of Chicago, 1993.

5 Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A pretrained language model for scientific
text. In Conference on Empirical Methods in Natural Language Processing, 2019. doi:
10.18653/v1/D19-1371.


https://doi.org/10.1002/wics.101
https://doi.org/10.1007/978-3-031-47240-4_22
https://doi.org/10.3115/v1/p14-2134
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371

M. Shi, K. Janowicz, Z. Liu, M. Karimi, I. Majic, and A. Fortacz

10

11

12

13

14

15

16

17

18

19

20

21

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man
is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances
in neural information processing systems, 29, 2016. doi:10.48550/arXiv.1607.06520.

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. Semantics derived automatically
from language corpora contain human-like biases. Science, 356(6334):183-186, 2017. doi:
10.1126/science.aal4230.

Giuseppe Capobianco, Danilo Cavaliere, Sabrina Senatore, et al. Ontodrift: a semantic drift
gauge for ontology evolution monitoring. In CEUR Workshop Proceedings, volume 2821, pages
1-10. CEUR-WS, 2020. URL: https://ceur-ws.org/Vol-2821/paperl.pdf.

Christophe Claramunt. Ontologies for geospatial information: Progress and challenges ahead.
Journal of Spatial Information Science, 20:35—41, 2020. doi:10.5311/J0SIS.2020.20.666.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of
the Association for Computational Linguistics, 2019. doi:10.18653/v1/N19-1423.

Stephanie Duce and Krzysztof Janowicz. Microtheories for spatial data infrastructures-
accounting for diversity of local conceptualizations at a global level. In Geographic Information
Science: 6th International Conference, GIScience 2010, Zurich, Switzerland, September 14-17,
2010. Proceedings 6, pages 27-41. Springer, 2010. doi:10.1007/978-3-642-15300-6_3.

Max J Egenhofer and David M Mark. Naive geography. In Spatial Information Theory A
Theoretical Basis for GIS: International Conference COSIT’95 Semmering, Austria, September
21-23, 1995 Proceedings 2, pages 1-15. Springer, 1995. doi:10.1007/3-540-60392-1_1.

Fahim Faisal and Antonios Anastasopoulos. Geographic and geopolitical biases of language
models. In Duygu Ataman, editor, Proceedings of the 3rd Workshop on Multi-lingual Rep-
resentation Learning (MRL), pages 139-163, Singapore, December 2023. Association for
Computational Linguistics. doi:10.18653/v1/2023.mr1-1.12.

Antske Fokkens, Serge Ter Braake, Isa Maks, Davide Ceolin, et al. On the semantics of concept
drift: Towards formal definitions of semantic change. Drift-a-LOD@ EKAW, 2016. URL:
https://ceur-ws.org/Vol-1799/Drift-a-L0D2016_paper_2.pdf.

Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and Luc Schneider.
Sweetening ontologies with DOLCE. In International conference on knowledge engineering and
knowledge management, pages 166—181. Springer, 2002. doi:10.1007/3-540-45810-7_18.
Hongyu Gong, S. Bhat, and Pramod Viswanath. Enriching word embeddings with temporal
and spatial information. In Conference on Computational Natural Language Learning, 2020.
doi:10.18653/v1/2020.conll-1.1.

Nicola Guarino. Formal ontology, conceptual analysis and knowledge representation. Interna-

tional journal of human-computer studies, 43(5-6):625-640, 1995. doi:10.1006/ijhc.1995.

1066.
Ramanathan Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings of the

12th international conference on World Wide Web, pages 700-709, 2003. doi:10.1145/775152.

775250.

Prashant Gupta and Mark Gahegan. Categories are in flux, but their computational
representations are fixed: That’s a problem. Transactions in GIS, 24(2):291-314, 2020.
doi:10.1111/tgis.12602.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word embeddings reveal
statistical laws of semantic change. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 1489-1501, 2016. doi:10.

18653/v1/P16-1141.

Krzysztof Janowicz, Song Gao, Grant McKenzie, Yingjie Hu, and Budhendra Bhaduri. GeoAl:
spatially explicit artificial intelligence techniques for geographic knowledge discovery and
beyond, 2020. doi:10.1080/13658816.2019.1684500.

16:15

GlScience 2025


https://doi.org/10.48550/arXiv.1607.06520
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1126/science.aal4230
https://ceur-ws.org/Vol-2821/paper1.pdf
https://doi.org/10.5311/JOSIS.2020.20.666
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-642-15300-6_3
https://doi.org/10.1007/3-540-60392-1_1
https://doi.org/10.18653/v1/2023.mrl-1.12
https://ceur-ws.org/Vol-1799/Drift-a-LOD2016_paper_2.pdf
https://doi.org/10.1007/3-540-45810-7_18
https://doi.org/10.18653/v1/2020.conll-1.1
https://doi.org/10.1006/ijhc.1995.1066
https://doi.org/10.1006/ijhc.1995.1066
https://doi.org/10.1145/775152.775250
https://doi.org/10.1145/775152.775250
https://doi.org/10.1111/tgis.12602
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.1080/13658816.2019.1684500

16:16

Spatio-Temporal Concept Drift in Scientific Texts

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Krzysztof Janowicz, Martin Raubal, and Werner Kuhn. The semantics of similarity in
geographic information retrieval. Journal of Spatial Information Science, 2:29-57, 2011.
doi:10.5311/J0S81S.2011.2.3.

Werner Kuhn. Semantic reference systems. International Journal of Geographical Information
Science, 17(5):4057409, 2003. doi:10.1080/1365881031000114116.

Werner Kuhn, Martin Raubal, and Peter Gardenfors. Cognitive semantics and spatio-
temporal ontologies. Spatial Cognition & Computation, 7(1):3-12, 2007. doi:10.1080/
13875860701337835.

Stephen C Levinson. Language and space. Annual review of Anthropology, 25(1):353-382,
1996. doi:10.1146/annurev.anthro.25.1.353.

Maurice Lineman, Yuno Do, Ji Yoon Kim, and Gea-Jae Joo. Talking about climate change
and global warming. PloS one, 10(9):e0138996, 2015. doi:10.1371/journal.pone.0138996.
Huu Tan Mai, Cuong Xuan Chu, and Heiko Paulheim. Do LLMs really adapt to domains?
an ontology learning perspective. In International Semantic Web Conference, pages 126—143.
Springer, 2024. doi:10.1007/978-3-031-77844-5_7.

David M. Mark, Barry Smith, and Barbara Tversky. Ontology and geographic objects: An
empirical study of cognitive categorization. In Conference On Spatial Information Theory,
pages 283-298, 1999. doi:10.1007/3-540-48384-5_19.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations,
2013. doi:10.48550/arXiv.1301.3781.

Malvina Nissim, Rik van Noord, and Rob van der Goot. Fair is better than sensational:
Man is to doctor as woman is to doctor. Computational Linguistics, 46(2):487-497, 2020.
doi:10.1162/coli_a_00379.

Charles Kay Ogden and Ivor Armstrong Richards. The Meaning of Meaning: A Study of the
Influence of Language upon Thought and of the Science of Symbolism. Harcourt, Brace &
World, Inc., 1923. doi:10.2307/2015195.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global vectors for
word representation. In Proceedings of the 201/ conference on empirical methods in natural
language processing (EMNLP), pages 1532-1543, 2014. doi:10.3115/v1/d14-1162.

Dharmen Punjani, Kuldeep Singh, Andreas Both, Manolis Koubarakis, losif Angelidis, Kon-
stantina Bereta, Themis Beris, Dimitris Bilidas, Theofilos loannidis, Nikolaos Karalis, et al.
Template-based question answering over linked geospatial data. In Proceedings of the 12th work-
shop on geographic information retrieval, pages 1-10, 2018. doi:10.1145/3281354.3281362.

Martin Raubal. Formalizing conceptual spaces. In Formal ontology in information systems,
proceedings of the third international conference (FOIS 2004), volume 114, pages 153-164.
Citeseer, 2004.

Martin Raubal. Representing concepts in time. In Spatial Cognition VI. Learning, Reason-
ing, and Talking about Space: International Conference Spatial Cognition 2008, Freiburg,
Germany, September 15-19, 2008. Proceedings 6, pages 328-343. Springer, 2008. doi:
10.1007/978-3-540-87601-4_24.

M Andrea Rodriguez and Max J. Egenhofer. Determining semantic similarity among entity
classes from different ontologies. IFEFE transactions on knowledge and data engineering,
15(2):442-456, 2003. doi:10.1109/TKDE.2003.1185844.

Maja Rudolph and David Blei. Dynamic embeddings for language evolution. In Proceedings of
the 2018 world wide web conference, pages 1003—1011, 2018. doi:10.1145/3178876.3185999.
Christoph Schlieder. Digital heritage: Semantic challenges of long-term preservation. Semantic
Web, 1(1-2):143-147, 2010. doi:10.3233/SW-2010-0013.

Angela Schwering. Approaches to semantic similarity measurement for geo-spatial data: a
survey. Transactions in GIS, 12(1):5-29, 2008. doi:10.1111/j.1467-9671.2008.01084.x.


https://doi.org/10.5311/JOSIS.2011.2.3
https://doi.org/10.1080/1365881031000114116
https://doi.org/10.1080/13875860701337835
https://doi.org/10.1080/13875860701337835
https://doi.org/10.1146/annurev.anthro.25.1.353
https://doi.org/10.1371/journal.pone.0138996
https://doi.org/10.1007/978-3-031-77844-5_7
https://doi.org/10.1007/3-540-48384-5_19
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1162/coli_a_00379
https://doi.org/10.2307/2015195
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1145/3281354.3281362
https://doi.org/10.1007/978-3-540-87601-4_24
https://doi.org/10.1007/978-3-540-87601-4_24
https://doi.org/10.1109/TKDE.2003.1185844
https://doi.org/10.1145/3178876.3185999
https://doi.org/10.3233/SW-2010-0013
https://doi.org/10.1111/j.1467-9671.2008.01084.x

M

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

. Shi, K. Janowicz, Z. Liu, M. Karimi, I. Majic, and A. Fortacz

Meilin Shi, Krzysztof Janowicz, Zilong Liu, Mina Karimi, Ivan Majic, and Alexandra Fortacz.
Defining concept drift and its variants in research data management: A scientometric case
study on geographic information science. Transactions in GIS, 29(3):e70058, 2025. doi:
10.1111/tgis.70058.

Cogan Shimizu and Pascal Hitzler. Accelerating knowledge graph and ontology engineering
with large language models. Journal of Web Semantics, page 100862, 2025. doi:10.1016/j.
websem.2025.100862.

Barry Smith and David M Mark. Geographical categories: an ontological investigation.
International journal of geographical information science, 15(7):591-612, 2001. doi:10.1080/
13658810110061199.

Barry Smith and David M Mark. Do mountains exist? towards an ontology of landforms.
Environment and Planning B: Planning and Design, 30(3):411-427, 2003. doi:10.1068/
b12821.

Thanos G Stavropoulos, Stelios Andreadis, Efstratios Kontopoulos, and Ioannis Kompatsiaris.
SemaDrift: A hybrid method and visual tools to measure semantic drift in ontologies. Journal
of Web Semantics, 54:87-106, 2019. doi:10.1016/j.websem.2018.05.001.

Wolfgang G Stock. Concepts and semantic relations in information science. Journal of the
American Society for Information Science and Technology, 61(10):1951-1969, 2010. doi:
10.1002/asi.21382.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

Saskia Van Putten, Carolyn O’Meara, Flurina Wartmann, Joanne Yager, Julia Villette, Claudia
Mazzuca, Claudia Bieling, Niclas Burenhult, Ross Purves, and Asifa Majid. Conceptualisations
of landscape differ across european languages. Plos one, 15(10):e0239858, 2020. doi:10.1371/
journal.pone.0239858.

Stella Verkijk, Ritten Roothaert, Romana Pernisch, and Stefan Schlobach. Do you catch my
drift? on the usage of embedding methods to measure concept shift in knowledge graphs.
In Proceedings of the 12th Knowledge Capture Conference 2023, pages 70-74, 2023. doi:
10.1145/3587259.3627555.

Shenghui Wang, Stefan Schlobach, and Michel Klein. Concept drift and how to identify it.
Journal of Web Semantics, 9(3):247-265, 2011. doi:10.1016/j.websem.2011.05.003.

Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles
Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E
Bourne, et al. The FAIR guiding principles for scientific data management and stewardship.
Scientific data, 3(1):1-9, 2016. doi:10.1038/sdata.2016.18.

Xiaohuan Wu, Weihua Dong, Lun Wu, and Yu Liu. Data and Code for "Research Themes of
Geographical Information Science during 1991-2020: A Retrospective Bibliometric Analysis",
2022. doi:10.6084/m9.figshare.19242654.v1.

Bo Yan, Krzysztof Janowicz, Gengchen Mai, and Song Gao. From ITDL to Place2Vec:
Reasoning about place type similarity and relatedness by learning embeddings from augmented
spatial contexts. In Proceedings of the 25th ACM SIGSPATIAL international conference on
advances in geographic information systems, pages 1-10, 2017. doi:10.1145/3139958.3140054.
Wei Zhai, Xueyin Bai, Yu Shi, Yu Han, Zhong-Ren Peng, and Chaolin Gu. Beyond Word2vec:
An approach for urban functional region extraction and identification by combining Place2vec
and POIs. Computers, Environment and Urban Systems, 74:1-12, 2019. doi:10.1016/j.
compenvurbsys.2018.11.008.

Yating Zhang, Adam Jatowt, Sourav S Bhowmick, and Katsumi Tanaka. The past is not a
foreign country: Detecting semantically similar terms across time. IEEE Transactions on
Knowledge and Data Engineering, 28(10):2793-2807, 2016. doi:10.1109/TKDE.2016.2591008.
Yating Zhang, Adam Jatowt, and Katsumi Tanaka. Is tofu the cheese of asia?: Searching
for corresponding objects across geographical areas. In Proceedings of the 26th International
Conference on World Wide Web Companion, pages 1033-1042, 2017. doi:10.1145/3041021.
3055132.

16:17

GlScience 2025


https://doi.org/10.1111/tgis.70058
https://doi.org/10.1111/tgis.70058
https://doi.org/10.1016/j.websem.2025.100862
https://doi.org/10.1016/j.websem.2025.100862
https://doi.org/10.1080/13658810110061199
https://doi.org/10.1080/13658810110061199
https://doi.org/10.1068/b12821
https://doi.org/10.1068/b12821
https://doi.org/10.1016/j.websem.2018.05.001
https://doi.org/10.1002/asi.21382
https://doi.org/10.1002/asi.21382
https://doi.org/10.1371/journal.pone.0239858
https://doi.org/10.1371/journal.pone.0239858
https://doi.org/10.1145/3587259.3627555
https://doi.org/10.1145/3587259.3627555
https://doi.org/10.1016/j.websem.2011.05.003
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.6084/m9.figshare.19242654.v1
https://doi.org/10.1145/3139958.3140054
https://doi.org/10.1016/j.compenvurbsys.2018.11.008
https://doi.org/10.1016/j.compenvurbsys.2018.11.008
https://doi.org/10.1109/TKDE.2016.2591008
https://doi.org/10.1145/3041021.3055132
https://doi.org/10.1145/3041021.3055132

16:18 Spatio-Temporal Concept Drift in Scientific Texts

A Conference and Journal Abbreviation Reference

Table 5 Full names and abbreviations of selected conferences and journals.

Conference/Journal Name Abbreviation
International Conference on Spatial Information Theory COSIT
International Conference on Geographic Information Science GIScience
Computers, Environment and Urban Systems CEUS
Cartography and Geographic Information Science CaGIS
Environment and Planning B: Urban Analytics and City Science EPB
Geolnformatica Geol
International Journal of Geographical Information Science 1JGIS
Journal of Geographical Systems JGS
Journal of Spatial Information Science JOSIS
Spatial Cognition & Computation SCC
Transactions in GIS TGIS

B Sensitivity Analysis of the Label Embedding Weight

Table 6 Top similar keywords retrieved under different values of the label embedding weight «,
along with their similarity scores. The value of a = 0.3 is used in the case study in this paper. Note

that the examples are included post hoc to illustrate the qualitative effects of different o values.

Query Keyword

‘Weight
Urban Planning (Australia, 2018) Climate Change (US, 2020)
urban scaling law (Europe, 2020): 0.925 climate change (US, 2014): 0.913
zipf’s law for city (Europe, 2020): 0.924 sea level rise (US, 2019): 0.910
a=0.1 land use (Europe, 2020): 0.923 storm surge inundation (US, 2019): 0.909
population density (Europe, 2020): 0.922 lidar (US, 2008): 0.909
radial analysis (Europe, 2020): 0.922 greening scenario (US, 2018): 0.909
urban data (US, 2019): 0.928 climate change (US, 2014): 0.938
urban land use change (UK, 2014): 0.927 climate change (UK, 2018): 0.919
a=0.3 urban scaling law (Europe, 2020): 0.924 sea level rise (US, 2019): 0.912
urban planning (US, 2019): 0.924 urban heat island (US, 2018): 0.911
residential mobility (UK, 2014): 0.921 seasonal impact (US, 2018): 0.911
urban planning (US, 2019): 0.959 climate change (US, 2014): 0.967
urban planning (Brazil, 2003): 0.948 climate change (UK, 2018): 0.956
a=05 urban planning (Poland, 2017): 0.948 climate change (UK, 2012): 0.947
urban planning (Spain, 2017): 0.947 climate change (US, 2013): 0.947
urban planning (Netherlands, 2016): 0.943 climate change (US, 2015): 0.946
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—— Abstract

We argue that in order to justify a modeling approach for a particular purpose, we need to
better understand the experimental structure that is supposed to be represented by a given model
application. For this purpose, we introduce a logic for specifying causal as well as spatio-temporal
experiments, based on which we reinterpret Sinton’s structure of spatial information from a pragmatic,
experimental viewpoint. We illustrate the use of this logic based on a landuse modeling example,
showing to what extent remote sensing and simulation approaches can be justified by decomposing
the example into experiments required for answering its main question.
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1 Introduction

Experiments are fundamental to science. They not only serve to generate empirical knowledge,
but also constrain how information sources are used in analysis and modeling to ensure valid
results. They provide a basis for justification of knowledge and trust in scientific insights.
Understanding experimental practice thus illuminates scientific methodology bottom-up, i.e.,
from study design and data acquisition to the construction of theoretical and computational
models for addressing scientific questions [28, 23].

While machine learning based GeoAl modeling techniques [14] can simplify the design
of complex models, our understanding of the experimental basis of the knowledge that is
produced with such models still remains limited, in particular when deciding whether a given
model can support a given claim or not [22]. Consider the example of land use change in
Brazil, where increased demand for agricultural commodities such as bioethanol may drive
deforestation. The process is complex: increased demand stimulates sugarcane expansion,
yet sugarcane rarely replaces forests directly [1]. Instead, it displaces pastures, which then
encroach upon forests (Fig. 1). Additional indirect effects arise from competing land uses,
such as sugar and beef production.

Some studies claim to be able to detect and predict such indirect land use change via
remote sensing [2], while others challenge this claim [27]. While remote sensing is a powerful
tool for finding the visible traces of land use change, the images cannot directly reveal the
causal mechanisms behind them. Assessing the effects of increased bioethanol demand,
including indirect effects, requires a causal model that simulates controlled intervention
experiments. Only in a model where certain invisible factors such as demand can be
artificially controlled, fixed or left free for such a large system, we can compare two (with and
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Figure 1 How sugarcane expansion may cause deforestation.

without intervention) or more possible progressions of a process to find out the effects of an
intervention. In contrast to remote sensing images, spatial simulation models, such as raster
based land use change models, enable such reasoning [27]. Why is that? The disagreement in
the community seems not merely related to model selection but to a deeper confusion about
the types of experiments that different models can meaningfully represent.

Our scientific goal is thus fundamental: to clarify the role of experiments in the context
of spatio-temporal modeling. This involves, on the one hand, understanding the structure
of experiments — that is, what needs to be fixed, controlled, and measured — and how they
can be performed. On the other hand, it requires understanding how we can interpret
modeling purposes — namely, the questions a model is supposed to answer — in terms of such
experiments. We argue that this kind of knowledge — pragmatic knowledge! [22] — is essential
for interpreting models. Since models constrain the kinds of experiments they can represent,
it is our pragmatic knowledge of the underlying experiment that allows us to judge whether
a given spatio-temporal model is valid for a particular purpose. In recent work [23], we
have suggested a way of understanding modeling purposes in terms of questions that reflect
such spatio-temporal experiments, following insights on how the inherent structure of spatial
information is a constraint to analysis, as suggested by David Sinton in 1978 [24]. However,
while Sinton’s original idea of “attributes” “held constant”, “being controlled” or “measured”
has inspired GIScientists to suggest corresponding geodata- and conceptual models [7, 3, 15],
it remains underdeveloped from a theoretic point of view [5]. The idea has neither been
rethought from the perspective of experimental design and causality, nor from a viewpoint of
pragmatics®. From this standpoint, we address the following key questions:

» Q. What is the role of experiments in spatio-temporal modeling?
» Q A. What constitutes a spatio-temporal experiment?

» Q B. How is knowledge about the structure of experiments inherent in spatio-temporal
modeling?

» Q C. Which types of spatio-temporal experiments need to be distinguished when answering
questions with a model?

For this purpose, we develop a pragmatic approach to experimental knowledge, drawing
on the methodical constructivist school of philosophy [17, 11, 18]. According to these
scholars [16, 10, 13], an ezperiment is an action that implements a situation (condition),

L The notion of pragmatics originates in linguistics, particularly in speech act theory. However, pragmatic
methodology has far broader implications, placing action at the center of knowledge production [12].
2 Qur title is therefore rephrasing Sinton’s paper emphasizing the role of experiments.
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initiates a process (the latter not being an action), and observes the resulting situation
(measure). We suggest a logic of experimental knowledge to make explicit the structure of
experiments underlying spatio-temporal models. To this end, we introduce a formal grammar
of situations in Sec. 2, which serves to construct the knowledge claims that must be supported
by experiments (Sec. 3). Our pragmatic logic is based on the work of the logician Paul
Lorenzen and aligns with modern causal theory [20, 28]. We then place Sinton’s ideas on
firmer pragmatic grounds by introducing classes of spatio-temporal experiments in Sec. 4.
Finally, in Sec. 5, we demonstrate how our theory can be used to decompose the land use
change example above in terms of its inherent experiments. Based on this we justify a
simulation modeling and reject a purely remote sensing-based approach.

2 A pragmatic grammar for situations and goals

In this section, we introduce a grammar for a pragmatic language following Lorenzen [17, 18]
about situations underlying experiments, including actions, processes and states, as well as
goals and imperatives which can be used to formulate requests. The language is explained
with example sentences, and specified in terms of a basic EBNF syntax:

rulename : expression

where expression may consist of words for literals (“hello world”) or terms (without quotes)
substitutable by further expressions. Expressions can be sequences (A B), alternatives (A
| B) or repetitions (A?) (zero or one) of such words. A string is parsed by applying rules
recursively to words in a sequence.

2.1 Predicators and nominators for things

We use words for kinds of things (predicators) and individual things of some kind (nominators).
In addition to predicators for space and time which range over individual locations and
moments in time (in spatial and temporal reference systems), we use the possibility of forming
amounts of space and time [25], such as regions and time intervals. The former can be used
to talk about the amount of space occupied by certain things. Similar predicators we use for
amounts of stuff or objects [23]. Furthermore, we call all these predicators for space, objects,
stuff, and their amounts endurances, meaning that they play a particular role in describing
situations: they can change in time, whereas occurrences are the things that are going on in
time, reflecting a common distinction in information ontology.

» Grammatic rule 1.

object : “house” | “river” | “ball” | ... | person
stuff : “energy” | matter | “heat” | ...

matter : “water” | “gold” [ ...

portion : “amount of” (object | stuff | space)
endurance : object | stuff | portion | space
thing : time | endurance

predicator : thing | occurrence

Nominators allow us to refer to particular things, either by introducing names, or by using
(in a common situation of speech) indicators (“this”, “that”) together with predicators:

» Grammatic rule 2.
here, there : “this” space
now, then : “this” time
home : “this” house

GlScience 2025
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In the following we use various nominators for each predicator above, including names for
persons, objects etc.

2.2 Occurrences, actions, situations and claims

Other predicators stand for different occurrences, to say what “goes on” with things. We
distinguish dynamic from static occurrences using process predicators (involving some change
of a situation that happens at a moment in time) and state predicators (involving some
situation is static at a moment in time). Furthermore, we use a special class of predicators
for talking about what can be done (do-predicator):

» Grammatic rule 3. occurrence : process | state | do-predicator
» Grammatic rule 4. process : “generate” | “stumble” | “rain” | “grow” | ...
» Grammatic rule 5. state : “stay” | “linger” | “rest” | ...

Do-predicators are distinct from other occurrences, since they stand for kinds of actions that
can be attributed to the persons performing them, including their purposes [9, 12]:

4

» Grammatic rule 6. do-predicator : “make” | “measure” | “run” | “stay” | “drink” | “use’

/...

The copula & is used to form situations with occurrences, to say that some occurrence has
happened, and 7 to form situations with do-predicators, to denote action performances:

» Grammatic rule 7.

K - “Z.S”/ “are”

T udo;;(uesv)?

happening : (at)? (time-nominator)? k occurrence (“ing”)? (appredicator)?
performance : (at)? (time-nominator)? ©

action : performance do-predicator (“ing”)? (appredicator)?

Appredicators are expressions that further specify the occurrence, which may use prepositions
together with nominators. A happening uses a temporal nominator and the copula x with
some predicator for occurrences. For example:

“at that time is raining this amount of water”
“now is growing”

In a similar way, we use the copula 7 for reporting on action performances:

“at that time does stay at this house”
“now does run home”

Note that we can always interpret an action performance as if it was a process, i.e., a
behavior [28], since do-predicators are occurrences. Situations are either happenings or
actions that are controlled by endurance nominators, referring to those things to which this
happens/who control the action. In particular, we require a person in control of actions:

» Grammatic rule 8.
situation : endurance-nominator happening | (person-nominator)? action

For example:

“this person at this time does stay at this house”
“here at this time is raining this amount of water”
“this tree now is growing”
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The distinctive role of situations, which are sorts of time-dependent propositions, has been
recognized early on in artificial intelligence, where they are called fluents [19].

» Grammatic rule 9. proposition : situation | ...

Propositions are used to make defensible claims. From a pragmatic perspective, the latter
are speech acts, actions that can be performed by persons in a dialogue. To be able to express
such acts, we introduce a way of saying that someone makes a claim using any proposition
formed from the grammar above.

» Grammatic rule 10. claim : (person-nominator)? performance “(” proposition “)”
For example, Nora now makes the claim that it will be raining tomorrow:

“Nora now 7(here tomorrow is raining)”

2.3 Goals and imperatives

Goals are propositions intended by persons. They can be wished without ever pursuing an
action (wishful thinking), but in the more practically relevant cases, we talk about goals that
actually can be pursued via actions. We form goals from propositions using a conjunction
“such that” or IF. For example, if I am traveling, I might wish to be at home at a certain
time:

“such that I then do stay at home”

We can distinguish goals based on what kind of proposition is used. Whenever we are using
a situation as a goal, we are wishing that the latter may come about:

» Grammatic rule 11 (goals).
I : “such that”
goal : I+ situation | ...

An example for a modificative goal is my wish to be at home (above), meaning a modification
of the place at which I am staying. Imperatives are speech acts that prompt some action from
a person. This can be expressed either by indicating the action directly, or by requesting a
goal and leaving the action that implements the goal open to the person addressed. In order
to express imperatives, we use the copula !:

» Grammatic rule 12. imperative : (person-nominator)? “!” (action | goal)

For example, a mother may request from her daughter Nora to be at home in time for dinner:

“Nora ! IF at this time are having dinner”
“Peter ! at this time do cycle home”

The first imperative is a request to bring about some situation using some modificative goal®.

This leaves it open to Nora how and when she takes action to meet the goal. The second
imperative, in contrast, requests an action explicitly. Following Lorenzen [18, p.45], we call
the first case final imperatives, and the second a-final imperatives. Finally, we allow for a
corresponding speech act, a request, which expresses that someone is performing a request
using an imperative.

3 «Aufforderung zur Herbeifuehrung eines Sachverhaltes”, see [18, p. 44]
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» Grammatic rule 13. request : (person-nominator)? performance “(” imperative “)”
For example, Nora’s mother Ellie requests Nora to run some errands later:
“Ellie now 7(Nora ! today do run this errand)”,

stands for the corresponding request. If we leave away the person nominators in such acts, we
mean that the person who utters the request is requesting something from herself, meaning
the person sets herself a goal. For example, I might now set myself the goal of running
errands later today:

“now 7(! today do run this errand)”

3 A pragmatic logic of experiments

In this section, we explain how the pragmatic language developed so far can be used to
construct logic formulas, expressing experimental knowledge. Formulas can be used to express
experimental norms for persons who should do something to perform an experiment, more
specifically (and recursively), who should make claims, decisions and plans. To formalize
experimental control, we introduce practical modalities. Furthermore, we use experiential
rules to express claims about experimental outcomes. Rules can be tested by experiments
and represented by knowledge bases and information models.

3.1 Knowledge of action consequences, inferences and decisions

In pragmatic philosophy, knowledge is understood as a form of know-how, meaning it must
be actionable: knowledge enables action, encompassing the skills necessary to achieve goals,
articulate and pursue interests, and ultimately navigate life within a heterogeneous society
[17, 12]. What distinguishes knowledge from mere opinion is the notion of validity: a valid
claim is a proposition that is successfully justifiable, which in turn requires the success of the
actions underlying its defense, including the successful execution of experiments.

To be valid, claims must be generalizable across multiple examples. To express such
generalizable claims, we employ standard logical connectives: disjunction (V) for “or,”
conjunction (A) for “and,” and negation (=) for “it is not the case that.” These can be
combined to form complex propositions. Additionally, we use the implication operator (—)
to denote conditional statements: “if the first proposition is true, then the second must also
be true.” For example, the logical formula AV (=B A (=(C — D))) expresses a structured
claim where A, B, C, and D are arbitrary propositions.

Quantifiers extend conjunction and disjunction over arbitrarily many propositions by
introducing variables. Variables are placeholders for elements within a specified domain —
a collection of nominators that share a common predicate. To denote domains, we use
upper-case symbols corresponding to predicators in Sect. 2.1. For example, the domain
Person consists of nominators referring to individuals. Variables such as z,y,z can be
substituted by any element from their respective domains. The universal quantifier ()
generalizes conjunction across all elements of a domain, asserting that a proposition holds
for every substitution:

/\xespace T now 1s raining A x now is wet

This states that it is raining and wet everywhere in space. Conversely, the ezistential
quantifier (\/) generalizes disjunction, asserting that a proposition holds for at least one
substitution:
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Nzespace VyeTime T Y 18 Taining A z y is wet

This expresses that at every location in space, there exists some point in time where it is
raining and wet. We refer to such quantified logical expressions as formulas. Formulas can
be used to describe complex situations involving actions or processes.

A crucial aspect of pragmatic knowledge is understanding how actions lead to consequences.

We distinguish between conditions, which must hold at the time an action is performed,
and consequences, which describe the expected results. An action is deemed unsuccessful
with respect to a goal if its consequences do not fulfill that goal. The reason for failure can
often be traced back to unmet conditions. This leads to the notion of knowledge about the
consequences of actions*. Such knowledge is formalized using consequential rules, which
capture the expected outcomes of actions under specific conditions:

» Schema 1 (consequential rules).

/\ (R(z, ...,y) A (person-nominator)?action(z, ...,y) — EC(z,...,y))
z,...,yeD

Here, R(z,...,y) denotes a formula capturing requirements (conditions necessary for the
action), and EC(z, ...,y) denotes a formula capturing the expected consequences. For example:

Nse Candie \yeratenes Nora now uses y on x — x then is burning.

This rule asserts that lighting a candle with a match under Nora’s agency results in the
candle burning — though this claim is context-dependent. It holds for an adult on Earth but
fails for a child or in a zero-oxygen environment. In pragmatics, this only demonstrates the
need to refine requirements for assuring validity. Progression rules describe changes in state
over time due to processes rather than actions:

» Schema 2 (progression rules).

/\ (R(z, ...,y) A (endurant)?happening(z, ...,y) — EC(z,...,y))
z,...,yeD

The temporal ordering implicitly assumes that the antecedent conditions occur before the
consequent state. For example:

AscLage T NOW contains this amount of water A here now raining that amount of
water) — x then contains (this 4+ that) amount of water.

Progression rules need to be justified by experiments (see below) or derived from other
knowledge. A set of such rules forms a rule base: CRB for consequential rules and PRB for
progression rules. Together with a set of formulas describing the current situation S(t), we
obtain a knowledge base: CKBgu) = CRBUS(t) or PKBgy) = PRBU S(t). If we can infer
a formula F' from such a knowledge base using logical inference, we write KB < F.

In addition to knowledge about consequences of actions and progressions, we also require
knowledge about people’s behavior in terms of speech acts. These are actions like claims and
requests in which some explicit knowledge base is required. Correspondingly, we introduce
rules of inference (for actions that derive claims from other claims) as well as decision rules
(for deriving goals from other claims or other goals):

4 “Handlungsfolgenwissen” [12, 9]
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» Schema 3 (rules of inference). A ot w(KB) Aot infer— o (t+ 0)n(KB')

oePerson (

» Schema 4 (decision rules). A
o(t+0)m(MIF Sp)

ot m(KB) Ao tr('lFSy) Aot decide —

oePerson(

A particularly relevant example of a decision is to plan. Pragmatically, plans are understood
as artifacts that are a result of a process of planning [8]. However, they are more than that:
Plans are also symbolic manifestations of imperatives (formalized by using a request 7 (!)).
For one, we plan according to a planning goal, which can be understood as a final imperative
specifying an intended situation that should be realized by a plan. The plan itself manifests
likewise a final or an a-final imperative, consisting of a series of actions to be performed or
of subgoals to be pursued in order to reach this goal. A successful plan, thus, satisfies a
conditioned imperative: it needs to successfully realize the goal whenever we follow it in an
experiment. We can express this kind of knowledge also in terms of rules.

3.2 Practical modalities

Based on such knowledge bases, we can assess what can be done. Namely in the sense of
knowing whether an expected consequence A is achievable in a given situation. The latter
can be defined based on whether A is logical implied by consequential rules in this situation:

» Definition 1 (A is achievable). ATyp, A< CKBsu) < A

Literally, A’éKBsmA, or A is achievable means that some expected consequence described
by the formula A can be justified by (repeatedly) applying consequential rules from the
knowledge base to the situation S(¢). When it is clear which knowledge base is meant, we
can also leave away the subscript: A™A.

The power of this practical modal logic [17, 18] is to capture everyday notions of dispositions
and action potentials relative to a situation. This becomes clear when we define the modal
variants:

» Definition 2 (A is avoidable). A" A ¢ AT A

» Definition 3 (A is unachievable). A™A < - AT A

» Definition 4 (A is unavoidable). 7" A <> = AT A

» Definition 5 (A is controllable). X™A <> ATAANA"A

If a consequence is avoidable, this means its contrary can be achieved. If it is unachievable,
we fail to justify it can be achieved. And if it is unavoidable, we fail to justify that it can be
avoided. For example, in a situation where a state launches atomic missiles to attack another
state, which also possesses atomic missiles, an atomic war is unavoidable. This is because,
according to our knowledge of consequential rules of warfare and assuming a certain behavior,
namely that the corresponding protocols are implemented by the group of people responsible
for them, we fail to find a path of action that would not involve launching a counter-attack,
and thus we may not find a way to prevent a war in this situation.

Controllable situations are both achievable and avoidable. Sometimes we can avoid a
consequence only constructively, based on changing a situation described in a corresponding
formula using another nominator, i.e., to switch nominators. This leads to a more specific
case of value controllability:

» Definition 6 (A is (constructively) avoidable). A, .80 A(x) & AT A(z) A Vpa' Ax')
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» Definition 7 (A is (value) controllable). R A(z) <+ AT A(z) A A, A(x)

The atomic counter-attack is a case in point, because there needs to be a switch for controlling
the missile launch, and this switch is always in some position.

In an equivalent way, we can use modal logic to reason with knowledge of a situation and
some progression model, which can be expressed as a collection of progression rules:

» Definition 8 (necessary). /pipg, A(t +0) <+ PKBg() < A(t +9)

Literally, A is a necessary consequence of a given situation S(¢) at time ¢ + §, under the
assumption that the progression rules and the situation descriptions are defendable, and if
A(t +0) is a logical implication. By abstracting from the particular base PKB g, we also
write 7 A(t) for the situations that will happen as a consequence of this situation at some
time t. For example, in case we have a progression model of rainfall covering the extent of a
lake, we may be able to predict the amount of water of that lake at a time after the rainfall
stopped, given that we know its water content in the current situation. The definitions of
these so called mellontic modalities [17] are equivalent to the practical ones above, including
possible (), impossible (A), and contingent (X). Contingent consequences are those that
are possible yet we still fail to show that they are logically implied. That is, based on our
progression model, we just don’t know.

3.3 Experiments

The empirical (a-posteriori) knowledge [17] that we can obtain from an experiment can be
written down in the form of experiential rules that are very similar to consequential rules
introduced above, except that they involve the triggering of a process p (grammatic rule 4):

» Schema 5 (experiential rule).
Nocperson Nicrime(Sc A (ot m (MFt K p))) — Sm

Literally, if we do something to start process p under the condition S., then we can expect
situation .S, to occur [16]. Knowledge obtained from a given experiment can include many
such rules. Experiential rules constitute both constructive building blocks and tests for
empirical theories. In the latter case, by using a theory to infer an experiential rule that
is compared with the result of a corresponding experiment, in the former case, by directly
generalizing from experiential rules.

Yet, like all actions, experiments can fail, and in consequence, rules become invalid. How
exactly can experiments fail? This depends on their purpose [10, 13]. The purpose of an
experiment [16] derives from the trans-subjectivity of empirical knowledge: it is to reproduce
the process p such that it leads to similar situations (consequences) under the same conditions,
regardless of who is triggering the process and with which instruments (under which further
circumstances). Conditions can be either fized (not changed in the experiment) or controlled
(changed in the experiment). This means that all conditions must be achievable via actions
(definition 3), while controls need to be, in addition, controllable (can be switched on or off)
(definition 7). In addition, we often need to leave some other situations contingent (“free”,
or not pre-determined) (section 3.2, last paragraph). Conditions and contingent situations
are required to prevent the experiment from being disturbed. The situations (grammatic rule

8) that are the consequences (schema 1) of the experiment can be represented by measures.

Altogether, we call this the experimental reproducibility norm, and it has the following
general form:

17:9
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» Schema 6 (experimental reproducibility norm).

An experiment (F1,...,Fy,C1,...,Cpn,p, M1, ..., M) is successful if the fized conditions are
achievable in situation Sy, the controlled conditions are controllable (in S.) for each particular
value ¢y, ..., cn, and the situation S, is contingent, and if, when achieving all conditions and
starting the process p under arbitrary circumstances $1, ..., Sy, equivalent outcomes my, ..., My,
occur (under some equivalence =) in the resulting situation (Sp,):

\/flw,kaF \/q,...,cneC le,..‘,mueM /\81’..‘,SUED’

Aﬂ'Sf(fl, ce fn) /\Xngc(cl) N ..XZ"SC(CTL) AX \/ED ULy eney um.Su(ul, . um)/\

(Sy(f1sees ) N Se(er) A oSelen) A (8150, 80) T(HIF K D) —
Ven My, My S (mi, ..omy) Amiy = ma, ..., my = my,)

The nominators f1,..., f,, (fixes, taken from domains F;), ¢y, ...,c, (controls, taken from
domains C;), u1, ..., U, (contingents from domains U;), mq, ..., m, (measures, taken from
domains M;) thereby serve to identify and reproduce the respective situations.

For example, an experimental norm for a simple spatio-temporal experiment about
growing crops in a geographic region could look like this:

» Norm 1. VTERegion vaAmountofBeans /\oePerson /\tETime
P . . .
X0 tm sowing beans in v AX N ¢ gpountofBeans U-0 (t+0) T selling u A

((o t m sowing beans in r Ao t 7 farming |k r t k growing beans) —
VeAmountofBeans m’.o (t+ ) m producing m’ A m' =m)

This norm defines an experiment (Region, grow beans, AmountofBeans) to determine how
many beans can be produced in a region r, independent of who performs it (o) or when ().
The experiment requires sowing beans in r at ¢ (controllable situation S.) and ensuring that
later sales (t + ¢) do not interfere, avoiding market disturbances. If beans are sown and
properly cultivated (p = grow), the norm expects that by (¢ + ), an approximate amount
m of beans will be produced. This norm is a priori: it does not specify the exact yield but
requires that outcomes be reproducible up to equivalence. Experiments implementing this
norm either fix or control or leave contingent conditions when triggering the process. If
reproducibility fails — e.g., due to lack of seeds, planting restrictions, or market constraints —
the experiment fails.
In case of failure, we can adjust an experimental norm to ensure valid experiential rules.
Lange [16] suggested the following principle ways to deal with such disturbances:
1. Isolating disturbances through shielding (possible in labs or simulations).
2. Cleaning up disturbances by controlling, fixing, or rendering them contingent (e.g., via
randomization).
3. Incorporating disturbances as errors, increasing the tolerance of equivalences.
These adjustments constitute what Lange calls fault avoidance knowledge (referred to as
exhaustion in [16]). For example, if bean growth depends on weather conditions or market
quotas, fixing the yearly weather conditions and removing quota constraints could make
the experiment reproducible. Note that inferential statistics, at its core, is a method for
incorporating the disturbances of repeatable experiments using stochastic models (i.e., random
generators) [18]. Methodologically, it comes after the introduction of experiments, not before.
Causal experiments play an exceptional role for science, since they allow us to determine
causes. Yet, distinguishing causes from other experimental relations likewise requires prag-
matic knowledge, an insight gained early by Georg Hendrik von Wright [28] in terms of his
interventionist causality norm, and much later picked up in contemporary causal inference
theory [20]. The corresponding experimental norm for causal experiments is more strict as it
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requires in addition a particular counterfactual situation, i.e., considering a consequential
situation that occurs if we had not taken an action [21]. The norm requires that if some
controls are not achieved, then the corresponding measures need to be different:

» Schema 7 (interventionist causality norm).

(St(frseees fr) A(Se(er) A ooSe(en)) A ((s1, -5 80) (LI K p)) —
“Ven My o my S (MY, .cymi ) Amly = ma, ..., my, = m),)

If an experiment satisfies such a norm, there is a one-to-one correspondence between possible
control situations and measure situations. This is the case, e.g., when we run randomized
control trials, where a control group lacks the condition, and the experiment is successful
in case that group also lacks the expected consequence [21]. We can then call the control
domain a cause of the measure domain. In case of failure to satisfy such a norm, we can
clean up disturbances, i.e., by incorporating conditions, or by adding contingencies into the
norm. The corresponding strategies are well known from the causal reasoning literature [20],
including fixing confounders (common causes of conditions and consequences), and leaving
contingent intermediators (effects of controls that are causes of consequences) and colliders
(common effects of controls and consequences) [21].

Data record experiential rules in terms of the underlying nominators (in our bean growing
example (ry,mq),..., (T, mx)). Yet, such data records leave away many details needed
to understand the underlying experiment. This includes not only the irrelevant further
circumstances (here: time and person), but in particular, the fact that fixes and controls
uniquely determine (are keys for) measures, and the question what kind of situations are
controlled, fixed, or measured. To keep some of this information in an abbreviated form, we
use the following notation for the type of experiential knowledge base that corresponds to an
experimental norm:

» Definition 9 (experiential knowledge base).

EKB(f: X,c: Y,p: Process — m: Z), where
D, domains of situation variables in an experiment
X,Y,Z = { n(KB), knowledge claims in an experiment

m(l Ik 7w(KB)), requests for bringing about situations for knowledge claims

Thus, for experiments, we usually control (c¢), fix (f) or measure (m) some domains D. For
experiments that include claims, we additionally control, fix or measure knowledge claims
(m(KB)) (which of course may be justified by further experiments). And for experiments
that include goals, decisions and plans, we control, fix or measure requests for bringing about
a situation in which we can make knowledge claims (7 (! IF w(KB)). For the fixed conditions,
we also write down constants instead of the domain from which they stem.

4 Classes of spatio-temporal experiments

All other differentiation in experiments is a consequence of taking into account different ways
of bringing about controls, triggering processes, and realizing measures [16]. An instrument
for starting the process is called experimental apparatus. Instruments for observing and
recording S,, are called measurement instruments. For measurements, we also need to control
conditions, yet only for the process started within the sensor of the measurement instrument
itself. An example for the latter would be a temperature measurement using a thermometer,
where the process is the expansion of a thermometric material in the sensor [4], and among
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the controlled conditions are, for example, the location and height above ground. A natural
or “quasi” experiment is one in which the researcher does not control or fix the conditions
of a process, but instead selects among conditions of processes that were already recorded.
For spatio-temporal experiments, we distinguish the following classes, following Sinton [24],
but enriched by more recent ideas about conceptual models of spatial information [23]. We
specify experiments® based on their underlying experimental norms:

» Norm 2 (experimental norm for spatial fields).
EKB(f : Time, ¢ : Space, p : Process — m : Endurance)

Spatial fields fix time and control space in order to measure some endurance nominators
(which could be amounts, stuff, objects). An example would be a raster map of forest density
per grid cell.

» Norm 3 (experimental norm for spatial coverages).
EKB(f : Time, ¢ : Endurance, p : Process — m : AmountofSpace)

Spatial coverages fix time and control endurances in order to measure some amount of space
occupied by the endurance. An example would be a map of vector polygons of a land use,
vegetation, or soil type.

» Norm 4 (experimental norm for spatial lattices).
EKB(f : Time, c : AmountofSpace, p : Process — m : Endurance)

Spatial lattices fix time and control an amount of space in order to measure some endurance
controlled by this amount of space. An example would be statistical census tract data.

When using time as a control instead, we obtain various forms of time series experiments
that involve space:

» Norm 5 (experimental norm for temporal fields).
EKB(f : Space, ¢ : Time, p : Process — m : Endurance)

A temporal field controls time and fixes space, resulting in a time series that records
measurements at a location over time. An example would be river discharge continuously
measured at a catchment outlet, resulting in a hydrograph.

» Norm 6 (experimental norm for trajectories).
EKB(f : Endurance, ¢ : Time, p : Process — m : AmountofSpace)

Trajectory experiments serve to measure motion, including movements of (rigid) objects
(tracks) or spreadings etc. [6]. Note that spatio-temporal experiments are usually not causal,
since they do not satisfy a counter-factual, interventionist causality norm. For example,
when measuring a horizontal spatial temperature field, different locations will share the same
temperature value, thus location cannot be considered a cause for temperature change. This
is different when moving in the vertical direction (as temperature decreases with height).
Yet, we can use causal experiments together with spatio-temporal measurements in order to
infer knowledge in various ways, as illustrated in our example.

5 Note this is only a subset of possible spatio-temporal experiments.
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5 The hidden experiments in landuse simulation modeling

In our sugarcane example case, we are interested in the question: what is the effect of one or
more increased bioethanol demands on the spatial distribution of forest landuse [27]7 With
hidden experiments, we mean the (largely implicit) knowledge of the types of experiments that
need to be mastered to answer this question. On the highest level of abstraction, our example
corresponds to a causal experiment, where we need to control the bioethanol demand, fiz
conditions that also influence landuse (such as sugar demand), and keep contingent conditions
that occur as intermediators of landuse planning goals, in order to infer a spatial distribution
of landuse (forest) in a situation later (¢ + 0):

» Norm 7 (Bioethanol demand landuse inference).

EKB(

f:m(EKB(f : AmountofSpace, f : (t 4+ 9),p : demand — m : AmountofSugar)),

c: w(EKB(f : AmountofSpace, f : (t +9),p : demand — m : AmountofBioethanol)),
p:infer —

m: w(EKB(f : (t+6), ¢ : Landuse — m : AmountofSpace))

)

The problem is that the bioethanol demand needs to be causally controlled, meaning we need
to compare the consequences of a demand increase with a reference scenario [27] in which the
original demand remains the same, a scenario that has never been observed. Furthermore,
landuse is subject to various invisible effects and human decisions that are not represented
in observed landuse changes. Since we cannot actually control market demand, there is no
way for us to perform a corresponding experiment. Furthermore, the problem can also not
be solved by consulting past landuse images and running a remote sensing experiment over
time: A remote sensing experiment controls locations or time and measures crop land type
in terms of a field. Based on this, we can only measure landuse change over time and space
in a non-causal manner, and only under the factual conditions of changing demands in the
history of Brazil. It then becomes impossible to isolate the effects of bioethanol demand
from sugar demand [27]. What we need instead is an experiment that measures the causal
effects of invisible demands on decisions under counterfactual conditions.

For this reason, we need to construct a model of the causal experimentS, in which we can
actively control the situations that trigger the process — such as in a simulation model. And
for this purpose, we need to decompose the experiment into sub-experiments for which we
can obtain some experiential knowledge to be used in the model. And here is where the task
becomes really complex, because we have to figure out a way that these experiments feed
into each other, see Fig. 3. First of all, the knowledge about the market demand needs to be
input of a decision experiment. This experiment controls knowledge claims about the market
demand at ¢ 4+ 6 and produces a final plan with several subgoals, including the sugarcane
production goal at t—+ ¢ for a certain spatial region. Here is a specification of the experimental
norm:

» Norm 8 (Sugarcane production decision).

EKB(

f:n(EKB(f : AmountofSpace, f : (t +9),p : demand — m : AmountofSugar)),

c: w(EKB(f : AmountofSpace, f : (t +9),p : demand — m : AmountofBioethanol)),

p : decide —

m: w(! Ik 7(EKB(f : AmountofSpace, f : (t+ 0), p : produce — m : AmountofSugarcane)))
)

6 Cf. our definition in [23], where a model of an experiment is a method that answers the same question
as the experiment.
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The result corresponds to a lattice experiment: for each region, we measure an amount
of sugarcane that it should produce. The corresponding knowledge constitutes in turn a
controllable input for a planning experiment, namely the decision of how to redistribute
landuse to reach this production goal:

» Norm 9 (Landuse planning).

EKB(

f:m(EKB(f : t,c: Space, p : grow — m : AmountofSugarcane)),

f:m(EKB(f : t,c: Landuse — m : AmountofSpace)),

c: (M lF 7(EKB(f : AmountofSpace, f : (t+ 0),p : produce — m : AmountofSugarcane))),
p:plan — m:w(l Ik 7(EKB(f : (t+6), ¢ : Landuse — m : AmountofSpace)))

)

Note that in this planning experiment, the different production goals are competing because
of a collider, which is the fixed total area available for landuse. Thus, if we increase sugar
cane production, we need to decrease the production of other crops, pasture or forest. This is
what demand-driven land use change models typically do, e.g. the models CLUE-S [26] and
PLUC [27]. To perform this planning experiment, we need to fix claims about two kinds of
further experiments, one is about the sugarcane potential yield, a spatial field that indicates
for each location the potential sugarcane production density at the given time (t) (Figure 2).

potential yield initial land use in 2006 I olanted forest expansion of sugar cane in 2030
(fraction of attainable) [ rban aropland new sugarcane
076 - water I grass and shrubs
- - - natural forest sugarcane
- rangeland planted pasture

0.027

[ Kilometers

Figure 2 Potential yield of sugarcane (as fraction of the maximum attainable yield) (left), initial
land use in 2006 (middle) and new locations with sugarcane cultivation in 2030 for a demand increase
of 10.2 million m? ethanol, for the state Goids in Brazil.

This knowledge, in turn, can be obtained by inference starting from a field of weather
information and a field of soil types (the GAEZ method by the FAO)[27]:

» Norm 10 (Sugarcane yield inference).

EKB(

f:m(EKB(f : t,c: Space, p : measure — m : Soil)),

f:mEKB(c: Time, c: Space, p : measure — m : AmountofHeat)), p : infer —
m : w(EKB(f : t,c: Space, p : grow — m : AmountofSugarcane))

)
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The second input condition is a knowledge claim about the current landuse coverage at time
t (Figure 2), which can be obtained from remote sensing images. The planning experiment
results in a single subgoal, namely the request to realize another landuse coverage at time
t 4+ 6. The final step is to implement the plan and thus to realize the planned sugarcane
production.

Bioethanol
landuse
inference

—_————
Bioethanol Sugarcane Landuse I Landuse |
demand production lannin coverage |
lattice (t+d) decision A (mm———— planning I ) |
Sugarcane [ 5 {————
| production |
| lattice (t+d)
[ | Landuse
coverage (t)
Sugar
demand Sugarcane Landuse
lattice (t+d) production coverage
[
Amount Amount Amount
of Space of Landuse of Space
Sugarcane
e _Sug_arcane Sugarcane
Soil field (t) yield |rztf)erence yield field (1

Sugarcane
femperaturg
field (t)
Amount
Space of
Sugarcane

Figure 3 Experiments required for understanding the sugarcane example. Ellipses stand for
experiments, round rectangles with thin borders denote domains, with thick borders knowledge

bases, with dashed borders goals. Black diamonds are controls, white diamonds are fixed conditions.

Black arrows denote measures. White arrows are sub-experiments.

6 Conclusion

In this paper, we proposed a formal pragmatic account of experiments to clarify their role
in spatio-temporal modeling (Q). Our broader goal is to develop a systematic way to judge
whether a given modeling approach is suitable for gaining knowledge about a particular type
of experiment — especially those represented by spatial information models.

To this end, we introduced a grammar of situations and a pragmatic logic of experiments.

This allows us to define experiments by their experimental norms, i.e., by distinguishing
which experimental conditions must be fixed, controlled, or left contingent (via a practical
modal logic), and by identifying the measured consequences as resulting from underlying
actions that trigger processes (Q A). Causal experiments follow stricter, counterfactual norms.
We then characterized experiential knowledge bases in terms of these norms, the domains
of situation variables involved, the inferences made, and the goals pursued — particularly
in contexts involving human decisions. Sinton’s structural ideas about spatio-temporal
information were reframed in terms of non-causal experimental norms (Q B).
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Using the sugarcane example, we showed how decomposing its components by experi-
mental norms clarifies why remote sensing alone is insufficient to answer the question. We
identified the need for additional experiments to assess indirect effects on deforestation, in-
cluding decision-, planning-, and inference-experiments, as well as underlying spatio-temporal
experiments — fields, lattices, and coverages (Q C).

This work lays the foundation for a theory that evaluates spatio-temporal models by
their fitness for purpose (cf. [23]), independently of implementation details. Such a theory is
urgently needed as machine learning models replace traditional approaches without accounting
for purpose or experimental logic. Future work should expand the pragmatic logic across
modeling examples, formalizing experiment decomposition and supporting reasoning about
spatial designs and sampling strategies. In this sense, our work remains preliminary.
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—— Abstract

In recent years, large pre-trained models, commonly referred to as foundation models, have become
increasingly popular for various tasks leveraging transfer learning. This trend has expanded to remote
sensing, where transformer-based foundation models such as Prithvi, msGFM, and SatSwinMAE
have been utilized for a range of applications. While these transformer-based models, particularly
the Prithvi model, exhibit strong generalization capabilities, they have limitations on capturing fine-
grained details compared to convolutional neural network architectures like U-Net in segmentation
tasks. In this paper, we propose a novel architecture, U-Prithvi, which combines the strengths of the
Prithvi transformer with those of U-Net. We introduce a RandomHalfMaskLayer to ensure balanced
learning from both models during training. Our approach is evaluated on the Sen1Floodsl1 dataset
for flood inundation mapping, and experimental results demonstrate better performance of U-Prithvi
over both individual models, achieving improved performance on out-of-sample data. While this
principle is illustrated using the Prithvi model, it is easily adaptable to other foundation models.
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1 Introduction

Floods are one of Earth’s most devastating natural disasters, and their impact is expected to
intensify in a warmer climate. Variations in extreme temperatures and heavy rain events are
expected to increase the frequency and intensity of floods, with implications for infrastructure
stability, water quality, and human safety [16]. Understanding when and where floods occur
is important not only for disaster response management, but also for understanding global
hydrological and biogeochemical cycles [5]. Satellite remote sensing has been used since
the 1970’s to map surface water across the globe [15], including water from flood events.
The public release of satellite data archives [36], combined with improvements in computing
power and artificial intelligence algorithms, has led to large advancements in recent years for
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mapping flood events across space and time [34]. Both optical and radar data have proven
useful for capturing floods, and the amount of available public and commercial satellite data
continues to grow in both of these domains.

This rapid increase in available data has led to the adoption of deep-learning techniques
for flood mapping. Deep learning algorithms are inspired by the structure and function of
brain neural networks, where the computer learns a hierarchy of concepts, each concept
defined through its relationship to simpler concepts in a deep graph with many layers [11].
Deep learning for remote sensing of flood extents is commonly approached as a semantic
segmentation task, using methods such as Convolutional Neural Networks (CNNs) like
DeepLab [7], SegNet [9], and U-Net [29], a review of which can be found in [2]. Although
deep learning has greatly improved the accuracy with which flood extents can be classified,
it requires substantial amounts of labeled data, can be expensive to train, and does not
always generalize globally across space and time, necessitating the training of application- or
location-specific models. These shortcomings have spurred the recent development of novel
geospatial foundation models. A foundation model is a large, generalizable deep learning
model that is pre-trained on a massive, unlabeled dataset to be a generalist model that can
then be fine-tuned to a variety of downstream tasks using smaller labeled datasets [17].

The applicability and accuracy of these foundation models compared to other deep
learning methods are still being tested, especially in the geospatial field. Recently, NASA
and IBM teamed up to release the novel Prithvi geospatial foundation model, which was
pre-trained on data for the United States from the Harmonized Landsat-Sentinel (HLS)
satellite data catalog. The HLS data catalog consists of harmonized data from both Landsat
and Sentinel-2 satellite missions, with an average revisit period of cloud-free imagery every 8.4
days at 30 m spatial resolution [8]. Initial experiments of adapting the Prithvi model to flood
mapping [19] compared the foundation model to a U-Net model using Sentinel-2 satellite
imagery at 10 m spatial resolution. In this study, the authors of [19] found that the U-Net
model outperformed the Prithvi model when evaluated on in-sample test data; however,
Prithvi was found to perform better than the U-Net when evaluated on out-of-sample data
from an unseen region in Bolivia. In their results, the authors show that both models
performed poorly in at least one of the test sets (in-sample/out-of-sample). This finding
suggests that a mixed approach could take advantage of both generalization capabilities and
region-specific learning.

Building on Prithvi’s strong generalization capabilities, this paper proposes U-Prithvi,
a novel fusion model combining Prithvi with U-Net for flood extent mapping in satellite
imagery. This fusion approach aims to leverage cross-modal learning between the two models,
capitalizing on Prithvi’s generalist strengths and U-Net’s detailed segmentation capabilities
within local datasets. Using the SenlFloodsll hand-delineated flood dataset, we: (1) trained
a U-Net and Prithvi fusion architecture; (2) fine-tuned our proposed U-Prithvi model; and
(3) fine-tuned and trained standalone U-Net and Prithvi models for performance comparison
against our results and those reported in the literature. We evaluated these models against
in-sample and out-of-sample test datasets from SenlFloodsll1, assessing their flood extent
mapping accuracy using Sentinel-2 imagery. Following an overview of each model and related
work, we detail their architectures. Finally, we present our findings on how novel foundation
models like Prithvi can be combined with established models like U-Net to improve global
flood extent mapping accuracy.

The remainder of this paper is structured as follows. Section 2 presents relevant literature.
Section 3 describes our models and performance evaluation methodology. Section 4 describes
our results and summarizes our findings. Finally, Section 5 presents our conclusions.
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2 Related Work

2.1 Deep Learning & Flood Mapping

Deep learning approaches have been implemented for a variety of remote sensing classification
problems pertaining to land cover, agriculture, open water bodies, and floods. Floods present
a unique problem in that they can be spectrally very complex depending on the geographic
area and terrain that the flood is covering. Examples of deep learning in the literature for
flood mapping include various applications of CNNs, Multi-Layer Perceptrons, and Recurrent
Neural Networks applied to Sentinel-2, Sentinel-1, and CubeSat data [6, 22, 31], a full
review of which can be found in [4]. Specific flood mapping architectures have also been
developed, such as Siam-DWENet [38] , which takes advantage of transfer learning and an
attention mechanism, and DeepFlood, which employs feature-level fusion and classification of
optical and radar data [18]. An architecture that is increasingly common for flood-mapping
applications is U-Net, which has been used to classify floods based on satellite imagery and
Twitter data [30], and for flood segmentation using radar data in southeastern Mexico [27].

2.2 U-Net Architecture

The U-Net architecture was first introduced by Ronneberger et. al 2015 [29] as an improvement
of fully-convolutional neural networks for biomedical image segmentation applications. The
U-Net consists of a series of contracting convolutional layers that gradually reduce spatial
dimensionality and increase feature dimensionality. The feature-dense bottleneck is then
upscaled with skip connections that help map from a condensed feature space using higher
resolution information available in the encoder hidden layers.

The U-Net architecture has been extensively used for medical image segmentation [3].
However, models trained to perform natural image segmentation, like those in medical images
or classic computer vision tasks, do not translate directly to remote sensing applications [33].
Recent advances in applying U-Net for remote sensing segmentation problems include
combinations of DenseNet and Dilated Convolutions [33] and attention mechanisms [37], as
well as specific applications to flood detection using SAR imagery [20].

2.2.1 U-Net Extensions

Although U-Net is highly effective in capturing both global and local context, it has lim-
ited capacity to learn long-range spatial dependencies [13]. This limitation has motivated
research into integrating transformers with U-Net to enhance its performance. One notable
architecture, UNETR, was proposed for 3D medical image segmentation and incorporates a
Vision Transformer (ViT) with a U-shaped CNN structure. In this model, the transformer
encoder is directly connected to the U-Net-style decoder through skip connections at different
resolutions [13]. Other studies have modified U-Net by adding an additional transformer
encoder, then combining its features with those of the CNN. This approach has been ap-
plied successfully in medical image segmentation with the FT-UNet architecture [35] and
in remote sensing image segmentation with the ST-UNet architecture [14]. Petit et al. [28]
introduced a U-Net variant with an attention mechanism for medical image segmentation.
They incorporated self-attention into the bottleneck layer and cross-attention into the skip
connections.
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2.3 Foundation Models and Prithvi

Deep learning approaches require substantial amounts of ground truth data for training
from scratch, which can be costly to obtain. This need for data, combined with the recent
popularity of foundation models, large pre-trained models that have greatly impacted fields
such as natural language processing and multimodal tasks, has driven research into foundation
models specifically for the geospatial field. As evidence of this trend, research on transfer
learning for geospatial tasks saw a ten-fold increase in published articles between 2017 and
2022 [21]. The use of foundation models in geospatial tasks can generally be divided into three
categories: (1) models trained on natural image datasets, (2) models trained on geospatial
datasets, and (3) hybrid models that integrate both approaches [23].

The first category typically involves models trained on datasets like ImageNet [10].
Although this dataset is quite different from geospatial datasets, studies have shown that this
approach can still be effective for specific satellite image tasks, such as land-use classification,
urban zone classification, or burnt area detection [25, 26]. In the second category, numerous
foundation models have been developed specifically for remote sensing data. Some of
these models are trained on single-time images but incorporate data from multiple remote
sensors [12], while others are trained on multi-temporal datasets, such as the Prithvi model [17]
and SatSwinMAE [24].

Several hybrid models combining natural and remote sensing image modalities have
emerged in recent years. For instance, the GFM model [23] employs a two-stage pretraining
process. It is initially trained on the ImageNet22k dataset and subsequently on the custom
GeoPile remote sensing dataset. This approach aims to enhance performance compared to
models trained solely on natural image datasets, while also mitigating the expense of training
foundation models from scratch on remote sensing data.

2.3.1 Prithvi

Prithvi is a foundation model developed by IBM and NASA, specifically trained from scratch
on geospatial data. Its encoder architecture is based on a Vision Transformer and was trained
using a Masked AutoEncoder strategy. The training dataset for Prithvi Version 1 (the most
recent version during the time of writing) comprises over 1 TB of multispectral satellite
imagery from the HLS dataset, which was collected using a stratified sampling procedure to
ensure a set of diversified data from the United States. As a multi-temporal model, Prithvi
can process entire image sequences, allowing for time-series analysis of geospatial data [17].

2.4 Current Limitations and Our Contributions

Flood segmentation mapping using GeoAl foundation models has demonstrated effective gen-
eralization. However, these models often underperform on in-sample test datasets compared
to U-Net models [19]. Let us formally define in-sample and out-of-sample test data. An
in-sample test dataset consists of samples drawn from the same distribution as the training
data (e.g., from the same regions). An out-of-sample test dataset contains samples from
a different distribution but shares the same features (e.g., a different region), where the
trained models have not seen any samples from that region. We hypothesize that combining
Prithvi and U-Net will improve performance for both in-sample and out-of-sample use cases.
Therefore, we developed a novel fusion model integrating Prithvi features into a U-Net archi-
tecture. We validated this hypothesis by comparing our model’s generalization and predictive
capacity against existing approaches on both in-sample and out-of-sample test datasets. Our
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Figure 1 Our architecture for semantic segmentation that uses Prithvi as an encoder.

experiments show that this combined architecture balances these two performance metrics
while requiring fewer training epochs. Finally, we discuss the potential extension of this
approach to other foundation models and applications.

3 Methodology

This section describes the proposed approach, focusing on a novel architecture that combines
the U-Net and Prithvi models. By merging U-Net’s ability to capture fine-grained details
with Prithvi’s capacity to model global context, we aim to achieve superior segmentation
accuracy for flood mapping. To evaluate this architecture, we will compare it against both
models used independently. The following sections detail each model’s architecture before
describing our fusion approach, U-Prithvi.

3.1 Prithvi Architecture

Prithvi is a Vision Transformer model trained using a Masked Autoencoder strategy. While its
original decoder is designed for input reconstruction and may not be optimal for segmentation
tasks [17], we utilize only Prithvi’s encoder and pair it with a custom decoder similar to that
of U-Net.

Our implementation, illustrated in Figure 1, begins with Prithvi’s encoder, producing a
14x14 feature map with 768 filters. This feature map is processed through a single block
without parameter modification, then upsampled using four transposed convolutional layers
to achieve the original input shape. A final convolutional layer with Softmax activation
serves as the classifier. Prithvi and U-Net serve as baselines in our experiments.

3.2 Proposed Fusion Model: U-Prithvi

U-Prithvi, the proposed model, integrates the strengths of both the Prithvi model and
the U-Net architecture, combining Prithvi’s capability for capturing global context with
U-Net’s proficiency in fine-detail segmentation. The schematic representation of the U-Prithvi
architecture is illustrated in Figure 2.

The input passes through both the U-Net and Prithvi encoders, generating two 14x14
feature maps with 768 filters each. These feature maps are aggregated and subsequently
passed into the decoder component, which comprises four upsampling blocks with skip
connections to the U-Net encoder.
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Figure 2 Proposed architecture of U-Prithvi.

To address the potential training imbalance between the pretrained Prithvi encoder and
the untrained U-Net encoder, we introduce a novel RandomHalfMaskLayer (RHM layer).
This layer, positioned after the concatenation step, probabilistically masks either Prithvi’s or
U-Net’s feature maps — or leaves both unmasked — during training. During inference, the
layer has no effect on the input. We anticipate that this approach will promote balanced
training and ensure optimal contributions from both components in the final segmentation.

Despite the existence of several approaches that combine transformer and U-Net architec-
tures, most of these train the architecture from scratch and do not account for using fixed
pretrained architectures. The Prithvi foundation model, being a ViT-based architecture,
does not include multiple stages with varying resolutions, making it incompatible with the
methods presented in the related work section 2.2.1. A significant advantage of our approach
is its flexibility: Prithvi can be substituted with any other foundation model without requiring
substantial modifications to the architecture.

4 Experimental Design and Results

Our experiments explored the following key research questions:

1. Do foundation models like Prithvi generalize well to out-of-sample data, while custom
models like U-Net perform better on in-sample data?

2. Can we combine Prithvi and U-Net to exploit cross-modal relationships and improve
performance on both in-sample and out-of-sample test datasets?

3. Can the U-Net architecture be improved to match Prithvi’s out-of-sample performance?

4. Can cross-modal learning be controlled?

We also conducted ablation experiments to investigate fusion strategies.

4.1 Data and Performance Metrics

Using the SenlFloods11 [1] dataset, we evaluated the performance of our U-Prithvi architec-
ture and compared it against standalone U-Net and Prithvi-decoder models from [19]. The
SenlFloodsl1 dataset contains 446 image samples paired with hand-labeled masks identifying
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Table 1 Performance metrics of the U-Net and Prithvi from [19] and our implementation of
the Prithvi-decoder architechture as well as our proposed model U-Prithvi. All values represent
percentages. “Test” label is used to denote the in-sample test set, while “Bolivia” denotes out-of-
sample test set.

ToU Accuracy
Model Data Set | Avg. Flood Non-Flood Avg. Flood Non-Flood
U-Netggse [19] Test 90.80 | 84.03 97.57 94.80 90.74 98.86
Prithvipase [19] Test 89.59 81.98 97.21 94.35 90.12 98.58
Prithvi Test 86.25 76.39 96.10 93.90 90.40 97.40
U-Prithvi Test 89.73 82.21 97.24 94.81 91.15 98.46
U-Netpgase [19] Bolivia 82.54 70.57 94.52 86.45 73.73 99.18
Prithvigase [19] Bolivia 86.02 76.62 95.43 90.38 82.12 98.65
Prithvi Bolivia 82.89 72.42 93.36 93.24 91.61 94.88
U-Prithvi Bolivia 87.70 | 79.68 95.71 93.31 | 88.84 97.78

flooded (water and flood) and non-flooded areas across various regions, including Ghana,
India, the Mekong River, Nigeria, Pakistan, Paraguay, Somalia, Spain, Sri Lanka, and the
USA. Each sample has a resolution of 10 meters and a pixel size of 512 x 512. Six Sentinel-2
bands (RGB, NIR, SWIR1-2) are used as input to our models to align with the Prithvi
encoder’s input requirements.

Our preprocessing pipeline includes data normalization (mean 0, variance 1), random
cropping to 224 x 224 (to meet Prithvi encoder’s input requirements), and random horizontal
and vertical flips to augment the data. For performance evaluation, we use two sets provided
in the dataset: (1) an in-sample test set with samples from the same regions as the training
data, and (2) an out-of-sample test set containing samples from Bolivia, which were not used
during training. To compare model performance, we use Intersection over Union (IoU) as
our primary metric and accuracy (Acc) as a secondary metric. For each metric, we calculate
both the mean (mlIoU, mAcc) across classes and individual values for each class (IoUgood,
ToUnonflood; ACCivod, ACCnonficod). These values are derived from true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) counts as follows:

TP

IoU=— 1

U= Tp TN+ FP (1)
I U {e]e] ] Unon (o]0}

mloU = o d+20 flood (2)

TP

Ace = 5 TFN (3)
'A 00O A nonrioo

mAcc = Ceflood +2 Cnonflood (4)
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4.2 Results

The first experiment is designed to answer our first research question. The baseline perform-
ance of Prithvi versus U-Net for this application of flood inundation mapping was established
in the paper published by [19]. We utilized the same in-sample and out-of-sample test sets as
well as computed accuracy metrics to maintain consistency and comparability. These results
show that U-Netpgse outperforms Prithvip,se across all accuracy metrics when evaluated on
in-sample test set as shown in Table 1. However, Prithvig,s. outperforms U-Netp,se when
evaluated on out-of-sample Bolivia set. These results will be used as our baseline to compare
to when analyzing the results of our experiments.

Our second experiment is designed to address our second and most important research
question. By integrating the U-Net and Prithvi models, we anticipate that the U-Prithvi
model will perform effectively on both same-distribution and unseen data, while demonstrating
fast convergence for both scenarios. Table 1 presents our performance results compared to
U-Netggse and Prithvig,se, evaluated on both the in-sample test set and the out-of-sample
Bolivia dataset. Our findings indicate that the U-Prithvi model outperforms both approaches
on out-of-sample data. For in-sample data, the performance of U-Prithvi falls between
the two models, with U-Net dominating in this context. This suggests that the U-Prithvi
architecture combines the ability to achieve strong predictive performance on datasets similar
to the training set with the capacity to leverage the pre-trained foundation model for superior
generalization on unseen data, without requiring additional training cycles.

4.2.1 Qualitative analysis

In Figure 3, we present a comparison of U-Prithvi with each of the competing models for
three testing instances. In each figure, the left pane represents the satellite input, the middle
pane a comparison between U-Net and U-Prithvi, and the right pane a comparison between
Prithvi and U-Prithvi classification outputs. In each classification pane, we color-coded the
pixels to highlight relative performance. In particular, green pixels means correctly classified
by U-Prithvi and incorrectly classified by the competing model, red pixels are the opposite
and blue pixels represent incorrect classifications for both. Figures 3a and 3b show test
samples from the same-distribution dataset while Figure 3c shows an example of the Bolivia
dataset.

We find that in most situations, U-Prithvi shows better performance in fine-detail areas,
such as the borders of the floods in Figures 3a and 3c. This is especially noticeable when
compared to the Prithvi model. Additionally, Figure 3b shows an example where U-Prithvi
correctly identified entire non-flooded regions that the Prithvi model incorrectly classified.
The ability to improve over the Prithvi predictions in areas with fine spatial details while
still performing well against the U-Net model is one of the advantages of using this fusion
architecture.

Some features are still difficult for the models to capture. For instance, none of the
models correctly classified the river and some inland areas in figure 3a. Finally, Table 1
includes our implementation of the Prithvi model. Because [19] does not report the exact
parameters of their model, we are not able to reproduce the model. Our implementation of
the Prithvi-decoder architecture shows weaker performance than that reported in [19].
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Figure 3 Classification outputs for different satellite inputs. Left pane is satellite input, middle
is U-Net and U-Prithvi predictions and right is Prithvi and U-Prithvi predictions. A green pixel
represents a pixel correctly classified by U-Prithvi and incorrectly classified by the other model. A
red pixel means the pixel was incorrectly classified by U-Prithvi but correctly classified by the other
model. A blue pixel represents incorrect classification for both. Finally, black and white pixels are
correct classifications by both models of non-flooded and flooded pixels respectively. Grey pixels
represent input labeled unclear.

4.3 Improving the U-Net Architecture

Our third research question is addressed in this section. The U-Net architecture is widely
used in semantic segmentation [32] and is less computationally and data-intensive to train
compared to U-Prithvi. Because of this, we expanded the architecture from [19] and found
that increasing the size of the U-Net model can yield similar performance for the benchmark
dataset.
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Figure 4 U-net architecture used in this paper.

Table 2 Performance metrics of the revised U-Net model against the best-performing U-Prithvi.
The U-Net model was trained for 100 epochs and U-Prithvi for 50+50 epochs. All values represent
percentages.

ToU Accuracy
Model Data Set | Avg. Flood Non-Flood | Avg. Flood Non-Flood
U-Netours Test 88.84 | 80.69 96.99 94.21 | 90.06 98.35
U-Prithvi Test 89.73 | 82.21 97.24 94.81 | 91.15 98.46
U-Netoyurs Bolivia 87.77 | 79.88 95.65 94.1 90.85 97.34
U-Prithvi  Bolivia 87.70 79.68 95.71 93.31 88.84 97.78

Our U-Net implementation, shown in Figure 4, comprises three main components: En-
coder, Bottleneck, and Decoder. Each component includes several blocks, each consisting of
a convolutional layer, Batch Normalization, and a ReLLU activation function. The stride and
type of convolution (normal or transposed) determine whether the block reduces, maintains,
or increases feature map resolution.

The encoder downscales the input into a compact feature representation, using four
downsampling blocks (stride 2) that reduce the resolution from 224 to 14 while increasing
filter depth from 6 bands to 768. A single bottleneck block preserves the resolution and
feature count. The decoder then upscales the feature map back to the input image resolution
through four upsampling blocks, each concatenated with the corresponding encoder block. A
final convolutional layer provides the desired output shape. This yields a total of over 37
million trainable parameters, compared to the 29 million reported in [19].

The performance of our revised U-Net model is presented in Table 2 alongside the
performance of U-Prithvi in both datasets. Our results show that for the Sen1Floodsl1
dataset, it is possible to achieve results comparable to the performance of U-Prithvi using
the U-Net model with a higher count of parameters. This is true for both in-sample and
out-of-sample test sets. In the case of the Bolivia dataset, we find that performance is
practically identical compared to the U-Prithvi model. This implies that a larger model
is still able to capture the dynamics of the data, even compared to a foundation model.
Nevertheless, it is unclear if this result would also be evidenced using a different dataset.
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Table 3 Performance metrics of the U-Prithvi model trained with and without the RHM layer.
All values represent percentages and all configurations were trained using 50 4 50 epochs.

IoU Accuracy
Model Set Avg. | Flood Non-Flood | Avg. | Flood Non-Flood
U-Prithvi Test 89.73 | 82.21 97.24 94.81 | 91.15 98.46
U-Prithvi (No RHM layer) Test 89.35 81.54 97.17 94.14 89.69 98.59
U-Prithvi Bolivia | 87.70 79.68 95.71 93.31 88.84 97.78
U-Prithvi (No RHM layer) Bolivia | 87.85 | 79.97 95.72 93.80 | 90.02 97.57

4.4 Prithvi Architecture Fine-Tuning

This section addresses our fourth research question and describes several additional exper-
iments conducted to investigate fine-tuning the architectures. We conducted a series of
experiments with various parameter configurations to find the optimal performance of our
model. The following sections provide a detailed analysis of these parameters and their
impact on the model’s performance.

4.4.1 Balancing Learning Between Prithvi Features and U-Net Features

The proposed U-Prithvi architecture creates a bottleneck by concatenating the encoded
features from both the U-Net and the Prithvi encoder. By merging these two representations,
we aim to enable the model to learn effectively from the training data while also generalizing
well to out-of-sample data. However, since the Prithvi model is pre-trained while the U-Net
component is not, there is a risk that the model may rely solely on one branch of features
while ignoring the other, potentially slowing down the learning process.

To mitigate this issue, we introduced the RHM layer, which randomly activates or
deactivates the outputs of the Prithvi and U-Net encoders. Specifically, with an equal
probability of 1/3, the Prithvi encoder output is masked, the U-Net encoder output is
masked, or both remain unchanged. We assess the performance of our U-Prithvi architecture
with and without this layer.

Table 3 shows the results of this experiment. Performance with the RHM layer is better
when measured using the in-sample test set, but worse when measured using the out-of-sample
test set. Based on the results reported on [19], this would be indicative that without the RHM
layer, the U-Prithvi model prioritizes the Prithvi encoded features over the U-Net features,
since generalization performance is better on in-sample data compared to out-of-sample
data. Nonetheless, the difference in performance between the two configurations is much
smaller than the difference in performance between the Prithvi-decoder and the U-Prithvi
architecture (as shown in Table 1). In addition, the RHM layer makes the model more likely
to balance its use of the bottleneck features.

4.4.2 Performance vs. Computational Effort

The U-Prithvi architecture is more complex than both the U-Net and the Prithvi-decoder
architecture, which increases the computational effort required to train it. We explore the
trade-off between computational effort and predictive performance by changing the number
of epochs allowed for training. Table 4 shows the error metrics of the U-Prithvi model when
training for different numbers of epochs. We find that a small number of epochs is enough to
achieve stable performance in the case of the test set. For instance, the average IoU when
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Table 4 Performance metrics of the U-Prithvi model for different values of training epochs. All
values represent percentages.

IoU Accuracy
Model Set Epochs Avg. | Flood Non-Flood | Avg. | Flood Non-Flood
U-Prithvi  Test 25425 89.01 | 80.87 97.14 92.95 | 86.97 98.93
U-Prithvi  Test 50 + 50 89.73 82.21 97.24 94.81 | 91.15 98.46
U-Prithvi  Test 100+ 100 | 89.71 | 82.21 97.21 94.03 | 89.38 98.67

U-Prithvi  Test 200+ 200 | 89.86 | 82.34 97.38 93.40 | 87.74 99.07

U-Prithvi  Bolivia 25425 83.07 | 71.72 94.42 87.60 | 76.49 98.72
U-Prithvi  Bolivia 50 450 87.70 | 79.68 95.71 93.31 | 88.84 97.78
U-Prithvi Bolivia 1004 100 | 87.81 | 79.68 95.93 93.19 | 88.28 98.10
U-Prithvi  Bolivia 2004200 | 87.07 | 78.39 95.75 90.75 | 82.50 98.99

training 25 + 25 is within 1% of the model trained 200 + 200 epochs. However, a minimum
of 50 + 50 is required to achieve most of the model potential in terms of generalization
performance.

In both cases, training for more epochs keeps improving the predictive capacity, albeit at
much smaller rates. In order to keep our architecture competitive in terms of computational
complexity, we will use 50 + 50 epochs of training when comparing it to other models.

4.4.3 Hyper-Parameter Tuning for U-Prithvi

We conducted experiments to determine the optimal hyperparameter configuration for U-
Prithvi, testing three additional parameters: the combination operation, the mask probability
for the RHM layer, and the ratio of feature embedding sizes between Prithvi and U-Net.
Table 5 presents the performance of U-Prithvi under various configurations.

For the combination operation, we evaluated three alternatives: the original strategy of
concatenating Prithvi and U-Net embeddings, as well as two additional approaches where
embeddings were either summed or multiplied. Notably, these operations are feasible only
because the embedding dimensions are identical. Our results indicate that concatenation
yields the best performance on the out-of-sample Bolivia set, whereas multiplication performs
best on the in-sample test set. However, the performance gains are too small to be statistically
significant.

In the second experiment, we explored different probabilities for masking encoder outputs.
The default no-mask probability of 33 % means that, with this probability, no part of the
encoder outputs was masked. This setting provided the best results for the in-sample test
set, whereas a higher no-mask probability of 66% was optimal for the out-of-sample Bolivia
set. Similar to the combination operation, the differences between configurations were too
minor to be considered statistically significant.

Finally, we examined the effect of varying the embedding size ratio between Prithvi and
U-Net. In both test sets, using equal embedding sizes was preferable. We also tested reducing
both embeddings by half and doubling each dimension in separate experiments. While
performance on the Bolivia set dropped significantly when embedding sizes were halved, it
improved only slightly when the Prithvi embedding dimension was doubled.
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5 Conclusion

While the advent of geospatial foundational models will undoubtedly give way to novel
and innovative methods for analyzing satellite imagery, work is still being done to assess
their usefulness against CNN-based models. We contribute to a better understanding of
this problem by not only comparing the strengths and weaknesses of the two approaches
but also by suggesting a synergistic pathway that can leverage both through our novel
U-Prithvi model. Our experiments for flood inundation mapping helped us answer our
research questions. First, custom models such as U-Net outperform foundation models
like Prithvi on in-sample data, yet the opposite is true for out-of-sample data. Then, we
find that combining both architectures improves the performance of the Prithvi model on
in-sample data without decreasing its capacity to generalize. Next, increasing the complexity
of the U-Net model can produce results matching those of Prithvi. Finally, the proposed
RandomHalfMask Layer produces significant performance improvements by balancing the
learning between U-Net and Prithvi features. However, careful fine-tuning is necessary for
this to yield optimal results. Based on this, we believe that combining a CNN-based deep
learning model with a transformer-based foundational model, such as the one we’ve proposed
with U-Prithvi, allows us to leverage the strengths of architectures like U-Net along with the
generalizability of a foundation model. U-Net’s multi-scale feature learning helps capture

Table 5 Results of hyper-parameter tuning experiments for U-Prithvi.

Bolivia set IoU Accuracy
Parameter Avg Floods Non-Floods | Avg | Floods Non-Floods
Combination Add 86.97 78.24 95.69 90.82 | 82.76 98.88
operation Multiply | 86.39 77.40 95.38 91.27 | 84.26 98.29
Concat 87.70 | 79.68 95.71 93.31 | 88.84 97.78
No-mask 66% 88.14 | 80.25 96.02 92.27 | 85.91 98.64
probability 33% 87.70 | 79.68 95.71 93.31 | 88.84 97.78
16% 87.95 79.96 95.94 92.29 | 86.07 98.52
Prithvi / 0.5: 0.5 | 85.51 76.01 95.01 91.06 | 84.20 97.92
U-Net Ratio 1:2 87.07 78.34 95.80 90.34 | 81.45 99.23
1:1 87.70 | 79.68 95.71 93.31 | 88.84 97.78
2:1 87.42 79.34 95.50 94.06 | 90.94 97.17
Test set
Parameter Avg Floods Non-Floods | Avg | Floods Non-Floods
Combination Add 89.57 81.82 97.31 93.12 | 87.16 99.08
operation Multiply | 89.85 | 82.35 97.36 93.66 | 88.34 98.97
Concat 89.73 82.21 97.24 94.81 | 91.15 98.46
No-mask 66% 89.20 81.19 97.22 92.73 | 86.38 99.09
probability 33% 89.73 | 82.21 97.24 94.81 | 91.15 98.46
16% 89.33 81.43 97.22 93.27 | 87.61 98.93
Prithvi / 0.5: 0.5 | 89.35 81.52 97.17 94.08 | 89.54 98.61
U-Net Ratio 1:2 89.08 80.94 97.22 92.18 | 85.08 99.28
1:1 89.73 | 82.21 97.24 94.81 | 91.15 98.46
2:1 89.53 81.82 97.23 94.01 | 89.31 98.70
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finer spatial details in image classification, while the extensive training dataset used for the
foundation model enhances the fused model’s ability to generalize to previously unseen areas
in satellite imagery.

This work not only increases our understanding of transformer-based foundation models
compared to more commonly used CNN models in the geospatial field, but also enhances our
capabilities for flood inundation mapping. The ability of U-Prithvi to accurately capture
flood extents while generalizing to any geographic region has important applications for
real-time flood mapping and disaster response management. Incorporating a pre-trained,
open-source model like Prithvi, which abstracts away the high compute costs of training
on massive amounts of satellite imagery, makes flood mapping more accessible and feasible
for governments, companies, and non-profit organizations alike to leverage its capabilities.
Moreover, our approach could be applied in near-real-time as satellite images are collected
to aid in post-hurricane or post-tsunami disaster response to not only understand the extent
of potential damage but also to coordinate response efforts to where it is most needed on the
ground. Beyond its significance in disaster response, accurately mapping flood extents has
significant value for modeling and understanding Earth’s biogeochemical cycles, especially
as climate change is anticipated to result in more frequent storm surges and increased sea
level rise. Knowing exactly when and where areas are flooded, or inundated, has important
implications for Earth’s carbon cycles. For example, wetland ecosystems emit methane when
flooded, a potent greenhouse gas. Thus, understanding the total extent of flooding is vital to
modeling and predicting total methane emissions arising from these ecosystems to develop
more robust climate mitigation strategies. Overall, the method we developed here can be
applied to a variety of environmental, human safety, and climate-related challenges.

Future work could strengthen this model by increasing the amount of data used for
training and fine-tuning, incorporating alternate data sources such as SAR data via a multi-
modal approach, or by configuring the framework to be able to ingest higher resolution
commercial CubeSat data to achieve results at higher spatial and temporal resolutions. This
study focuses specifically on the Prithvi model, but future research could explore integrating
it with other geospatial foundation models. Moreover, increased testing on the results of
foundation models versus other common machine learning and deep learning models would
also be beneficial to the community. While the application studied here is flood inundation
mapping, we anticipate this framework could be applied to similar remote sensing and
geospatial classification tasks such as land cover mapping, fire detection, or crop monitoring
with reasonable accuracy.
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—— Abstract

Microscopic trace materials, such as pollen, are an important category of forensic evidence recovered
during investigations. As an environmentally ubiquitous substance that can attach to various
surfaces, pollen enables the linking of objects and people in space and time. In this study, we
assessed the extent to which the search space could be reduced using simulated pollen signatures.
These signatures were compiled by randomly selecting pairs of geographic coordinates on the Earth’s
terrestrial land and querying the Global Biodiversity Information Facility (GBIF) database to identify
plant taxa within 50 meters of the coordinates. These taxa were then treated as the parent taxa of
the pollen, simulating the hypothetical attachment of pollen signatures to objects or individuals. For
each identified pollen taxon, we modeled habitat suitability for the parent plant taxa and combined
the spatial distributions to refine the geolocation search area. Since the actual coordinates for these
locations of interest were known, we were able to evaluate the global performance of the search space
reduction under the assumption of an extreme constraint that no other contextual information was
available.
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1 Introduction

Geoforensic applications incorporate data collection and analytical methods from spatial data
science, remote sensing, and earth sciences to aid forensic investigations in environmental
issues, criminal justice, and human rights [5]. Pollen grains and signatures are suitable
candidates for trace evidence retrieved during investigations in geoforensic analyses because
of their environmental ubiquity and durability [6, 4, 2]. DNA metabarcoding with high-
throughput sequencing technologies dramatically improved pollen identification in quantity
and taxonomic accuracy, leading to potentially more reliable applications of such forensic
evidence (Bell et al. 2016). New research using environmental DNA samples such as pollen
in species distribution models (SDM) for geoforensic location analysis has shown promise [8].
These models are used to quantify species-environment correlations which can then be used
to predict the habitat suitability or potential plant species distribution in a geographic
information system [3].
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In this study, we use an SDM framework to reduce the search space of geographic
location(s) associated with an object (e.g., laptop, clothes, person) and use simulated
pollen signatures to test its applicability. The simulated pollen signatures were obtained by
generating random coordinates as locations of interest worldwide and then downloading plant
species data from the Global Biodiversity Information Facility (GBIF) within a specified
distance from these locations to establish simulated pollen signatures. We then considered
these locations of interest as the locations that an object traveled through. For each pollen
signature, we estimated SDMs for its parent taxa and used a scaled-sum method to combine
the relative suitability of the different plant species associated with the object. Since the
geographic coordinates for these locations of interest were known for simulated examples,
we could evaluate the performance of the search space reduction (or search score) under
the assumption of an extreme constraint that only the pollen taxa, serving as the trace
material, is known. Investigators typically have a general understanding of the potential
activity boundaries of individuals in a given case. However, this information may not always
be available, especially for international cases where people travel and objects move between
continents. Thus, this research usually assumes two scenarios for the objects of interest:

1. We have limited information about the objects of interest; for example, they are traveling
within the United States
2. There is no information on any location history of the objects of interest a priori

For the second scenario, investigators may need to set larger potential areas of interest.
The modeling approach requires processing a large amount of data during geographic
attribution at a large spatial extent. As a result, such efforts pose a data challenge that
is more computationally demanding. To deal with this challenge, we build the geographic
attribution workflow at a global extent using Google Earth Engine (GEE), a cloud-based
geospatial platform designed to support large-scale modeling across broad spatial extents
with petabyte-scale data access and fast computation.

2 Methods

We randomly generated 9,999 points on global terrestrial land and queried GBIF for plant
occurrences within 50 meters of each point. These queries generated 65 locations of interest
that have at least more than one plant taxa found within the 50-meter distance threshold 1.
We here assumed a 100% probability of pollen adhering to objects or individuals. In other
words, we assumed objects traveled to this location and picked up pollen grains from their
parent plants. There are 246 unique plant taxa associated with the 65 locations of interest.
The data structure of the simulated pollen signatures can be found in Table 1. While the
locations and plant species used in this approach are real, we use the word simulation to refer
to the process of collecting the object and identifying plant species from it in comparison to
one based on fieldwork sampling.

To strengthen the comparison between simulated and real-world conditions, we incorpor-
ated sampled pollen signatures as a reference, we also included the previously calculated
search space seduction scores from fieldwork-sampled pollen signatures. The sampled pollen
signatures were directly collected using sampling instruments in the great Austin area, Texas,
with different sampling methods including air pollen samplers and stationary fabric samples.
Pollen grains were then identified in the laboratory with light microscopy and DNA metabar-
coding. This process then approximates the real-world attaching of pollen onto different
surfaces. With sampled pollen signatures, we can further compare search space reduction
results by incorporating both simulated and real-world sampling methods.
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Figure 1 The 65 simulated sites out of 9,999 sites that has plant taxa recorded in GBIF within a
50 m distance. The base map shows the near-global extent used for modeling in this study. At a
900 m spatial resolution, there are around 176.22 million cells in this near-global study area.

Table 1 Example data structure on the information of simulated pollen attachment to randomly
generated locations of interest.

Simulated Pollen Signatures

Locations of Interest L. ramosissima M. citriodora A. columbianum

(-114.552, 47.547) 1 1 1
(92.588, 22.596) 0 0 1
(-55.542, -27.573) 0 1 0

We also used a null model approach as a baseline to compare how well our geographic
attribution method performed against random chance. In the null model, we assigned the
same number of pollen taxa to randomly chosen locations, but instead of selecting them
based on geographic proximity (within 50 meters of a known location), we randomly picked
them from the overall pool of simulated pollen signatures. This approach helps determine
whether the geographic patterns we observed in the simulated data are meaningful or if they
could have occurred by random chance. By comparing the results of the simulated pollen
signatures to those from the null model, we can evaluate whether our method provides useful
search space reduction beyond what would be expected randomly.

The spatial extent of the SDMs in this study was terrestrial land on all continents except
Antarctica, from —180° W to 180° E and —60° S to 60° N as shown in Figure 1. The SDM-
based geographic attribution workflow is open-source and implemented using the Google
Earth Engine (GEE) Python API. We selected only georeferenced occurrences with locations
on terrestrial land with an occurrence limit of 5,000 using a programmatic interface rgbif that
queries species occurrence records [1]. Since the occurrence data from open-source global
databases such as GBIF does not have associated absence data, the SDM requires other forms
of absence information, such as samples of background or pseudo-absence data. Considering
the computational feasibility of fitting SDMs on GEE, we set a spatial resolution of 900
m for this study and created pseudo-absences on cells that are less similar in terms of the
environmental conditions to the cells with presence data using the k-means clustering method.
We fit SDMs with two methods, Random Forest (RF) and Boosted Regression Trees (BRT),
using the machine learning classifiers in the Statistical Machine Intelligence and Learning
Engine (SMILE) available on GEE. The training and testing processes were implemented
on 500 x 500 km spatial blocks with an 80/20 training/testing data split. The Area under

19:3

GlScience 2025



19:4

SSR Using SDM with Simulated Pollen Signatures

the Receiver Operating Characteristic Curve (AUCRro¢) was used as the SDM classification
performance metric. Variables related to temperature, precipitation, and elevation were
selected as environmental predictors for modeling habitat suitability in this study. To get
temperature and precipitation variables, 19 bioclimatic layers at a 30 arc-second spatial
resolution from the WorldClim V1 Bioclim dataset were retrieved in GEE (Hijmans et al.
2005).

After fitting SDMs, the next step is to combine the distribution maps to estimate the
geolocation of the object when multiple species have been identified. Studies have used
joint probabilistic approaches for target distribution estimation, often assuming independent
occurrences of taxa, but a zero probability from any taxa can incorrectly exclude locations
unless mitigated by techniques like setting a minuscule probability. To address this problem,
we followed [7] and [8] and used a scaled-sum method to generate joint suitability maps to
combine single-taxa SDM prediction results of the objects with more than one pollen taxa
recovered that maintain relative suitabilities. To achieve this, we use notations i, j as indices
of longitude/latitude pixels on a species suitability map with M x N total pixels, where
i=1,...,M and j = 1,..., N. We also employ k as the genus/species of pollen identified
on the target object, where k = 1,...,n, if n types of pollen taxa are recovered. For an
SDM-generated suitability distribution of a plant taxon, we can generate a suitability matrix
P*. The pi,j is a single-taxa suitability score generated from SDMs at a location (i, j) in the
study extent. We can then derive a joint suitability distribution map S for each object of
interest. We define a percentile approach in environmental space to evaluate the geographic
attribution results of the objects. We can link the joint suitability maps by computing the
percentile of numeric pixel values from all cells for each map. Since each joint suitability map
of geographic attribution for every modeling method is only dependent on the suitability
distributions P* in a given study area extent, whether a modeling method can or cannot
identify an object at a numeric percentile is an evaluation metric comparable across methods
and sampling regions. If we use Pk layers to generate a joint suitability map S, then for
each joint suitability layer of an object of interest, we have the percentile for each pixel value
on S, ranging from [0,100]. A pixel with a higher percentile indicates a greater likelihood
that the object of interest has traveled in or around this location, analogous to suitability in
spatial modeling. Specifically, we can calculate a percentile of the sampling location of an
object Sy to assess the geolocation accuracy resulting from the geographic attribution. We
call this specific value a search space reduction (SSR) score:

| A0 B PRy > So}) 100 o

SSR:( N

SSR score is a metric that can retrospectively assess how well the method could reduce
the search space by comparing the joint suitability value between the object’s location and
all other locations. Equation 1 produces SSR scores between 0 and 100, where a higher score
indicates that fewer pixels on the joint suitability map have suitability scores greater than or
equal to that of the object’s actual location.. We use this concept in this research to evaluate
the performance of the geographic attribution process. It is important to stress here again
that this SSR score based upon the joint suitability method is a proxy for location suitability
to identify location history.
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Figure 2 The distribution of SSR scores resulted from using sampled, simulated, and null model
pollen signatures. Both sampled and simulated methods have 65 locations of interest selected. We
used 38 locations of interest for the pollen signatures generation of the null model.

3 Results and Discussion

AUCRroc results of 0.75 or higher for 90% of the plant taxa classifications indicate overall
useful predictive performance from SDMs. For the simulated sites, both BRT and RF models

resulted in a search space reduction (SSR) score > 99.95 for around half of the locations.

Figure 2 shows the distribution of the search scores of the locations of interest derived from
simulated pollen signatures and sampled pollen signatures shown in blue and green color. The
null model distribution with randomly assigned pollen signatures is in red. The distribution
of most null model SSR scores is below the 75 search space percentile, which means they
do not provide useful information for search space reduction. The distribution of the SSR
scores yielded from simulated pollen signatures is concentrated at the 99th percentile, while
the majority of the locations of interest have the highest SSR scores with sampled pollen
signatures, which can also be noted in the zoomed-in smoothed density plot in Figure 2.
To provide a more detailed analysis, we used an additional sub-figure that highlights
the upper-end distribution of SSR scores using both BRT and RF models. The zoomed-in
density plots in the lower panel of Figure 2 emphasize the peak concentration of sampled and
simulated pollen signatures at the extreme high SSR scores. This supports the hypothesis
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that geolocation using sampled and simulated pollen provides significantly better search
space reduction than random pollen attachment, as represented by the null model. The BRT
model demonstrates a slightly broader spread of high SSR scores compared to the RF model,
potentially indicating model-specific differences in how species distribution models generalize
habitat suitability.

SSR scores derived from simulated pollen signatures can be compared with the geographic
attribution results from sampled pollen signatures. To introduce uncertainty in pollen
adherence, we can adjust the probability of pollen attachment to objects/people to values less
than 1, allowing us to assess the sensitivity of the SSR modeling to that parameter. Although
multiple potential search regions can be identified, investigators and decision-makers could
use these refined maps to reference location history at higher percentiles of areas of interest,
especially when combined with other lines of evidence. Future analyses should explore the
robustness of these distribution patterns across different geographic extents, alternative
modeling techniques, and additional environmental variables to assess their impact on SSR,
performance. Additionally, integrating higher-resolution pollen data or refining taxonomic
resolution may further enhance the precision of location attribution in forensic geospatial
investigations.
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