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Abstract
This paper studies the rational synthesis problem for multi-player games played on graphs when
rational players are following subgame perfect equilibria. In these games, one player, the system,
declares his strategy upfront, and the other players, composing the environment, then rationally
respond by playing strategies forming a subgame perfect equilibrium. We study the complexity of the
rational synthesis problem when the players have ω-regular objectives encoded as parity objectives.
Our algorithm is based on an encoding into a three-player game with imperfect information, showing
that the problem is in 2ExpTime. When the number of environment players is fixed, the problem is
in ExpTime and is NP- and coNP-hard. Moreover, for a fixed number of players and reachability
objectives, we get a polynomial algorithm.
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1 Introduction

Studying non zero-sum games played on graphs of infinite duration with multiple players [4, 13]
poses both theoretical and algorithmic challenges. This paper primarily addresses the (non-
cooperative) rational synthesis problem for n-player non zero-sum games featuring ω-regular
objectives. In this context, the goal is to algorithmically determine the existence of a strategy
σ0 for the system (also called player 0) to enforce his objective against any rational response
from the environment (players 1, . . . , n). So, rational synthesis supports the automatic
synthesis of systems wherein the environment consists of multiple agents having each their
own objective. These agents are assumed to act rationally towards their own objective rather
than being strictly antagonistic (to the system). This approach contrasts with the simpler
scenario of zero-sum two-player game graphs, the fully antagonistic setting, a framework
extensively explored in earlier reactive synthesis research, see [2] and the numerous references
therein. While the computational complexity of rational synthesis, where rationality is
defined by the concept of Nash equilibrium (NE), has been explored in [26], this paper revisits
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12:2 NCRS Problem for SPEs and ω-Regular Objectives

the rational synthesis problem using the more encompassing definition of subgame perfect
equilibrium (SPE) to formalize rationality. Nash equilibria (NEs) have a known limitation
in sequential games, including the infinite-duration games on graphs that we consider here:
they are prone to non-credible threats. Such threats involve decisions within subgames
(potentially reached after a deviation from the equilibrium) that, while not rational, are
intended to coerce other players into specific behaviors. To address this limitation, the
concept of subgame-perfect equilibrium (SPE) was introduced, as discussed in [39]. An SPE
is a profile of strategies that form Nash equilibria in every subgame, thereby preventing non-
rational and thus non-credible threats. Although SPEs align more intuitively with sequential
games, their algorithmic treatment in the context of infinite-duration graph games remains
underdeveloped. This gap persists primarily because SPEs require more complex algorithmic
techniques compared to NEs. Moreover, the standard backward induction method used in
finite duration sequential games [33] cannot be directly applied to infinite duration games
due to the non-terminating nature of these interactions.

Kupferman et al. introduced rational synthesis in two distinct forms. The first approach,
dubbed cooperative rational synthesis [29], considers an environment working collaboratively
with the system to determine whether a specific SPE that ensures the specification of the
system is met. So, in this model, the agents of the environment engage in an SPE that
guarantees a win for player 0, provided such an equilibrium exists. At the opposite, the second
approach, termed non-cooperative rational synthesis (NCRS) [34], grants the environment
greater flexibility. Here, the system first selects a fixed strategy σ0 and then the environmental
agents respond by selecting any strategy that form an SPE with the fixed strategy σ0 of the
system. The central algorithmic challenge is determining whether there exists a strategy σ0
for the system such that every resulting σ0-fixed SPE ensures the specification of the system
is upheld (SPE-NCRS problem). The computational complexity of decision problems for the
cooperative synthesis problem with subgame-perfect equilibria (SPE) is now well understood.
While the decidability of this problem was first established in [43], its exact complexity was
resolved in [6], where the problem was shown to be NP-complete for parity objectives.

In contrast, the computational complexity of the SPE-NCRS problem remains less
thoroughly investigated. Although the decidability of this problem can be determined
through an encoding in Strategy Logic [38], such an encoding does not provide clear insights
into the effective construction of the strategy σ0 and is suboptimal from an algorithmic
standpoint. For example, for rational environment behaviors modeled by Nash equilibria
(NEs) instead of SPEs, the NE-NCRS problem can be solved in 3ExpTime for LTL objectives
using a Strategy Logic encoding [34], while it can be solved in 2ExpTime through the
use of tree automata [35]. This shows that using a reduction to Strategy Logic does not
deliver optimal worst-case complexity. Addressing this gap, our contribution is twofold.
First, we introduce an innovative algorithm that transforms the SPE-NCRS problem into
a three-player imperfect information game. Such games were analyzed in [22], where
computationally optimal algorithms for their analysis were presented. Second, our reduction
offers a clear advantage over the Strategy Logic encoding, providing improved complexity
(double exponential time as opposed to triple exponential time for LTL objectives in [34]). It
also enables a precise analysis of the algorithmic complexity when the number of players is
fixed, a consideration that is practically relevant in cases where the environment consists of a
limited number of players.

Technical contributions and sketch of our solution. The summary of our technical
contributions is depicted in Figure 1. Our main result shows how to transform the SPE-NCRS
problem into a two-player zero-sum parity game with perfect information (Theorem 11), a
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Sec. 4

Sec. 4
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Figure 1 Structure of the article.

well-studied class of games for which algorithms are available. (Thus, our algorithm supports
LTL specifications via their translation into deterministic parity automata, yielding parity
conditions on the game graph). The transformation is structured in several non-trivial steps.

First, to solve the SPE-NCRS problem, we propose to use the Prover-Challenger framework
initially introduced for the development of algorithms capable of determining the presence
of a simulation relation between transition systems (for more details and extensions of this
concept, see e.g. [1, 32, 37]). However, in our context, we need to use two Provers P1 and P2
with the Challenger C: P1 aims to demonstrate the existence of a solution, i.e., a strategy
σ0 for the system, to the SPE-NCRS problem, while C seeks to counter this assertion, i.e.,
with a subgame perfect response σ̄−0 that results in an unfavorable outcome for player 0.
Then, P2 endeavors to demonstrate that the combined profile (σ0, σ̄−0) is either not a 0-fixed
SPE or its outcome favors player 0. To ensure that σ0 is fixed and cannot be modified in
subgames, we prevent P1 from adjusting his strategy based on the interactions between C

and P2 by imposing to him imperfect information of the game. More intuition and the formal
definition of this P1CP2 game are given in Section 3 together with a proof of correctness
(Theorem 20).

Second, we detail our method for solving the P1CP2 game. Given that this game involves
three players with imperfect information, specialized techniques are essential for its resolution
as multi-player games with imperfect information are undecidable in general (see e.g. [40]).
We employ a solution specifically adapted for our context, derived from a transformation
introduced in [22]. This transformation was originally proposed for addressing similar types
of three-player games with imperfect information. Due to the intricate winning condition
present in our Prover-Challenger reduction, we translate it into an explicit Rabin objective.
After that transformation of the winning condition, the aforementioned techniques for three-
player games with imperfect information can be adapted. As a result of this transformation,
we obtain a more conventional two-player zero-sum Rabin game with imperfect information.

Third, techniques to remove imperfect information, see e.g. [41, 42], can then be used
to obtain the desired two-player zero-sum parity game with perfect information. Therefore,
solving the SPE-NCRS problem reduces to solving this two-player zero-sum parity game for
which algorithms are well-known.

CONCUR 2025



12:4 NCRS Problem for SPEs and ω-Regular Objectives

In Section 4, we provide a complexity analysis of each step of our construction. This
analysis enables us to derive detailed complexity results: solving the SPE-NCRS problem for
parity objectives is exponential in the size of the graph and the number of priorities used
by the parity objectives, and double-exponential in the number of players (while a PSpace
lower bound can be deduced from [26]). Consequently, when the number of players is fixed,
we achieve membership in ExpTime. Furthermore, by adapting proofs from the NE-NCRS
problem [27], we establish NP- and co-NP-hardness (the NE-NCRS problem is in PSpace
and both NP- and co-NP-hard, even for a fixed number of players). Finally, for the specific
case of reachability objectives, we obtain a polynomial-time algorithm when the number of
players is fixed, as is the case for the NE-NCRS problem [27].

To help the reader navigate the paper, we provide in Figure 1 a visual representation
of its structure. Furthermore, for additional details on concepts and proofs, we provide a
complete full version in [19] and two Appendices A and B to present a few helpful examples.

Related work. Recent literature, such as surveys in [4, 13, 14], underscores a growing
interest in non zero-sum games for synthesis and design of multi-agents systems. Algorithms
have been developed for reasoning about NEs in graph games, both for ω-regular [44] and
quantitative objectives [12], or even in a concurrent setting [3]. The concept of secure
equilibrium, a refinement of NE, was introduced in [25] and its potential for synthesis was
demonstrated in later studies [24]. Similarly, doomsday equilibria, an expansion of secure
equilibria for n-player games, is elaborated upon in [23]. All those results are related to the
notion of NE. Algorithms to reason on SPEs are more recent and usually more intricate.
For that reason, progresses on weaker notions like weak SPE [8, 10, 18] have been needed
before establishing tight complexity bounds for SPEs. For SPEs, the exact complexity for
the constrained existence for reachability games was established in [9], for parity games
in [6], and for mean-payoff games in [5]. All those works introduce new algorithms that
are substantially more sophisticated than those needed to study the notion of NE. As
mentioned previously, the SPE-NCRS problem with LTL objectives can be addressed by
reducing it to the model-checking problem of Strategy Logic, as shown in [34]. However,
this encoding results in a triple-exponential complexity, even when the number of players is
fixed. Consequently, this approach does not allow for a fine-grained complexity analysis when
the number of players is treated as a fixed parameter, and so it cannot yield the ExpTime
complexity we have achieved in this case, nor the PTime complexity for a fixed number
of players with reachability objectives. Cooperative rational synthesis was first introduced
in [29]. The adversarial version was later introduced in [34]. In both cases, as mentioned
above, the decidability results were given through a reduction to Strategy Logic [38]. A
more detailed analysis of the complexity for a large variety of ω-regular objectives and
for rationality expressed as NEs was given in [26] for turn-based games and in [27] for
concurrent games, for LTL objectives in [35], and for two players and for mean-payoff and
discounted-sum objectives in [28]. Those results do not cover SPEs as we do in this paper.
Rational verification (instead of rational synthesis) studies the problem of verifying that a
given strategy σ0 for the system is a solution to the NE/SPE-NCRS problem. The complexity
of this simpler problem has been studied for several kinds of objectives in [7, 30, 31]. Another
notion of rational environment behavior treats the environment as a single agent but with
multiple, sometimes conflicting, goals, aiming for behaviors that achieve a Pareto-optimal
balance among these objectives. Both rational synthesis and verification have been very
recently studied for this concept of rationality [11, 15, 16, 17].
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2 Preliminaries

In this section, we recall the necessary notions and concepts underpinning this work: First, we
specify the model of games on graphs that we study, along with the corresponding definitions
of plays, (winning) strategies, and objectives. Second, we present the solution concepts
relevant to our non-zero-sum model and specific problem, ranging from Nash equilibria to
0-fixed subgame-perfect equilibria. Finally, we provide a precise statement of the SPE-NCRS
problem (see Definition 10) and our main results (see Theorem 11).

▶ Definition 1 (Game structure). A game structure is a tuple G = (V, A, Π, δ, v0), where:
Π = {0, . . . , n} is a finite set of players,
A =

⋃n
i=0 Ai is the set of actions of the players, such that Ai is the action set of player

i, i ∈ Π, and A0 ∩ (
⋃

i ̸=0 Ai) = ∅,
V =

⋃n
i=0 Vi is the set of states, such that Vi is the state set of player i, i ∈ Π, and

Vi ∩ Vj = ∅ for all i ̸= j,
v0 ∈ V is the initial state,
δ :

⋃n
i=0(Vi × Ai) → V is a partial function called the transition function, such that:

1. G is deadlock-free: for every state v ∈ Vi, there exists a ∈ Ai an action of player i,
such that δ(v, a) is defined,

2. G is action-unique: for every state v ∈ Vi, and for all a, b ∈ Ai actions of player i, we
have δ(v, a) = δ(v, b) ⇐⇒ a = b.

The size of a game structure is given by the numbers |V |, |A|, and |Π| of its vertices, actions,
and players respectively.

We say that a state v ∈ Vi is controlled or owned by player i. Note that the condition
A0 ∩ (

⋃
i ̸=0 Ai) = ∅ means that one knows from the actions when player 0 is the one that

is playing. This property of the action set of player 0 is not classical nor necessary but
will reveal itself useful in the remaining of the paper. Indeed, in the setting we study here,
player 0 has a distinguished role compared to the other players, see Section 3. Condition 1
on the transition function ensures that in every state, there is always a possible action to
play. Condition 2 requires that a transition between two states can only be achieved via a
unique action.

A play in a game structure G is an infinite sequence ρ ∈ (V A)ω of states and actions,
such that ρ is of the form v0a0v1a1 · · · with v0 the initial state and where for every k ∈ N,
we have δ(vk, ak) = vk+1. The set of all plays in G is denoted PlaysG. A history is a finite
prefix h ∈ (V A)∗V of a play ending in a state of G, that we describe as h = v0a0v1a1 . . . vk.
The set of all histories in G is denoted HistG, while for i ∈ Π, the set of histories ending in a
state controlled by player i is denoted Histi

G. We write h ⊏ ρ if the history h is a prefix of
the play ρ. We also use both notations ⊏ and ⊑ for two histories.

A strategy for player i ∈ Π is a function σ : Histi
G → Ai, that prescribes an action σ(h) for

player i to choose for every history where it is his turn to play. The set of all strategies σ for
player i is denoted by Σi. A collection σ̄ = (σi)i∈Π of strategies, one for each player, is called
a profile of strategies. A play ρ = v0a0v1a1 . . . is compatible with a strategy σi of player i if
for every k ∈ N such that vk ∈ Vi, we have ak = σi(v0a0 . . . vk). Histories compatible with a
strategy are defined similarly. A strategy σ is said to be memoryless when the prescribed
action only depends on the last visited state, that is, for every hav, h′a′v ∈ Histi

G, we have
σ(hav) = σ(h′a′v). Given a profile of strategies σ̄ = (σi)i∈Π, there is a unique play starting
in v0 that is compatible with every strategy of the profile, that we call the outcome of σ̄

and denote it by ⟨σ̄⟩v0 . Given a strict subset of players Π′ ⊂ Π, we write σ̄−Π′ to refer to a

CONCUR 2025



12:6 NCRS Problem for SPEs and ω-Regular Objectives

partial profile of strategies that contains a strategy for each player except the ones in Π′. In
particular, we will often focus on the strategy of one player, say Π′ = {i}, and the profile of
strategies of the rest of the players, and use the notation (σi, σ̄−i) to denote the complete
profile of strategies.

▶ Definition 2 (Objective and game). A winning condition, or objective for player i is a
subset Wi ⊆ PlaysG of plays in the game structure G. We say that a play ρ is winning for
player i or satisfies his objective if ρ ∈ Wi. Otherwise, we say that ρ is losing for player i. A
game is a pair G = (G, (Wi)i∈Π) consisting in a game structure G, together with a profile of
objectives for the players. When the context is clear, we often only write G to designate a
game. Given a strategy profile σ̄, its gain profile (or simply gain) is the Boolean vector ḡ

such that for all i ∈ Π, we have gi = 1 if ⟨σ̄⟩v0 ∈ Wi, and gi = 0 if ⟨σ̄⟩v0 ̸∈ Wi. We also say
that ḡ is the gain profile of the outcome of σ̄.

In this paper, we consider the concept of parity objective (which is expressively complete
for ω-regular objectives), as well as the particular case of reachability objective. Both concepts
are defined in the following way:

For each i ∈ Π, let Ti ⊆ V be a target set. The reachability objective for player i is then
Wi = {ρ = v0a0v1a1 . . . ∈ PlaysG | ∃k ∈ N, vk ∈ Ti} that we also denote by Reach(Ti).
Given such a profile of target sets, we say that (G, (Reach(Ti))i∈Π) is a reachability game.
For each i ∈ Π, let Ci = {0, 1, . . . , di} be a finite set of priorities and αi : V → Ci be a
priority function, that is, a function that assigns a priority to each state of the game.
The parity objective for player i is then Wi = {ρ ∈ PlaysG | minv∈Inf(ρ)(αi(v)) is even}1

that we also denote by Parity(αi). Given such a profile of priority functions, we say that
(G, (Parity(αi))i∈Π) is a parity game. The size of each parity objective, denoted by |αi|,
is the maximum priority di.

▶ Remark 3. Note that the objectives we consider in this work only put constraints on the
states of the plays (and not on the actions).

▶ Definition 4 (Winning strategy). Let G be a game structure and Wi be an objective for
player i. A strategy σi of player i is winning for Wi, if for every profile σ̄−i, the outcome ρ

of the profile (σi, σ̄−i) is winning for player i, that is, ρ ∈ Wi.

This definition focuses on Wi only. A winning strategy σi ensures that player i satisfies
his objective Wi against any strategy profile σ̄−i of the other players. In particular, it ensures
that player i wins even if the other players are strictly antagonistic, or adversarial, that is,
their objective is to make player i lose. This context corresponds to the classical zero-sum
setting, and we use notation G = (G, Wi) for the game, since the objective Wj , for all players
j ≠ i, is implicitly defined as PlaysG \ Wi. An example of reachability game and a discussion
on the winning strategies of both players are given in Appendix A.

Within the classical zero-sum context, the synthesis problem asks if there exists, for
a particular player, a winning strategy (see [2] for an introduction). As recalled in the
preliminaries (cf. Definition 4), such a strategy ensures that his player wins against all
possible strategies of the other players. However, when we depart from this adversarial
hypothesis and consider the richer setting of games that are non zero-sum, that is, where
each player has his own objective, which may overlap with the objectives of the others, the
solution concept of winning strategies shows its limits. Hence the call to solution concepts
such as Nash equilibrium or subgame-perfect equilibrium, on which we focus in this work.

1 For a play ρ = v0a0v1a1 . . . , notation Inf(ρ) means {v ∈ V | ∃∞ k, vk = v}.
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▶ Definition 5 (Nash equilibrium [39]). Let G = (G, (Wi)i∈Π) be a game and σ̄ = (σi)i∈Π be
a strategy profile. We say that σ̄ is a Nash equilibrium (NE for short) if for every player
i ∈ Π and strategy σ′

i ∈ Σi, we have ⟨σ′
i, σ̄−i⟩v0 ∈ Wi =⇒ ⟨σi, σ̄−i⟩v0 ∈ Wi.

In other words, no player has an incentive to deviate unilaterally from its fixed strategy
σi in the profile σ̄: if he does so, the resulting outcome will not satisfy his objective if the
outcome of σ̄ was not already doing so. Notice that, however, there is no constraint on what
players are allowed to do once a deviation has already occurred in the outcome of the NE. In
fact, players may change their initial behaviours for completely adversarial choices. That
is, NEs allow players to forget about their own objectives once the equilibrium outcome
has been left, which can result in non-credible threats: promise of irrational behavior with
respect to their own objectives. These non-credible threats are one important limitation of
NEs as a solution concept that captures rationality of the players in sequential games. In
order to enforce rationality in every scenario, even the ones that stem from deviations, one
needs to monitor what the strategy profile prescribes after every history. This is exactly
what subgame perfect equilibria (defined below) do [39]. Let G = (G, (Wi)i∈Π) be a game.
To each history hv ∈ HistG, with v ∈ V , corresponds a subgame G↾hv that is the game G
starting after the history hv: its plays ρ′ start at the initial state v and for all i ∈ Π, ρ′ is
winning for player i if, and only if, hρ′ ∈ Wi. Given a strategy σi for player i, this strategy
in G↾hv is defined as σi,↾hv(h′) = σi(hh′) for all histories h′ ∈ HistG starting with the initial
vertex v. Given a strategy profile σ̄, we denote by σ̄↾hv the profile (σi,↾hv)i∈Π (note that its
outcome starts in v).

▶ Definition 6 (Subgame perfect equilibrium). Let G = (G, (Wi)i∈Π) be a game. A subgame
perfect equilibrium (SPE for short) is a profile σ̄ of strategies such that σ̄↾hv is an NE in
each subgame G↾hv of G.

We illustrate both concepts of NE and SPE on an example in Appendix A.
In this work, we focus on synthesizing a strategy for a specific player (see Definition 10),

referred to as the system (or player 0), which we assume to be trustworthy or whose strategy
is fixed by design. For instance, this assumption is justified in scenarios where the system is
implemented as a program that is subsequently used by its environment (the other players).
Since the program is fixed, the system cannot deviate from its prescribed strategy. As stated
at the beginning of this section, we consider the non zero-sum setting, where each player
has their own objective, which may partially overlap with the objectives of other players.
Consequently, we seek a solution concept that addresses two key aspects: (1) the specific
player (the system) will not deviate from the prescribed strategy, and (2) the other players
may exhibit adversarial behavior toward the specific player, as long as such behavior does
not compromise their own objectives, given that they are assumed to be rational [34]. We
next define 0-fixed equilibria, which meet these requirements.

▶ Definition 7 (0-Fixed NE). Let G be a game. A strategy profile σ̄ = (σ0, σ̄−0) is a 0-fixed
NE, if for every player i, where i ̸= 0, and every strategy σ′

i ∈ Σi, we have ⟨σ′
i, σ̄−i⟩v0 ∈

Wi =⇒ ⟨σi, σ̄−i⟩v0 ∈ Wi.

In other words, if the strategy σ0 of player 0 is fixed, that is, if we assume player 0 will stick
to his strategy, no other player has an incentive to deviate unilaterally. We also write that a
strategy profile is a σ0-fixed NE to insist on the fixed strategy σ0 of player 0.

In this paper, we focus on 0-fixed SPEs: profiles σ̄ of strategies that are 0-fixed NE in
each subgame of G compatible with the fixed strategy of player 0. Formally:

CONCUR 2025



12:8 NCRS Problem for SPEs and ω-Regular Objectives

▶ Definition 8 (0-Fixed SPE). Let G be a game. A strategy profile σ̄ = (σ0, σ̄−0) is a 0-fixed
SPE if for every history hv compatible with σ0, the profile σ̄↾hv is a σ0-fixed NE is the
subgame G↾hv.

As for NEs, we use the terminology of σ0-fixed SPE. Furthermore, given a strategy σ0, we
say that the strategy profile σ̄−0 is a subgame-perfect response to σ0 if the complete profile
(σ0, σ̄−0) is a 0-fixed SPE. The next theorem guarantees the existence of an SPE in every
reachability or parity game. This result also holds for 0-fixed SPEs [43].

▶ Theorem 9 (Existence of (0-fixed) SPEs). Given a game G = (G, (Wi)i∈Π) that is a parity
game or a reachability game, there always exists an SPE in G, and, for every strategy σ0 of
player 0, there always exists a σ0-fixed SPE in G.

In this paper, we study the following synthesis problem. Intuitively, the non-cooperative
rational synthesis problem asks, for a distinguished player, if there exists a strategy that is
as close as possible to a winning strategy, taking into account the fact that the others are
behaving rationally. The solutions seeked in this problem are indeed strategies that ensure
winning for every possible way to complete the profile in a rational manner (i.e., other players
do not cooperate but take care of their own objectives first).

▶ Definition 10 (Non-cooperative rational synthesis problem). The non-cooperative rational
synthesis problem (SPE-NCRS problem for short), asks, given a game G = (G, (Wi)i∈Π), if
there exists a strategy σ0 of player 0, such that, for every subgame-perfect response σ̄−0, the
resulting outcome ⟨(σ0, σ̄−0)⟩v0 is winning for player 0.

The previous definition is illustrated with an example in Appendix A.
We now state our main results.

▶ Theorem 11 (Complexity of the SPE-NCRS problem). The SPE-NCRS problem for parity
games is in 2ExpTime and PSpace-hard. Given G = (G, (Parity(αi))i∈Π), this problem is
solvable in time exponential in |V | and each |αi|, i ∈ Π, and double-exponential in |Π|.

Furthermore, if the number of players is fixed, the SPE-NCRS problem is in ExpTime,
and NP-hard and co-NP-hard for parity games; and it is solvable in time polynomial in |V |
for reachability games.

3 SPE-NCRS Problem and P1CP2 Game

3.1 Overview of our solution
One may notice the particular role player 0 has in the setting of the SPE-NCRS problem:
one needs to find, if it exists, a strategy σ0 of player 0 that ensures him to win for all possible
partial profiles σ̄−0 such that (σ0, σ̄−0) is a 0-fixed SPE. Our approach is to construct, in the
spirit of [36], a zero-sum two-player Prover-Challenger game that will, once solved, deliver
the answer. The key idea in this approach is that Prover is set to prove that there exists
a solution σ0 to the SPE-NCRS problem, while Challenger wants to disprove this claim.
However, the special role of player 0 in the original game G must be taken into account. To
this end, we need to split Prover into a coalition of two Provers, Prover 1 and Prover 2 (we
later show, in Section 4, how to come back to the two-player model). This game is called
P1CP2 game and is denoted by P1CP2(G).

Let us give some intuition. The three players P1, C, and P2, proceed to construct, step
by step and with some additional interactions, a play in P1CP2(G), that simulates a play in
G (see Definition 15 below). Each player has a specific part to play in the construction of
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this simulating play. As mentioned previously, player P1 has the particular task to exhibit a
candidate solution strategy σ0 to the SPE-NCRS problem for G. This is done by simulating
player 0 playing σ0 and not deviating from it. Thus, along the play in P1CP2(G) being
constructed, whenever the corresponding state in the simulated play of G belongs to player 0,
it is then up to P1 to choose the next state. One of the tasks of player C is to try to complete
σ0 with a subgame perfect response σ̄−0 from the other players in G. Thus, whenever the
corresponding state in the simulated play of G belongs to a player i ̸= 0, it is player C’s
turn to play in P1CP2(G): he proposes to play an action according to some strategy σi of
player i in G and in addition predicts the gain profile of what will be the outcome of the
profile (σ0, σ̄−0), that is, of the simulated play being constructed. However, since players
other than player 0 in G can deviate, whenever C has made a proposal for a next state, he
has to let player P2 have a say: P2 can either accept this proposal or refuse it and deviate
on behalf of player i by choosing another state as the next one in the simulating play. This
phase is called the decision phase. If this phase results in a deviation, the game proceeds
to the adjusting phase: since the current subgame has changed, Challenger has to predict
the gain profile of (σ0, σ̄−0) in this subgame, that shows the deviation of player i was not a
profitable one. Then, the play in P1CP2(G) resumes to the construction phase again.

How do we ensure that σ0 is fixed? In other words, what restricts P1 from adapting
his strategy to the way C and P2 interact, but only according to the so far constructed
simulated history in G? The solution we choose is to make use of imperfect information:
in the P1CP2 game, P1 cannot, in fact, distinguish between all the states. To model the
partial view P1 has on the states of the game, we speak of observations. Informally, to each
state (and action) is associated an observation, and P1 has to take action upon sequences
of observations only (that we call observed histories). In particular, it is assumed that the
strategies should respect the observations, in the sense that two different histories yielding the
same sequence of observations should trigger the same action of P1. Thus, we only consider
these observation-based strategies as possible behaviors of P1. We now proceed to the formal
definition of the P1CP2 game. In Section 3.4, we show that solving the SPE-NCRS problem
is equivalent to solving this game in a sense stated in Theorem 20.

3.2 Observation Functions
We begin by introducing the concepts of observation and of observation-based strategy. Let
G = (V, A, Π, δ, v0) be a game structure and player i be some player in G. Let O be a
partition of V , that defines an observation function Obs : V → O for player i, that is, for
every state v, we have Obs(v) = o ∈ O. Let then Ō be a partition of A, that extends the
previous function Obs to actions, that is, for every action a, we have Obs(a) = ō ∈ Ō. The
function Obs extends to histories and plays in the straightforward way. We say that player i

observes G through Obs if he cannot distinguish between states (resp. actions, histories,
plays) that yield the same observation via the function Obs. For those states or actions that
are the unique element of their observation set, we say that they are visible. We say that
Obs is the identity function if Obs(v) = {v} for all v ∈ V and Obs(a) = {a} for all a ∈ A.
Whenever player i observes the game structure through the identity function, we say that
player i has perfect information. If it is through any other function, we say that he has
imperfect information. We will always assume that a player sees his own actions perfectly
(that is, his observation function restricted to the domain of his action set corresponds to the
identity function). Furthermore, we assume all players have perfect recall: they remember
the full sequence of observations they witnessed from the start of the play. In the sequel, we
only consider player-stable observation functions such that the last states of the histories
observed similarly all belong to the same player.
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v, ḡ G-state

v /∈ V0

v, a, ḡ

u′, i, ḡ

u′, ḡ′

u,∅, ḡ

u, ḡ

v ∈ V0

v′, ḡaction-state G-state

Decision phase

Adjusting phase

C : a, i

P2 : a′ ̸= a P2 : a

C : ḡ′ C : ḡ

P1 : a0

G-state

player-state

Figure 2 General structure of a play in P1CP2(G).

▶ Definition 12 (Player-stable observation function). An observation function Obs for player i

is player-stable if for every two histories h = v0a0v1a1 . . . vk and g = u0b0u1b1 . . . uk such
that Obs(h) = Obs(g), then the states vℓ, uℓ are controlled by the same player, for all
ℓ ∈ {0, . . . , k}.

The identity observation function is trivially player-stable. A game G with objectives Wi

for all its players i ∈ Π and a player-stable observation function Obs for one of its players
is denoted G = (G, (Wi)i∈Π, Obs). When Obs is the identity, we do not mention it in this
notation. Notice that with a player-stable observation function for player i, we have that,
given a history h ∈ Histi

G, all histories h′ with the same observation as h also belong to Histi
G.

It is therefore natural to ask that a strategy σi for player i is observation-based, that is, the
same action is played by player i after all histories observed similarly.

▶ Definition 13 (Observation-based strategy). Given a player-stable observation function Obs,
a strategy σi of player i is observation-based if for every pair of histories h, h′, if h ∈ Histi

G

and Obs(h) = Obs(h′), then σi(h) = σi(h′).

Both concepts of observation and observation-based strategy are illustrated in an example
in Appendix B.1.

3.3 Definition of the P1CP2 Game

In this section, let us fix a game G = (G, (Wi)i∈Π) with a game structure G = (V, A, Π, δ, v0)
and objectives (Wi)i∈Π. Later, this game will be a reachability game or a parity game.
We here formally define the corresponding P1CP2 game, that was informally presented in
Section 3.1. Recall that the role of player P1 is to simulate a strategy σ0 of player 0 in
G, while player C has to propose a subgame perfect response to σ0 such that (σ0, σ̄−0) is
losing for player 0 in G, response to which player P2 can react by choosing some deviations
(decision phase). The interactions between the three players result in a play in P1CP2(G)
that simulates a play in G. Challenger has to predict a gain profile for this simulated play,
which he can update upon deviations from P2 (adjusting phase). We begin by defining the
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game structure of the new game P1CP2(G).2 We then define the observation function of
P1 in Definition 19; and we finally define and describe the objectives of the three players.
Figure 2 should help the reader for understanding those definitions. The states (except its
initial state v′

0) of the P1CP2 game structure have several components: All of them have a
state of G as their first component, that we call G-component. Similarly, all of them have a
gain-component, which consists of a gain profile ḡ ∈ {0, 1}|Π| for the players of G, where in
each component gi of ḡ, 0 symbolizes a loss and 1 a win with respect to objective Wi. The
states that have only these two components are called G-states and belong either to P1 or C.
A projection on the G-components of these states determines the simulated play in G (see
Definition 15). As already stated in Section 3.1, whenever the current state of the simulated
play belongs to player 0 in G, the next state of the simulated play is chosen directly by
P1. However, when it is not the case, C has to make a proposition, which should then be
validated or changed by P2 (decision phase). Thus, to reflect this proposal while remaining
hidden to P1, the successor states of G-states belonging to C have an extra component,
called action-component, which records the action of G proposed by C. From such states
called action-states, P2 has to react by confirming or changing the action that was proposed
by C. This is modeled by a third kind of states, called player-states. Such states have a
player-component, which consists of a player from G different from player 0 to signal to
C this player has indeed deviated (or the empty set, to signal acceptance by Prover 2 of
Challenger’s proposal).

▶ Definition 14 (States of the P1CP2 game). Given a game G, the game structure of
P1CP2(G) is a game structure G′ = (V ′, A′, {P1, C, P2}, δ′, v′

0), where P1, C, and P2 are the
three players and the set of states V ′ = V ′

P1
∪ V ′

C ∪ V ′
P2

is as follows:
V ′

P1
= {(v, ḡ) | v ∈ V0, ḡ ∈ {0, 1}|Π|},

V ′
C = {v′

0} ∪ {(v, ḡ) | v ∈ V \ V0, ḡ ∈ {0, 1}|Π|} ∪ {(v, i, ḡ) | v ∈ V, i ∈ Π \ {0} ∪ {∅}, ḡ ∈
{0, 1}|Π|},
V ′

P2
= {(v, a, ḡ) | v ∈ V \ V0, a ∈ A \ A0 and δ(v, a) is defined, ḡ ∈ {0, 1}|Π|},

v′
0 is the initial state.

Among those states, (v, ḡ) are G-states, (v, a, ḡ) are action-states, and (v, i, ḡ) are player-
states. Moreover, v is a G-component, ḡ is a gain-component, a is an action-component, and
i is a player-component. Notice that the sets V ′

P1
, V ′

C , V ′
P2

are pairwise disjoint.

Let us now describe the transitions of the P1CP2 game and explain further the actions
of the players, see also Figure 2 . The goal of Challenger is to prove the existence of a
σ0-fixed SPE losing for player 0 in G. To be able to verify this claim in P1CP2(G), Challenger
has to predict the gain of the simulated play that is being constructed. To do so, the
gain-components of the states of P1CP2(G) are used as follows: First, Challenger owns
the initial state v′

0, and has to choose a gain profile ḡ, losing for player 0,3 to start the
construction of the simulated play in the G-state (v0, ḡ). Then, whenever P2 chooses to make
some player i deviate, before reaching a G-state, Challenger has to respond by choosing an
adjusted gain profile with a lower or equal gain for this player i (adjusting phase). This
new gain shows to P2 the absence of any profitable deviation for player i. Note that for the
P1CP2 game structure, two modeling decisions have been made to help handle the subsequent

2 Note that to avoid confusion with the players of G, and without loss of generality, the three players of
the P1CP2 game have been given explicit names rather than numbers.

3 As an outcome of a subgame perfect response to σ0 losing for player 0 is exactly what Challenger wants
to exhibit, for any σ0 simulated by P1.
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developments. First, to ensure a certain regularity of the plays’ shape in the P1CP2 game
and that P1 cannot infer whether P2 actually made a deviation, the adjusting phase is played
regardless of a deviation occurring or not: if there was no deviation, Challenger has no choice
but to play the same gain profile. Second, to avoid confusion on who, among Challenger and
Prover 2, is currently playing some action a ∈ A \ A0, this action is of the form (a, i) for
C and a for P2, that is, we additionally recall the player i from G performing the action a

when Challenger is playing.
As already mentioned in Section 3.1, given a play in P1CP2(G), there exists a unique

corresponding play in G being simulated by the interactions of the Provers and Challenger.

▶ Definition 15 (Simulated play and gain in G). Let ρ = v′
0a′

0v′
1a′

1v′
2a′

2 . . . be a play in the
game structure of P1CP2(G). The simulated play of ρ is the play sim(ρ) ∈ PlaysG being the
projection of ρ on the G-component of G-states (which belong either to P1 or C) and on
actions of P1 and P2.4 The definition extends naturally to histories. The simulated gain of ρ

is a Boolean vector simGain(ρ) ∈ {0, 1}|Π|, such that simGain(ρ)i = 0 if sim(ρ) is losing for
player i, and simGain(ρ)i = 1 if sim(ρ) is winning for player i.

Let us give an example:

▶ Example 16. Consider the fictional history h = v′
0 ḡ (v0, ḡ) a0 (v1, ḡ) (a1, i) (v1, a1, ḡ) a′

1
(v2, i, ḡ) ḡ′ (v2, ḡ′) in the P1CP2 game of some game G. It starts in the initial state v′

0, where
C chooses a gain profile ḡ where g0 = 0. Thus the second state of the history is the G-state
(v0, ḡ). Looking at the form of the third state (v1, ḡ) in h, we can deduce that (v0, ḡ) belongs
to Prover 1, that is, v0 belongs to player 0 in G. Moreover δ(v0, a0) = v1. Then, the fourth
state (v1, a1, ḡ) in h is an action-state, which means that the previous state (v1, ḡ) belongs to
Challenger, such that v1 belongs to player i ̸= 0 in G, and a1 is the action from G proposed
by C in this scenario. One can see that P2 then chooses the action a′

1, which is different
from a1 since the fifth state (v2, i, ḡ) of h is a state whose player-component i is not equal
to ∅. This indicates that P2 makes player i deviate in G and that δ(v1, a′

1) = v2. By now,
Challenger has to choose a new gain profile ḡ′, yielding the last state (v2, ḡ′) of h, which is
a G-state. By projecting h on the G-components of its G-states and on the actions of the
Provers, one can check that the simulated history of h in G is sim(h) = v0a0v1a′

1v2. Consider
now the fictional play ρ = h

(
(a2, j) (v2, a2, ḡ′) a2 (v2,∅, ḡ′) ḡ′ (v2, ḡ′)

)ω in the P1CP2 game.
Looking at ρ, one can deduce that from (v2, ḡ′), the last state of h, Challenger proposes
action a2 from G for player j ̸= 0 and that P2 accepts this proposal. Furthermore, Challenger
cannot adjust the gain profile, leading to state (v2, ḡ′). One can see that this behavior repeats
indefinitely, thus the corresponding simulated play is sim(ρ) = sim(h)(a2v2)ω. The simulated
gain simGain(ρ) of ρ is a Boolean vector deduced from sim(ρ), such that its i-th component
is equal to 1 if, and only if, sim(ρ) is winning for player i.

▶ Remark 17. Note that while there exists a unique simulated play sim(ρ) in G for every play
ρ in P1CP2(G), the converse does not hold. Indeed, several different sequences of interactions
between P2 and C yield the same simulated play in G. For instance, Challenger can propose
different actions that P2 can refuse.

We have seen that each state and action of G appear in several contexts in the game
structure G′ of P1CP2(G). Let us now state how the size of G′ depends on the size of G.
The proof of this lemma directly follows from the definition of the P1CP2 game.

4 This projection does not take into account the action- and player-states and the actions of Challenger.
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▶ Lemma 18. Given the size |V |, |A|, and |Π| of the game structure of G, the game structure
of P1CP2(G) has 3 players and a size |V ′| linear in |V | and |A|, and exponential in |Π|, and
|A′| linear in |A| and exponential in |Π|.

In the P1CP2 game, recall that C and P2 have perfect information whereas P1 has
imperfect information to ensure that P1 cannot adapt his strategy from observing the
interactions between C and P2. The observation function Obs for player P1 is defined below
on V ′ and A′. For each state v′ of V ′, he is only able to observe the G-component of v′.
Concerning the actions of A′, those of A′

P1
∪ A′

P2
are all visible whereas those of A′

C are not
visible at all. In the next definition, there is an abuse of notation in O and Ō.
▶ Definition 19 (Information in the P1CP2 game). Given the game structure G′ of P1CP2(G),
players C and P2 have perfect information and the observation function Obs of player P1
is defined as follows: We have Obs : V ′ → O = {v′

0} ∪ {v | v ∈ V } such that Obs(v, ḡ) = v

for all (v, ḡ) ∈ V ′
P1

, Obs(v′
0) = v′

0, Obs(v, ḡ) = v for all (v, ḡ) ∈ V ′
C , Obs(v, i, ḡ) = v

for all (v, i, ḡ) ∈ V ′
C , and Obs(v, a, ḡ) = v for all (v, a, ḡ) ∈ V ′

P2
. Furthermore, we have

Obs : A′ → Ō = {♯} ∪ {a | a ∈ A} such that Obs(a′) = a′ for all a′ ∈ A′
P1

, Obs(a′) = ♯ for
all a′ ∈ A′

C , and Obs(a′) = a′ for all a′ ∈ A′
P2

.
To finalize the definition of the P1CP2 game, it remains to define the objectives of the

three players. Recall that the objective of Challenger is to show that for each strategy σ0 of
player 0 in G, there exists a subgame perfect response σ̄−0 such that the outcome of (σ0, σ̄−0)
is losing for player 0. Let us give some intuition on what is a play ρ in the P1CP2 game that
is winning for C. Three winning situations may occur:
(iC) Eventually, that is, after reaching some subgame, P2 always accepts the action proposals

of C and the gain predicted by C in the subgame is correct (it is equal to the simulated
gain in this subgame), or

(iiC) eventually, P2 keeps making one unique player i deviate in the decision phase, but
C is able to adjust the gain to show that this deviation is not profitable for player i, or
finally

(iiiC) P2 keeps making at least two different players deviate, essentially conceding the play,
as the only deviations that can be considered within the scope of (0-fixed) SPEs are
unilateral deviations.
In the P1CP2 game, the two Provers have the same objective WP that is opposed to the

objective WC of Challenger. Indeed, recall that their objective is to exhibit a strategy σ0 for
player 0 in G, such that for every subgame-perfect response σ̄−0 to σ0, the outcome of the
resulting profile (σ0, σ̄−0) is winning for player 0. Let us give some intuition on what is a
winning play for the Provers. Two winning situations may occur for the Provers along a play
ρ in the P1CP2 game:
(iP ) Eventually, after reaching some subgame, P2 always accepts the action proposals of C

and the gain predicted by C is incorrect, or
(iiP ) eventually, P2 keeps making one unique player i deviate in the decision phase, and C

is not able to adjust the gain to show that this deviation is not profitable for player i.
A full formal definition of the players’ objectives is provided in Appendix B.2.

Given a game G, we have P1CP2(G) = (G′, WP , Obs) its P1CP2 game, where WP is the
objective of the Provers.

3.4 Equivalence Between SPE-NCRS Problem and P1CP2 Game
In this section, we show that solving the SPE-NCRS problem for a game G is equivalent to
solving its P1CP2 game, as stated in the following theorem. To keep things short, we give
here a sketch of the proof, and refer the reader to [19] for a full and detailed account.
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▶ Theorem 20 (Equivalence theorem between G and P1CP2(G)). Let G = (G, (Wi)i∈Π) be
a game, and P1CP2(G) = (G′, WP , Obs) be its P1CP2 game. There exists in G a strategy
σ0 of player 0, such that, for every subgame-perfect response σ̄−0, the play ⟨(σ0, σ̄−0)⟩v0 is
winning for player 0 if, and only if, there exists in P1CP2(G) an observation-based strategy
τP1 of P1 such that for all strategies τC of C, there exists a strategy τP2 of P2 such that the
play ⟨τP1 , τC , τP2⟩v′

0
belongs to WP .

Proof sketch. Let σ0 be a solution to the SPE-NCRS problem of G. Let τP1 be the
observation-based strategy of P1 that simulates σ0: it is naturally defined as the strategy
that makes the same choice of action as σ0 at h in G at all the histories that are observed as
h for P1 in P1CP2(G). Let τC be a strategy of C. Let σ̄−0 be the strategy profile obtained
from τC by extracting the actions chosen by C at histories that indeed simulate histories in G.
There are two possibilities, either (σ0, σ̄−0) is a 0-fixed SPE in G, or it is not a 0-fixed SPE.
1. Suppose (σ0, σ̄−0) is a 0-fixed SPE in G. Let τP2 be τacc, the accepting strategy of P2,

where he accepts every action proposal of C and never deviates. By definition of τP2 ,
the simulated play of ⟨τP1 , τC , τP2⟩v′

0
is ⟨σ0, σ̄−0⟩v0 . In that case, since σ0 is a solution to

the SPE-NCRS problem of G, we know that ⟨σ0, σ̄−0⟩v0 ∈ W0. However, by construction
of P1CP2(G) and the fact that τP2 is the accepting strategy of P2, we know that C has
predicted a loss for player 0 from the start, and has never had to adjust his prediction.
Thus, we are in the case (iP ) of the winning condition for the Provers.

2. Suppose now (σ0, σ̄−0) is not a 0-fixed SPE in G. This means that it is not a 0-fixed
NE in some subgame of G. Let h be a history compatible with σ0 such that (σ0, σ̄−0)↾h

is not an NE. Let player i ̸= 0 be a player in G that has a profitable deviation σ′
i in

the subgame G↾h starting after h. In P1CP2(G), we can show that there exists a unique
history h′ ending in a G-state, compatible with τC , such that sim(h′) = h and that is
also compatible with τP1 . Depending on Challenger’s prediction for player i at h′, the
strategy τP2 has to be different: if Challenger predicted a loss, we let τP2 bring the play
in h′, then simulate the profitable deviation of player i. If Challenger predicted a win, we
let τP2 bring the play in h′, then switch to τacc: since player i has a profitable deviation
from h′, it is necessary the case that the resulting play in G is losing for player i.

Turning to the other direction, assume that there is no solution to the SPE-NCRS problem
in G. Let τP1 be a strategy of P1 in P1CP2(G). Let σ0 be the strategy of player 0 in G such
that τP1 is its simulation. By Theorem 9, there exists a σ0-fixed SPE in G. Among all those
σ0-fixed SPEs, one must have an outcome losing for player 0 as, by assumption, σ0 is not a
solution of the SPE-NCRS problem in G. Let σ̄ = (σ0, σ̄−0) be such a σ0-fixed SPE. From
these, we can define a strategy τC for C that will precisely enact σ̄−0 on relevant histories,
and predict correctly the gain profile as the one σ in every subgame. In particular, at the
initial state, it predicts the gain profile ḡ of σ̄, such that g0 = 0 by choice of the 0-fixed SPE.

Let now τP2 be a strategy of P2. Consider the play ρ = ⟨τP1 , τC , τP2⟩v′
0
. If there are

infinitely many deviations by two different players of G in the play ρ, then ρ satisfies the
winning condition (iiiC) of Challenger. Assume now that there is at most one player that
P2 makes deviate. There are two cases:
1. Either τP2 prescribes a finite (possibly null) number of deviations along ρ, and then

switches to the accepting strategy τacc. Eventually, after reaching some subgame, P2
always accepts the action proposals of C and the gain predicted by C in the subgame is
correct. Hence ρ satisfies the winning condition (iC) of Challenger.

2. Or τP2 prescribes an infinite number of deviations for the same player i along ρ. As there
are only two values (0 and 1) for the gain-components and there is no opportunity for the
i-component of the predicted gain to increase, we eventually get a stable gain-component
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gi for player i. If gi = 1, we clearly have gi = 1 ≥ simGain(ρ)i, showing that (iiC) is
satisfied. If gi = 0, recall that σ̄ is a 0-fixed SPE, thus it is an NE in the subgame
from which gi was stabilized. The outcome of σ̄ in this subgame is losing for player i as
Challenger correctly predicts a gain of 0 with τC . Any deviation from this outcome is
thus also losing for player i, including sim(ρ). Thus, (iiC) is again satisfied. ◀

4 Solving the P1CP2 Game

This section is the last puzzle piece to complete the proof of Theorem 11. We present
here the key ideas behind the manyfold process of solving the P1CP2 game, while the full
technical constructions and details can be found in [19]. Thanks to Theorem 20, we have
an equivalence between the existence of a solution of the SPE-NCRS problem for a game
and the fact that the Provers are able to win the associated P1CP2 game. More precisely,
the situation where P1 has a strategy, such that for every strategy of Challenger, P2 has a
strategy to make the Provers win. The remaining question is how to determine whether this
is the case? In other words, how can one solve, in this particular sense, this three-player game
with imperfect information? As shown on Figure 1 , this involves several steps. We start by
a first technical step to obtain a P1CP2 game with a Rabin objective for the Provers. Then,
we get rid of the three-player setting, by eliminating one Prover to obtain a two-player PC

game with imperfect information. Once we have such a PC game, we focus on getting rid of
the imperfect information and work with a parity objective instead of a Rabin one. This
allows us to obtain an equivalent two-player zero-sum parity game with perfect information,
which is effectively solvable. The techniques used are similar to what can be found in the
literature ([21, 22, 41, 42]). However, their settings each differ slightly from the others and
ours. Thus, to obtain finer complexity measures, we adapt their techniques to our setting.

The P1CP2 Game as a Rabin Game. Given a parity game G, we show that its corresponding
P1CP2 game can be seen as a three-player game with the objective WP for the two Provers
translated into a Rabin objective. The approach is to use a deterministic automaton O that
observes the states of P1CP2(G). Then the synchronized product of the game structure of
P1CP2(G) with this observer automaton O is equipped with a Rabin objective translating
WP and thus leads to the announced three-player Rabin game.

From two Provers to one Prover. The next step is to merge P1 and P2 into a unique
Prover by using a technique inspired from [22]. The main idea is to use imperfect information
to ensure merging the two Provers does not grant too much knowledge to the new single
Prover. Indeed, if the new Prover had perfect information, he could not simulate Prover 1
truthfully. Thus we let the new Prover have the same level of information as Prover 1 in
the P1CP2 game. However, in order to let the new Prover have as much actions available
as Prover 2 and stay observation-based, we modify the action set to include all functions
from states of P2 to actions of P2. This way, the “merged” Prover preselects actions for each
possible Challenger move, effectively encoding both Provers’ strategies via a state-to-action
function. This yields an exponential blowup in the number of actions. The Rabin objective
remains the same. We obtain the corresponding PC game, denoted PC(G).

Eliminating Imperfect Information. To solve the two-player game PC(G), we get rid of the
imperfect information and then apply standard game-theoretic techniques. In the literature
[21, 41, 42], this is usually done in two steps: first, make the objective visible, that is, such
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that any two similarly observed plays agree on the winning condition, second, apply the subset
construction to recall the set of possible visited states, and letting them be observed. This
can be done in only one step, by simultaneously modifying the game structure to both entail
the subset construction on the states of the PC game, and the product with an automaton
that monitors the winning condition along the plays. This allows us to limit the exponential
blowups to only one in the size of the state space and the Rabin condition. Essentially, the
monitoring automaton is a deterministic parity automaton that is obtained by complementing
a non-deterministic Streett-automaton that detects sets of similarly observable plays that
contain a losing play for the now unique Prover.

Complexity. Recall that we set out from a parity game G = (G, (Wi)i∈Π) with |V |, |A|, and
|Π| be the size of the game structure G, and |αi| be the size of each parity condition Wi.
By the construction mentioned above, we have an equivalence with a Rabin P1CP2 game
with a state set of size linear in |V | and |A|, and exponential in |Π|, an action set linear
in |A| and exponential in |Π|, while its Rabin objective has a size linear in |Π| and the
|αi|. Reducing to only one Prover, we obtain an exponential number of actions compared
to the two-Provers version, thus exponential in |V |, |A| and double-exponential in |Π|. As
mentioned above, with the removal of imperfect information, we obtain a game with a size of
the state set that is now exponential in |V |, |A|, the |αi| and double exponential in |Π|, while
the new parity condition is polynomial in |V |, |A|, |αi|, ∀i and exponential in |Π|. Finally, by
[20], solving the ultimate parity game, or equivalently the SPE-NCRS problem, is in time
exponential in |V |, |A|, |αi|, ∀i, and double-exponential in |Π|. As the game structure of G0
is action-unique (see Definition 1), it follows that |A| ≤ |V |2, thus leading to an algorithm
in time exponential in |V | and each |αi|, and double-exponential in |Π|. This completes
the proof of the complexity upper bound of Theorem 11. For the PSpace lower bound, the
QBF-reduction of [26] (Theorem 7) applies here; all NE responses to σ0 in that proof are
also SPEs. For the complexity lower bound of Theorem 11 when the number of players is
fixed, we adapt the reduction proposed for the NE-NCRS problem in [26], in a way to deal
with SPEs instead of NEs.

The Case of Reachability. A careful analysis of the simpler case of reachability games, when
the number of players is fixed, leads to a more fine-tuned solution and a better complexity
result: Theorem 11 states a polynomial complexity instead of the exponential complexity of
the parity case. This approach follows the same steps as presented above for parity games,
but with a few adjustments. The key idea is that monitoring reachability objectives is simpler
than parity ones, which means that the synchronized product with an observer automaton
O can omit some information from the original game structure. Indeed, when monitoring
a play in the P1CP2 game that stems from an original reachability game, one still needs
to keep track of the actions of both Provers and Challenger, but the checking of the gain
component is simplified compared to parity: only the information of whether each player
has already visited his target set is to be remembered. This can be exploited to avoid the
exponential blowup of the state space in the subset construction phase (with respect to the
original state set V ) to get rid of imperfect information and thus obtain a better complexity.

▶ Remark 21. Suppose that our algorithm establishes the existence of a solution σ0 to the
SPE-NCRS problem for parity games. As it is obtained from a memoryless winning strategy
in the final parity zero-sum game, we get a finite-memory solution σ0 whose memory size
is exponential when the number of players is fixed, doubly exponential otherwise. For a
lower bound on the memory required, it is fairly straightforward to show that it requires
exponential memory by reducing a Streett zero-sum game to our problem.
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5 Conclusion

In this work, we introduce a novel algorithm to solve the SPE-NCRS problem for parity
objectives. Unlike previous methods that converted the problem into a model-checking
problem for Strategy Logic, our algorithm reduces the SPE-NCRS problem to a three-player
zero-sum game with imperfect information, framed as a Prover-Challenger game. This new
angle yields improved complexity upper bounds: exponential time in the number of vertices of
the game structure and the number of priorities of the parity objectives, doubly exponential
time in the number of players. In particular, our algorithm runs within exponential time
for a fixed number of players, which is particularly relevant since the number of players is
typically small in practical scenarios. Moreover, we establish a lower bound that indicates
the impossibility of solving the SPE-NCRS problem in polynomial time unless P = NP even
for a fixed number of players. For the particular case of reachability objectives, when the
number of players is fixed, we prove polynomial complexity like for the NE-NCRS problem
[26]. We believe that the Prover-Challenger framework, based on a three-player model with
imperfect information, may be applicable for other synthesis challenges beyond our current
application.
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A Helpful Examples for Games on Graphs

In this appendix, we present additional examples and explanations for notions referred to in
Section 2.

▶ Example 22 (A simple reachability game). Consider the game structure G pictured in
Figure 3. Its initial state is v0 and there are two players, player 0, who owns the circle
states, and player 1, who owns the square state. Transitions are represented by the arrows
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v0
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Figure 3 Two NEs and one SPE.

between states, such that there exists an arrow from a state v to another state v′ if there
exists an action a (either left or right here) such that δ(v, a) = v′. The set of actions A is
thus partitioned into A0 = {ℓ′, r′} and A1 = {ℓ, r}.

Both players have the same reachability objective, with T0 = T1 = {v3}, denoted in the
figure by the fact that state v3 is double-circled. None of the two players have a winning
strategy: player 0 can prevent player 1 to ever reach state v3 by choosing to go to v4, v5
or v6, depending on the first action of player 1, while player 1 can prevent player 0 from
winning by going to state v2.

▶ Example 23 (A game with two NEs). Let us come back to the reachability game of Figure 3.
Two strategy profiles are represented in Figure 3: the first one, σ̄, by the red transitions
between states and the second one, σ̄′, by the blue ones. Both profiles are NEs. Indeed,
for the red profile with outcome v0rv2r′(v6ℓ′)ω, if player 0 deviates from σ0, the resulting
play v0rv2ℓ′(v5ℓ′)ω is still losing for him, since player 1 chooses to go to state v2. On the
other hand, if player 1 deviates from σ1, the resulting play is v0ℓv1r′(v4ℓ′)ω, since player 0
chooses to go to state v4, and this play is losing for player 1. Thus, none of the players have
a profitable deviation from σ̄. Notice that the gain profile of the red profile is equal to (0, 0).
Similarly, one can easily check that the blue profile is also an NE with a gain profile equal to
(1, 1).

In the red profile σ̄ of the previous example, the possible choice of going from v1 to v4 for
player 0 is irrational: after all, his objective is to reach state v3. Notice, however, that this
behavior is part of the NE σ̄.

▶ Example 24 (A game with an SPE). Consider again the game in Figure 3. In the subgame
G↾v0ℓv1 , starting after the history v0ℓv1, the red profile is not an NE. Indeed, choosing to go
to state v4 is a non-credible threat from player 0, as his target set {v3} is accessible from
state v1, which he owns. The player 0 strategy that goes to v3 from v1 is thus a profitable
deviation in the subgame G↾v0ℓv1 . Therefore, the red profile is not an SPE in G. On the
other hand, one can check that the blue profile is an SPE in G, as it is an NE in every of its
subgames.

▶ Example 25 (A solution to the SPE-NCRS problem). The answer to the SPE-NCRS problem
for the game in Figure 3 is positive. Indeed, consider the strategy σ0 of player 0 that chooses
action ℓ′ in both states v1 and v2. The unique subgame-perfect response σ̄−0 for player 1 is
to choose action ℓ in v0. The resulting strategy profile is thus the blue one whose outcome is
winning for player 0.
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v0 {v0}

v1 {v1, v2} v2 {v1, v2}

v3 {v3, v5} v4 {v4, v6} v5 {v3, v5} v6 {v4, v6}

ℓ | ♯ r | ♯

r′ℓ′ ℓ′ r′

ℓ′ ℓ′ ℓ′ ℓ′

Figure 4 Imperfect information in a reachability game.

B SPE-NCRS Problem and P1CP2 Game

In this appendix, we provide additional material for Section 3.

B.1 Imperfect Information
▶ Example 26 (Observation). In Figure 4, a two-player game structure is pictured, together
with the observations of player 0, who owns the circle states (we suppose that player 1
has perfect information). Each state is divided in two sections: on the left, with a white
background, the name of the state is displayed, while on the right side, with a gray background,
the observation of player 0 is displayed. Similarly, the actions ℓ and r of player 1, who owns
the square state, are accompanied by a # on their right side, which is an abuse of notation to
mean {ℓ, r}, that is, player 0 cannot distinguish between the two possible actions of player 1.
Notice that from states owned by player 0, the actions do not have an observation attached
to them, as player 0 knows his own actions, by hypothesis.

Let us now look at which histories player 0 can or cannot distinguish. From v0, player 0
cannot distinguish between the actions of player 1, and both states v1 and v2 have the same
observation set {v1, v2}. Therefore, the two histories v0ℓv1 and v0rv2 are indistinguishable for
player 0, i.e., Obs(v0ℓv1) = Obs(v0rv2). Similarly, we have Obs(v0ℓv1ℓ′v3) = Obs(v0rv2ℓ′v5).

▶ Example 27 (Observation-based strategy). Let us come back to the game structure of
Figure 4. Suppose that the objective of player 0 is to reach the target set {v3}. One can
verify that player 0 does not have an observation-based winning strategy. Indeed, as noted
in Example 26, player 0 cannot distinguish between histories h1 = v0ℓv1 and h2 = v0rv2. By
definition, any observation-based strategy must prescribe the same action from both h1 and
h2. If this action is r′, then both resulting plays are losing for player 0. If it is ℓ′, then one of
the resulting play is winning, while the other is losing. Thus, no observation-based strategy
ensures player 0 to reach {v3}.

B.2 Details on the P1CP2 Game Structure
▶ Definition 28 (Objectives of the P1CP2 game). Let ρ = v′

0a′
0v′

1a′
1v′

2a′
2 . . . be a play in the

game structure of P1CP2(G). Let simGain(ρ) be its simulated gain.

The play ρ is winning for Challenger if one of the following conditions is satisfied:
(iC) there exist n ∈ N and g ∈ {0, 1}|Π|, such that for every state v′

k with k > n, if v′
k

is a player-state, then it is of the form (vk, ik, ḡk) such that its player-component ik

equals ∅ and its gain-component satisfies

ḡk = simGain(ρ),
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(iiC) there exists a player i ̸= 0 such that
for every n ∈ N, there exists k > n for which v′

k is a player-state with its player-
component being equal to i,
there exists n ∈ N such that for every state v′

k with k > n, if v′
k = (vk, ik, ḡk)

is a player-state with ik ̸= ∅, then its player-component ik equals i and the i-th
component ḡk,i of its gain-component ḡk satisfies

ḡk,i ≥ simGain(ρ)i,

(iiiC) there exist two distinct players i, j ̸= 0 such that for every n ∈ N, there exist
k, ℓ > n for which v′

k and v′
ℓ are player-states, with their player-component being

respectively i and j.
The set of plays satisfying one of these conditions is denoted WC .
The play ρ is winning for Prover 1 and Prover 2 if one of the following conditions is
satisfied:
(iP ) there exist n ∈ N and g ∈ {0, 1}|Π|, such that for every state v′

k with k > n, if v′
k

is a player-state, then it is of the form (vk, ik, ḡk) such that its player-component ik

equals ∅ and its gain-component satisfies

ḡk ̸= simGain(ρ),

(iiP ) there exists a player i ̸= 0 such that
for every n ∈ N, there exists k > n for which v′

k is a player-state with its player-
component being equal to i,
there exists n ∈ N such that for every state v′

k with k > n, if v′
k = (vk, ik, ḡk)

is a player-state with ik ̸= ∅, then its player-component ik equals i and the i-th
component ḡk,i of its gain-component ḡk satisfies

ḡk,i < simGain(ρ)i,

The set of plays satisfying one of these conditions is denoted WP .

▶ Remark 29. We have WP1 = WP2 = WP and WP = PlaysG′ \ WC .
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