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—— Abstract

Many molecular systems are best understood in terms of prototypical species and reactions. The

central dogma and related biochemistry are rife with examples: gene ¢ is transcribed into RNA 4,
which is translated into protein ¢; kinase n phosphorylates substrate m; protein p dimerizes with
protein g. Engineered nucleic acid systems also often have this form: oligonucleotide ¢ hybridizes to
complementary oligonucleotide j; signal strand n displaces the output of seesaw gate m; hairpin p
triggers the opening of target g. When there are many variants of a small number of prototypes,
it can be conceptually cleaner and computationally more efficient to represent the full system in
terms of indexed species (e.g. for dimerization, M, D,,) and indexed reactions (Mp, + Mg — Dpq).
Here, we formalize the Indexed Chemical Reaction Network (ICRN) model and describe a Python
software package designed to simulate such systems in the well-mixed and reaction-diffusion settings,
using a differentiable programming framework originally developed for large-scale neural network
models, taking advantage of GPU acceleration when available. Notably, this framework makes
it straightforward to train the models’ initial conditions and rate constants to optimize a target
behavior, such as matching experimental data, performing a computation, or exhibiting spatial
pattern formation. The natural map of indexed chemical reaction networks onto neural network
formalisms provides a tangible yet general perspective for translating concepts and techniques from
the theory and practice of neural computation into the design of biomolecular systems.
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1 Introduction

As an embodiment of self-organized chemical complexity, living organisms challenge us to
conceptualize how molecules can interact to create functional systems. Mathematical and
computational models of molecular systems help us understand existing biology, the design
space explored by evolution, and the engineering of sophisticated molecular technologies.
Depending on purpose, different abstractions are available, from quantum chemistry to
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molecular dynamics to chemical kinetics and beyond. Formal chemical reaction networks
with bulk mass-action kinetics occupy a particularly interesting place in the space of models:
they have been used both as descriptive models for existing chemical systems [21], and as
prescriptive models for specifying the target behavior for systems being engineered [59].

The basic chemical reaction network (CRN) model considers the temporal dynamics of
the concentrations of a finite number of species undergoing a finite set of specified reactions.
Software using the CRN representation for systematic modeling of complex biochemical
pathways, such as COPASI [28] or Tellurium [12], has been an important ingredient for the
development of systems biology. For these uses, generalizations of the basic CRN model
have been important (non-mass-action rate formulas to allow for models involving Michaelis-
Menten kinetics and other approximations; compartments to represent different parts of
a cell; discrete events such as cell division) and have been incorporated into the systems
biology markup language (SBML) that serves as a standard for thousands of models in the
literature [32, 40]. Nonetheless, explicit listing of every relevant species and reaction can be
cumbersome, leading to rule-based modeling languages such as Kappa [4] that allow concise
descriptions of combinatorial modifications and even reaction mechanisms that potentially
allow for an infinite number of distinct species, such as polymerization reactions. The bottom
line is that the choice of representation impacts how we think about complex molecular
systems and how we can efficiently simulate, analyze, and design them.

The starting point for our current work is to look for representations that reflect parallels
between complex biochemical systems and neural networks. Canonical examples in biology
include systems of metabolic enzymes [27], genetic regulatory networks [42, 7], signal trans-
duction cascades [6, 14], and protein dimerization networks [48]. Inspired by these examples,
synthetic biochemical systems have been explicitly designed to perform neural computation
and experimentally demonstrated in cell-free enzyme systems [34, 35, 36, 24, 47], in DNA
strand displacement cascades [51, 11, 64, 63, 67], and in living cells [52, 10]. The “neural”
character of these systems stems from several factors: they have complex, multidimensional,
nonlinear, analog dynamics that depend on a plethora of tunable parameters (such as reaction
rate constants) and can perform information-processing tasks such as pattern recognition
and attractor-based computation. Moreover, each type of network (e.g. metabolic, genetic
regulation, signal transduction, dimerization) may be understood, in a simplified fashion, in
terms of many instances of a prototypical mechanism, each differing only by its quantitative
parameters — similar to how neural network models are often described in terms of a standard
neural unit parameterized by weights and a threshold. Informally, we call such systems
“index-amenable” because each species or reaction rate (or neuron or weight) can be identified
by an index or tuple of indices; see Fig 1 for three examples based on genetic regulatory
networks [7], dimerization networks [48], and phosphorelay networks [14, 9].

A particularly intriguing question is how biochemical “neural” computation can help
make the decisions necessary to guide organismal development [42]. Reaction-diffusion
systems, as pioneered by Alan Turing [62], provide a simplified model system — with local
CRN dynamics spatially coupled by passive diffusion — for examining possible mechanisms
for pattern formation. Even very simple CRNs can, in the reaction-diffusion context, give
rise to complex textures and biological-looking patterns [49, 38]. Inspired by the neural
cellular automaton model [45] that illustrated how a spatial array of neural networks can be
trained to grow and maintain a precise “organismal” pattern, such as the image of a lizard,
we have been exploring how a specific neural reaction-diffusion system can be trained for
similar pattern formation tasks [8]. Both of these works employ differentiable programming
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Figure 1 Index-amenable chemical systems. A. An inhibitory gene regulatory network has genes
G that are transcribed to RNA R that are translated to proteins P. The protein produced by one
gene can bind on another gene and thereby block transcription. B. In a dimerization network,
monomers can combine to form dimers. Dimers also dissociate into their constituent monomers. C.
In phosphorelay networks, a phosphorylated protein can transfer its phosphate group to another
protein. The proteins can also individually be phosphorylated or de-phosphorylated.

techniques [16], where physical simulation models are optimized by automatic differentiation
and gradient descent. Relevant to the work here, differentiable programming has been applied
to small CRNs [44] as well as to complex cellular morphogenesis models [19].

The work reported here extends our prior work [8] by abstracting from a specific “neural”
CRN to a general model for what we call indexed chemical reaction networks (ICRNs). ICRNs
use index symbols to succinctly describe a set of species and reactions that can be naturally
scaled to be arbitrarily large. Not only does indexing provide notational convenience, but the
representation allows computations to be efficiently performed with tensors. Furthermore —
and making a very pragmatic connection to neural computation — software utilizing tensors
can leverage machine learning technologies to train parameters of the chemical system to
optimize its behavior. A natural consequence of the ICRN representation is that species
and reactions may involve more than one index, representing potential all-to-all interactions
that some molecular biologists call “promiscuous” [1, 60] but that also correspond to what
neuroscientists call “synaptic weights”. In neuroscience it is well understood that many
weak interactions can dominate over select strong interactions in processes such as visual
perception [56], highlighting the potential importance of even weak “promiscuous” interactions
in molecular biology. We hope that the ICRN model can provide a natural framework for
describing chemical systems that embody neural network principles of collective computation,
thus helping facilitate the transfer of concepts, insights, mathematics, and software between
fields.

2 Chemical Reaction Networks

The chemical reaction network (CRN) model is a general mathematical formalism for (typic-
ally) mass-action chemical kinetics described as ordinary differential equations (ODEs) [30].
Chemical reaction network theory, as presented by Feinberg [22], provides a canonical repres-
entation that models chemical systems with sets of objects: S, C, R, K. The set S contains
the species in consideration. For example, S might be {A, B, C}. The set of complexes C are
multisets of species, i.e., each complex assigns a count to each of the species. For example,
A+ 2B is a complex. The set of reactions R contains ordered pairs of complexes specifying
the reactants and the products. For example, (A + 2B, C) is a reaction.

4:3

DNA 31



4:4

Differentiable Programming of Indexed Chemical Reaction Networks

Lastly, the rate constants are specified by a function K : R — R, that assigns a positive
real number to a reaction. For example, if IC((A+2B,C)) = k then we may write A+2B £ c.
A CRN is specified by the tuple (S,C, R, K).

In practice, Feinberg’s canonical representation is inconvenient for simulation software,
where it may be desirable to allow reaction rate constants £ = 0 and to permit the same
reaction to be listed multiple times, perhaps with different rate constants. The usual
convention, which we take here, is to sum rate constants in that case, e.g., if a CRN contains
A+ B Cand A+ B2 Cand A+ B £ €, where ky, ko, ks € Rsg, then this would

correspond in Feinberg’s canonical representation to a single reaction A + B k¢ with
k = k1 + ko + k3 unless k = 0, in which case the reaction would not be included in R.

A chemical state is given as z € RS, representing the concentrations of each species. The
notation RS, refers to |S|-length tuples where each component corresponds to an element
of 8 and specifies a non-negative real number for that species. For complex ¢ € C, define
2¢ = [[,cs ¢, the product over species in a complex of each concentration raised to the
power of the respective stoichiometric coefficient. (Here, we define 0° = 1 to completely
ignore species whose stoichiometry is zero.) Then the mass action chemical kinetics for
canonical CRN (S§,C, R, K) or equivalent non-canonical CRN list (a,. LN = Zyr), with
M possibly repeated reactions listed, can be described by the ODE

% = Y - aK(@b)at = ¥ (b — ar)kra™

(a,b)ER reZy

where the difference of complex multisets b and a is interpreted as a vector in R‘;O, and
Zy =1{1,2,3,...,M}.

3 Indexed Chemical Reaction Networks

The indexed chemical reaction network (ICRN) model provides an abstraction and represent-
ation suitable for the specification and simulation of index-amenable chemical systems. To
specify an ICRN for simulation, one provides symbolic information akin to the descriptions
in Fig 1 together with the ranges for indices, complemented with numerical information for
rate constant tensors and initial concentration tensors. Thus, the symbolic information can
be very compact. Of course, since an ICRN may use any number of indices, including none,
in a trivial sense every classical CRN can be considered to be an ICRN, and in this case no
efficiency improvement is obtained for the specification of the system. In the other direction,
given an ICRN we can obtain a CRN by enumeration: replacing each indexed reaction by a
finite set of concrete CRN reactions in which index symbols take on particular values. The
dynamics for ICRNs are defined below so as to ensure that an ICRN and its enumerated
CRN always give identical chemical kinetics.

ICRNs and CRNs are structurally similar, and so share terminology, such as species,
reactions, and rate constants. Yet the two representations differ in that ICRN objects are
the multidimensional analogs of CRN objects. When necessary, to avoid confusion, the term
indexed will be used to describe objects of the ICRN and the term concrete will be used to
describe objects of the underlying CRN.

3.1 Winner-Take-All ICRN

The winner-take-all DNA neural network from Cherry and Qian [11] is a prime example of
a CRN with neural-network-like structure, and thus will be used both for illustrating the
ICRN formalism here and for the first simulation and training example in Section 5. It can
be described by the following indexed reactions.
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In an indexed reaction, base species, such as X, W, X F| ..., and base rate constants, such
as a',a?,... are associated with index symbols, %, j, k. Associating specific values to all
the index symbols in an indexed reaction describes a concrete reaction. For example,

assigning values ¢ = 1 and j = 2 in the first indexed reaction gives the concrete reaction

1
X1+Wie+XFy Zz x 1+ Pi2. The enumeration of the first indexed reaction is the collection
of concrete reactions formed by substituting every combination of i, j € {1,...n} x{1,...,m}.
The enumeration of the ICRN is the collection of enumerations for each of its indexed reactions.
This enumeration is a multiset: the same reaction may appear multiple times, possibly with
different rate constants, and in such cases the effective rates constants are summed.

3.2 ICRN Definitions

By discussing ICRNs as representations of chemical systems, we have considered meaning, or
semantics. Turning our attention to syntax, what are the rules for constructing ICRNs? The
reader should pause and consider whether the examples below are valid ICRNs (y;, v € Rx>o).

(A2 B}, {A; 5 B}, {A 5 ¢, B— 0}, {4 2 B;}

We will define the ICRN, covering its syntax and its relationship to its semantics. Just as the
various CRN conventions can be understood in terms of Feinberg’s formalism, our formalism
serves as a common way to precisely describe ICRNs.

An ICRN is specified by five collections: (U,S,K,Z,R). The base species S and base
rate constants K are multidimensional analogs of species and rate constants from concrete
CRNs. Indexed reactions R use index symbols U to describe interactions between the
multidimensional objects. The index sets Z describe the index values that are valid to
associate with base species, base rate constants, or indexed reactions.

Index symbols are essential for the abstraction provided by ICRNs. In the winner-take-all
system, the set of index symbols I/ contains index symbols ¢, j, k. Each index symbol u € U
has an associated index set, denoted Z(u), which is the set of values the index symbol can take
on. For example, Z(i) = {1,...,n}. A tuple of index symbols u € /<N has an index set that

is the product of the index sets of its constituent index symbols Z(u) = Z(uq) X - -+ X Z(Uy).

Defining index symbols as objects that exist globally throughout the system, as opposed
to each indexed reaction having its own notion of index symbols, has two advantages. Firstly,
global index symbols avoid the confusion that arises when the same index symbol appears in
multiple reactions but takes on different values across the reactions. Secondly, global index
symbols directly represent entities of the system. In the winner-take-all system, there are n
inputs and m outputs to a winner-take-all computation. Thus, the index symbol ¢ represents
a single input while j and k are used to represent a single output.
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Base species and base rate constants are multidimensional objects representing groups
of concrete species and concrete rate constants, respectively. Both base species and base
rate constants have index sets, denoted Z(s) for base species s € S and Z(k) for base rate
constants k € K. A base species maps from its index set to a concrete species, while a
base rate constant maps from its index set to a concrete rate constant. For example, the
base species W has an index set {1,...,n} x {1,...,m} and represents a group of concrete
species, W11, ..., Wy.,. Base species can be thought of as dictating the overall structure of a
group of biomolecules that vary at designated regions, or domains. Each concrete species is a
specific variation of the overall structure and specifies the chemical identity of the domains.

Fixing U, S, and I, and their index sets, there is a notion of a set of valid indexed species
Vs and a set of valid indexed rate constants Vi. An indexed object is valid if the index set
of the base object and index set of the index symbols are the same.

Vs ={(s,0)[Z(s) =Z(uw)}, Vi ={(k,u)[Z(k) = Z(u)}

An indexed reaction r € R is a triple in N¥s x NVs x Vi.. Reactants and products are
multisets of Vs and are accompanied by an indexed rate constant from V. The set of
index symbols present in the indexed reaction implies the index set of the indexed reaction,
denoted Z(r). Specifying values for each index symbol specifies a concrete reaction, so
indexed reactions are functions from the index set to concrete reactions. The enumeration of
an indexed reaction is the image of the index set under r, Im(r). The enumeration of an
ICRN is the multiset union of the enumeration of each indexed reaction: U,cgrIm(r).

At this point, the reader should be able to identify {A LcB—> 0} as the ill-defined
ICRN. The other three ICRNs are valid given that the index sets of their objects are in
agreement. Additionally, the reader may have noticed indexed species written as s, rather
than (s, u). For instance, we wrote W;; instead of (W, (¢, 7)). The former notation emphasizes
the concrete object that results from enumeration. However, indexed bases and indexed rate
constants are objects in their own right and are, strictly speaking, the building blocks of
indexed reactions. When there is room for confusion, the latter notation will be used to refer
to indexed species and indexed rate constants.

ICRNs can be enumerated to capture a wide variety of concrete CRNs. There are systems
of interest that are well suited to being described by indexed reactions but with restricted
index sets. In many of these cases, the system of interest can be captured by creative use of
the base species and base rate constants. For example, in the winner-take-all system, the
implementation of the annihilation reaction in the DNA substrate produces a non-functioning
annihilator molecule for the case where j = k. This restriction in indexing can be addressed
by setting a?k = 0 when j = k, so the concrete reaction does not occur for j = k. Symmetric
systems in particular are discussed further in appendix A.

3.3 Dynamics

The dynamics of an ICRN follows the dynamics of the enumerated CRN. Concentrations
of base species and base rate constants are naturally represented as tensors. Accordingly,
the dynamics of an ICRN can be expressed with tensor operations, which can be derived
through symbolic manipulation of the ICRN.

The tensor representing the concentrations for base species s is written as [s] € R®, where
R® = Rgé‘xmxl‘]’vs‘ with Z(s) = Jy x -+ x Jy,. To distinguish between the concentrations
associated with the ICRN and the concrete CRN that it abstracts, we will use [s]y to
refer to concentrations in the ICRN representation and [sy] to refer to the concentration
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Figure 2 Block schematic for ICRN dynamics. At time ¢, the values of the base rate constants,
in green, and base species concentrations, in pink, are involved in the indexed reaction fluxes, in
blue. The indexed reaction fluxes may be summed across their dimensions to produce contributions,
in red, to each base species. These contributions positively or negatively contribute to the base
species concentrations at time ¢ + dt.

of the concrete species, s, where Z(u) = Z(s ) The time-dependent state of an ICRN is

z = ([s1],...,[s1s)]) € R® where RS = R** x --- x R¥IsI. Thus, x specifies [s] for all s € S.
The dynamics of an ICRN describes the time derivative of x, which is the tuple of time
derivatives for each [s]: 4 = (%, e %)

The dynamics for the ICRN follows the dynamics of the enumerated concrete CRN,
so the time derivative for [s] is the collection of time derivatives for each concrete species
represented by s, where the time derivative of [s], is defined by the time derivative of [sy,]

from the enumerated concrete CRN: % = d[jt“]

As seen in Fig 2, each indexed reaction r has an associated indexed reaction flux ®(r), a
real-valued tensor. For each appearance of an indexed species (s, u), sums are taken along
the dimensions of ®(r) that correspond to index symbols that are present in the indexed
reaction but not present in the indexed species. The result is the flux contribution to s,
denoted 6, (s, u), which is a real-valued tensor with the same shape as [s]. A base species
s receives contributions from every appearance of any indexed species that derives from s
among all the indexed reactions.
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The indexed reaction flux, ®(r) is a real-valued tensor with the same shape as the index
set of . Let p be index symbols such that Z(p) = Z(r) and a,, b, € NV be the multisets of
reactants and products, respectively. Then a,(y,u),b.(y,u) € N, where (y,u) is an indexed
species. Additionally, let (k,,q) € Vi be the indexed rate constant used in reaction r. Here,
krq € R>q is the real-valued rate constant. The following is an element-wise specification of
®(r), indexing with p, since all index symbols in p are present in the right hand expression.

)= kg [] [l
(y,u)€Vs

The flux contribution to s from r depends on which indexed species (s, u) is participating
in the reaction. The following equation is an element-wise specification of the tensor d, (s, u)
using the index symbols u.

Or(s,0)y == Z ®(r)p = sum of ®(r) over index symbols in  and not in u
pP—u

On the right hand side, p is the tuple of index symbols in r and p — u refers to the
index symbols that are in p but not u. Thus, the right hand side is an expression that is
parameterized by u. Moreover, the summation is an Einstein summation, a kind of indexed
summation which can be efficiently computed [58].

The totality of the contributions to s from each appearance of a derived indexed species
can be formulated as the following element-wise specification.

dEZ}V - Z Z (bT (y’ u) - Gr (ya u)) 67‘(3/7 U—)v

r€R  (y,u)€Vsly=s

The left hand side describes the rate of change of an element of [s] corresponding to index
symbols v. On the right, ¢,(s, u)y refers to an element of the tensor d,(s,u) indexed by v.
Since (b, (y,u) — a,(y,u)) € Z, the right hand side is an expression parameterized by v. An
example of the dynamics derivation appears in appendix B.

ICRNs can be extended naturally from the well-mixed to a spatial setting, becoming
reaction-diffusion systems. For classical CRNs, reaction-diffusion dynamics are described
mathematically by a PDE: 9; X = DV?X + R(X). For reaction-diffusion with species S in
d spatial dimensions, the concentration field X is a function X : Q ¢ R — RS, with Q a
bounded subset of the spatial dimension. D is a diagonal matrix of diffusion constants, V2
is the Laplacian operator encoding diffusion, and R represents the derivatives due to the
CRN’s reactions. ICRNs require only a tensor generalization of these semantics.

4 Software

The icrn Python library allows for efficient simulation and training of ICRNs by compiling
a general ICRN into its dynamics in a tensor-based and differentiable framework. The
SymPy symbolic programming library [41] is used for transforming an ICRN representation
into a function that computes the dynamics and influenced the nomenclature of the ICRN
definitions. While the ICRN representation is symbolic, the dynamics function is numerical
and takes as input real-valued tensors for concentrations and rate constant information to
compute a change of concentrations. In the icrn library, tensors and the operations between
them are backed by JAX [5], so the dynamics computation is not only efficient, making
use of hardware acceleration to speed up tensor computations, but also is automatically
differentiable, allowing for gradient based optimization methods.
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Figure 3 Benchmarking of icrn. Setup is considered to be any action, such as reaction specifica-
tion, necessary before simulations are run. We tested random dimerization networks with initial
concentrations and rate constants in the range (0, 1) without requiring symmetry for k;; and k.
For each n, a reference simulation was run using icrn and very small dt. €ii.,(s) and €{,(s) are the
relative errors in the concentration of s with respect to the reference simulation. The two simulations
achieved similar accuracy, as max, {| max;{elm(s)} — max{ex(s)}} < 2 x 107 At n = 60, icrn
was 3.6 x 103-fold and 3.1 x 10%-fold faster than Tellurium for setup and simulation, respectively.
All times were measured on the same Google Colab instance with an A100 GPU.

Existing reaction system simulators, such as Tellurium [12], do not take advantage of
mapping of dynamics onto tensor operations. Fig 3 compares the use of the icrn library and
Tellurium for setting up and simulating dimerization networks from Fig 1 with varying n,
the number of monomer species.

Well-mixed systems are simulated explicitly using forwards Euler or Runge-Kutta methods
adapted to tensor operations. As of writing, icrn has only limited support for time-scale
separation: “fast” reactions that go to completion (not equilibrium or steady-state) within
each time step, subject to the restriction that no species may appear as a reactant in more than
one fast reaction. To simulate reaction diffusion, we use a finite-differences numerical scheme,
dividing both the spatial and temporal dimensions into discrete points, and deriving operators
for the reaction and diffusion update steps. Thus, spatial extent expands the dimensions of
concentration tensors, with discretized positions playing a role analogous to indices. Our
ICRN simulator software uses an implicit-explicit (IMEX) integration scheme: diffusion
derivatives are solved implicitly in the Fourier domain [54], and the reaction derivatives are
handled explicitly. The icrn package and notebooks with code for the examples below are
available at https://github.com/SwissChardLeaf/icrn.

5 Examples

We provide three examples, demonstrating different aspects of the ICRN formalism and our
icrn software. First, we simulate the winner-take-all example described earlier, showing that
the starting concentrations may be optimized by gradient descent to perform the classification
task, rather than set manually as in [11]. Second, we explore the Gray-Scott reaction-diffusion
model [25]. While this is a simple CRN and does not stand to gain from indexing, it serves
to illustrate how tensor-based simulation facilitates reaction-diffusion modeling and how
differential programming can be used to find parameters that produce target textures. Finally,
we replicate the developmental pattern formation task from [8], showing how icrn can be
used to efficiently optimize a large (256 species) ICRN in the reaction-diffusion setting.
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Figure 4 Training a WTA ICRN. A. Three sample images are shown from each of the three
classes. The 28 by 28 MNIST images are resampled into 10 by 10 images and then made binary by
setting the 20 pixels with the highest values to 1 and setting the remaining 80 pixels to 0. We used
5000 training samples and 900 test samples per digit class. B. Plots show the time trajectory of
the 3 fluorescence signals with the SUP score from 9 ICRN simulations, each initialized with an
image from A by setting the initial concentration of base species X based on the pixel values of
the image. The concentration of the base species W is initialized based on the pruned average-digit
weight matrices. Each simulation runs for 10° steps with a dt = 10™*. Sample images were chosen
such that the left and center columns show correct classification while the right column is incorrect.
C. 100 by 3 weight matrices are rearranged into 30 by 10 arrays. The (i) Avg Digit matrix was
created by averaging images for each class, and the (ii) Pruned Avg matrix is produced by taking
the top 20 pixel values for each class from the Avg Digit matrix. The (iii) SUP matrix is produced
by training a uniform weight matrix with a loss function that optimizes the SUP score. The (iv)
Acc + Reg matrix is produced by training with a cross entropy loss function with an additional
Ly /5 regularization term. D. The performance of each matrix from C is tabulated. The WTA Acc
is the result of using a weight matrix as W in the abstract winner-take-all computation while Sim
Acc uses the ICRN as a classifier, where accuracy refers to the percent of test samples where the
correct output is the largest output.

5.1 Indexed Well Mixed — Winner-Take-All

The abstract winner-take-all computation can classify hand written digits. Following Cherry
and Qian [11], our dataset is a reduced-resolution subset of the MNIST [18] dataset and
consists of input-output pairs (x4, y4) where d indicates a specific pair, x4 € {0, 1}190 specifies
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a 10 by 10 image of a handwritten digit, and y4 € {0, 1}3 specifies the digit that the image
represents (seven, eight, or nine). A digit classifier is a function from images to classes. The
abstract winner-take-all computation acts as a classifier by computing weighted sums for
each class and taking the class with the highest sum to be the output class. The weights
are specified by a matrix W e R;O(? %3 where a column contains the weights used in the

weighted sum per class.
WTAy (x) = argmaxce{LQ)S}(xW)c

Cherry and Qian set the weights of the classifier by pruning an average-digit matrix.
Average-digit weights are the averages of examples in the training data. A column of the
weight matrix is populated by the average of x from the digit class corresponding to the
column. Due to experimental limitations from having many nonzero elements, the pruned
matrix takes the 20 highest elements of each class.

The winner-take-all ICRN can be trained to optimize different qualities. One view is
that the fluorescence signal for the correct class should completely saturate (at 100 nM)
while for other classes it is 0. A large difference in the output fluorescence is important
experimentally for being able to resolve the output signal from the classifier. The superiority
score SUP = [F] - (2y — 1) captures this idea, for a given target input-output pair (z,y)
that results in endpoint fluorescence vector [F]. Ideal behavior gives a superiority metric
of 100, and lower values reflect deviation from the ideal (Fig 4B). The loss function can be
set to produce a weight matrix with a high superiority metric. Another possibility is to
optimize the ICRN’s ability to produce the correct output without a concern for how low the
fluorescence is for the other output classes. The endpoint fluorescence can be interpreted as
a probability by normalizing with the softmax function, p; = exp([F];)/>_, exp([F]x). The

loss function computes a cross entropy loss — i Yi log(p;) with an L; /5 regularization term,
Zi’ j Wllj/ 2, that penalizes high weights, which encourages the training process to produce
fewer nonzero weights, increasing experimental feasibility. The results of applying these
training methods are shown in Fig 4D.

5.2 Reaction Diffusion — Gray-Scott Textures

We will begin with the Gray-Scott model [25] to illustrate the simulation and training
of reaction-diffusion systems within our software framework. The Gray-Scott model is a
reaction-diffusion system with just two species, U and V', and four reactions: U + 2V BRI 3V,
v et 0,U i 0, and 0 U, As such, it does not stand to gain simplicity from indexing,
but nonetheless it is a (trivial) instance of an ICRN. The PDE can be written as:

U = DyV2U —UV? 4+ F(1-1)
OV = DyV?*V +UV? - (F+k)V

This reaction-diffusion system has just four parameters: rate constants F' and k, and diffusion
constants Dy and Dy. However, tuning these parameters, the system generates a wide

variety of patterns, both stable and time-varying, explored and categorized by Pearson [49].

Our task is to use differentiable programming [16] to find Gray-Scott parameters that
yield a particular type of pattern — e.g. mazes, spots, waves. As in Pearson’s paper, we

will fix the diffusion constants (with U diffusing twice as fast as V'), and vary only F' and k.

We set up the task as follows: first, we choose F' and k to yield a certain type of pattern
when simulated forwards from initial conditions randomly sampled from a distribution (see
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Fig 5). The Gray-Scott PDE is fairly stiff, necessitating many steps with small d¢ to let its
characteristic patterns develop from unstructured initial conditions. We thus take a single
long simulation output using these parameters, and call this our target pattern. During
training, we will run shorter simulations that are more amenable to gradient descent, but
which will introduce other challenges.

Next, we need to define a loss function measuring how closely simulations during training
match the target. We would like the loss function to be relatively stable to different initial
conditions, so we cannot use a simple pixel-by-pixel comparison of simulation output and
target: rather, we want something that captures and compares the qualitative features of the
patterns. Taking inspiration from work on neural transfer of artistic style [23] and matching
textures with self-organizing neural cellular automata [43], we evaluate pattern matches using
the low-level (early layer) features from VGG-16, a convolutional neural network trained for
image classification [57]. We feed our target pattern to VGG-16 as an input, and extract the
activations from the first through third max-pooling layers. We then compute Gram matrices
from these features, capturing some sense of how different elements of the pattern vary with
each other over space. The Gram matrix G element Géﬂ» =y ley jlm/, where z and y
are the spatial dimensions of the layer and fllxy is feature 7 at position (z,y) in layer [.

Finally, we can compute a stylistic loss function, defined as the mean squared distance
between the target Gram matrices and those extracted from the simulated output by the
same process: Liexture = uTlx]\ Dol J(Gi jtarget — Gi:joutpm)Q. For stability, we augment
the loss by adding a “moments-matching” term, comparing the means and log-variances of
the simulation outputs with reference values, drawn by simulating the Gray-Scott model in
different parts of the pattern-forming parameter space:

Enomans = (0) = LD+ (V) = {97+ (108 ( 5 ) 1o (ZEQ))

Here, U is the simulated output, and U isan average over ten reference simulation outputs, and

0%(X) is the variance of X. Finally, we add a “potential well” regularization term, penalizing
parameter values outside of the pattern-forming region of F' € [0,0.08], k € [0.03,0.08]. We
then have loss £ = Liexture + 01 Lmoments + O‘ZL:regularization-

We train the parameters using gradient descent on this loss function applied to the output
of short simulations that start with the target pattern rather than a random noise state.
Thus we are accommodating the stiffness of the Gray-Scott PDE by training for stability
rather than for de novo generation of the texture. This has an additional benefit in that for
some parameters, pattern formation in the Gray-Scott system can fail to “kick start” properly
for random initial conditions. As in the winner-take-all example, both the simulation (using
icrn) and loss function computation are written using differentiable JAX primitives, meaning
that the derivatives may be calculated automatically using backpropagation-through-time
(BPTT) [2, 53]. We integrate the gradients using mini-batch gradient descent, adding a small
amount of randomness to the parameters when the learning converges to a local minimum.

The results shown in Fig 5, including a final long simulation from the lowest loss endpoint
among the training runs, are perhaps deceptively well-behaved: training of this system was
finicky and challenging. The vast bulk of parameter combinations give rise to spatially
homogeneous outputs, and only in a sliver of parameter space are interesting patterns to
be found — and there, the sensitivity to initial state was often confounding. Making this
problem even harder, learning can turn just two knobs, F' and k. The success of modern
machine learning in many contexts is thanks to, among other things, the high dimensionality
of deep neural networks. With so many parameters, there is almost always some direction in
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Figure 5 Texture matching with the Gray-Scott reaction-diffusion system. A. Following Pearson,
we initialize with U = 1.0, V' = 0.0, but at the center, U = 0.25, V = 0.5. We apply weak additive
noise everywhere. We simulate forwards using an implicit-explicit Runge-Kutta integration scheme,
with periodic boundaries, and parameters F' and k corresponding to Pearson’s x mazes. RGB
visualization is achieved by (R,G,B) = (V,U,1 — (U + V')/2). B. While training the Gray-Scott
system, we fix Dy = 0.2, Dy = 0.1. Each row is a different target pattern (Pearson’s k, A, and §)
obtained by simulating forward to time ¢ = 5000 with hand-chosen values F, k (left, marked by red
stars in the middle plots). In the middle, we plot the learning trajectories through parameter space,
superimposed on the loss landscape. On the right are the outputs produced using the lowest-loss
parameters among the endpoints of the training trajectories. Each is simulated for ¢ = 5000 from a
new target image created from a new random initial state, demonstrating long-term texture stability.

parameter space we can move along to reduce the loss, meaning that even simple, first-order
optimization algorithms like gradient descent perform well. In the next section we will

consider an ICRN with tens of thousands of parameters in the reaction-diffusion setting.
Though small by modern standards, it is big enough to enjoy the blessings of dimensionality.
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5.3 Indexed Reaction Diffusion — Hopfield CRN Images

Reaction-diffusion systems can be trained to grow into significantly more complex patterns.
Here, we take the Hopfield network-inspired CRN and training approach used in [8], and
train an ICRN to grow from simple initial conditions into a rendering of a photograph.
The Hopfield CRN consists of a set of neurons x, with variables z; € R, and i,j5 €
{1,..., N} for an N-neuron system. In the well-mixed setting, the Hopfield CRN can be
trained to store a set of “memories”, similar to the classical Hopfield network [29]. The
neurons are connected all-to-all. Catalytic reactions between pairs of neurons correspond
to weighted sums, and a trimolecular degradation reaction for each neuron corresponds to
an activation function. To allow negative values for the variables, and negative weights

between neurons, we use a dual-rail representation: the variable x; is the difference in the
+_
i

is added between the positive and negative species for each variable. The ICRN is defined as

concentrations of two species, x; = x x; , with x;-", x; € R>o. A fast annihilation reaction

Weighted sums: Degradation:
k1t+ kg—eg k3

o S af + J:;r, k‘fjJr = ReLU(—&—W;;) 3r; =5 2

+ k;rj7 + — +— + — k(reg.i _

r =] +x;, kT =ReLU(-W;) 3r; — 2x;
s

x; = x; +af, kT =ReLU+W;;) Annihilation:
[

oy Loy +ay, ko =ReLU(-W)) A Y

where ReLU(z) = max(0, x), ensuring that all rate constants are non-negative. The para-
meters for the Hopfield ICRN consist of two N x N weight matrices W and W~ (with
T/VijjE € R), two N-vectors of degradation rate constants k:{eg and kg, (with k(jfegyi € R>o),
and two N-vectors of diffusion constants D and D~ (with DijE € R>p). When the weight
matrices are symmetric and degradation rate constants are equal, the Hopfield ICRN has
equivalent attractor-basin structure as the classical Hopfield associative memory, but we find
that allowing asymmetric and unequal parameters facilitates improved pattern formation [8].
The ICRN software admits an efficient representation of dual-rail ICRNs.

The training approach and loss function for the pattern forming task was inspired by
Mordvintsev’s work on neural cellular automata [45]. We define the first three 2 variables
(i € {0,1,2}) to be the visible units, corresponding to red, green, and blue, and the remaining
N — 3 are hidden. We pick an RGB target image T', and train the parameters of the ICRN
such that the visible state of the system matches the target as closely as possible, when it is
grown from specified initial conditions for a specific duration of time, ¢gow. The target in
Fig 6 is grayscale, but we treat it in RGB for generality. We can write the pixel-wise loss as

= Y (X Taw)

hyaw  i€{0,1,2}

where h € {1,..., H} and w € {1,..., W} are the discretized points in space. The loss function
considers only the visible species. This loss is simpler than that used in the Gray-Scott
example, but is also less flexible — a pattern which to the eye appears similar in style may
have a high loss, if the pixel values are different. As in the Gray-Scott training task, we
train the rate constants, but for this task we also train the diffusion constants. Unlike in the
winner-take-all example, the initial conditions are fixed, consisting of a simple asymmetric
pattern in the visible units. We use the Optax implementation of the Adam optimizer [37, 17].
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Figure 6 Training complex reaction-diffusion pattern formation. A. A circular mask was placed
on top of a photograph of Alan Turing was down-sampled to 100 by 100 pixels. B. From a random
initialization, the parameters of the Hopfield ICRN were trained for 30,000 steps to minimize the
pixel-wise squared distance between the target and the simulation output at time tgrow. C. Snapshots
from a reaction-diffusion simulation. The initial conditions consist of three overlapping splotches of
the visible species, xo, =1, and z2, plotted as R, G, B colors. The hidden channels all begin at zero.
D. At t = tgrow = 12.5, this pattern, generated with the best parameters found during training, is
“fully grown”. E. Though the loss function is applied only to the first three (visible) species, we can
plot the spatial distributions of all 256 species in the ICRN. Red corresponds to a positive value and
blue to a negative value.

Fig 6 shows the training of a Hopfield ICRN with N = 256 neurons. The corresponding
CRN has 512 species (two per dual-rail variable), 131072 (= 2N?) catalytic rate constants,
512 (= 2N) degradation rate constants, and 512 (= 2N) diffusion constants, all of which
may be varied during training. This amounts to considerably more real values than the 10%
grayscale pixels of the target image, helping explain the accuracy of pattern formation. In
general, we observe that increasing N allows the training procedure to find a set of parameters
with a lower loss.

The Hopfield CRN has several other notable differences from the Gray-Scott model. First,

it is much less sensitive to how the parameters are initialized, and the choice of target pattern.

Most training runs are at least somewhat successful, matching the target to some level of
fidelity. Second, the Hopfield reaction-diffusion system is less stiff, and so can grow into the
pattern in fewer steps without encountering numerical errors. With so many species, the
state of the system occupies significant memory, and so we use gradient checkpointing to
reduce the memory overheads from backpropagation-through-time [26]. Finally, note that the
target image is a correct snapshot at the specified time, but is not stable — more sophisticated
training procedures are discussed in [8] that improve the stability and robustness of pattern
formation in Hopfield CRNss.
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6 Discussion

We have demonstrated that the dynamics of ICRNs can be expressed and computed efficiently
for systems with mass action kinetics. At this point the reader may be asking themselves
whether there is a general principle for when a CRN is index-amenable and would benefit
from the ICRN representation. We know of no concise characterization, and indeed the
choice depends upon how simple the rate constant tensors can be. For example, any CRN
involving only count-preserving bimolecular reactions can be represented as an ICRN with

just one indexed reaction, X; + X; M) X 4+ X, together with a perhaps very sparse
4-dimensional tensor for k. A framework like this was the starting point for the prior
differentiable programming of small CRNs [44]. The optimal tradeoff for the number of
indexed reactions and the complexity of the rate constant tensors may be quite subtle.

Toward the goal of concise representations, observe that rate laws other than mass action
as well as a variety of timescale separation conventions are used widely because they allow for
simplifying assumptions, such as general pseudo-steady-state approximations, that result in
more compact CRNs. For example, in systems with an enzyme concentration sufficiently lower
than the substrate concentration, utilizing Michaelis-Menten kinetics allows the simulation
to disregard the enzyme concentration. Appropriate formalisms and compilation methods
that will produce efficient tensor operations for these cases have yet to be developed.

Once ICRNs are compiled into dynamics expressed through tensor operations, there are
a variety of numerical methods for forward simulation of ICRNs, and choosing among these
options is particularly important for the training of ICRNs. Simple integration methods
often perform poorly on stiff problems, requiring small d¢ and multiple time steps, which has
two significant consequences for training the ICRN. Firstly, an increase in simulation steps
increases the memory requirements during backpropagation, limiting the size of ICRN that
can be trained. Secondly, the learning algorithm may enter a region of the state space with
low loss but with numerical artifacts. In these cases, the learned weights are invalid as the
simulation no longer reflects the time evolution of the physical system. Expanding support
for more sophisticated numerical methods will open doors for training stiff ICRNs.

All the ICRNS in the examples were trained by evaluating loss against a target state at
the end of simulation. However, the target could be a trajectory through time and the loss
could be evaluated over multiple time points. Others have trained parameters of chemical
systems to fit trajectories but consider a restricted class of CRNs [44, 15]. On the other
hand, our work considers the training of ICRNs with no restriction. One advantage of this
flexibility is the increased potential to train experimental systems. If an experimental system
can be written as an ICRN, and data regarding the target behavior can be gathered, the
ICRN can be trained to perform the target behavior. Of course, there is no guarantee that
the ICRN will respond well to training. The value of the ICRN formalism and software is
precisely to uncover the classes of ICRNs that respond well.

DNA is especially well-suited as a molecular substrate to physically realize large ICRNs
designed in this way. The biophysics of DNA-DNA interactions are relatively well-understood
and modeled, and are simple enough that they can sometimes be abstracted without a critical
loss of detail. Tools like NUPACK [68] enable the design of large libraries of sequences
which are more or less orthogonal, enabling the creation of standardized components that
can be scaled to large systems without too much cross-talk. The Hopfield CRN relies on
non-orthogonal interactions (“promiscuous”, quadratic with the number of neurons), and
progress has been made on tools to design DNA molecules with a range of non-orthogonal
interactions [46, 3]. Prior work has also shown a theoretical basis for the morphogenesis of
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arbitrary patterns in reaction-diffusion systems [55], although using a digital circuits-inspired
approach which may be hard to scale to more complex patterns. On the experimental
side, nucleic acids have been used to generate reaction-diffusion patterns in a wide range of
approaches, as reviewed in [65]. Though the pattern-forming Hopfield CRN has not been
implemented experimentally, we believe it is at least on the horizon of feasibility in DNA.

The abstraction of DNA design is not yet at the level of silicon and transistors, but is
much more straightforward than the design of proteins or organic molecules. These molecules
have much more complex dynamics, and in general systems built with them face the problem
that parameters cannot be changed independently of each other: changing a protein’s fold
will affect how it interacts with all other proteins. Impressive work has been done in synthetic
biology, including the synthetic morphogenesis of bacterial colonies [20] and mammalian
cells [61]. Still, these patterns are closer in their complexity to those formed by simple
reaction-diffusion systems like Gray-Scott. As tools for biomolecular design continue to
improve — think of protein design models like AlphaFold [33] and RFdiffusion [66] — it is
interesting to consider what sorts of biological design tasks will become possible.

Some biological and computational systems can also learn autonomously. This is clearly
the case for humans, but even relatively simple CRNs (e.g. for linear regression) can be
designed to do gradient descent on a chemically-specified loss function, learning a repres-
entation via their dynamics, rather than externally [39, 50]. Homo sapiens slowly changes
from one generation to the next under evolution, but individual humans also learn from
their experiences. This relationship can be thought of in the frame of inner-vs-outer optimiz-
ation [13], or meta-learning [31]. It is thought-provoking to consider how CRNs could be
designed to autonomously learn to execute more complex tasks, like pattern formation.
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A Symmetry

Symmetry arises when an index-amenable chemical system is naturally described by an ICRN
but there are objects that can be considered equivalent with a permutation of index symbols.
Specifically, we say an object of the ICRN is symmetric if the dimensions of the index set
can be permuted to produce the same concrete object. There are two types of symmetry:
species symmetry and reaction symmetry. Although our formalism does not explicitly model
symmetries, the ICRN can capture many symmetries in the system of interest.

Symmetry at the level of species often reflects symmetry in the physical substrate. The
annihilator of the winner-take-all network is an example of species level symmetry. The DNA
substrate that implements the annihilator is a double stranded complex composed of two
single strands with the same general structure, a toehold domain followed by two domains
that are dependent on the value of the index symbol. For an annihilator molecule indexed
Anhjy,, one strand has the complement of j domain followed by the k£ domain, and the other
strand has the complement of &k domain followed by the j domain. The toehold domains
of the two strands are identical. Therefore, both Anhj, and Anhy; are composed of the
same two identical single strands that hybridize identically to form the same double stranded
complex. Thus, the annihilator is symmetric: Anhj, = Anhy;.

It is possible for the enumeration of an indexed reaction to produce multiple concrete
reactions that could be considered equivalent. Reaction level symmetry can arise with or
without the participation of base species that are symmetric. The annihilation reaction of
the winner-take-all system exemplifies both kinds of reaction symmetry. The presence of the
symmetric annihilator, with Anh;, = Anhy; symmetry, leads to symmetry in the annihilation
reaction. The annihilation reaction r;; has the same reactants and products as the reaction
;. The annihilator species exists to allow for the physical implementation of the competitive
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annihilation between the S species. Thus, we can consider the idealized annihilation reaction
without the annihilator. This idealized reaction 7/, " also displays reaction level symmetry as
rkj has identical reactants and products.

Si+Sk 50 = S+ S 250

There are generally two strategies that can be used so that an ICRN’s dynamics matches
the dynamics of symmetric index-amenable system. The tensors representing concentrations
can be manipulated or the base rate constants can be manipulated. Suppose that the
following index-amenable concrete CRN reactions exist.

aa
S;+ Sy + Anhj, =50 j <k

Setting the initial concentrations and the base rate constants of the ICRN in the following
way will produce the same dynamics.

[Anhj] j <k
Sl = [Sj], [Anh] i, =
e b {0 otherwise.
A Ank d[Anh;
% = —a [S);[S1e[Anh] i, = —a2,[S;][Sk][Anhyi] = %
Zo‘lk k[Anhli, — Zaﬂ S|i[Anh];

T Z Qi ST[S][Anhlu: — Z ajr,[STi[S]k[Anh) ik

I<k >k

g<li >l
— *Za?k[s]l[s]k[/lnh]zk*Za?k[S]l[S]k(O)—ZQ?Z[S]j[ [Anh]j; Zaﬂ
1<k 1>k T <
d[Si]

= —Zoélk [Si][Sk][Anhik] — Za]l 1[S1][Anh;)] = £

1<k =

From the above equations, it is clear that the symmetry could also have been addressed
by manipulating the base rate constant. The ICRN base rate constant d?k can be set in the
following way.

a3 — a?k i<k
Yk = 0 otherwise

B Dynamics Example

Take for example, the process of deriving the time derivative of [S] in the winner-take-all
ICRN. S is produced in the second reaction and degraded in the third reaction, where S
appears twice as a reactant but with different associated indices. Let n = m = 3 so that
i €{1,2,3} and 4,k € {1,2,3}. The following enumerated concrete reactions will determine
the dynamics for S.

a2, ol
ry == P;; + SG; — Sj, r3:=2S5;+ Sk + Anhjyj, 50
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QQ Q2 a2
P +8G =581 Pio+SGy =2 Sy, Pis+5G; = 8,

a2 a2 OéQ
Im(TQ) = Py + SG 24 S1 Py + SGy 2% Sy P34+ SG3 =23 S3
Py +SG1 =5 8] Pyo+ SGy 28y Pyg + SGy =2 Sy

51+S1+Anh11a—i’l>@ S1+52+Anhlgi>® Sl+S3+Anh13a_i’3>Q)
Im(rz) = § Sy + S; + Anha 1, OS2+ S+ Anhgy LN 0 Sy + S3+ Anhos s, 0

S3+51+Anh31a—gl>@ S3+SQ+Anh32("—gz>® S3+S3+Anh33ﬁ>@
Each indexed reaction flux is a real-valued tensor.

a11[P]11[SG]1  ai12[P]12[SGl2  a13[Plis + [SG]3
O(ro) = [ @21[Pl21[SGl1  @922[P]22[SGl2  aas[Plas + [SG]s

az1[P]31[SG]1  asz[P]32[SGl2  aszs[Plss + [SG]3

a31[S]2[Sh[Anhlar  a3,[S]a[S]a[Anh]2e  a33[S]2[S]s[Anh]a;

a1 [S]s[Sh[Anhls1  a3s[S]s[S]a[Anh]s2  ads[S]s[S]s[Anh]ss
Every appearance of the indexed species of S contributes a summation to the dynamics
expression. (5, 7) appears in the second indexed reaction, and both (S,j) and (S, k) ap-
pear in the third reaction. Therefore, we have three contributions the dynamics of [S]:
87y (S,3),0r5(S,5), 005 (S, k). To find each §, the sum of the indexed reaction flux is taken
® is taken over the dimensions corresponding to index symbols that are in the indexed
reaction and not in the indexed species. For §,,(S, ), the indexed symbol ¢ participates in
the reaction ro but is not present in the indexed species (.5, j), so the sum proceeds over i.
This summation naturally describes the element-wise specification for d,,(S, j), indexed by j.

TQSJJ*ZO‘ zg SG 7“3 S]J*Za]k A?’thk,

o}y [SIh[Sli[Anhlir  ods[S|[S]2[Anhliz o3 [S]1[S]s[Anh]s
®(r3) 5

Oy Skkfzoz]k 1k[Anh]jx

Each § is a real—valued tensor.

D o [Pli[SGTy Dok O‘?k[s]l[s]k[A”h]lk
67‘2 (57.7) = ZL a?Q[P]ZQ[SG]Q ) 67‘3 (57-7) = Zk agk[S]Q[S}k[Anh]Qk ’
> a3 [Plia[SGls 3

>, 4 [S];1811 [Anh)
by (S, k) = Zj 0‘?2[S]J[S]2[A”h]j2
35 033[S;[S1s[Anh]js
These summations can then be combined, accounting for the difference in product and
reactant stoichiometric coefficients for each appearance of S.
d[$]
St

The reader can confirm that the mass action dynamics for [S], derived from symbolic
manipulation matches the dynamics from the enumerated concrete CRN.

af;[P][SGj] 4 a3, P [SG] + a3; [Psa][SG ]
—a[Sj][S1][Anhj1] — a3y [S;][S2][Anhja] — ads[S;][Ss][Anh;s] =
—af;[S1][S;][Anha ;] — a3;[Sa][S;][Anha;] — aS] [S3][S;][Anhs;]

= (1_0)6r2(57j)+(O_1)6r3(5aj)+(0_1)6r3(57k) = 5T2(S’j)_5r3(57j)_6r3(5’ k)

d[S;]

dis];
cdt dt

dt
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