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—— Abstract

We address the task of secondary structure design for de novo 3D RNA origami wireframe structures

in a way that takes into account the specifics of a cotranscriptional folding setting. We consider
two issues: firstly, avoiding the topological obstacle of “polymerase trapping”, where some helical
domain cannot be hybridised due to a closed kissing-loop pair blocking the winding of the strand
relative to the polymerase-DNA-template complex; and secondly, minimising the number of distinct
kissing-loop designs needed, by reusing KL pairs that have already been hybridised in the folding
process. For the first task, we present an efficient strand-routing method that guarantees the
absence of polymerase traps for any 3D wireframe model, and for the second task, we provide a
graph-theoretic formulation of the minimisation problem, show that it is NP-complete in the general
case, and outline a branch-and-bound type enumerative approach to solving it. Key concepts in
both cases are depth-first search in graphs and the ensuing DFS spanning trees. Both algorithms
have been implemented in the DNAforge design tool (https://dnaforge.org) and we present some
examples of the results.
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1 Introduction

Concurrently to the advances in DNA nanotechnology, there has been increasing interest in
using RNA as the fabrication material for self-assembling bionanostructures. In comparison
to DNA, the appeal of RNA is that the strands can be produced by the natural process
of polymerase transcription, and the structures can thus be created in room temperature
in vitro, and possibly eventually in vivo, from genetically engineered DNA templates. The
challenge, on the other hand, is that the folding process of RNA is kinetically more complex
and hence less predictable than DNA helix formation, at least at the present stage of RNA
engineering.

The first design technique applied in this area of RNA nanotechnology was modular “RNA
tectonics”, in which naturally occurring RNA structures are connected together to create
bigger target complexes using specific connector motifs such as sticky-end pairings and a
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variety of pseudoknots [11, 12]. A complementary top-down method of “RNA origami”, in
which a task-specific strand is rationally designed to fold into the desired target structure, was
then introduced in a pioneering work by Geary et al. in 2014 [8]. Geary et al. demonstrated
the feasibility of their method by synthesising 2D “RNA tiles” of different sizes, and this
approach has since then been further developed with new design motifs, techniques, and
tools [14, 6]. (For an overview, see [17].)
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Figure 1 Cotranscriptional folding of a 2D RNA origami tile structure from a DNA template,
mediated by an RNA polymerase enzyme. (Reprinted with permission from [7].)

One emphasis in the work of Geary et al. [8, 6] has been the cotranscriptional nature of
the polymerase transcription process, that is, the way the transcribed RNA strand starts
to fold into secondary structures already while being spooled off the polymerase enzyme
(Figure 1). This characteristic of natural RNA generation introduces new challenges and also
opportunities for the rational design process, some of which we shall explore in the present
work.

In the following, Section 2 presents a spanning-tree based framework for self-assembly
of wireframe structures by co-transcriptional folding, and introduces the topological folding
obstacle of polymerase trapping. Section 3 then demonstrates how this obstacle can always be
avoided by using a depth-first-search (DFS) based design scheme. Next, Section 4 introduces
the notion of the KLX number of a DFS tree, which corresponds to the maximum number of
kissing loops that are simultaneously “open” in the folding process, and hence need different
designs in order to avoid nonspecific pairings. Minimising this number provides the possibility
of efficiently reusing KL designs, although, as proved in Section 5, the KLX minimisation
problem is in the general case NP-hard. Since an efficient minimisation algorithm is thus
unlikely, Section 6 provides a branch-and-bound type enumeration approach to the problem.
Section 7 provides some examples of using the DNAforge tool to compute the DFS tree
based designs and KLLX minimisation. Section 8 summarises the results and suggests some
directions for further work.

2 Wireframe RNA origami and the polymerase trapping obstacle

An extension of the RNA origami method to the design of 3D wireframe structures was
presented by Elonen et al. in [3]. We conduct our discussion in this framework, but the basic
ideas apply, mutatis mutandis, also to the task of designing 2D RNA origami tiles (cf. [15]).
The general spanning-tree based 3D wireframe design scheme is outlined in Figure 2.

In this scheme, one starts from the targeted wireframe, which in the case of Figure 2(a)
is a simple tetrahedron. (Or more precisely the wireframe skeleton of a tetrahedral mesh.)
In the first design step (Figure 2(b)) one chooses some spanning tree T' of the wireframe
graph G,' and designs the primary structure of the RNA strand so that it folds to create a
twice-around-the-tree walk on T', covering each edge of T twice in antiparallel directions. In
the second design step (Figure 2(c)) one then extends the walk halfway along each of the

LA spanning tree of a graph G is an acyclic subgraph that connects all the vertices of G.
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(a) (b) (c)

Figure 2 A spanning-tree based design scheme for 3D RNA wireframe origami. (a) Targeted
wireframe model. (b) A spanning tree and strand routing of the wireframe graph. (c) Routing-based
stem and kissing-loop pairings. (d) Nucelotide-level model. (Adapted with permission from [3].)

co-tree (= non-spanning tree) edges of GG into a hairpin loop, and designs the base sequences
at the termini of the hairpins so that pairwise matching half-edges are connected by the 180°
kissing-loop design motif introduced in [8], thus constituting the co-tree edges. Figure 2(d)
presents a nucleotide-level model of the eventual nanostructure.

One potentially significant topological obstacle to cotranscriptional folding in this frame-
work is the phenomenon of polymerase trapping, first identified by Geary and Andersen in [9]
and also addressed in the recent 2D RNA origami design tool ROAD by Geary et al. [6, pp.
551-552, SI p. 102 ff]. Our mathematical model of this phenomenon is basically the same as
introduced and analysed by Mohammed et al. in [15], but adapted to the present setting of
3D wireframe origami designs.

To explain this concern, let us review the previous tetrahedron design, presented in more
detail in Figure 3. Figure 3(a) shows the tetrahedral wireframe as a Schlegel diagram, that
is, as a planar projection from a point above one of the tetrahedron’s faces. The edges of the
chosen spanning tree, which in this case is a 3-pointed star, are indicated by solid black lines,
and the co-tree edges by dashed green lines.

4 4

(b) (c)

Figure 3 A tetrahedron design based on a 3-star spanning tree. (a) Spanning tree and co-tree of
the tetrahedral graph. (b) Strand routing and kissing-loop pairs for the design. (c) Domain-level arc
diagram of the design.

Figure 3(b) depicts again the corresponding twice-around-the-tree strand routing (blue)
and the complementary kissing-loop pairings (green and red). The helix junctions in the
design, which constitute the vertices of the eventual 3D nanostructure, are now indexed
according to their first-visit order in the strand routing.

The schematic in Figure 3(c) presents the design as a domain-level arc diagram, where
the strand is laid out along a line in the 5” to 3” direction, the vertex visits are marked by
the corresponding indices, the domain-to-domain helical pairings are indicated by solid blue
arcs, and the kissing-loop pairings by green and red dashed arcs. (For simplicity and clarity,
the pairings of the half-edge stem domains flanking each kissing-loop hairpin are not shown.)

Consider now how a cotranscriptional folding process of this structure might proceed.

Instead of thinking of the RNA strand being spooled out of the polymerase starting at the
5" end and folding as the appropriate base pairings become available, it may be easier to
visualise the large polymerase-DNA-template complex as traversing the 5°-3” strand route
outlined in Figure 3(c) and transcribing the nucleotide domains as it goes.

6:3

DNA 31



6:4

Secondary Structure Design for Cotranscriptional 3D RNA Origami Wireframes

First the domains 1-2 and 2-3 are transcribed, and the RNA strand stays linear until the
transcription of domain 3-2 begins. (For simplicity, we are ignoring any transient nonspecific
nucleotide pairings that arise during the folding process.) Between the completion of domain
2-3 and the initiation of domain 3-2, the two opening hairpins for the kissing loops 3-4 and
3-1 are transcribed. (The best relative ordering of these two transcriptions is a geometric and
sequence-design issue, and we leave this choice open in this high-level view.) After (or while)
the complementary domains 2-3 and 3-2 hybridise, domain 2-4 is transcribed, and after that
the closing hairpin of the 3-4 kissing loop and the opening hairpin of the 4-1 kissing loop, in
some order.

Consider now what happens when the polymerase reaches domain 4-2 (marked with a
red cross in diagram 3(b)), where it should create a double-stranded helix with domain 2-4,
by winding the strand around it in antiparallel direction. If the 3-4 kissing loop (drawn
in red and marked with a red arrow in 3(b)) has already closed, the strand with the big
polymerase-DNA complex coupled to it cannot achieve this, since the kissing-loop pairing
is blocking the pathway. (This is of course also a time-scale issue, and depends among
other things on the strand distance between the closing hairpin of the kissing loop and the
closing domain of the helical pairing; but let us again ignore these lower-level details at this
presentation.?)

Schematically, one can see that the risk of this kind of “polymerase trapping” obstacle
emerges when a kissing-loop pair, initiated (opened) before a given helical pairing, closes
between the opening and closing of the helical pairing; or in terms of our arc diagram when
a “dashed arc” that has been initiated before a “solid arc” terminates inside that solid arc.

3 3

(c)

Figure 4 A tetrahedron design based on a 4-vertex path spanning tree. (a) Spanning tree
and co-tree of the tetrahedral graph. (b) Strand routing and kissing-loop pairs for the design.
(c) Domain-level arc diagram of the design.

As another example, let us consider the tetrahedron design presented in Figure 4. As
shown in Figure 4(a), in this case the spanning tree is a simple 4-vertex path. Figure 4(b)
again outlines the corresponding strand route and kissing-loop pair arrangement, with the
helix junctions numbered according to their first-visit order. As witnessed by Figure 4(c),
this time there is no risk for the polymerase trapping obstacle. That is, every kissing loop
closes only after the completion of all the helical pairings that have been initiated after the
kissing loop was opened.

Such complete absence of polymerase traps seems like a very particular property, and
one may wonder for which kinds of wireframe models this situation can be achieved. As we
shall see in the next section, however, such an arrangement of the helical and kissing loop
pairings can in fact be found for any connected wireframe graph, by an application of the
fundamental algorithmic method of depth-first search [1, Sec. 20.3].

2 Furthermore, moving from our strand-centric to a polymerase-centric view, the polymerase of course
does not stop transcribing even if the folding is temporary blocked. Eventually the polymerase detaches
from the fully transcribed strand and leaves it to fold the unfolded 3” tail the best it can. From this
perspective, the polymerase trapping phenomenon is more of a kinetic than a topological obstacle.
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3 Cotranscription-friendly secondary structure design

Algorithm 1 Depth-first search of a graph G = (V, E) from root vertex r € V.

: Initially all vertices v € V and edges e € E are set to be unmarked.

1
2:
3: function DFS(G, r)

4 mark vertex r as visited

5: for each edge e = {r,v} incident to r do

6 if vertex v is not marked as visited then
7

8

9

mark e as a tree edge
perform search DFS(G, v)

else
10: mark e as a back edge, unless it is already marked (= edge to parent)
11: end if

12: end for
13: end function

To streamline the presentation, we assume henceforth that any graph under consideration
is connected and undirected, unless stated otherwise. The depth-first search (DFS) method
for systematically traversing and labelling a (connected, undirected) graph is presented as
Algorithm 1.
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Figure 5 A cube design based on a path-like DFS tree. (a) DFS tree and co-tree of the cube
mesh. (b) Corresponding Schlegel diagram. (c) DFS tree with back edges. (d) Arc diagram of the
resulting design.

(a) (b)

Figure 6 A cube design based on a branching DFS tree. (a) DFS tree and co-tree of the cube
mesh. (b) Corresponding Schlegel diagram. (c¢) DFS tree with back edges. (d) Arc diagram of the
resulting design.

Consider a graph G = (V, E) with |[V| = n vertices and |E| = m edges. Then a DFS
traversal of G, starting from any chosen root vertex r € V| partitions the set of edges F in
time O(m) in two disjoint classes: n — 1 tree edges and m —n + 1 back edges. The tree edges
constitute a spanning tree 1" of GG, which can be considered to be rooted at r and oriented

6:5

DNA 31



6:6

Secondary Structure Design for Cotranscriptional 3D RNA Origami Wireframes

accordingly, whereas the back edges (which constitute the corresponding co-tree E \ T') have
the important property that they can always be oriented to point “upward” towards the root
of the tree [13]; in other words, there are no “cross edges” connecting two different branches
of the directed tree, as exemplified in Figures 5 and 6 (c), and also in Figure 7.3

To make this precise and to introduce another important notion, consider such a DFS
(spanning) tree for a graph G = (V, E) to be a four-tuple T' = (V, S,r,d), where S C F is
the set of tree edges, r € V' is the chosen root which determines the orientation of the tree,
and 0 : V — [l..n] is a pre-ordering that labels the vertices in order of their first visits in
the traversal. As discussed above, any edge of G is either part of the stem S or connects a
vertex and its ancestor along the unique path in T from the vertex to the root. We often
consider T' as embedded in the plane so that the children of each vertex are ordered from left
to right in increasing order of their ¢ values. Thus, for example, vertex d in Figure 6(c) is
presumed to have been visited earlier than vertex h in the traversal that created the tree.

A plane embedded DFS tree T' = (V, S, r, d) provides an initial blueprint for designing a
cotranscriptionally folding RNA wireframe nanostructure. In the first stage of the design
process, the contour of the tree T is traced by an RNA strand w so that each edge of
T becomes assembled as an RNA helix, hybridised from two complementary antiparallel
domains of w. In the second stage the co-tree edges of GG, which are now back edges of the
DEFS tree T, are constituted as kissing loops made of two half-edge hairpins that extend to
meet from the end-vertices of the respective edges.

Let us call the sequence of vertex labels encountered during a walk around the contour of
any labelled, plane embedded tree T a contour trace or linear arrangement of T.* In the
special case that T' is a DF'S tree we refer to this sequence as a DFA arrangement based on T'.
By construction, any contour trace of a tree T' accommodates every edge e of T exactly twice:
firstly, when the traversal crosses e in a forward direction, and secondly when the traversal
crosses e in the opposite direction. Since any DFS tree (or more generally any spanning
tree) of a graph G with n vertices has n — 1 edges, any DFS arrangement in G contains
2n — 1 vertex labels. For example, every DFS tree of a tetrahedron is a simple 4-path in its
Schlegel diagram, and the corresponding DFS arrangement has the pattern 1,2,3,4,3,2,1
(see Figures 4(a) and (c)).

To complete our blueprint for designing a cotranscriptionally folding RNA nanostructure,
the DFS arrangement needs to be augmented into a (domain-level) arc diagram by adding
information that indicates when, for each pair of hybridising domains («, @*), the forward
domain « is transcribed and when its complementary reverse domain o*. For each such pair,
these time points are connected by an edge (“arc”), with the first time point considered as
the “opening” and the second the “closing” time for this pair. Since in our design scheme,
DFS tree edges correspond to helical domains, we correspondingly say that a tree edge is
opened when it is crossed by the contour traversal in the forward direction, and closed when
it is crossed in the reverse direction. Note that the chosen DFS completely determines the
scheduling of the opening and closing pattern of the helical domains.

Let us then consider scheduling the opening and closing times of the back edges, i.e.
kissing loops in the eventual RNA nanostructure. Multiple occurrences of internal vertices
(neither a root nor a leaf) provide us with freedom to choose, for each back edge (a,b), at
which visits of a and b each of the two constituent hairpins of it is to be formed. For each

3 The simple reason for the absence of cross edges is that if for an edge e = {u,v}, vertex v is still
unmarked when the traversal first considers e at vertex u (or vice versa), then e becomes a tree edge.
1 Also known as a “twice-around-the-tree walk” and full walk in (1, p. 1112].
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back edge (a,b), an occurrence of a and that of b can be chosen and connected by an arc;
then we say that this edge is opened at the time point which corresponds to the left end of
the arc, and closed at the right end.

The freedom in timing opening and closing of back edges brings multiple arc diagrams
based on the same DFS arrangement. Which should we choose then? Given an arc diagram
of G, we say that a cycle in G is closed at an edge e if e is in the cycle, and in the arc

diagram, all the other edges involved in the cycle have already been closed before e is closed.

It is known to be kinetically unfavourable to close a cycle at a tree edge. This experimental
obstacle motivates our “phloem principle” for ordering back edge connections.” Recall
that the vertices a and b are labelled with distinct integers d(a) and 6(b), respectively, and
whichever labelled smaller is an ancestor of the other. This principle says that, if §(a) < d(b),
then the assembly of this edge (by a kissing loop) should begin at b and end at a.

» Lemma 1. The phloem principle prevents any cycle of G from being closed at a tree edge.

Proof. Any cycle of G involves a back edge as T = (V, S, r,§) is acyclic. Let E’ be the set of
edges in this cycle; then £/ NS and E’\ S are the set of tree edges in the cycle and the set
of back edges in the cycle, respectively. The absence of cross edges implies that subtrees of
a vertex are connected only via the vertex even in G. Hence, the vertex with the smallest
d-value in a cycle must be incident to a back edge in the cycle; in other words, the following
inequality must hold:

L min {min(8(a).0(6)} < min {min(d(w). 6())}

Thus, this cycle is closed at the back edge. <

This lemma ensures that arc diagrams serve as a blueprint of the polymerase-trap-free
co-transcriptional folding pathway as long as they obey the phloem principle. Now we count
out any arc diagram that violates the principle. Thus, from now on, an arc diagram of
G = (V, E) is a pair of a DFS arrangement py, pa, . .., pm based on a DFS tree T = (V, S, r, d)
of G and a mapping o : E\ S — [1..m] X [1..m] with m = 2|V| — 1 such that for all back edge
e = (a,b) € E\ S with §(a) < d(b), if a(e) = (o, ¢), then 0 < ¢, p, = b, and p. = a. (Arcs for
tree edges do not appear anywhere in this definition, but they are uniquely identified by the
DFS arrangement.) As |S| = |V] — 1, all arc diagrams of G are provided with |E| — |V| + 1
arcs for kissing loops. An arc diagram of the tetrahedron is shown in Figure 4 (d) and those
of the cube without any branch and with a branch are shown respectively in Figures 5 (d)
and 6 (d), where the arcs for kissing loops are coloured in green, while those for the tree
stem are in blue. All of them follow the phloem principle.

The phloem principle does not fully eliminate the freedom in drawing an arc for (a,b)
with d(a) < §(b) since b is visited more than once before the last visit at a, unless b is a
leaf. For the sake of the kissing loop crossing (KLX) number, a measure of how good an arc
diagram is that we shall discuss next, the arc should be drawn as short as possible, that is,
from the last occurrence of b to the immediate occurrence of a (as a is an ancestor of b, the
search returns to a after the last visit to b). However, this criterion of KLX optimisation does
not pay any attention to the possible adverse topological effect of focusing a lot of hairpin
formations at one time point. Therefore, we have left this freedom in the above definition of
arc diagram.

5 Phloem is a pathway for transporting products of photosynthesis from leaves to the rest of a plant.
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4 Minimising kissing loop crosstalk

A set of kissing loop types should be as orthogonal as possible to minimise the risk of crosstalk,
that is the risk of mismatching hairpins hybridising. However, sets of kissing loops that have
proven orthogonal enough in the laboratory are limited in size (see, e.g., [10]). The size of
largest orthogonal KL sets available in reality serves as a standard for deciding whether a
specific (rooted, ordered) DFS tree should be chosen or not. If the design leaves more than
this number of kissing loops open simultaneously at any point of folding, it increases the risk
of crosstalk.

Recall that any DFS arrangement corresponds one-to-one with a rooted and ordered DFS
tree. Given an arc diagram D = ((p1,...,pm), @) of a DFS tree T = (V, S, r,9) of a graph
G = (V,E), the KLX number of a segment (p;, p;+1) is the number of arcs that cross the
vertical line drawn between p; and p; ;1. It is defined formally as

K(piys Dit1) = }{e e E\S|ale)=(0,0),0<i,i+1< C}| (1)

The maximum of these values across all segments is the KLX number of this diagram D,
that is, k(D) = maxi<j<m{K£ (i, pi+1)}. Finally, the KLX number of the graph G, denoted
by (G), is the minimum among the KLX numbers of all the possible arc diagrams of G.

The 1-to-1 correspondence between DFS arrangements and pairs of a graph and its rooted
and preordered DFS tree justifies the introduction of the notation (G, T) as an alias of
k(G).

» Lemma 2. Let G = (V,E) and T = (V,S,r,6) be its rooted DFS tree. Let T’ be a
(connected) subtree of T, and G’ be the subgraph of G induced by the vertex set of T'. Then
k(G T < k(G,T).

Proof. It is known that 7" becomes a DFS tree of G’ [13]. Indeed, it suffices to traverse 1"
according to the preorder §. Note that 7' may preorder the vertices differently and more
favorably for the KLX number. <

This lemma can be used to prune the search tree for DFS trees with small KLX number,
as outlined in Section 6.

As an algorithmic tool, it is useful to exclude some back edges from computing of the KLX
number. For a subset of back edges B C E \ S, the KLX number of the segment (p;, p;+1)
restricted to B, denoted by kp(p:, pi+1), can be computed by replacing the occurrence of
E\ S in Eq. (1) with B. It is also convenient to define the KLX number of a tree edge e € S
as the number of kissing loops that are opened but yet to be closed during the backward
traversal across the edge; the following inequality justifies this definition.

» Lemma 3. In the setting above, let (p;, piy1) and (pj,pj+1) be the segments that correspond
to the forward and backward traversals through an edge (u,v) of T, that is, p; = pjy1 = u

and pir1 = p; =v. Then k(pi, piy1) < K(DjPj+1)-

Proof. In order for this inequality not to hold, there must be an arc (o, c) that crosses the
segment (p;, pi+1) but not (p;,p;+1), that is, o <iand i+ 1 < ¢ < j. Then 6(p,) < d(pc)
would hold, but this contradicts the phloem principle. |

» Example 4 (KLX number of the cube). See an arc diagram of the cube in Figure 5 (d);
k(h,g) = k(ba) = 2, k(g, f) = k(e,b) = 3, k(f,e) = k(d,c) = 4, and k(e,d) = 3, and
therefore, the KLX number of this diagram is 4. Compare this with another diagram of the
cube in Figure 6 (d), whose KLX number is 5. Consequently, the KLX number of the cube
is at most 4.
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Recall that, with one DFS tree fixed along with the preorder 0, any back edge (a,b) with
d(a) < 6(b) should be opened at the last visit to b and then closed ASAP, that is, at the next
visit to a. No other timing of opening/closing this edge that respects the phloem principle
improves in terms of KLX minimisation.

Given a rooted DFS tree T = (V, S, r) without any preorder specified, the sibling order
with the minimum KLX number can be computed bottom-up. Consider a branch v with
its siblings vq,...,vq, and suppose that they are visited in this order: w; first, vy next,
and so on. Then any back edge between the subtree rooted at v; and a vertex strictly
above v increments by 1 the KLX number of all the segments corresponding to the edges
(v,vi41), (U, Vig2), -, (v,vq) or all the subtrees below them, although this contribution may
not be very clear on the drawing of a DF'S tree annotated with back edges, unless the tree
is without any branch. Compare (c¢) with (d) in Figure 6; the back edges (d,a) and (d, c)
even cross the segments that correspond to the whole traversal of the other subtree of e,
which consists of the edges (e, h) and (h, g); this is as clear as day on the arc diagram. The
subtrees below vy, -+ ,v;_1 are spared this increment because they have been fully explored
before such an edge is opened. The back edges that cross over v increase the KLX numbers
of the path from the root to v independently of the order in which the children of v are
visited. These observations allow the KLX-minimum sibling orders for a given rooted but
unordered tree to be computed in a bottom-up manner, starting from leaves, by comparing
at each branch (the domainial number of) all permutations of its children.

Let v be a vertex with k children vy, vs,...,v4, T, be the subtree of T' below v, and T;
be the subtree of T' below v;. Let B be the set of back edges one of whose endpoints is in T,
and let B; be defined analogously with respect to T;. Suppose that for all edges e in T; with
1 <i <k, the KLX numbers restricted to the back edges opened below v;, that is, kg, (e),
have already been calculated. Let us compute the KLX number restricted less severely to
the back edges opened below v. The back edges that come from inside T; and go outside,
that is, towards the path of T from the root to v can be categorised into those ending at v
and those that go beyond; let us count them and denote the counts, respectively, by «(T;,v)
and by k(T;,> v). Suppose that the children vy,...,v4 of v are visited in this order. The
KLX number of an edge e in T; would be then incremented by »°, _; k(Ty, > v), that is,

kp(e) =rp,(e) + Y k(Th, > v). (2)

k<i

That of an edge (v, v;) would be set as

kp((v,v;)) = (Z k(Ty, > v)) + &(T;,v) + (T, > v). (3)

k<i

With the maximum among these numbers in Egs. (2) and (3), this order competes with
the others, and the children of v should be ordered according to the one that achieves the
minimum; then the KLX number restricted to the back edges opened below v should be
updated for all tree edges below v accordingly.

Ordering the children of even a single vertex in this way may require domainial time in
|[V|. For the class of 3-regular graphs, quadratic time suffices as a vertex can have at most
two children.
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5 The minimum kissing loop crossing and minimum tree depth
problems

The minimum KLX (kissing loop crossing) number problem (MINKLX) asks, given an
undirected, connected graph G and a positive integer k, if there exists an arc diagram of G
whose KLX number is at most k. This problem is computationally hard as stated in the
next theorem; its proof can be found in the technical appendix A.

» Theorem 5. The MINKLX problem is NP-hard.

Another relevant problem is that of determining the depth of the shallowest DFS tree
for a given graph G, because finding a shallower DFS tree decreases the number of helical
domains kept open in parallel, and may result in a sequence with fewer helical domain types.
This quantity is closely related to the tree-depth of G, which is defined to be the depth of
the shallowest DF'S tree for a supergraph of G. It is NP-hard to compute the tree-depth even
for the class of triangulated graphs [2].

Considering the NP-hardness of the MINKLX problem, the only approach to finding a
KLX-minimal, cotranscription-friendly designs for a given graph G may be via full enumera-
tion of all the DFS trees for G. In the next section, we present a branch-and-bound approach
to this enumeration process.%

Before proceeding, let us note that Theorem 5 does not exclude the possibility that KLX-
optimal DF'S trees could still be found in polynomial time for some graph classes of practical
importance such as 3-regular or polyhedral graphs. As any graph can be approximated by
a 3-regular one by replacing each vertex by a network of vertices of degree 3, it would be
quite interesting to know whether the KLX-minimisation task remains hard for this class.
As regards the class of polyhedral graphs, it is known that the MINKLX-related cutwidth
minimisation problem (described in the proof of Theorem 5 in Appendix A) is NP-hard for
the class of planar graphs with maximum degree 3 [16].

6 Solving the MinKLX and MinTD problems by enumeration

Let us now propose a prototype of algorithmic enumeration of DFS trees for computing
the KLX number of a given graph G = (V| E). Algorithm 2 is its pseudocode. Starting
from the empty forest, it enumerates the DFS trees by inserting edges of G one by one
in a predetermined order as a tree edge, that is, as an edge of a DFS tree to be built
up. Biconnectedness is utilized, the property of a graph being free from an articulation
point, whose removal disconnects the graph. DFS trees of a graph cannot circumvent any
biconnected components, or blocks, of G. We shall demonstrate how each local branching of a
DFS tree orients edges of G globally once it is accommodated inside a block of G. Orientations
thus insisted by more than one such local branching are highly likely to contradict each other,
enabling the incremental enumeration of DFS trees to prune the edge-insertion-based search
tree. As a shallower tree involves more branches, the tighter an optional upper bound on the
depth of DF'S trees to be obtained is set, the more effective this block-based pruning should
get.

5 As an aside, if one gives up the goal of cotranscription-friendly design, a strand routing that minimises
the total number of kissing loops needed to complement it can be found efficiently for any graph, and
this number is for many typical wireframe models just zero or one [4].
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Algorithm 2 Enumerative KLX minimisation for a graph G = (V, E).

: Let n = |V|, m = |E|, and edges be indexed as E = {e1,ea,...,€m}

1

2:

3: function KLXT(T) > Compute KLX number of tree T
4 compute the KLX number of tree T" in the way described in Section 4

5: end function
6
7
8
9

: function KLX(F, k)

: > Compute min KLX number over all completions of forest F' with edges in {eg,...,en}
if F' comprises a single tree with n — 1 edges then
10: klxiree +— KLXT(F)
11: klamin < min{ klzmin, kliee
12: return £l ee
13: end if
14: if edge e does not create a cycle and is admissible in F' then > See Figure 9
15: F' + FU{e} > ey, included as a tree edge
16: let T be the tree that contains edge e, in forest F”
17: if KLXT(T) > klzyi, then > Prune if cost of T' > klzyin
18: klxi < m
19: else
20: klzy < KLX(F', k+1)
21: end if
22: end if
23: klzg < KLX(F, k+1) > ey not included as a tree edge
24: return min{klz, klxg }
25: end function
26:
27: klzgin < m
28: return KLX(0, 1) > Start with an empty forest

A graph G = (V, E) and its spanning tree 7' = (V, S) can be uniquely decomposed into a
set of biconnected components, or blocks, E; C F, along with a spanning tree T; = (V;, S;)
that is the intersection of T and G; = (V;, E;), the induced subgraph of G by E;; unless
confusion arises, we may call even G; a block. The blocks can then be uniquely organised
into a so-called block-cut tree by connecting two blocks by an edge if these blocks induce the
subgraphs of G that share (exactly one) vertex in common, which is an articulation point
of G (see Figure 7 for an example); any articulation point of G thus serves as an interface
among multiple blocks. We say that G is the underlying graph of this block-cut tree. Each
block G; is one of the following types:

Branching. if T involves a vertex that is incident to at least three edges in E; (branch);

Spinal. otherwise.

Every block contains at least one edge of T' and no blocks share an edge; hence, the block-cut
tree is composed of at most |S| = |V| — 1 blocks. If a node in a block E; is incident to at
least two tree edges of the block, say e1,es € SN E;, then we say the node is internal. Hence,
a spinal block can contain at most two non-internal nodes. Note that an internal node in a
spinal block can be a branch of T'; unlike a branch in a branching block, this branch is an
articulation point of G. Therefore, a spinal block can have three or more interfaces. A spinal
block consisting of a single edge is particularly called a bridge in [18], and we will borrow
this term when it matters whether a spinal block involves an internal vertex or not.
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Figure 7 A DFS tree and the biconnected components of a 12-vertex graph.

6.1 KLX computation

The decomposition of a graph into blocks may facilitate the computation of the KLX number
of GG, but may not yet save it from brute-forcing sibling orders at every branch, which was
discussed at the end of Section 4. Consider a block-cut tree that is free from a branching
block; note that the underlying graph may admit a DFS tree with a branch because an
internal node of a spinal block can serve as an interface as explained above, and three or
more spinal blocks may be incident to an articulation point. The absence of branching block
enables the KLX number of the underlying graph according to a DFS tree to be computed as
the maximum of those of the blocks according to the respective restrictions of the DFS tree;
indeed, it makes no sense for the depth-first-search to stay in a spinal block at any internal
interface unless all the other blocks incident to the interface have been already traversed.
The computation of the KLLX number of each block according to a DFS tree under
construction does not require the DF'S tree to be rooted but suffices for each block to know
at or beyond which interfaces of them lies the global root. As observed shortly, the DFS tree
cannot be rooted at any internal node. Hence, a spinal block can be locally rooted only at
one of its two non-internal nodes. Its KLX number does not depend on which of these two
vertices the global root is on or beyond. Branching blocks rather restrict where the global
root can be due to intrinsic orientation of each of their branches, as we see from now on.

6.2 Pruning

The enumerative computation of the KLX number of G can adopt two kinds of pruning
strategies.

The one based on the downward closedness of the KLX number along a specific spanning
tree (Lemma 2) is simple; while growing a DFS tree as a block-cut forest, once the KLX
number of any tree in the forest exceeds a predetermined target value or the current best,
then this path of the enumerative search is not worth being pursued further, and hence
should be pruned.

The other strategy is based on the following two structural properties of blocks and their
DFS rooting from [13]: given a biconnected graph and its spanning tree like the block E;
and its spanning tree T;,

1. in order for the spanning tree to be a DF'S tree of the graph, it must be rooted at a leaf

(of the tree, not of the biconnected graph, all of whose vertices are of degree at least 2);
2. if the spanning tree has a branch, then there exists at most one vertex (indeed, a leaf as

just recalled) starting from which the tree can be traversed in a DFS manner.
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Figure 8 Intrinsic orientation of a branch, an internally contradicting block, and global prohibition
of root by a single branch. Dotted red lines indicate a bypass around the center of a branch, which
is necessary for a graph to be biconnected.

Let us reproduce a proof for Property 2 (Observation 3.2 in [13]). Suppose there were two
such vertices a and b. If rooted at a, the branch, say v, has at least two subtrees T and T5,
neither of which contains a; without loss of generality, we assume that 77 does not contain b.
Since the tree becomes a DFS tree by being rooted at a, and v is not an articulation point,
there must be a back edge from 77 to some vertex above v along the unique tree path from
v to the root a, but this would become a cross edge once the tree is rather rooted at b.

This proof can be applied to observe in our context that every branch inside a branching
block is intrinsically oriented, independently of other branches, in such a way that among the
edges incident to it, one is incoming while the others are outgoing, as illustrated in Figure 8
(one must be incoming as the branch cannot be a root due to Property 1). Each (local)
branch thus globally prohibits a DFS tree of G from being rooted at any vertex beyond these
outgoing edges. As indicated by red dashed lines in Figure 8, a branch cannot be part of
a DFS tree of G if it can be bypassed to go back and forth between any two of its three
subtrees (second from the left in the figure). A branch inside a block thus orients some edges
across the tree that contains the block, and the in-degree of a vertex is defined naturally.
Intrinsic orientations imposed by two branches may contradict each other even inside a block,
for example, by yielding a vertex of in-degree 2 or higher (second from the right). As soon
as the addition of an edge results in such branch(es), a forest under construction is doomed
and should be pruned from the search tree.

6.3 Edge insertion and merging of blocks

An edge can be added to grow a forest only if all the following conditions hold: (1) it bridges
two separate trees, say T and Ts, (connecting two vertices in the same tree would result
in a contradictory cycle of tree edges), (2) at least one of the endpoints, say v; and vy, is
an articulation point of G, and (3) vy or vy is of in-degree 0; it is then oriented from the
endpoint of in-degree 1, if any, to the other (whose in-degree must be 0); if both endpoints
are of in-degree 0, then the added edge remains yet-to-be-oriented (see Figure 9). Let us
note, related to (2), that a bridge between an internal node and another node is intrinsically
oriented away from the internal node in order to prevent a block from being rooted locally
at its internal node. Hence, no tree edge can be added between two internal nodes.

All the other edges between T} and T, are ruled out as a candidate of tree edges but
introduced rather as an ancillary edge. They are however not guaranteed to be consistent;
for example, if one of them is between the leaves uy and us, another is between the leaves
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incoming :
. . o not a tree leaf
aq a9 aq a2 :

spinal/branching

Figure 9 The three admissible edge additions between two trees: (left) between two articulation
points that are not incoming; (middle) between two articulation points exactly one of which is
incoming; (right) between a non-incoming articulation point and an internal vertex of a spinal or
branching block that is not a tree leaf. In the latter two cases, the added edge is oriented towards
the non-incoming articulation point, a1 here, and makes the whole tree where the point is, that is,
the left tree here, incoming, that is, prohibited from being rooted.

v1 and vg, and all these four vertices are pairwise distinct, then the tree must be rooted
globally at u; or us in order for the edge not to become a cross edge, and v; or vy claims the
ownership of the global root analogously, but these two claims are obviously not compatible.
Bridging two trees by an edge may merge some of the blocks in 77 and in 75 into one (see
Figure 10). The resulting block can be computed efficiently [18] but its KLX number should
also be computable more efficiently from those of the merged blocks and from the cost due
to the newly added ancillary edges than being computed from scratch.

(b)

Figure 10 Two admissible ancillary edge types and their corresponding block-cut tree updates.
(a) Edge connecting oriented blocks. (b) Edge connecting unoriented blocks. (Note that in this case
the block ADE becomes branching and hence oriented.)

7 Examples

The cotranscription-friendly DFS-tree based design method presented in Section 3 is imple-
mented and available for use in the online design tool DNAforge (https://dnaforge.org),
together with an option for minimising the KLX cost of the design with a preliminary version
of the enumeration method presented in Section 6.7

Figures 11 and 12 illustrate some outcomes from the tool. Figure 11 shows designs
of wireframe dodecahedra based on a randomly chosen spanning tree (upper row) and a
DFS spanning tree (lower row). The DFS-tree based design has also been KLX-optimised,
resulting in a reduction from a KLX number of 9 in the initial DFS tree to 6 in the optimal

7 Design method ST-RNA, additional parameters “co-transcriptional route” and “minimise the number of
kissing loop sequences”.
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Table 1 Effect of KLX minimisation on some 3D mesh models.

Model Vertices Edges Initial KLX Min KLX
Tetrahedron 4 6 3 3
Cube 8 12 4 4
Octahedron 6 12 6 5
Dodecahedron 20 30 9 6
Icosahedron 12 30 12 10
Bunny 66 192 60 33

one. (The spanning tree diagrams in Figures 11(b) and (e)) have been manually reconstructed
from the tool-generated diagrams in Figures 11(c) and (f).) Figure 12 displays random-tree
and DFS-tree designs for a 66-vertex, 192-edge wireframe model of a bunny. Also here the
DFS-tree based design has been KLX-optimised, resulting in a KLX number reduction from
60 in the initial DF'S tree to 33 in the optimal one. Table 1 summarises the KLX number
reductions for some basic mesh models.

8 Conclusions and further work

We have presented models and algorithms for addressing two tasks in secondary structure
design for cotranscriptionally folding DNA origami wireframe nanostructures: avoiding the
topological folding obstacle of polymerase trapping and minimising the number of distinct
kissing loop designs (the KLX number). The key tools in this work have been the algorithmic
method of depth-first search in graphs and the ensuing DFS spanning trees. Our branch-and-
bound approach to the KLX minimisation problem can also be used for any other effectively
computable objective function on DFS trees, such as the DFS tree depth of a given graph
(the TD number).
Relevant directions for further work include for instance the following:

1. Nucleotide-level sequence design for DNA origami wireframes in the cotranscriptional
setting.

2. Efficient combinatorial algorithms for minimising the KLX and TD numbers in some
interesting classes of graphs, such 3-regular or polyhedral graphs, or proving the problems
NP-hard in these classes.

3. Efficient fixed-parameter or approximation algorithms for minimising the KLLX and TD
numbers in some relevant classes of graphs.
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A  NP-completeness of the MinKLX problem

» Theorem 5. The MINKLX problem is NP-hard.

Proof. The proof is based on the proof by Gavril [5] for the NP-hardness of computing the
cutwidth of a graph G = (V, E), which asks, given also an integer k, to arrange the vertices
of G along a horisontal line in such a way that, for any vertical line drawn between adjacent
vertices, diving V' into those to its left and those to its right,

The reduction is from MAX CuT, which asks to split the vertex set V' of a given weighted
graph G = (V, E) into two subsets V/ C V and V'\ V"’ so as to maximise the sum of the weights
of edges that connect these subsets in G. Given a pair (G, w) of a n-vertices graph G = (V, E)
and a positive integer w, let us convert this instance of max cut into an instance of KLX
computation problem (G, k) as follows. With a “large enough” r, let U = {uy, ua,...,u,} be
a set of auxiliary “universal” vertices. Let G = (VUU, E) with E = (VUU) x (VUU))\E.
Note that, for any x > 1, all DFS trees of the complete graph K, are equivalent, they are
indeed a path (no branch), and their KLX number f(z) = [x/2] X |2/2] can be computed in
polynomial time. Let k = f(n +r) — w. Now we are ready to show that G has a cut (A, B)
with at least w edges between A and B = V \ A if and only if the KLX number of G is at
most k.
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Firstly, suppose G has such a cut, and let A = {a1,az,...,a,}and B = {by,ba, ..., by_m}.
The linear arrangement of VU U

a1, U, A2, U2, "+ , Um—1, Am, Um, Um+1 " Ur—(n—m—1), b17 Ur—(n—m—1)+15""" s Ur, bn—m

amounts to a DFS tree of G thanks to a universal “glueing” vertex between a; and a; 41 (or
b; and b;41), which are not necessarily connected in G (indeed, by definition, they are not
connected in G iff they are connected in G). With large enough 7, a tree edge that is crossed
by the largest number of back edges is located in the interval w,, ..., Uuy_(n—m—1), and this
number is at most k. Thus, the KLX number of G is at most k.

For the opposite implication, suppose that G has a DFS tree T whose KLX number is
at most k. This tree must be “almost” a path in the sense that below a branch, if any,
no universal vertex can appear in order not to introduce any cross edge between subtrees
below the branch. Therefore, the path from the root of T to its first branch, if any, is of
length at least r, and since r is large enough, an edge e that determines the KLX number of
this DFS tree is somewhere along this path. This path can be extended into a DFS path
P of the complete graph K, ,. The edge which is crossed by f(n + r) back edges is on
this path. Among these back edges, at most k of them belong to E, and the others are
edges of the original graph; let E; be the subset of E that consist of these edges. Then,
f(n+7) < k+|E1|, which implies |E1| > f(n+7r) —k = w. Let S be the set of vertices in V/
that occur above this edge. Then (S, V'\ S) is a cut which is crossed by at least w edges. <«
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