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—— Abstract

A fundamental problem in crystallisation, and in molecular tile-based self-assembly in particular, is
how to simultaneously control its two main constituent processes: seeded growth and spontaneous
nucleation. Often, we desire out-of-equilibrium growth without spontaneous nucleation, which can
be achieved through careful calibration of temperature, concentration and experimental time-scale a
laborious and overly-sensitive approach. Another technique is to find alternative nucleation-resistant
tile designs [Minev et al, 2001]. Rogers, Evans and Woods [In prep] propose blockers: short DNA
strands designed to dynamically block DNA tile sides, altering self-assembly dynamics. Experiments
showed independent and tunable control on nucleation and growth rates.

Here, we provide a theoretical explanation for these surprising results. We formally define the
kBlock model where blockers bind to tiles at thermodynamic equilibrium in solution and stochastic
kinetics allow self-assembly of a tiled structure. In an intentionally simplified mathematical setting
we show that blockers permit reasonable seeded growth rates, akin to a non-blocked tile system at
lower tile concentration, crucially giving nucleation rates that are exponentially suppressed. We then
implement the kBlock model in a stochastic simulator, with results showing remarkable alignment
with oversimplified theory. We provide evidence of blocker-induced tile buffering, where a large
reservoir of blocked tiles slowly feeds a small unblocked tile subpopulation which acts like a regular,
non-blocked, low tile concentration system, yet is capable of long-term buffered assembly. Finally,
and perhaps most satisfyingly, theory and simulations align remarkably well with DNA self-assembly
experiments over a wide range of concentrations and temperatures, matching the size of growth
temperature windows to within 12%. Blockers are a straightforward solution to the challenging
problem of simultaneously and independently controlling growth and nucleation, using a motif
compatible with many DNA tile systems.
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Tile Blockers as a Simple Motif to Control Self-Assembly
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1 Introduction

Favourable self-assembly conditions typically catalyse two processes: continued growth of
existing structures by monomer attachment, and spontaneous nucleation of new structures
from free monomers in solution. Researchers usually prefer to have these two processes be
at well-controlled and independent rates, a feat that can be incredibly difficult to achieve
in practice. For example, perfect seeded growth [2, 21, 6, 26] requires no spontaneous
nucleation but positive growth rate from a seed structure. Yet fabrication of seedless
structures [23, 13, 10] requires a non-zero, ideally slow, rate of spontaneous nucleation, while
having slow enough growth to avoid monomer depletion before structures complete. In almost
all cases, we want to avoid low-temperature spurious growth. Thus, a fundamental problem
for tile-based self-assembly is how to control both growth and nucleation rates for arbitrary
tile-based systems.

A central principle of tile-based molecular self-assembly is that as temperature decreases,
bonds strengthen, and so growth and nucleation should ordinarily become more favourable.
This simple relationship allows systems to undergo controlled growth, for example, to create
conditions where attachments by b bonds are favourable, while attachments by b — 1 bonds
are not. The control of the number of bonds required for favourable attachment allows for
the computational power of algorithmic self-assembly, and is so closely linked to temperature
that abstract models of tile assembly often use “temperature” to refer to the number of
bonds required for attachment [24, 16]. Clean growth conditions with good bond specificity
also seem important for good yield of uniquely addressed and periodic tile-based DNA
nanostructures, exemplified by the use of slow anneals or long holding times at specific
temperature, usually just below the lattice melting temperature [23, 10].

Growth from a pre-assembled seed structure of some form allows for some control of
nucleation, and, sufficiently close to the melting temperature, “zig-zag” tile systems allow
for an exponential reduction in spontaneous nucleation rates with increasing assembly
width [22, 21]. However, these systems are inherently limited by nucleation pathways through
increasing-size assemblies of tiles attaching purely by single-strength bonds, and must be
close to the system’s melting temperature to avoid those pathways becoming significant. This
practically creates a temperature window for seeded growth, above the temperature where
spontaneous nucleation is significant, but sufficiently below the melting temperature so that
growth is significant on experimental timescales. The window can be quite small and difficult
to widen: Woods, Doty et al. [26] found a seeded growth window of <0.5°C, increasing to
2.5°C only with a ten-fold reduction in concentration and corresponding decrease in growth
rates.

A more dramatic approach to reducing spontaneous nucleation is to increase the difference
in the number of bonds formed between a monomer and a growing assembly compared to
between two monomers: from the 2 vs. 1 of usual threshold-2 systems, to k vs. 1. Minev et
al. [15], and later Wintersinger et al. [25], showed that criss-crossing multi-bond tile motifs
binding to several other tiles in a growing assembly, rather than only two, strongly reduced
spontaneous nucleation across a broad range of temperatures. However, the technique may
require further characterisation [15] or use of large DNA origami rods [25, 5]. And theoretically,
even if the temperature window is much wider, at sufficiently low temperatures, the system
must still allow for spontaneous nucleation, even if to a disordered assembly: one-bond
attachments and nucleation pathways of some sort will eventually become favourable.
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Rogers, Evans and Woods [17, 18] recently demonstrated a third approach, adding
additional “blocker” strands, each complementary to individual glue domains on tiles, as
shown in Figure 1. While binding weakly at growth temperatures, the transitory binding of
the higher-concentration blockers to tiles, both in solution and on assemblies, was conjectured
to interfere with tile attachment, reducing both growth and spontaneous nucleation rates, but
hopefully, reducing nucleation rates, reliant on pathways with many one-bond attachments,
more than two-bond growth. Experimental results were promising, showing that for some
choices of blocker concentration, it is possible to have a system with seeded growth across
a range of temperatures and no significant spontaneous nucleation at any temperature.
However, the mechanism by which these effects were achieved remained unclear, lacking a
theoretical basis beyond conjecture.

Contribution and paper structure

In Section 2, we define the kBlock kinetic model of tile assembly with blockers with the
goal of explaining the results of Rogers et al. [17, 18]. In Section 3 we give two results.
First, in Theorem 15, we show that behaviour of the kBlock model at a fixed temperature is
largely equivalent to that of the kinetic Tile Assembly Model [24, 9] (kTAM) with a lowered,
effective tile concentration and at the initial stages of growth before tile depletion dominates
the kinetics. This effective tile concentration is dependent both on blocker concentration and
temperature. Our second result, Theorem 19, is that with sufficient blocker concentration,
the effective tile concentration decreases with decreasing temperature by enough to prevent
spontaneous nucleation from ever becoming significant. Growth, meanwhile, can be confined
to a temperature window of controllable width, with no significant growth, either seeded
or by spontaneous nucleation, above or below the window (Remarks 16 and 17). And by
increasing both tile and blocker concentrations, a “buffering” effect can be produced: for the
same initial growth rate, the system with modified concentrations can incorporate far more
tiles into assemblies before tile depletion prohibits further growth (Remark 18). Figures 2
and 4 illustrate these findings.

In Section 4, we show that this theoretical analysis fits well with kinetic model simulations
for both growth and nucleation, and that simulations closely fit experimental results: for
multiple experimentally-implemented systems, we show that temperature windows and
relative growth rates with varying temperature can be closely matched by simulations using
only tile and blocker concentrations, nearest-neighbour energies of glues, and a single lattice
free energy parameter taken from the kTAM literature [10]. Finally, in Section 5 we draw
several conclusions and suggest directions for future work.

2 kBlock model

Intuition behind the kBlock model

We construct our kBlock model of tile assembly with blockers by starting with the same
assumptions as the kTAM [24, 9] for tile-assembly interactions, and then adding blocker-
assembly and blocker-tile interactions. Intuitively, we will assume that blockers behave like
tiles, but rather than taking a place in the lattice (assembly), they simply block a particular
edge of the free (in solution) tile or free edge of an assembly-bound tile where they bind,
and that blocked tile-edges are unavailable for tile binding. However, unlike the kTAM,
where there is an assumption of operating in the limit of low assembly concentrations and
hence all reactions can be approximated as taking place with constant tile concentrations, in
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the blockers model, even disregarding assemblies entirely, tiles and blockers will interact in
solution, since the concentrations involved may make those interactions significant. Rather
than considering the kinetics of those interactions, since tile and blocker concentrations will
generally be much higher than those of assemblies, we will assume that the concentrations of
free blockers (not bound to a tile or assembly), and free tile states — each specific tile-blocker
complex configuration — remain at the equilibrium concentrations they would reach in the
absence of any assemblies. Then, these concentrations will be the concentrations for tile
states and free blockers when considering attachment to assemblies.

2.1 kBlock model definitions

We let R,RT,R™, respectively denote the real numbers, non-negative real numbers and
non-positive real numbers (i.e. all three include 0). We use the notation [z] to denote the
number of instances of any object x in a fixed volume V, the concentration, where [z] € R*.
> denotes a finite alphabet, and X* is the set of all strings over 3. Throughout this paper,
T is temperature, and we use 3 = 1/(RT) for brevity, where R is the molar gas constant.
Free energy always refers to Gibbs free energy.

» Definition 1 (Tile type, Blocker). A tile type t = (I, E), or simply tile, is a square with
a string label I € ¥* over alphabet X, and 4 unit length edges each of which is a pair
e=(d,g) € E where d € {N, E, S, W} is a direction and g € £* is a glue name/type. Each
glue g has a complement, denoted g*. A blocker b is a pair of the form b = (d, g*). No two
blockers have complementary glues.

» Definition 2 (kBlock instance). An instance B of the kBlock model consists of a set of
tiles T and blockers B, each t € T and b € 9 having an associated non-negative real-valued
total species concentration respectively denoted ci,c, € R*. The system has a function
AGhpong @ X* x RT — R such that AGpona(g,T) is the free energy of glue g bound to its
complement g* at temperature T

» Definition 3 (Tile state). A tile state is an instance (copy) of a tile type ¢, with 0 to 4
blockers, each bound to an edge. A blocker b = (d, g) may bind only to edge e = (d, g*),
i.e. if directions match and glues are complementary. We write tb to denote a tile-blocker
bonded complex. The available edges of a tile state do not have a blocker bound to them.

2.1.1 Tile states and blockers in solution bind together at equilibrium
concentrations

In the remainder of this section we define the kBlock model as having two parts: (1) free
blockers and tile states in solution at equilibrium concentrations as a function of their initial
concentration and temperature, remaining unchanged during assembly, and (2) an assembly
that grows by attachments of tile states and blockers via stochastic interactions; the tile states
and blockers on an assembly are not required to be at solution equilibrium concentrations.

Hence, the kBlock model is “powered” [22]: individual events do not change blocker or tile
state concentrations. That is, we take the limit of large volume so that removal or addition
of individual blockers or tile states does not change their concentrations. Depletion effects
can be approximated by changing the concentration parameters in the model.

» Definition 4 (Tile states in solution). The solution is a set of pairs of (s,c) where s is
a blocker or tile state and ¢ € RT is its concentration. For an edge of a tile type ¢ and a
temperature T, we let p,(T,e) € [0,1] C R, the available edge probability, be the probability
that the edge is available (unblocked) in solution at equilibrium. We simply write p, when T
and e are clear from the context.
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Although we defined notation for probabilities and concentrations, we have not yet given
them explicit values. In Remark 6 those come from chemical equilibrium, and a lemma:

» Lemma 5. The concentration of unbound tile states of a tile type t with a particular
edge available is pycy, and the concentration of unbound blocker instances of a blocker b is
[b] = co — paCy, where Cy = ), nypcy is the sum of the concentrations of all tiles with
nyp > 0 glues complementary to the blocker b.

Proof. By Definitions 2 and 4 (initial tile concentration ¢; and available edge probability
Pa), We get the first conclusion (p,ct). The second comes from conservation of mass. |

» Remark 6 (Equilibrium concentrations of tiles and blockers). Practically, p.(T,e), written
here as a function of temperature T and edge identity e, can be determined by the equilibrium
concentrations of tiles and blockers in isolation in solution, ignoring assemblies. While the
system may have many tile types and blockers, reactions involving each blocker are independ-
ent and can be considered in isolation. By standard chemical reaction thermodynamics in
solution [14, 3], we define an abstract reaction coordinate ; p for each reaction t; + b = ¢;b.
Then, the change in free energy G with each reaction is

dG

a = (RT In[t;b] — RT In[t;] — RT In[b] + AGvona(T)) (1)
i,b
G has a minimum where, for each tile-blocker pair, dﬁé% = 0 [3], implying equilibrium
concentrations [t;b] = [t;][b]e™#ACpena(T) | By conservation of mass [t;] + [t;b] = c;, hence
o Ct - 1
[t:i] = 1+ [b]ePAGbona(T) Pa= 17 [b]e =B AGbona(T) @

We claim that p, is a probability, in other words that p, € [0,1] C R as follows: without
blockers p, = 1 for all temperatures T' and AGpeng since 0 = [b] < ¢p, otherwise 0 < p, < 1
for [6] > 0 and all T and AGpeng. Furthermore, the expression for p, is in terms of [b], the
concentration of unbound blocker instances, rather than the total species concentration cg
of the blocker b. In the limit where total blocker concentrations are large multiples of
total tile concentrations, the concentration [b] is close to ¢p, and where noted we use that
approximation: [b] = ¢p. But more precisely, for all concentrations, the combination of
conservation of mass constraints and equilibrium conditions results in the analytic solution

1
[b] = 3 (Cb — Oy — efACGrona(T) 4 \/(Ct —cp + eBAGbomi(T))2 + 4cbeﬁAGbond(T)> (3)

This has the effect, at low blocker concentrations relative to C}, of increasing p,. However,
while our theoretical analyses and simulations use the precise value of [b] in Equation (3) to
calculate p,, in this and related experimental work [17, 18] we focus on high concentration
blockers, where depletion of unbound blockers is not significant, and the aforementioned
[6] = cp approximation is sufficient. Figure 2(left) shows how close the approximation is.

2.1.2 Assembly reactions are stochastic

» Definition 7 (Assembly). An assembly of a kBlock system B is a function « : Z? — T

where the domain of « is connected in Z? and where T is the set of all tile states of B.

Intuitively, an assembly is a connected lattice of tile states.
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» Definition 8 (kBlock dynamics and rates). A single step o —1 ' in the kBlock model maps
one assembly a to another assembly o/ where both differ by the attachment or detachment
of a single tile state or blocker governed by four rate equations, illustrated in Figure 1:

Tt att = Kelt] "
Tt det = kelPAGrona(T) = (b—1) RASay 5
To,att = ke[b] = ke (co — paCh) .
Tb,det = keePAGrona(T) o

These are applied and explained as follows:

1. Tile state attachment (7 att): at every empty coordinate in Z? adjoining at least one tile
state in «, each tile state in solution may attach at the coordinate if (1) the tile state has
at least one glue complementary to the glue on the adjoining tile state, (2) the tile state
would not be adjacent to any edge of any tile state in « with a bound blocker, and (3) no
edge of the tile state with a bound blocker would be adjacent to another tile state in a.
The rate of attachment per tile state ¢ satisfying the criteria is ry a4 = ke[t], where [¢] is
the concentration of the tile state satisfying the criteria.

2. Tile state detachment (7 get): any tile state in o may detach, if detaching does not result
in the assembly becoming disconnected, at a rate of r¢ get = kePPAGbona(T)—(b—1) RAS1ar
where b is the number of bonds between the tile state and adjoining tiles in . ASjyt is
defined as an entropic penalty for the formation of multiple bonds.

3. Blocker attachment (74 a¢): at every edge of every tile state in an assembly where no
blocker is bound, there is no adjacent tile, and the system has a blocker complementary to
the edge’s glue, that blocker may attach to the edge with a rate of k¢[b] = k¢ (cp — paCh),
where Cy is the sum of the total species concentrations of all tile types with a glue
complementary to the blocker (Lemma 5).

4. Blocker detachment (74 4et): at every edge of every tile state in an assembly that has a
bound blocker, the blocker may detach from the edge with a rate of kgePAGrena(T),

» Definition 9 (Seed). The assembly « of a kBlock system prior to any step being taken is
defined as the seed of the system. This serves as a starting point from which the system may
grow. Growth is said to be unseeded if the seed is empty (i.e. dom(a) = ).

» Remark 10 (Why do we disallow attachment of partially blocked tiles?). These event definitions
include the choice of disallowing tile state attachment if any blockers interfere. Including
these attachments would seem more physically realistic. However, as the model treats
tile and blocker attachments and detachments as elementary steps, rather than modeling
individual bond formation and breakage, allowing partially blocked attachments would violate
detailed balance. Much of the theoretical analysis of the kBlock model can be adapted
to accommodate the extra events. However, we found that the temperature-dependent
behaviour of the kBlock model fit experimental observations significantly better without
partially blocked attachments. Although surprising, physically-plausible mechanisms could
result in partially-blocked attachments being unlikely to result in stable tile attachment and
thus make the model without partially blocked attachments more accurate. For example,
there could be a small difference in blocker and single-bond tile free energies that would
make blocker detachment less likely than tile detachment, and there could be a delay to
forming an additional bond that would make a tile attached by a single bond more likely to
detach before forming a second bond to a newly-available adjacent glue. We explore the two
model choices further in Section B.
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[to] = ei(1 = p,)’ [t:] = cpa(1 = pa) = [to] [t5] = c.p?

~~
M_J
~
w

Tt att

= kqlto]

bBAGya—(b—1)RAS),

b qet = Kye? S Gt %
<—

Figure 1 Summary of the kBlock model. Top: Blockers and tile states bind in solution and are
held at a temperature-dependent equilibrium. Centre: Blockers and tile states stochastically attach
to, or detach from, a dynamically growing/shrinking assembly (centre). Blockers may attach to any
available matching glue on a tile on the assembly, while tiles can attach to any empty position where
the tile can make at least one bond, and where there is no blocker between tiles; both blockers and
tiles attach with the same forward rate constant, simply dependent on concentration. Bottom: Tile
states and blockers detach based on bond free energy.

Tbatt = ki(c, — p.C)

We assume that the lattice penalty AS).g, used above, is entropic and proportional to the
number of bonds made beyond one. This penalty was calculated in [10] as o = —7.12, where
« is a parameter in the unitless formulation of the kTAM (Section A), based on [11, 12].
This parameter is equivalent in our formulation to —14.12 calmol ™' K~ for both SSTs and
DX tiles; we do not expect that core tiles will significantly differ. The model as defined above
excludes any detachment that would disconnect the assembly, as this would violate detailed
balance; in practice, as with the kTAM, implementations may choose to include “fission”
events, for example, by discarding one of the disconnected regions. While the model includes
blocker attachment and detachment events on assemblies, for a given edge on an assembly that
is not adjacent to another tile state, the blocker attachment and detachment rates result in the
probability of that edge being available being 74 det /(76,det +76,at¢) = 1/(1+ [b]e*ﬁAGbond(T)),
which is the same as p, in Equation (2). This probability is useful in the theoretical analysis
of Section 3.

2.2 kBlock,: a simplified theoretical model for mathematical results

The kBlock and kTAM [24, 9] models are used for our computer-simulation-based results
(Section 4). However, for mathematically derived results on growth rates in Section 3, we
use two simpler models, called the kTAMy and kBlocks, which we now justify.

Most tile systems of experimental interest have intended growth pathways primarily using
two-bond attachments, and are grown at temperatures where two-bond attachments are
slightly favourable. In the limit of low concentrations and slow growth slightly below the
two-bond melting temperature where attachment and detachment by two bonds are equally
favourable, one-bond attachments detach much faster than they attach (and are mainly of
relevance to erroneous growth pathways), while three- and four-bond detachments are slow
enough to be insignificant. Thus, we view two-bond tile attachment and detachment events
as being most significant [9]. For ease of analysis, we define models constrained to two-bond
attachment and a few other reasonable simplifications:
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Figure 2 Plots derived from theoretical results in Sections 2.1.1 and 3. Left: The probability
pa of a tile side being unblocked, Equation (2), decreases with increasing blocker concentration
and decreasing temperature. Solid curves: blocker concentration [b] from Equation (3). Dashed:
high-blocker-concentration approximation [b] = ¢s, Remark 6. Middle: Two-bond growth rates
(Section 3.1) increasing blocker concentration suppresses growth at low temperatures, and increasing
detachment rates prohibits growth at high temperatures, creating a growth temperature window
(bottom). Right: Nucleation (Section 3.2): increasing blocker concentrations increases assembly
energies. Nucleation pathways go through a sequence of assemblies of increasing size and decreasing
favourability, until a critical nucleus size is surpassed wherein growth is mostly favourable. Plots:
critical nucleus size and free energy (unfavourability) increases with blocker concentration, with
black dots in the top plot being critical nuclei.

» Definition 11 (kTAM3). The kTAM; model is the kTAM [24, 9] restricted to only allow
tile attachments by two bonds and detachments by two bonds, to have all bond strengths to
be equal, and to have all tile concentrations to be equal (c).

» Definition 12 (kBlockz). The kBlocks model is the kBlock restricted so that: (1) each tile
type has at most two blockers, each for a distinct edge of the tile, and these blockers attach
only to that tile; (2) every tile state attachment involves two bonds, each having either a
blocker in the system for the glue on the attaching tile, or a blocker in the system for the glue
on the adjoining tile; (3) all bond strengths are equal; and (4) all total tile concentrations
are equal (¢;) and all total blocker concentrations are equal (cp).

3  Theoretical analysis

In this section we prove some results for growth in the restricted kBlocks model (Definition 12),
and nucleation in the kBlocks generalised to allow 1- and 2-bond attachments.

3.1 Growth rate in the kBlock,; model

Theoretically modelling growth rates is challenging due to assemblies changing frontier size
over time. Indeed for algorithmic systems it can be provably algorithmically hard, or even
undecidable, to predict whether a single tile is placed at some location [16, 4]. Hence, we
consider an intentionally oversimplified growth rate in our simplified kinetics models:

» Definition 13 (Two-bond growth rate). In the kTAMs and kBlocky, the two-bond growth
rate is the average rate an assembly increases in size, via both attachments and detachments.
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In the KTAM,, the two-bond growth rate for a system with an assembly growth front,
or frontier, constant in size over time is ry = 7y - (rt’att — Tt det), Where 7 is a positive
constant factor dependent on the shape of growth front [24, 9]. For example, v =1 for a
“zig-zag” system [22] with frontier size 1. For frontier sizes that change over time, v is a more
complicated function, something we do not wish to explicitly handle here. In this subsection
we seek a 2-bond growth rate result for the kBlocks model, in terms of the KTAM,, and
leaving ~ as an undefined system-dependent function.

» Lemma 14. For any kBlocks instance B, at fixed temperature T, the available edge
probability p, (FEquation (2)) is identical for every tile edge.

Proof. By Equation (2), p, is a function of (1) temperature — which is fixed, (2) glue free
energy AGponda(T) — which is equal for all glues. and (3) blocker concentration [b] — which is
equal for all blockers in the system by analysis of Equation (3). |

» Theorem 15 (Each kBlocky system has a corresponding kTAMy system). Let B be a kBlocks
system with tile concentration cp, and let p, be B’s available edge probability (a single value
for all edges by Lemma 14). There is a kTAM, system KC with the same tile types, seed
and tile attachment/detachment rate constants as B, with tile concentration per tile type
cx = p2cp such that both systems have the same 2-bond growth rate. We call cx the “effective
tile concentration”.

Proof. By hypothesis, tile detachment rates for the kBlocks and kTAM, systems are the
same. Tile attachments, however, will be influenced by blockers. In the KTAM, system, a
potential tile attachment has rate k¢cp, where we use notation cg or ci, depending on the
system, instead of the usual c;.

In the kBlocks system, for the same assembly position, the same attachment will require
that no blockers are bound to the edges between the tile and adjoining tiles in the assembly. In
the kBlocks model, there are exactly two blockers involved, and each may be complementary
to either a glue on the attaching tile state, or a glue on a tile state in the assembly. If
the blocker is complementary to a glue on the tile, then there is a p, probability of a tile
state that has that edge unbound, by the definition of p, in Equation (2). If the blocker is
complementary to a glue on the assembly, there is also probability p, that the edge will be
available at any given moment since the attachment and detachment rates satisfy the same
equilibrium concentrations of blocker/no blocker for a single site.

As neither blocker can be present for attachment to be possible, there is a p? probability
that, for a randomly chosen tile state from solution at a random moment, the attachment
will be possible; this results in an attachment rate of r¢ g = p? - keep. The expression for the
two-bond growth rate for a kTAM, or kBlocks system is of the same form ro = v (rp — 7y 2):
Since, by hypothesis, both systems have identical detachment rates 7 2, the 2-bond growth

rate ro will be equal for both systems if the attachment rates 7 are equal for both systems.

Setting the kTAM, tile concentration to cx = pZcp gives exactly that since for K, the
attachment rate is TEC = kecxe = k‘fpgclg =TtB- |

» Remark 16 (Blocked growth at low temperature). A corollary of the previous theorem is
that blockers completely kill low-temperature growth, which can be seen as follows. From
Equation (2), the probability p, that a side is available is inversely exponentially dependent

on temperature. Higher blocker concentration also drives this probability down, albeit linearly.

Hence, in the systems studied here, at low temperatures and high blocker concentration,
pa will tend to zero, and thus the 2-bond growth rate will also tend to zero (Figure 2
(middle-top)). By the same reasoning, and since every bond or its complement has a blocker,
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the attachment rate for 1-bond growth, kep.cp, will always be less than the detachment
rate, kpe#AGrona(T) 50 long as the unbound blocker concentration [b] is greater than the
tile concentration.In contrast, in regular unblocked systems growth simply happens below
the melting temperature, and at low temperatures suffer from unintended structures likely
created from 1-bond growth and nucleation [26] (Suppl. Info. A, Sect. S5.1).

» Remark 17 (Growth window). There is a temperature growth window: above the melting
temperature the growth rate is less than zero, and, by Remark 16, at low temperatures the
2-bond growth rate tends to zero. In between these extremes, there is positive growth, as
shown in Figure 2 (middle-bottom). The width of the 2-bond growth window is blocker
concentration dependent, with more blockers resulting in a narrower window.

» Remark 18 (Buffering). Blockers also result in a “tile-buffering” effect [20], causing changes
to the growth rate to be slower, as tiles are incorporated into assemblies, than the same
system without blockers. Or, equivalently, as tiles are used, the effective tile concentration
et (defined in the statement of Theorem 15) changes more slowly than the concentration
of tiles used. While the kBlock model does not account for concentration changes from
tile attachment and detachment events, the effect of a certain concentration of tiles being
incorporated into assemblies, and thus unavailable for attachment, can be examined by
changing the concentrations in the model. Defining cuscq as the concentration of tiles
incorporated into assemblies at some point during growth, so remaining tile concentration is
c = cginitial) — Cused, and from Section 3.1 letting ro be the 2-bond growth rate, it is easily
seen that drs/dcysed = —VkePa, and deesr/dcused = —Ppa: if @ particular concentration cyged
of tiles is used, the effective concentration available for attachment is reduced only pacused,
rather than cyseq as it would be without blockers. Practically, this means that, if a particular
growth rate is desired, a system with blockers can use a larger total tile concentration, and
incorporate more tiles with less effects from depletion. See Figure 4.

3.2 Nucleation rate in the kBlock model

Here, spontaneous nucleation from solution, or simply nucleation, refers to the self-assembly
process whereby assemblies form in slightly supersaturated conditions, in other words just
below the 2-bond crystal melting temperature. Nucleation rates are difficult to model due to
multiple simultaneous pathways and geometric concerns. Schulman and Winfree [22] applied
classical nucleation theory to derive a mathematical upper bound on the nucleation rate in
DNA tile self-assembly. Close to the crystal melting temperature, nucleation pathways are
unfavourable until some large enough assembly called a critical nucleus has assembled, from
which growth is favourable. Their approach considers the assemblies visited along nucleation
pathways to critical nuclei, observing that the most favourable of these, including any critical
nucleus, can be used to derive an upperbound on the nucleation rate. The proof of the
following theorem uses that upperbound [22]. The theorem is stated for a generalisation of
the kBlocky that allows both 1- and 2-bond attachments (because nucleation is impossible if
there are no 1-bond attachments), but more restricted than the kBlock to avoid complications
of arbitrary combinations of blockers and concentrations. Also, using ideas from [22] we
consider only the critical nucleus that is the most stable of all the critical nuclei, and that
growth from it is favourable (by two-bond attachments).

» Theorem 19. For a system in the kBlock with a critical nucleus of N tiles and B bonds,
where every tile has exactly two blockers, attachments by one bond are not favourable, and
every glue on the critical nucleus perimeter is required for continued growth, the classical
nucleation theory upper bound [22] on the nucleation rate through that critical nucleus is
reduced by (po)> NtV compared to the same system without blockers.
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Proof. We first define the free energy of an assembly «, in the kTAM [22]:

G(a) = BAGhona(T) = T(B = N)ASp — RT Y In[t] (8)

tea

where N = |a| is the total number of tiles in assembly «, B is the total number of bonds in
a, and each ¢t is an instance (copy) of a tile in «, i.e. the sum has N terms.

Next, in Equation (9), we define the assembly free energy of a critical nucleus in the kBlock
model (the version assumed by the theorem hypotheses) which is justified as follows. In the
kBlock and kTAM, energetic contributions of bonds in the assembly are equal. However,
in the kBlock, the tile concentration of tiles available to bind to an assembly is p2cy: by
assumption, each tile (with, as usual, initial unblocked concentration ¢; and available edge
probability p,) has two blockers that bind to it and hence the completely unblocked tile
state has concentration p2c; through the entire assembly process, which we substitute for
[t] in Equation (8), noting that the sum of logarithms in the assembly free energy G(«)
allows these multiplicative terms to be separated in Equation (9). Also, in Equation (9) we
ignore free energy contribution from blockers bound to the perimeter of the assembly, as by
hypothesis only tile states without blocked edges on the perimeter of the assembly will allow
for continued growth.

G(a) = BAGhond(T) = T(B — N)ASiat — RT'Nlnc, — 2RTN lnp, (9)

Given a particular critical nucleus «, as shown for the kTAM in similar conditions [22],
we assume [o] at any time is bounded by the equilibrium concentration [a]eq = exp(—SG(a)).
Thus, the nucleation rate through a pathway containing that critical nucleus is bounded
from above by ren, = Friexp(—fG(a)), where r¢ is the tile attachment rate for two-bond
attachments and F' is the number of two-bond attachment sites: in other words, the flux
through the critical nucleus, ignoring reverse reactions and one-bond attachments (which,
being unfavourable, would mean the o would not be the critical nucleus). Since two-bond
attachments to the critical nucleus must involve two unblocked edges, the attachment rate
is kp2cy. The kBlock assembly free energy differs from the kTAM assembly free energy by
—2RT N In p,; this results in a change to the nucleation rate, via the exp(—fG(«)) term, of
exp(—2B8RTN Inp,) = p; 2. When combined with the additional p? from 7y, this results in
ren being multiplied by pg(NH) compared to the kTAM. <

It follows from the previous theorem and the definition of p, that the nucleation rate,
like the growth rate, will tend towards zero as temperature decreases when the blocker
concentration is high, resulting in a temperature window where unseeded nucleation occurs.

4 Simulations and comparisons with experimental results

As an extension of the kTAM, the kBlock model is amenable to similar simulation techniques.
We implemented the model as a Gillespie algorithm simulation in the Rgrow tile assembly
simulator [8]. When sequences for glues are provided, Rgrow calculates the free energy for
the glues based on the nearest-neighbor model using parameters from [19]; these were used
for comparisons with experimentally-implemented systems. We consistently used a value of
ASp = —14.12 calmol ' K~ for all simulations [10].

Experiments with blockers in Rogers et al. focused on systems forming periodic nanotubes,
uniquely-addressed around the tube to force a minimum circumference of 12 helices, and
using a DNA origami seed for seeded growth [17, 18]. Seeded tubes are particularly simple
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Figure 3 (a) A simple 12-tile tube system with blockers. (b) Plots showing both simulation
(solid curves) and theory (dashed) for growth and nucleation rates: on the left, systems with
different blocker concentrations as a function of temperature, and on the right, systems at different
fixed temperatures as a function of blocker concentration. Growth rate simulations used 1,024
simulated seeded assemblies, each grown until reaching 1,200 tiles or until 10 hours of simulated
time; shaded regions show 90% range of growth rates. Nucleation rate simulations used Rgrow’s
FFS implementation for flat assemblies.

to analyse: growth can proceed entirely by pathways with two-bond attachments, and the
growth front for two-bond attachments remains approximately of constant size. Rgrow can
be set to flat or tube simulations; in simulations set for tube assemblies, rgrow treats the
tube topology and circumference as a fixed property of the assembly, not allowing for tubes
of different circumference, or a 2D lattice. Regardless of its topology, the assembly begins
from an initial seed assembly which can be specified at the start of the simulation.

4.1 Simulations, and comparison with theory

For comparisons between kBlock simulations and our theoretical analysis, we used a simple
12-tile system forming a periodic 12-helix tube (Figure 3(a)). Every glue was defined to have
an identical strength, with AG(37°C) = —10.15kcalmol ™! and AS = 193.9 calmol ' K~!
(from the representative sequence TGTCTTGTCA). Growth rates for tubes used no adjustable
parameter other than the growth frontier size parameter v = 3.5 (see Section 3.1), set for a
12-helix tube with 0 to 6 two-bond attachment and detachment sites during kBlocks growth.

Nucleation rate estimates in simulations used the forward-flux-sampling (FFS) imple-
mentation in Rgrow [7, 1]. Application of the theoretical nucleation rate analysis, however,
required an estimate of the critical nuclei. To simplify the analysis, nucleation simulations
used a flat plane, rather than tube, effectively making the system a 2D periodic lattice. The
critical nucleus size was then estimated by taking the maximum critical nucleus assembly
free energy along a pathway of increasing k x k and k x (k 4+ 1) rectangular assemblies.
Additionally, classical nucleation theory as applied to tile assembly [22] primarily calculates
an upper bound, often orders of magnitude higher than observed nucleation rates (either in
simulation or experiments), and is primarily used to consider scaling of nucleation rates when
varying parameters. To consider this scaling, for Figure 3, we scaled the theoretical rate to
be equal to the simulation rate at 46 °C when varying temperature, and to the simulation
rate at 20x blocker concentration when varying blocker concentration.
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Simulations: growth

Figure 3 shows simulation results with varying temperature and blocker concentration. In
general, simulations align with theory near the two-bond melting point. Unlike the simulations,
the theoretical growth rate (dashed curve) assumes that growth occurs only by two-bond
attachments, leveraging the assumption that one-bond attachments are too unfavourable
to be significant. As temperature decreases, and bond strength thus increases, one-bond
attachments may become favourable, with different kinetics and the possibility of a changing
growth front size; this would be expected to increase the observed growth rate compared to
the theoretical two-bond rate, as seen in simulations at low blocker concentrations. However,
at sufficiently high blocker concentrations, even at low temperatures, simulated growth rate
remains near the two-bond rate, suggesting that blockers may reduce one-bond attachment
pathways, and potentially disordered growth, at low temperatures. For blocker concentrations
above 5x, where theory and simulation agree well, as blocker concentrations increase, the
growth rate decreases, but slowly at optimal growth temperatures. Both the maximum
temperature with a positive growth rate, and the temperature of maximum growth rate,
decrease, but only very slightly with increasing blocker concentration, going from 46.0°C at
5% blocker concentration to 46.8 °C at 40x blocker concentration. Growth occurs only in
an increasingly narrow temperature range, going from a full-width-half-max of 8.6 °C at 5x
blocker concentration to 4.1°C at 40x blocker concentration.

Simulations: nucleation

For nucleation, the scaling of nucleation rates at high temperatures, varying blocker concen-
tration, largely fits the theoretical analysis, particularly when moving closer to the melting
temperature. At lower temperatures and low blocker concentrations, however, the scaling
of the FFS-calculated nucleation rate diverges significantly from the theoretical estimate.
It is likely that in these conditions, our simple assumption of an increasing-size-rectangle
pathway breaks down, as single-bond attachments may not be significantly unfavourable,
or may be even be favourable (eg, below 36.0°C for 0x blocker concentration). It is also
possible that in these conditions, the classical nucleation theory assumption of nucleation
rates being constrained by a maximally-unfavourable critical nucleus may break down.

Simulations: tile buffering

As predicted in Remark 18, simulations show a “buffering” effect, where for a particular
target initial growth rate, systems with blockers decrease in growth rate more gradually
than a system without blockers that starts with a similar growth rate: while a system in the
kBlock model will have the growth rate of an equivalent kTAM system with effective tile
concentration p,cg, as tiles are incorporated into assemblies, and ¢; decreases, the reduction
in growth rate will be slower if p, < 1. Practically, for high blocker concentrations, where p,
does not depend on ¢y, this gives a constant multiplicative reduction in the change in growth
rate, depending on p,, which can be influenced by temperature and blocker concentration.
Figure 4 gives an example of how this effect might be applied. Starting from a base 25 nM
tile concentration, 12-tile-tube system without blockers, at a fixed temperature, systems
with higher tile concentrations can be made to matching initial growth rate by adding a
calculated concentration of blockers. Though they grow similarly at first, these systems will
continue to grow even when significantly more tiles have been incorporated into assemblies.
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Figure 4 The growth rates of a simple twelve-tile tube system under varying tile and blocker
concentrations, representing behaviour when free tiles have been depleted by growth. Solid lines
represent simulated results from 1,024 simulated assemblies grown to a size of 1,200 tiles or until 10
hours of simulated time elapsed (shaded regions show 90% range of growth rates), while dashed curves
indicate theoretical predictions. All simulations were seeded, with initial blocker concentrations
adjusted such that all systems have the same initial growth rate.

4.2 Comparisons between simulation and experimental implementations
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Figure 5 (a) Simulated and experimental results from a twelve-helix tube system. Simulated
results show growth rates for a single assembly and spontaneous nucleation rates, without considering
depletion. Experimental results measure total growth of assemblies, both from seeds and through
spontaneous nucleation, over 96 hours. (b) Simulated, theory and experimental seeded growth results
from multiple systems with different glue strengths. Dots show increase in fluorescence (experiment).
Dashed line shows mean simulated growth rate from 1,024 simulated assemblies. Dotted line shows
theoretical growth rate, assuming all bonds have strength equal to the mean bond strength of the

simulated system. Curves are scaled from minimum (or zero, for the theoretical growth rate) to
maximum values within the plotted temperature range.

In the first series of experiments, Rogers et al. [17, 18] used a periodic 12-helix DNA
tile nanotube system similar to the system used for comparisons between simulations and
theoretical values, though for comparison, simulations use sequence-dependent nearest-
neighbour energies to reflect the experimental system. Both seeded and spontaneously
nucleated tubes were grown. Seeds were purpose-designed 12-helix DNA origami barrels.
Tubes were grown in a series of temperature holds, using a qPCR machine repurposed
to measure fluorescence under a programmable temperature protocol. The experimental
implementations measured growth by a fluorescent reporter mechanism that periodically
incorporated Forster resonance energy transfer (FRET) pairs into growing tubes, resulting
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in an increase in bulk fluorescence corresponding to tube growth. Experimental data is in
Figure 5. Each data point in Figure 5(a) is the maximum, over 6 temperatures (43-53°C in
2°C increments), of the measured fluorescence increase after a 96-hour temperature hold [17].
Figure 5(b) shows measured fluorescence increase after a 48-hour temperature hold from [18].

Growth rate: Simulation versus experiment

For seeded experiments, with fixed seed count and no unseeded nucleation, fluorescence
increase over time is a measure of the experimental growth rate. In Figure 5(a), we
qualitatively compare maximum growth (via fluorescence increase) across temperatures
for the experimental system, both when seeded and unseeded — in which case growth
required spontaneous nucleation. Despite mixing system behaviours across a wide range
of temperatures, and not accounting for tile depletion in simulations, simulations show a
mild and decreasing decline in growth rates with increasing blocker concentration, as is
also seen experimentally. A nucleation rate that is very high is also seen (and thus would
be depletion-limited) for blocker concentrations where significant increases in fluorescence
were observed in unseeded samples, exponentially decreasing across the range of blocker
concentrations to be below ranges, per FFS predictions, likely matching minimal experimental
nucleation.

Multiple bond strengths: Simulation versus experiment

In a second series of experiments, Rogers et al. implemented multiple 12-helix tube systems,
each with glues of different DNA domain lengths, and thus binding strengths, and measured
the growth of these systems with fixed blocker concentrations. We consider primarily the
growth rate of these systems when seeded. Complexities of fluorescent reporting, however,
meant that these were not expected to be measures of absolute growth rate across different
tile systems: rather, the increase in fluorescence, for each system separately, was used as
a relative measure of growth rate when comparing growth at different temperatures. Our
comparison, in Figure 5, thus uses the increase in fluorescence scaled from the minimum
increase for each system (always at a temperature above the melting temperature for the
system), to the maximum increase within the temperature range. Our simulated growth rate
is scaled similarly, while our theoretical growth rate is scaled between the theoretical zero
growth rate and the maximum within the range, as the theoretical rate includes negative
rates for melting of existing structures at high temperatures, which was not possible in
simulations or experiments starting from seeds. As the theoretical two-bond growth rate is
for systems with equal bond strengths, the mean bond strength for each system was used.

Simulation closely match experimental temperatures in the multi-system case, especially
considering the paucity of experimental temperature points. The temperature of maximum
growth rate in simulation is between the highest two experimental growth rate temperatures
for all systems, and the full-width-half-max temperature window is comparable, smaller in
simulations by 9.8 % for k =9 and 11.7% for k = 10. This close agreement of temperature
window size motivates the omission of partially-blocked attachment events in the model:
as discussed in Section B, the inclusion of partially-blocked attachment rates results in a
significantly wider temperature window than seen experimentally, with a shallower fall-off in
rates at low temperatures. Theoretical growth rate estimates, while matching the simulated
temperatures of maximum growth rate, have a wider temperature window. As the theoretical
estimate uses the mean bond strength, this result is expected: compared to the equal bond
strength case, the weakest tile-assembly bonds will reduce growth at high temperatures, and
the strongest cover-tile bonds will reduce growth at low temperatures.
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5 Discussion

Despite the simplicity of our models, both theoretical analysis and simulations fit experiments
well. That they do so despite disallowed reactions is perhaps unexpected. Remark 10 describes
physically-plausible phenomena that may result in these reaction pathways being rare, but
further analysis and experimental investigation would be fruitful. Nevertheless the simple
model seems to provide a good approximation of experimental behaviours. The model,
theoretical tools and simulations may be predictive of blocker systems beyond the tile
systems studied here, and are likely applicable to a wider range of tile motifs.

Our model predicts that, with sufficient blocker concentration, both growth and spon-
taneous nucleation will be possible only within a fixed temperature window and both will
have maximum rates at particular temperatures. If the maximum rate of spontaneous
nucleation is low, then no matter how low the temperature is spontaneous nucleation will
not be significant, unlike the no-blocker scenario where nucleation rates are very high at
low temperatures. Similarly, below the temperature window for growth, growth will not
occur: unlike tile assembly without blockers, where lower temperatures lead to disordered
growth, with sufficient blockers, no growth will take place at all. While these results are in a
model that does not consider non-lattice interactions that could be viable at low temper-
ature, intuitively, they are based on simple tile-blocker dimerization that should continue
to be relevant at low temperatures. Such temperature-dependent behaviour offers several
possibilities. For example, could temperature be used as a programmable, time-dependent
input to the growth of structures? Could ordered assemblies be grown without a typical
high-to-low temperature annealing protocol, instead starting at room temperature, below
the growth temperature window, and then simply heating the system to a viable growth
temperature? We intentionally model only simple blockers in our model, to match those
used in experiments. Numerous variations could have potentially interesting behaviours,
especially if combined. Increasing and decreasing the strength of blocker glues compared to
tile glues (for example, by making them longer or shorter than the binding regions) could
be a stronger mechanism for tuning effective tile concentration than blocker concentration
alone, potentially avoiding the need for large blocker concentrations. Multiple-edge blockers
could have different, perhaps even error-reducing, properties, incorporating cooperative
attachment into the blocker mechanism. We also have not yet explored the effect of blockers
on algorithmic self-assembly, where it could change error rate properties.

More generally, our work provides a kinetic explanation for a tile assembly mechanism
beyond the colder-is-faster dynamics of passive tile self-assembly, through addition of simple
reactions interfering with/mediating the self-assembly process. What other forms of “modified
kinetics” might exist, and what behaviours could they exhibit? Could modifications allow
for new tradeoffs, e.g. speed-accuracy tradeoff in algorithmic kTAM self-assembly, or other
error reduction mechanisms entirely? Could they offer resilience to temperature, energy or
concentration variability? Do such simple mediating self-assembly reactions exist in nature?
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A A unitful-energy reparametrization of the kTAM

For comparisons to the kTAM model [24, 9], we use a reparametrization of the kTAM in terms
of unitful energies, rather than dimensionless, sign-reversed energies. In the reparametrized
model, the governing rate equations are

Tatt = Krcy Tdot = kpePPAGrond (D —(b=D)ASi/R (10)

These parameters are related to the dimensionless kTAM [24, 9] as:

¢y = e Gmeta AGpond(T) = —RT(Gye — ) AS.t = Ra (11)
—BAGyona(T) + « a=AS/R (12)

Gme =a —Inc Ge

It is easily seen that the kBlock model, with ¢, = 0 and p, = 1, is equivalent to this
parametrization of the kTAM.

B Partially-blocked attachment events

In the kBlock model, we make the assumption that a tile state may only attach if the tile
would not be adjacent to any edge of any tile state in the assembly with a bound blocker.
It is possible, and perhaps even more physically plausible, to consider the model where the
opposite choice is made: where a tile can attach if there is at least one edge where it can make
a bond, regardless of blockers on other edges. We will refer to this model as the kBlockP,
where “P” stands for partial binding. Rates will remain the same: the only significant
difference is that now, there may be blockers blocking bonds between adjacent tiles in an
assembly. We will assume that these bonds are not able to form with the blocker present,
but that those blockers will detach with the same rate as blockers elsewhere, and that when
they do, the adjoining tiles will immediately make a bond if they have complementary glues
on those edges, changing their detachment rates.

The kBlockP model does not satisfy detailed balance: there is no blocker attachment
reaction corresponding to a blocker detaching from a position where there is a neighbouring
tile. Like the kTAM, the blocker model treats reactions at a tile (and blocker) level as being
single steps, rather than considering the attachment and detachment of individual bonds
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Figure 6 Comparison of growth rates. Left: With partially-blocked attachment events, i.e. using

the kBlockP2 model discussed here in Section B. Right: Without partially-blocked attachment
events, i.e. using the kBlocks model defined in Definition 12.

as the elementary reactions. This approach is considerably simpler and easier to consider
physically-realistic parameters for: it is not clear, for example, what the kinetics of individual
bond formation and breakage would be. However, for reaction pathways where individual
bond formation and breakage must be considered, such models either violate detailed balance,
if only one reaction direction can be included, as is the case here and with fission reactions in
many kKTAM implementations, or omit reaction pathways entirely, for example, for the fission
of a 1D line of tiles, where the kTAM would calculate the line breaking in two based on tiles
attached by two bonds, whereas a bond-level model would allow the line to break by the
much faster reaction of only a single bond breaking. For the kBlockP model, we expect the
omitted reaction pathways would be sufficiently rare, and the violation of detailed balance
sufficiently small, so as to not significantly affect simulation results. However, a more general
bond-based model, with or without blockers, is an open area for future work.

A similar kBlockPy can be developed, but in this case, we will allow attachments by two
bonds, or by tiles that could form two bonds, but have one bond blocked. Similar theoretical
results can then be shown, primarily that kBlockPs will have the same two-bond growth rate
as a kTAM, system with the effective tile concentration of cyram = PacCkBlock, rather than
pgckBlock, and that nucleation rates through a critical nucleus with N tiles and B bonds
will be reduced by a factor of pZ. These results also fit simulation results well, when the
simulation uses the kBlockPy model.

However, in comparison to experimental results for multiple systems of varying bond
strengths, shown in Figure 6, the temperature dependence of the kBlockP growth rate is

significantly different from the experimental results, compared to the kBlock model, which
matches surprisingly well.
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