
Abstract Subtyping for
Asynchronous Multiparty Sessions
Laura Bocchi #

University of Kent, Canterbury, UK

Andy King #

University of Kent, Canterbury, UK

Maurizio Murgia #

Gran Sasso Science Institute, L’Aquila, Italy

Simon Thompson #

University of Kent, Canterbury, UK

Abstract
Session subtyping answers the question of whether a program in a communicating system can be
safely substituted for another, when their communication behaviour is described by session types.
Asynchronous session subtyping is undecidable, even for two participants, hence the interest in sound,
but incomplete, subtyping algorithms. Asynchronous multiparty subtyping can be formulated by
decomposing session types into single input and output types which preclude, respectively, external
and internal choice. This paper shows how abstract interpretation can sit atop this approach and
how it leads to an algorithm that can prove subtyping for intricate communication patterns.
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1 Introduction

A significant challenge in message-passing concurrency is ensuring that each process in the
system adheres to a desired protocol and is free from communication errors. Session types
have proved to be powerful in addressing this challenge: they provide a theory for designing
protocols with desirable behavioural guarantees, and are directly applicable to programming
languages (notably Java [31], Python [22], Rust [33], Go [34] and Erlang [24, 37]) via static
type-checking, runtime monitoring, or API generation. Session types were initially proposed
for binary sessions involving only two roles (aka participants) [29], and were later extended
to multiparty sessions, to allow for many roles [30]. Multiparty session types produce, via
automated projection from a global protocol, a safe (by construction) realisation given as a
collection of local types, one for each role. In this work we use this as a starting point: a
collection of local types whose communications are safe in the sense that no role will ever:
(1) get stuck (until it terminates); and (2) receive an unexpected message.

To illustrate protocol realisation, consider the three local types below: a server S, a client
C, and a logger L, where s, c, and l denote the respective roles. The server can initially
receive two kinds of messages from the client: c?next for more feeds or c?stop for termination.
Feed requests are served with a feed (c!feed) and waiting for further requests. The logging
process gets regular updates by the server and sends a final summary to the client:
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10:2 Abstract Subtyping for Asynchronous Multiparty Sessions

S = (c?next. l!next. c!feed. S + c?stop. l!stop)
C = (s!next. s?feed. C + s!stop. l?sum)

L = (s?next. L + s?stop. c!sum)

We omit formalities on the semantics for the purposes of this introduction, and instead
use color coding to hint at the correspondence between pairs of send/receive actions. This
correspondence ensures that, in a system (S, C, L) behaving as the parallel composition of
the three local types, no role ever gets stuck or receives an unexpected message.1

A fundamental problem in the application of session types is checking whether the
implementation of one component in a distributed system can be substituted for another,
without compromising safety of the overarching protocol. This problem can be addressed at
the level of types and formulated as session subtyping [13, 21, 25, 26, 27]. Session subtyping
establishes a preorder relation on local types: C ′ is a subtype of C, written C ′ ≤ C, if a
program with type C can be safely substituted by a program with type C ′. Specifically, given
a safe protocol (S, C, L), C ′ ≤ C ensures that (S, C ′, L) is also safe. For example, consider
the variant C ′ = s!next. (s?feed. s!stop. l?sum + s?else) of C given earlier. With respect to C,
C ′ has: (1) less send options (initially it can only select next, and after receiving one feed it
can only select stop), (2) more receive options (the additional option s?else). This notion of
substitutability is covariant on send actions and contravariant on receive actions [25]. In
fact, one can verify C ′ ≤ C, which ensures that if (S, C, L) is safe then so is (S, C ′, L).

Asynchronous session types are particularly interesting due to the use of FIFO channels
in distributed systems and languages such as Go and Rust. When considering asynchronous
session types, channels are unidirectional and unbounded (hence two are used for each pair
of roles, one in each direction). For example, the asynchronous protocol (S, C ′, L) behaves
as the parallel composition of 3 roles communicating over 6 unidirectional channels, where a
send action enqueues a message to a channel and a receive action dequeues it.

Establishing whether subtyping holds is non-trivial, especially when communication is
asynchronous. Recent work [27] has provided, for the first time, a sound and complete
definition of Multiparty Asynchronous session Subtyping (MAS). This definition of session
subtyping is sound and complete in the sense that it precisely capture only and all the safety-
preserving modification one can perform on a local type. Besides co- and contra-variance,
MAS enables some actions to be swapped, reflecting the asynchronous nature of interaction.
MAS allows two kinds of swapping:
SW1 a role can anticipate an output action with respect to an input action;
SW2 a role can swap actions of the same directions from/to different roles.
Below, C ′′ is a variant of C ′ where the client anticipates the end-of-session request s!stop
before the processing of the feed c?next. This swap may be desirable to allow the client to
process the feed from its own local queue at a later stage, and is allowed by SW1. S′ is a
variant of S where the send actions c!feed and l!next have been swapped, which is allowed by
SW2. Indeed C ′′ ≤ C and S′ ≤ S.

C ′′ = (s!next. s!stop. s?feed. l?sum) S′ = (c?next. c!feed. l!next. S′ + c?stop. l!stop)

This flexibility comes at a price: for interactions over unbounded channels MAS is unde-
cidable [7, 35]. The subtyping problem can be viewed as a simulation game between the
candidate subtype and the supertype, in which supertype is required to mirror any action

1 Session types also accompany labels with payloads of type String, Int, higher-order, etc. We omit these
details in our presentation as they are not relevant to subtyping.
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performed by the candidate subtype. Consider checking whether C ′′′ is a subtype of C where:

C ′′′ = s!next. s!next. s?feed. C ′′′

The client requests feeds at double the pace of its own feed processing time. It is actually the
case that C ′′′ ≤ C according to asynchronous subtyping [7, 27]. However to verify C ′′′ ≤ C,
one needs to show that C can follow the actions of C ′′′, albeit with send actions being delayed.
Due to unbounded channel size, an unbounded number of input actions (the feed processing)
can be deferred, yielding an infinite space of possible interleavings.

Sound algorithms have emerged which aim to establish subtyping in practical scenarios.
Most of these algorithms are limited to binary sessions (only two roles) and follow the
definition of binary subtyping in [13]. The definition in [13] is operational in nature, based
on simulation trees, which makes it relatively straightforward to translate it into a practical
subtyping algorithm [3, 6]. Unlike the binary case [13], the multiparty definition of MAS
in [27] is declarative. While MAS concisely expresses an intrinsically complex problem, it
is also highly non-intuitive. Therefore, it is unrealistic to expect a developer to be able to
check the correctness of their code substitutions using the definition directly (beside the fact
that the problem is undecidable). MAS can only be practically used if a test for subtyping
can be automated, and since the problem is undecidable, the solution will necessarily entail
approximation. This paper has exactly this purpose: automation of MAS. Automation still
raises the question “how can one trust the algorithm?” Our paper also answers this: our
black-box (automatically) generates a certificate which can be, if needed, further checked off
with a proof assistant [23].

In this introduction, to clarify the purpose of our work, we have provided an overview of
the problem space, and hinted at the underlying asynchronous communication model and the
notion of safety that subtyping preserves. However, these details are neither needed nor used
in the technical development which follows, since our work builds entirely on the declarative
definition of MAS [27] that elegantly abstracts over the communication model.

1.1 Challenges and contributions
The undecidability of MAS is unfortunate, as safety-preserving substitutions are most valuable
in the asynchronous setting to check the validity of performance optimisations, namely sending
messages earlier or postponing receives [38]. A MAS subtyping checker would encourage
developers to experiment with communication structures, providing a litmus test for checking
the correctness of an optimisation. While polynomial checking algorithms do exist [36],
they do not support optimisation even for the simpler binary case. A potential solution
lies in abstract interpretation, previously applied to binary subtyping, where sets of words
model asynchronicity [3]. This addresses undecidability with systematic (lattice-theoretic)
approximation. To apply abstract interpretation to multiparty interaction, we reformulate
MAS as subtyping on sets of session trees, and make the following contributions:

We introduce an equivalent but more tractable formulation of MAS [27], based on a new
lite refinement preorder. MAS [27] is defined using nested quantification over infinite
structures. One of the challenges of checking MAS is that it requires a check for inclusion
of the actions being postponed over infinite structures. Lite refinement provides a way to
automation by reducing the inclusion check to a simple, local check.
Abstraction has been applied to binary subtyping by adapting subtyping to sets of words
and then representing these sets with regular expressions [3]. MAS is formulated in terms
of session trees, and likewise we generalise subtyping to sets of session trees. To derive
continuations after performing an action, we adapt the Brzozowski derivative [10] from
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10:4 Abstract Subtyping for Asynchronous Multiparty Sessions

regular expressions to session trees, and further extend it to sets of session trees. This
provides a semantic foundation for subtyping, similar to a collecting semantics [17], ready
for abstract interpretation and the deployment of an abstract domain.
We provide a new abstract domain for representing sets of session trees based on type
graphs [43] and provide new domain operations for send and receive. Since the abstract
domain is not finite, we show how widening can be applied to derive a terminating MAS
algorithm founded on lite refinement.

Overall, we show how the theoretical formulation of MAS [27] can be distilled into an
algorithm for checking subtyping. Moreover, our algorithm yields a certificate (enabling
subtyping to be double-checked by a third-party without consideration of low-level algorithmic
details). We complement our theoretical contribution by evaluating our algorithm on some
challenging problems and show it can prove subtyping more often than existing methods,
whilst being an order of magnitude faster than the state-of-the-art binary algorithm [3].

2 Preliminaries

2.1 Syntax
Let P denote a finite set of roles and Σ denote a finite alphabet of communication labels.
Let A! = {p!a | p ∈ P, a ∈ Σ}, A? = {p?a | p ∈ P, a ∈ Σ} and A = A! ∪ A?. The syntactic
category of session types, S, is inductively defined by:

S ::= ⊕i∈I p!ai.Si | &i∈I p?ai.Si | end | µt.S | t

where I is drawn from the category of (finite) index sets I. Session type ⊕i∈I p!ai.Si is for
selection/send: the role selects one label in {ai}i∈I , sends it to role p, and continues as the
corresponding Si. Session type &i∈I p?ai.Si is a branching/receive action, where the role
receives a label from p. end is for termination, µt.S for recursion, and t is a type variable
used for recursive call.

Asynchronous multiparty subtyping [27] is based on a co-inductive representation of
session types called session trees. The category T for session trees is defined co-inductively
below. Subtyping is defined using three sub-classes of session trees called single-output (SO)
trees U, single-input (SI) trees V, and single-input-single-output (SISO) trees W, also defined
co-inductively below:

T ::= ⊕i∈I p!ai.Ti | &i∈I p?ai.Ti | end U ::= p!a.U | &i∈I p?ai.Ui | end
V ::= ⊕i∈I p!ai.Vi | p?a.V | end W ::= p!a.W | p?a.W | end

We let S, T , U , V and W denote typical members S, T, U, V and W, respectively.
If a sequence W contains the action p ⋄ a where ⋄ ∈ {!, ?}, we write p ⋄ a ∈ W . Given

the sets Q! = {p! | p ∈ P}, Q? = {p? | p ∈ P} and Q = Q! ∪ Q? we define the mapping
act : A → Q where act(p ⋄ a) = p ⋄. Given a set of actions A ⊆ A and a sequence of actions
W ∈ W, we define act(A) = {act(p ⋄ a) | p ⋄ a ∈ A} and act(W ) = {act(p ⋄ a) | p ⋄ a ∈ W}.

2.2 MAS: a declarative definition
MAS [27] is formulated in terms of two classes of sequence of actions, Ap and Bp, which are
parameterised by a participant p. Classes Ap and Bp embed the principles of swapability
encoded into MAS. These finite sequences are inductively defined as follows:

▶ Definition 1 (Finite sequences). Ap ::= Ap | Ap. Ap and Bp ::= Bp | Bp. Bp where
Ap = {q?a ∈ A? | p ̸= q} and Bp = {q!a ∈ A! | p ̸= q} ∪ A?.
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Ap defines the sequences of actions that can be anticipated before a receive action from p

(namely any receive action that is not from p), whereas Bp defines the sequences of actions
that can be anticipated before a send action to p (namely any receive action – outputs can
always be done before inputs – and any send action that is not to p). Note in particular that
p?a /∈ Ap and p!a /∈ Bp. Using Ap and Bp, we can now define refinement for SISO trees:

▶ Definition 2 (SISO refinement). The refinement relation ≾ ⊆ W × W for SISO-trees is
co-inductively defined as below, where A ∈ Ap and B ∈ Bp:

end ≾ end RefEnd
W ≾ W ′

p?a.W ≾ p?a.W ′ RefIn
W ≾ W ′

p!a.W ≾ p!a.W ′ RefOut

W ≾ A.W ′ act(W ) = act(A.W ′)
p?a.W ≾ A.p?a.W ′ RefA

W ≾ B.W ′ act(W ) = act(B.W ′)
p!a.W ≾ B.p!a.W ′ RefB

▶ Example 3. Since ≾ is the largest relation which is closed backwards under these rules it
follows (p!a)ω ≾ (p!a)ω holds as well as p!a.end ≾ p!a.end. To see (p!a)ω ≾ (p!a)ω observe
(p!a)ω = p!a.(p!a)ω therefore if p!a.(p!a)ω ≾ p!a.(p!a)ω then (p!a)ω ≾ (p!a)ω holds too. Thus
RefOut is applicable. Rule RefB is not violated since p!a ̸∈ Bp hence no rule is contradicted.

▶ Example 4. Let (q?b)ω denote the infinite sequence of actions q?b.q?b. · · · and consider
the following SISO trees: W = p?a.(q?b)ω and W ′ = (q?b)ω. Observe that W ≾ W ′ cannot
be derived by RefIn since W ′ does not start with p?a or RefA since W ′ does not contain p?a.

SISO-tree refinement provides an elegant vehicle for expressing swapability over the
sequences of actions. However, a session type is not a sequence of actions, but rather a tree
with selection and branching points. Definition 5 decomposes session trees in sets of SI- and
SO- trees so as to express the co- and contra-variance of selection and branching.

▶ Definition 5 (SO- and SI-tree decomposition for session trees). The tree decomposition maps
J.KSO : T → ℘(U) and J.KSI : T → ℘(V) are defined:

JendKSO ={end}
J
⊕

i∈Ip!ai.TiKSO ={p!ai.Ui | i ∈ I, Ui ∈ JTiKSO}
J&i∈Ip?ai.TiKSO ={&i∈Ip?ai.Ui | i ∈ I, Ui ∈ JTiKSO}

JendKSI ={end}
J
⊕

i∈Ip!ai.TiKSI ={
⊕

i∈Ip!ai.Vi | i ∈ I, Vi ∈ JTiKSI}
J&i∈Ip?ai.TiKSI ={p?ai.Vi | i ∈ I, Vi ∈ JTiKSI}

The intuition is that SO-tree decomposition removes the selection points in a session tree
and expresses them using sets of single-output sequences, and dually for SI-trees. The maps
J·KSO and J·KSI lift to a set of session trees T ∈ ℘(T) by, respectively, JT KSO = ∪T ∈T JT KSO
and JT KSI = ∪T ∈T JT KSI.

▶ Example 6. JUKSI = {(p?a)ω}∪{(p?a)k.p?b.q?b.end | k ≥ 0} where U = p?a.U &p?b.q?b.end.

Multiparty Asynchronous Subtyping (MAS) is formally defined as a binary relation on session
trees in a forall-exists construction. Covariance and contravariance are encoded as a forall
requirement on the SO-trees (resp. SI-trees) of the subtype (resp. supertype). The problem
is then reduced to checking SISO-tree refinement:

▶ Definition 7 (MAS). The binary relation ≤ on T × T is defined by T ≤ T ′ holds iff
∀U ∈ JT KSO : ∀V ′ ∈ JT ′KSI : ∃W ∈ JUKSI : ∃W ′ ∈ JV ′KSO : W ≾ W ′.
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10:6 Abstract Subtyping for Asynchronous Multiparty Sessions

▶ Example 8. To illustrate MAS, consider showing T ≤ T ′ where T =
p?c.q!d.end & p?e.q!d.end and T ′ = q!d.(p?c.end & p?e.end). Since T is an SO-tree, JT KSO =
{T}. T ′ is not an SI-tree hence JT ′KSI = {q!d.p?c.end, q!d.p?e.end}. Universal quantifica-
tion over JT ′KSI requires that T is checked against both q!d.p?c.end and q!d.p?e.end. To do
so, note p?c.q!d.end ∈ JT KSI and p?c.q!d.end ≾ q!d.p?c.end likewise p?e.q!d.end ∈ JT KSI and
p?e.q!d.end ≾ q!d.p?e.end since

end ≾ end RefEnd

q!d.end ≾ q!d.end RefOut

p?c.q!d.end ≾ q!d.p?c.end RefA

end ≾ end RefEnd

q!d.end ≾ q!d.end RefOut

p?e.q!d.end ≾ q!d.p?e.end RefA

3 Lite SISO-tree refinement

To develop a subtyping algorithm we introduce a novel form of SISO-refinement on W × W,
called lite SISO-tree refinement, that is equivalent to classical SISO-refinement but
is more attractive computationally. Lite refinement builds on the observation that the
equality checks act(W ) = act(A.W ′) and act(W ) = act(B.W ′) in the premises RefA and
RefB of classical SISO-refinement can be relaxed to inclusion checks act(W ) ⊆ act(A.W ′) and
act(W ) ⊆ act(B.W ′) without enlarging the refinement relation. Furthermore, the inclusions
can be further relaxed to lightweight checks act(hd(A)) ∈ act(W ) and act(hd(B)) ∈ act(W )
involving only the single actions hd(A) and hd(B) where hd denotes head:

▶ Definition 9. The lite refinement relation ≾l ⊆ W × W on SISO-trees is co-inductively
defined as:

W ≾l A.W ′ act(hd(A)) ∈ act(W )
p?a.W ≾l A.p?a.W ′ RefA

W ≾l B.W ′ act(hd(B)) ∈ act(W )
p!a.W ≾l B.p!a.W ′ RefB

where A ∈ Ap and B ∈ Bp with RefEnd, RefIn and RefOut as in Definition 2.

▶ Corollary 10. W ≾ W ′ iff W ≾l W ′.

In the sequel, we develop a subtyping algorithm, based on ≾l, the correctness of which follows
from the equivalence asserted by Corollary 10.

4 Subtyping Sets of Session Trees

Reasoning on sets of session trees paves the way for abstract interpretation [17] to be applied,
where an algorithm is obtained by representing sets of session trees using an abstract domain
constructed from type graphs [32]. Let JT ′KSI = ∪{JT ′KSI | T ′ ∈ T ′} to faciliate the following
generalisaton of classical subtyping [27] to sets of session trees:

▶ Definition 11. The binary relation ≤ ⊆ T × ℘(T) is defined T ≤ T ′ holds iff T ′ ̸= ∅ and
∀ U ∈ JT KSO: ∀ V ′ ∈ JT ′KSI: ∃ W ∈ JUKSI : ∃W ′ ∈ JV ′KSO : W ≾ W ′.

The section builds towards a subtyping relation on sets of subtrees, given in Figure 1,
that provides a basis for abstract interpretation. Subtyping is defined in terms two notions
of derivative: one for receive actions (Definition 16) and one for send actions (Definition 17).
These operations scan a session tree from its root for a specific action, and return the
session trees obtained by removing that action and any sub-trees that do not include it.
These operations are inspired by the Brzozowski derivative [10] of a regular expression
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e wrt to a symbol u: if e represents a set of words W , the derivative ∂u(e) represents
{w ∈ Σ∗ | u · w ∈ W}. Our derivatives, presented in Sections 4.1 and 4.2, generalise
the Brzozowski derivative to operate on (sets of) session trees rather than (sets of) words.
Section 4.3 formulates subtyping using the derivatives. The subtyping relation is defined
co-inductively, each deduction reading the action at the head of the subtype to apply either
the send or receive derivative to the supertype. Our approach is justified by lite refinement.

4.1 Receive derivative of a session tree
Derivatives differ depending on whether they look for receive or send actions. A receive
derivative is calculated using a depth bound derived using the alwaysp? predicate:

▶ Definition 12. The predicate alwaysp? ⊆ T × N0 is inductively defined as follows:

alwaysp?(&i∈Ip?ai.T
′
i , 0)

p ̸= q ∀i ∈ I : alwaysp?(T ′
i , ki)

k = 1 + maxi∈I ki

alwaysp?(&i∈Iq?ai.T
′
i , k)

∀i ∈ I : alwaysp?(T ′
i , ki)

k = 1 + maxi∈I ki

alwaysp?(
⊕

i∈I
q!ai.T

′
i , k)

Furthermore alwaysp?(T ) holds iff there exists k ∈ N0 such that alwaysp?(T, k) holds.

▶ Example 13. Let T ′
1 = q?a.p?a.end + q?b.p?b.T ′

1 and T ′
2 = q?a.p?a.end + q?b.T ′

2. Since
alwaysp?(p?a.end, 0) and alwaysp?(p?b.T ′

1, 0) then alwaysp?(T ′
1, 1). However, alwaysp?(T ′

2, k)
does not hold (∀ k ∈ N0) since alwaysp? is defined inductively.

Lemma 14 asserts that the absence of a bound k implies the absence of subtyping.
Lemma 15 asserts that there exists at most one k for which alwaysp?(T ′, k) holds. The receive
derivative, which follows, is then defined in terms of the bound.

▶ Lemma 14. If T, T ′ ∈ T and p?a.T ≤ T ′ then alwaysp?(T ′).

▶ Lemma 15. If T ′ ∈ T, alwaysp?(T ′, k) and alwaysp?(T ′, k′) then k = k′.

▶ Definition 16 (Receive derivative). The receive derivative map δp?a : T → ℘(T) is defined
as δp?a(T ) = if alwaysp?(T, k) then {D | δk

p?a(T, D)} else ∅, where the derivative relation
δk

p?a : T × T for some k ≥ 0 is inductively defined:

j ∈ I a = aj

δ0
p?a(&i∈Ip?ai.T

′
i , T ′

j)

p ̸= q ∀i ∈ I : δki

p?a(T ′
i , Di) k = 1 + max{ki}i∈I j ∈ I

δk
p?a(&i∈Iq?ai.T

′
i , q?aj .Dj)

Following MAS, a receive action from p can only be found immediately (first rule) or after
other receive actions from other roles (second rule). The second rule can be applied non-
deterministically for any j ∈ I and derives at least |I| distinct derivatives (which δp?a(T )
returns as a set). We write q?aj .Dj for the concatenation of q?a, the action preceding p?a,
with a subtree Dj that was the continuation of p?a in that path. The receive derivative is
well-defined because there exists at most one k such that alwaysp?(T ′, k) holds.

4.2 Send derivative of a session tree
Unfortunately, Lemma 14 does not help us define a send derivative on supertypes as we no
longer rely on a known bound k. Hence, the definition of ∆k

p!a is parametric in k.
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10:8 Abstract Subtyping for Asynchronous Multiparty Sessions

▶ Definition 17 (Send derivative). The k-th order send derivative map ∆k
p!a : T → ℘(T) is

defined as

∆k
p!a(T ′) =

{
Dk if Dk ̸= ∅ ∨ k = 0 where Dk = {D | ∆k

p!a(T ′, D)}
∆k−1

p!a (T ′) otherwise

and the derivative relation ∆k
p!a ⊆ T × T is, itself, inductively defined by:

j ∈ I a = aj

∆0
p!a(

⊕
i∈I p!ai.T

′
i , T ′

j)

∀i ∈ I :∆ki

p!a(T ′
i , Di) ∧ ki maximal k = 1 + max{ki}i∈I j ∈ I

∆k
p!a(&i∈Iq?ai.T

′
i , q?aj .Dj)

p ̸= q J = {i ∈ I | ∆ki

p!a(T ′
i , Di) ∧ ki maximal } ≠ ∅ k = 1 + max{ki}i∈I

∆k
p!a(

⊕
i∈I q!ai.T

′
i ,

⊕
j∈J q!aj .Dj)

The k-th derivative is defined to be the set of derivatives Dℓ for which Dℓ ̸= ∅, the degree
ℓ is maximal and ℓ ≤ k. If Dℓ = ∅ for all 0 ≤ ℓ ≤ k then the k-th derivative is itself null.
Following MAS, in a supertype, a send action can be found immediately (first rule), after
receive actions (e.g., the subtype may have anticipated the output), or after other send actions
from different roles (third rule). Condition ki maximal means: ∀i∈I :∆k∗

i

p!a(T ′
i , D∗

i ) ⇒ k∗
i ≤ ki.

The third rule derives at least one derivative equipped with |J | branches q!aj .Dj , where the
Dj are again selected to maximise their degree ki.

▶ Example 18 (Derivatives). Let T = r?a.q?a.p!a.T&r?b.r?b.q?a.end. The receive derivative
δq?a(T ) exists because both branches of T possess a receive action q?a. Indeed alwaysq?(T, 2)
holds, hence δq?a(T ) = {r?a.p!a.T, r?b.r?b.end}. Now consider ∆k

p!a(T ). For k < 2, the send
derivatives ∆0

p!a(T ) = ∆1
p!a(T ) = ∅. Yet for k ≥ 2, ∆k

p!a(T ) = {r?a.q?a.T}. In this case, p!a
does not need to occur in all branches of T for the derivative to exist.

4.3 Subtyping with receive and send derivatives
To apply one derivative after another in a chain of actions, receive and send derivatives are
lifted to operators on sets of supertypes as follows:

▶ Definition 19. The operators δp?a : ℘(T) → ℘(T) and ∆p!a : ℘(T) → ℘(T) are defined:

δp?a(T ′) = ∪{δp?a(T ′) | T ′ ∈ T ′}
∆k

p!a(T ′) = ⊎{∆k
p!a(T ′) | T ′ ∈ T ′}

where ⊎ T ′ =
{

∅ ∅ ∈ T ′

∪T ′ otherwise

The use of ⊎ in ∆k
p!a(T ′) reflects covariance over sends: the p!a action of the subtype must

be supported by all session-trees T ′ ∈ T ′. Conversely, the use of ∪ in δp?a(T ′) models
contravariance over receives: the p?a of the subtype does not need to be found in all T ′ ∈ T ′.

▶ Definition 20. Given a partial map Γ ∈ T ⇀ ℘(Q), the update and accumulate operations
are respectively defined:

Γ[T 7→ Q] = {T 7→ Q} ∪ {T ′ 7→ Q′ ∈ Γ | T ̸= T ′}
Γ + p⋄ = {T 7→ Q ∪ {p⋄} | T 7→ Q ∈ Γ} where ⋄ ∈ {!, ?}

▶ Definition 21 (Subtyping on sets of session trees). The ternary subtyping relation
≤⊆(T ⇀ ℘(Q)) × T × ℘(T) is co-inductively defined by the rules of Figure 1.

The ternary subtyping relation is defined using an environment Γ, a partial map T ⇀ ℘(Q),
that records the actions performed by T before T is encountered again as a sub-tree. This
device assumes that session trees are regular [40, Section 21.7.2] (aka rational [16]). T is
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Γ ⊢ end ≤ {end} RefEnd

∀T ′ ∈ T ′ : ∃i ∈ I : δp?ai
(T ′) ̸= ∅ J = {i ∈ I | δp?ai

(T ′) ̸= ∅} ≠ ∅
∀i ∈ J : ∃Di ⊇ δp?ai(T ) : Γ′ ⊢ Ti ≤ Di

T 7→ Q ∈ Γ ⇒ Q ⊇ act(hd(T ′)) Γ′ = Γ[T 7→ ∅] + p? where T = &i∈Ip?ai.Ti

Γ ⊢ &i∈Ip?ai.Ti ≤ T ′ RefInA

∃k ∈ N : ∀i ∈ I : ∆k
p!ai

(T ′) ̸= ∅ ∀i ∈ I : ∃Di ⊇ ∆k
p!ai

(T ) : Γ′ ⊢ Ti ≤ Di

T 7→ Q ∈ Γ ⇒ Q ⊇ act(hd(T ′)) Γ′ = Γ[T 7→ ∅] + p! where T = ⊕i∈Ip!ai.Ti

Γ ⊢ ⊕i∈Ip!ai.Ti ≤ T ′ RefOutB

Figure 1 Rules for the ternary subtyping relation ≤⊆(T ⇀ ℘(Q)) × T × ℘(T).

regular iff its set of distinct subtrees, sub(T ), is finite. This is not limiting since session types
correspond to regular session trees. The premises of RefInA and RefOutB are partitioned
by the dotted lines into: (bottom) requirements based on the syntax of the subtype T that
decompose the problem onto sub-problems of the form Γi ⊢ Ti ≤ Di and ensure a progress
condition, and (top) subtyping requirements based on derivatives. In both rules, the premise
T 7→ Q ∈ Γ ⇒ Q ⊇ act(hd(T ′)) stipulates that the actions at the head of T ′ must be
performed within one cycle of T , that is, before T is revisited while traversing the subtype.
This progress condition [15] ensures that a head action of T ′ is not postponed indefinitely.2

Rule RefInA lifts RefIn and RefA of lite refinement (Definition 9) to sets of session trees.
The first premise of RefInA (top) is a coverage condition which ensures that for every T ′ ∈ T ′

a receive derivative δp?ai(T ′) is defined for least one i ∈ I. This guarantees that the selection
of receive actions offered by T cover those occurring in T ′.

Rule RefOutB lifts RefOut and RefB (Definition 9) to session trees by applying the send
derivative. Note RefInA permits a relaxation Di to be used for δp?ai

(T ′); likewise a superset
Di is used for ∆ki

p!ai
(T ′) in RefOutB. Observe k is not fixed upfront: it can vary with T ′.

▶ Theorem 22. If T ∈ T is regular, T ′ ∈ ℘(T) and ∅ ⊢ T ≤ T ′ then T ≤ T ′.

▶ Example 23 (Violated progress condition). Consider U = p?a.(q?a.U + q?b.r?a.end) and
the subtyping problem U ≤ r?a.W ′ where W ′ = p?a.q?a.W ′ and W ′ ∈ W. Observe that if
W ≾l r?a.W ′ then r? ∈ act(W ) hence W is finite which presents a contradiction therefore
U ̸≤ r?a.W ′. Likewise ∅ ⊢ U ̸≤ r?a.W ′ as is demonsrated below:

{U 7→ {p?, q?}, q?a.U 7→ {q?}} ⊢ U ≤ {r?a.W ′}
{U 7→ {q?}} ⊢ q?a.U + q?b.r?a.end ≤ {r?a.q?a.W ′} RefInA

∅ ⊢ U ≤ {r?a.W ′} RefInA

In the first application of RefInA, δp?a(r?a.W ′) = δp?a(r?a.p?a.q?a.W ′) = {r?a.q?a.W ′}
and δp?a′(r?a.W ′) = ∅ for all a′ ≠ a. In the second, δq?a(r?a.q?a.W ′) = {r?a.W ′} but
δq?b(r?a.q?a.W ′) = ∅ thus J is a singleton. The development cannot be progressed since
{p?, q?} ̸⊇ {r?} = act(hd({r?a.W ′})), in effect, detecting that r?a is an orphan.

2 Binary subtyping [3, 5, 6, 13] makes use of a check that tests for cycles of send actions in the candidate
subtype. We reframed these checks here as a more intuitive and simple progress condition, which
amounts to no more than a set inclusion test that discharges a requirement on swapability.

CONCUR 2025



10:10 Abstract Subtyping for Asynchronous Multiparty Sessions

p!

q!

a

b

a

∪

T p!

∪

p!T

a

a

b

∪

T p!

∪

T p!

T p!

T

a

a b

a

∪

T p!

∪

T p!

T

a

a

b

p!

q!

q! p!

p!

p!

a b

a

b

a a

a

b

a

∪

∆2
q!a(T ) p!

∪

p!∆2
q!a(T )

a

a

b
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q!a(T ) (vi) Π2

q!a(G).

▶ Example 24 (Satisfied progress conditions). To illustrate where a message is postponed, but
is not orphan, consider the question W ≤ W ′ where W = p!a.p!a.p?b.W and W ′ = p!a.p?b.W ′:

...
{W 7→ {p!}, p!a.p?b.W 7→ {p!, p?}, p?b.W 7→ {p?, p!}} ⊢ p!a.p?b.W ≤ {p?b.p?b.W ′}

{W 7→ {p!, p?}, p!a.p?b.W 7→ {p!, p?}, p?b.W 7→ {p?}} ⊢ W ≤ {p?b.W ′} RefOutB

{W 7→ {p!}, p!a.p?b.W 7→ {p!}} ⊢ p?b.W ≤ {p?b.p?b.W ′} RefInA

{W 7→ {p!}} ⊢ p!a.p?b.W ≤ {p?b.W ′} RefOutB

∅ ⊢ W ≤ {W ′} RefOutB

To show ∅ ⊢ W ≤ {W ′}, it is sufficient to put k = 0 since ∆0
p!a(W ′) = {p?b.W ′}. To establish

the second, it is necessary to use k = 1 because ∆0
p!a(p?b.W ′) = ∅ but ∆1

p!a(p?b.W ′) =
{p?b.p?b.W ′}. To show the fourth, k = 2 is needed, illustrating that it is not sufficient to
fix k throughout. Notice too that W is first revisited when attempting to establish the the
fourth judgement. Its environment includes W 7→ {p!, p?} ∈ Γ and {p?} = act(hd({p?b.W ′}))
hence the environment (orphan) premise is satisfied, and the development continues.

5 Subtyping sets of session trees using type graphs

Type graphs [32, Section 4.1.2] were proposed for representing (possibly infinite) sets of finite
trees. We adapt them to represent (possibly infinite) sets of session trees by inductively
defining the category G of type graphs to be: G ::= ∅ | T | ∪i∈IGi | &i∈Ip?ai.Gi | ⊕i∈Ip!ai.Gi.
Thus the leaves of a type graph G are session trees drawn from T. A type graph is interpreted
by a concretisation map γ [17] which describes the set of session trees it represents.

▶ Definition 25 (Concretisation map). The concretisation map γ : G → ℘(T) is defined as
the least solution to the following equations:

γ(∅) = ∅
γ(T ) = {T}

γ(∪i∈IGi) = ∪i∈Iγ(Gi)

γ(&i∈Ip?ai.Gi) = {&i∈Ip?ai.Ti | ∀i ∈ I : Ti ∈ γ(Gi)}
γ(⊕i∈Ip!ai.Gi) = {⊕i∈Ip!ai.Ti | ∀i ∈ I : Ti ∈ γ(Gi)}
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▶ Example 26. Consider T (co-inductively) defined by T = p!a.q!a.T ⊕ p!b.T and the type
graph G = T ∪ p!a.G′ where G′ is (inductively) defined by G′ = T ∪ (p!a.G′ ⊕ p!b.p!a.G′). T

and G are illustrated in Figure 2 (i) and (ii) as regular trees where the terminal symbols
distinguish T from G. If T0 = {T} and Ti+1 = {T ′, p!a.T ′, p!a.(p!a.T ′ ⊕ p!b.p!a.T ′) | T ′ ∈ Ti}
then γ(G) = ∪∞

i=0Ti. Observe that G has a finite representation even though γ(G) is infinite.

Concretisation induces a preorder ⪯ on G by G ⪯ G′ iff γ(G) ⊆ γ(G′). The preorder
⟨G, ⪯⟩ may possess a bottom element ∅ but admits infinite ascending chains, as shown below:

▶ Example 27. Define G0 = T and Gi+1 = Gi ∪ p!a.(Gi ∪ p!a.Gi ⊕ p!b.p!a.Gi). Observe
γ(Gi) ⊆ γ(Gi+1) but γ(Gi) ̸= γ(Gi+1) for all i ≥ 0. Nevertheless the chain Gi has an upper
bound: G of Example 26 since γ(Gi) ⊆ γ(G) for all i ≥ 0.

As we shall see, calculating the upper bound of a sequence of type graphs is key to finitely
computing a co-inductive proof. Such an upper bound can classically [17] be found with a
widening operator G▽G → G. Widening provides a way to finitely derive an upper bound:
given any increasing sequence G0 ⪯ G1 · · · the (widened) sequence defined by G′

0 = G0 and
G′

i+1 = G′
i ▽ Gi+1 is a sequence G′

0 ⪯ G′
1 ⪯ · · · which is ultimately stable with a limit G′

ℓ.
Widening is required [17] to be monotonic in both arguments: G ⪯ G▽ G′ and G′ ⪯ G▽ G′.
Then the limit G′

ℓ is an upper bound of the whole Gi sequence, that is, Gi ⪯ G′
ℓ for all i ≥ 0.

▶ Example 28. Type graphs can be widened [43] by introducing back-arcs to curb growth
and thereby induce stability. To provide some intuition, consider widening the type graph
W0 given in Figure 2(iii). Widening is achieved by repeatedly introducing cycles into the
type graph by replacing a sub-tree with a back-arc to an ancestor. To illustrate, W0 is
transformed into W1, see Figure 2(iv), by replacing the sub-tree p!a.T with a back-arc to
an ancestor. Observe W0 ⪯ W1. Moreover, the deepest T of W1 has a direct ancestor
which is disjunctive and has T as a child. This triggers the introduction of another back-arc
which finally yields G, see Figure 2(ii). Again W1 ⪯ G. The widening algorithm of [43]
guarantees [43, Theorem 7.1] that a widened sequence is ultimately stable, while attempting
to minimise the introduction of cycles. The widening of [43] will terminate with G, though a
more aggressive widening would also replace the deepest T of G with a back-arc to the root.

5.1 An abstract domain for sets of session trees
Operations on type graphs can be designed to mimic those on sets of session trees. In
particular, to faithfully mimic the derivatives, it is both necessary to detect the absence of a
derivative and preserve the derivation in a relaxation. The following definition formulates
these requires and the proposition shows how they can be satisfied by lifting ∆k

p!a and δp?a:

▶ Definition 29. An abstract send derivative is any operator Πk
p!a : G → G such that:

if ∆k
p!a(γ(G)) = ∅ then Πk

p!a(G) = ∅
∆k

p!a(γ(G)) ⊆ γ(Πk
p!a(G))

for all G ∈ G. An abstract receive derivative πp?a : G → G is specified analogously.

▶ Proposition 30. The operator G → G is an abstract send derivative where:

Γ ⊢ Πk
p!a(∅)=∅

G ∈ T ∆k
p!a(G) = ∅

Γ ⊢ Πk
p!a(G) = ∅

G ∈ T ∆k
p!a(G) = {Ti}i∈I

Γ ⊢ Πk
p!a(G) = ∪i∈ITi

(∪i∈IGi) 7→ G ∈ Γ
Γ ⊢ Πk

p!a(∪i∈IGi) = G

∪i∈IGi ̸∈ dom(Γ) Γ′ =Γ ∪ {∪i∈IGi 7→ ⊎i∈IG′
i} ∀i ∈ I : Γ′ ⊢ Πk

p!a(Gi)=G′
i

Γ ⊢ Πk
p!a(∪i∈IGi) = ⊎i∈IG′

i

with additional rules for Πk
p!a(&i∈Ip?ai.Gi) and Πk

p!a(⊕i∈Ip!ai.Gi) that follow Definition 17.
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Figure 3 Intermediate type graphs: (i) G′
0,0 (ii) G0,1 (iii) G0,2 (iv) G0,3 and (v) G1,0.

An abstract receive derivative πp?a : G → G can also be constructed using an environment Γ.

▶ Example 31. Consider calculating Π2
q!a(G) where G is as defined in Example 26. Figure 2

(i) and (ii) illustrate T and G. Following Proposition 30, Π2
q!a(G) is constructed by replacing

each leaf T of G with the derivative ∆2
q!a(T ), given in (v), to produce the type graph of (vi).

An algorithm for checking subtyping follows from Figure 1 by substituting ∆k
p!a with Πk

p!a
and δp?a with πp?a; thus operations on sets of session trees are simulated with operations
on type graphs. We provide insight by first showing how widening can be applied to type
graphs to create a co-inductive proof of subtyping, for a subtype that is linearly recursive.

▶ Example 32. To illustrate our strategy, consider T ≤ Q where T = q!a.q!a.p!a.p!b.T

and Q = p!a.q!a.Q ⊕ p!b.Q. For brevity, define T0 = q!a.T1, T1 = q!a.T2, T2 = p!a.T3 and
T3 = p!b.T0 thus T = T0. Suppose G′

0,0 = Q and G′
i+1,0 = G′

i,0 ∪ Gi+1,0 for all i ≥ 0 where

Γ′
0 ⊢ T0 ≤ G1,0

Γ3 ⊢ T3 ≤ G0,3

Γ2 ⊢ T2 ≤ G0,2

Γ1 ⊢ T1 ≤ G0,1

Γ0 ⊢ T0 ≤ G′
0,0

Γ′
0 ⊢ T0 ≤ Gi+1,0

Γ′
3 ⊢ T3 ≤ Gi,3

Γ′
2 ⊢ T2 ≤ Gi,2

Γ′
1 ⊢ T1 ≤ Gi,1

Γ′
0 ⊢ T0 ≤ G′

i,0

Γ′
0 ⊢ T0 ≤ Gℓ+1,0

Γ′
3 ⊢ T3 ≤ Gℓ,3

Γ′
2 ⊢ T2 ≤ Gℓ,2

Γ′
1 ⊢ T1 ≤ Gℓ,1

Γ′
0 ⊢ T0 ≤ G′

ℓ,0

Observe G′
0,0 ⪯ G′

1,0 ⪯ · · · constitutes an increasing sequence, albeit one that is possibility
infinite. Repeating the construction with G′

i+1,0 = G′
i,0 ▽ Gi+1,0, however, yields a sequence

which is ultimately stable, that contains its limit G′
ℓ,0. Because G′

ℓ,0 ▽ Gℓ+1,0 = G′
ℓ+1,0 = G′

ℓ,0
it follows Gℓ+1,0 ⪯ G′

ℓ,0. An infinite co-inductive derivation can then be assembled by
repeating the derivation on the right (since RefInA and RefOutB support relaxation). Figure 3
illustrates G′

0,0, G0,1, G0,2, G0,3 and G1,0 whereas Figure 4 gives the widened sequence
G′

0,0 ⪯ G′
1,0 ⪯ G′

2,0 ⪯ G′
3,0 · · · which has G′

3,0 as its limit. Altogether this shows T ≤ Q.
Note that G′

3,0 constitutes a certificate. Finally observe that existence of G′
3,0, hence an

infinite co-inductive derivation, follows by widening, which was originally conceived [17] as a
device for enforcing termination.
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5.2 Subtyping algorithm for type graphs
Example 32 illustrates how widening can be applied to establish the existence of an infinite
co-inductive proof for T ≤ Q. Algorithm 1 outlines an algorithm, which applies the same
strategy for proving T ≤ T ′, but is applicable when T is not linearly recursive. The key
caveat for our algorithm is that T is regular. This ensures sub(T ) is finite. It follows there
exists a finite set wp ⊆ sub(T ) such that every cycle of T crosses at least one sub-tree of
wp. (wp is inspired by the idea of widening points which are program locations [4] where
widening is applied.)

▶ Example 33. Continuing Example 32, observe sub(T ) = {T, T1, T2, T3} and the only cycle
of T crosses each sub-tree of sub(T ). Thus put wp = {T2}, though other choices are possible.

In addition to wp, which is fixed throughout, our subtyping algorithm has a worklist L

and a partial map G : sub(T ) ⇀ G as parameters. G mirrors the strategy used Example 32
which associates each sub-tree of T with its own type graph. The algorithm is primed with
L = [⟨T, Γ⟩] where Γ = ∅ and G = {T 7→ T ′} (recall T ⊆ G). The algorithm exits successfully
at line (2) returning the certificate G, and otherwise throws an exception at (8), (9), (14)
or (15) indicating an inconclusive verdict. The body of Subtyping removes the first pair
⟨T, Γ⟩ from the worklist (if not empty), and checks whether the action at the root of T is
a receive, a send, or an end. In the latter case, if G(T ) = end then rule RefEnd of Figure 1
holds and processing continues, otherwise an exception is thrown.

If T is a receive, the progress condition of RefInA is checked at (8). The coverage condition
at (9) can be decided without recourse to γ by an auxiliary predicate cover defined thus:
cover(∅) = true, cover(∪j∈JGj) = ∧j∈Jcover(Gj) and cover(G) = ∃i ∈ I : δp?ai

(G) ̸= ∅ if
G ∈ T. Then cover(G(T )) holds iff ∀T ′ ∈ γ(G(T )) : ∃i ∈ I : δp?ai(T ′) ̸= ∅. Line (9) also checks
J ̸= ∅. If these checks are passed, G is relaxed to G′ by updating G on the keys {Tj | j ∈ J}.
If the sub-tree Tj ∈ wp then widening is triggered and G′(Tj) = G′(Tj)▽ πp?aj (G(T )). It
follows G(Tj) ⪯ G′(Tj) and πp?aj

(G(T )) ⪯ G′(Tj), both assuring soundness while ensuring
that G′(Tj) cannot be relaxed ad infinitum. If Tj ̸∈ wp then G′(Tj) = G′(Tj) ∪ πp?aj

(G(T )),
again yielding a sound relaxation. Widening at wp is enough to ensure G is ultimately stable
across all keys [4]: thus G′ = G after a finite number of updates.

To demonstrate RefInA holds it remains to show Γ[T 7→ ∅] + p? ⊢ Tj ≤ γ(G′(Tj)) for
all j ∈ J . This is achieved by the list comprehension at (11) which extends the worklist
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Algorithm 1 Subtyping algorithm where a type graph represents a set of sessions trees.

(1) function Subtype(L, wp, G)
(2) if L = ∅ then G
(3) else
(4) ⟨T, Γ⟩ := hd(L)
(5) switch T

(6) case &i∈I p?ai.Ti :
(7) J := {j ∈ I | πp?aj

(G(T )) ̸= ∅}
(8) if T 7→ Q ∈ Γ ∧ Q ̸⊇ act(hd(G(T ))) then throw maybe
(9) if J = ∅ ∨ ∃T ′ ∈ γ(G(T )) : ∀i ∈ I : δp?ai(T ′) = ∅ then throw maybe
(10) G′ := G[Tj 7→ G(Tj) (if Tj ∈ wp then ▽ else ∪) πp?aj

(G(T )) | j ∈ J ]
(11) L′ := [⟨Tj , Γ[T 7→ ∅] + p?⟩ | j ∈ J, Γ(Tj) = ⊥ ∨ ¬(G′(Tj) ⪯ G(Tj))] :: tl(L)
(12) Subtype(L′, wp, G′)
(13) case ⊕i∈I p!ai.Ti :
(14) if T 7→ Q ∈ Γ ∧ Q ̸⊇ act(hd(G(T ))) then throw maybe
(15) if ∃i ∈ I : Πk

p!ai
(G(T )) = ∅ then throw maybe

(16) G′ := G[Ti 7→ G(Tj) (if Tj ∈ wp then ▽ else ∪) Πk
p!ai

(G(T )) | i ∈ I]
(17) L′ := [⟨Ti, Γ[T 7→ ∅] + p!⟩ | i ∈ I, Γ(Ti) = ⊥ ∨ ¬(G′(Ti) ⪯ G(Ti))] :: tl(L)
(18) Subtype(L′, wp, G′)
(19) case end :
(20) if G(T ) ̸= end then throw maybe
(21) Subtype(tl(L), wp, G)

with the pair ⟨Tj , Γ[T 7→ ∅] + p?⟩ for each j ∈ J providing the pair actually needs to be
considered, that is, if Γ(Tj) = ⊥ or ¬(G′(Tj) ⪯ G(Tj)). Subtyping then reduces to invoking
Subtype(L′, wp, G′). Observe Γ(Tj) ̸= ⊥ on any subsequent visit to Tj , and eventually
G′(Tj) ⪯ G(Tj) by virtue of widening. Termination thus follows.

The case for send on lines (14)–(18) is arguably simpler since J does not need to be
computed and coverage does not need to be checked.

6 Implementation

To assess practicality, we have implemented the Subtype algorithm in Scala 3.1.0 in 5800 LOC.
Our implementation makes substantial use of immutable data-structure and parser combinator
libraries [28] to reconstruct the type graph operations of [32] and the widening of [43]. As
well as the derivatives, our codebase provides a visualiser for type graphs which outputs tikz.

We tested our algorithm on 12 binary and 12 multiparty problems, as detailed in Table 1.
The problem trickySub < trickySup is taken from Example 24 whereas all other problems
are drawn from (or inspired by) existing literature. The binary benchmarks include 8 which
possess “complex accumulation patterns” [6] which is a catch-all term for communication
patterns which defy heuristic methods [6]. The remaining 4 problems were chosen by size.

Our algorithm was able to automatically prove subtyping for all problems, strictly
improving on [3, 6] for the binary problems and [18] for the multiparty problems. Our
algorithm was also able to establishing subtyping for all the remaining 74 binary problems in
the benchmark suite of [6]. The strict improvement over the binary algorithm of [3] occurs
because the string widening of [14] deployed in [3], imposes a restriction on the syntactic
form of consecutive regular sub-expressions, whereas the particular widening developed for
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Table 1 Minimum k of Πk
p!a required for successful subtyping, iterations of the algorithm (up),

time in ms (expressed as parse time+analysis time) with comparison against related algorithms.

benchmark (binary) k up time [6][3][18]
ctxta1 < ctxta2 [6] 1 14 1+14 ✗ ✓ ✗

ctxtb1 < ctxtb2 [6] 1 14 1+4 ✗ ✓ ✗

14may2 < 14may1 [6] 1 8 1+2 ✗ ✓ ✗

badseq1 < badseq2 [6] 1 24 1+16 ✗ ✓ ✗

march3testa1 < march3testa2 [6] 1 17 1+24 ✗ ✓ ✗

aaaaaab1 < aaaaaab2 [6] 1 9 1+2 ✗ ✓ ✗

ex1-ok-loop < ex2-ok-loop [6] 1 15 1+34 ✗ ✓ ✗

march3testa1 < march3testb2 [6] 1 28 1+15 ✗ ✗ ✗

twinstar < ex2 [6] 1 12 1+13 ✓ ✓ ✗

decidex1 < decidex2 [6] 1 22 1+33 ✓ ✓ ✗

sub-runningex < sup-runningex [6] 1 12 1+40 ✓ ✓ ✗

september1 < september2 [6] 1 20 1+75 ✓ ✓ ✗

benchmark (multiparty) k up time [6][3][18]
trickySub < trickySup 2 16 1+15 ✗ ✗ ✗

FFT1 < FFT2 [11] 1 15 2+1 ✗ ✗ ✓

altbit1 < altbit2 [18] 1 4 1+0 ✗ ✗ ✓

dbuff1 < dbuff2 [18] 1 5 1+1 ✗ ✗ ✓

ring1 < ring2 [18] 1 2 1+0 ✗ ✗ ✓

rchoice1 < rchoice2 [18] 1 3 1+0 ✗ ✗ ✓

ex181 < ex182 [27] 1 3 2+0 ✗ ✗ ✓

ex192 < ex191 [27] 1 9 2+2 ✗ ✓ ✗

ex172 < ex171 [27] 1 7 1+0 ✗ ✗ ✓

LSWAq2 < LSWAq1 [36] 1 8 2+0 ✗ ✗ ✓

LSWAr2 < LSWAr1 [36] 1 5 2+0 ✗ ✗ ✓

EYTb2 < EYTb1 [23] 1 3 1+0 ✗ ✗ ✓
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Figure 5 doubleb1 < doubleb2 (adapted from march3testa1 < march3testa2 of [6]).

type graphs [42] used in the present work has no such limitation. However, Figure 5 depicts
a binary problem, doubleb1 < doubleb2, delibrately crafted in response to the reviewers, to
subvert the type graph widening of [42]. This example shows that the algorithm is incomplete.

Surprisingly, calculating the send derivatives with k = 1 was sufficient for all but one
problem, trickySub < trickySup, which was crafted to be difficult. The up column records
how many times the map G is updated, which governs complexity. Timings are presented
as parse+analysis time and were taken on a 32 GB laptop equipped with a 2.8GHz i7
processor. The zero times are runs beneath the granularity of the clock. The slowest
runtime was 1+75=76ms, whereas the subtyping tool of [3], takes 1,757ms worse-case for the
binary benchmarks (on the same machine), which suggests that performance-wise, multiparty
subtyping is no worse than binary subtyping if carefully designed. All certificates are available
at https://www.cs.kent.ac.uk/people/staff/amk/certificates.zip.

7 Related Work

The undecidability of asynchronous subtyping [7, 35] has given rise to a rich line of research
aimed at finding sound algorithms. The first work [8] to explore the boundaries of undecid-
ability, showed that synchronous subtyping can be generalised to k-bounded asynchronous
subtyping [8], where input accumulation depth is bounded by k (k = 0 is synchronous
subtyping). With k fixed, k-bounded asynchronous subtyping is sound and decidable (though
the existence of such a k is undecidable [8]).

Asynchronous (binary) approaches include the seminal algorithm from [5, 6] for binary
sessions and [3], which uses word approximation [14] to enlarge the class of problems for
which asynchronous subtyping can be algorithmically established. The extension from the
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binary setting to multiparty is not obvious. For example, swapping two send actions or
two receive actions (to encode SW2) is not safe in the binary setting: it violates the FIFO
ordering of messages, potentially causing communication mismatches (e.g., s!a. s!b ̸≤ s!b. s!a)
or deadlocks (e.g., c?a. c?b ̸≤ c?b. c?a). The multiparty setting adds more interleaving options
to handle and requires more machinery to keep track of the actions-role association.

As to multiparty asynchronous subtyping, the algorithm in [18], while applicable to
several realistic protocols, does not address “complex accumulation patterns" [6] that can
be, instead, handled by the tools of [3, 6]. MAS [27] has been mechanized [23] providing a
sound and complete tool for verifying subtyping given a hand-crafted certificate as input, but
provides no solution to the fundamental problem of how to compute a certificate.

Interest in subtyping seems to be increasing rather than abating and another approach to
asynchronous multiparty subtyping [36], based on projecting global types (a global model of
a collection of local types), was proposed in parallel to [3] at a sister conference. The global
types in [36] provide richer select and branching primitives with respect to classic global types:
in a given state, a sender can select to send a message to different receivers, and likewise a
receives can wait on different senders. A central requirement of multiparty subtyping in [36]
is sub-protocol fidelity [36, Definition 5.1(i)] which ensures that any refinement (subtype)
is consistent with a given global type. Sub-protocol fidelity yields a very different notion
of subtyping to the one adopted here (and [5, 6, 12, 13] and formalised as MAS [27]). Sub-
protocol fidelity allows some actions to be swapped, but it does not allow the anticipation of
outputs before inputs, which is a requirement for performance optimisation [38]. This means
that a session type may be a subtype of another according to our algorithm (and MAS),
but not that of [36]. Thus it is no paradox when the authors of [36] claim decidability while
pointing out that asynchronous subtyping is undecidable [7, 35]. Classically, the subtyping
question is answered pairwise: by comparing a type against a candidate subtype, without
reference to a global type. This formulation is favourable when the global type is unknown,
for instance, if types are mined from source code.

Session subtyping is related to compliance between session contracts [1], which is inspired
by testing-preorders [19]. Must-testing, in the binary and synchronous setting, can be seen as
a sort of inductive compliance relation [39]. Multiparty synchronous must-testing has been
studied in [20], binary asynchronous in [2]. Another interesting preorder is fair subtyping
[9], which takes its cues from should testing preorder [41], and preserves the possibility of
correct termination. Difference nuances of session subtyping, such as those mentioned above,
suggest the need of generic subtyping algorithms, parameterised by the underlying preorder.

8 Conclusion

The application of abstract interpretation to asynchronous session subtyping is challenging
in the multiparty setting. To provide a semantic basis for abstraction, an alternative notion
of SISO-tree refinement is given, and as well as new notions of derivative which, together,
enables the MAS subtyping relation to be re-expressed over sets of session-trees. This provides
a foundation for abstract interpretation, akin to a classical collecting semantics, whose use
is illustrated with a new abstract domain for session trees, constructed from type graphs,
that were originally proposed for type recovery. Overall, we provide the first algorithmic
formulation of MAS together with experimental results which are truly encouraging.
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