
Reversible Pebble Transducers
Luc Dartois #

Université Paris Est Creteil, LACL, F-94010 Créteil, France

Paul Gastin #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
CNRS, ReLaX, IRL 2000, Siruseri, India

Loïc Germerie Guizouarn #

Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France

Shankaranarayanan Krishna #

Indian Institute of Technology Bombay, Mumbai, India

Abstract
Deterministic two-way transducers with pebbles (aka pebble transducers) capture the class of
polyregular functions, which extend the string-to-string regular functions allowing polynomial growth
instead of linear growth. One of the most fundamental operations on functions is composition, and
(poly)regular functions can be realized as a composition of several simpler functions. In general,
composition of deterministic two-way transducers incur a doubly exponential blow-up in the size of
the inputs. A major improvement in this direction comes from the fundamental result of Dartois et
al. [10] showing a polynomial construction for the composition of reversible two-way transducers.

A precise complexity analysis for existing composition techniques of pebble transducers is missing.
But they rely on the classic composition of two-way transducers and inherit the double exponential
complexity. To overcome this problem, we introduce reversible pebble transducers. Our main results
are efficient uniformization techniques for non-deterministic pebble transducers to reversible ones
and efficient composition for reversible pebble transducers.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases Transducers, Polyregular functions, Reversibility, Composition, Uniformiza-
tion

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.14

Related Version Full Version: https://arxiv.org/abs/2506.11334

1 Introduction

The theory of string transformations has garnered a lot of attention in recent years. The
simplest kind of such transformations are sequential functions which are captured by deter-
ministic finite automata whose transitions are labelled by output words. An example of a
sequential function is f(w) = w′ where w,w′ are words over an alphabet {a, b}, and w′ is
obtained from w by replacing in w, each a with bb, and each b with a. Rational functions
strictly extend sequential functions by allowing the underlying automaton to be unambiguous
instead of being deterministic. For instance, f(ua) = au where a ∈ Σ, u ∈ Σ+ which moves
the last symbol of the input to the first position is a rational function, and not realizable by
a sequential one.

While both sequential and rational functions are captured by “one-way” transducers,
regular functions are realized by two-way transducers where the input is scanned in both
directions. Regular functions strictly extend rational functions; for instance the regular
function f(w) = wR where wR is the reverse of w is not realizable as a rational function.
Regular functions are also equivalent to Courcelle’s word-to-word MSO transductions [9, 14],
streaming string transducers [1] as well as combinator expressions [2, 3, 6, 12].

© Luc Dartois, Paul Gastin, Loïc Germerie Guizouarn, and Shankaranarayanan Krishna;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 14; pp. 14:1–14:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luc.dartois@u-pec.fr
https://orcid.org/0000-0001-9974-1922
mailto:paul.gastin@lmf.cnrs.fr
https://orcid.org/0000-0002-1313-7722
mailto:loic.germerie-guizouarn@univ-rennes.fr
https://orcid.org/0000-0002-3843-5427
mailto:krishnas@cse.iitb.ac.in
https://orcid.org/0000-0003-0925-398X
https://doi.org/10.4230/LIPIcs.CONCUR.2025.14
https://arxiv.org/abs/2506.11334
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

14:2 Reversible Pebble Transducers

Sequential, rational as well as regular functions are all transformations of linear growth,
where the sizes of the outputs are linear in the sizes of the inputs. More recently, [5] revisits
functions of polynomial growth, that is, those whose output sizes are polynomial in the sizes
of the input. These functions, aptly called polyregular functions, date back to [13, 15]. A
logical characterization for polyregular functions was given in [7], namely, word-to-word
MSO interpretations. MSO interpretations are equivalent to polyregular functions which are
word-to-word functions recognised by deterministic, two-way pebble transducers [4].

Prior work [13, 4] on pebble transducers show that they are closed under composition, and
are equivalent to polyregular functions. [13] of pebble transducers, as well as a uniformization
of (non-determinsitic) pebble to deterministic ones with the same number of pebbles. The
pebble transducers of [4] allow comparison tests, namely, one can compare the positions on
which pebbles are dropped, or the position of the head and of a pebble. [4] gives high level
ideas for the closure under composition for pebble transducers with comparison tests.

Our focus in this paper is on the complexity aspects of the composition and uniformization
of pebble transducers. A practical setting where composition is useful is while synthesizing
pebble transducers from polyregular functions [7]. Polyregular functions [5] are defined as
the smallest class of functions closed under composition that contains sequential functions,
the squaring function as well as the iterated reverse. In general, the composition of (pebble-
less) two-way transducers has at least a doubly exponential blowup in the size of the
input transducers [8]. An important class of two-way transducers for which composition
is polynomial are reversible transducers [10]. Reversible transducers are those which are
both deterministic and reverse-deterministic; moreover they are expressively equivalent to
two-way transducers [10]. This makes reversibility a very attractive property for a transducer.
However, the notion of reversible pebble transducers has not been considered yet. Therefore
it is unknown if they have the same expressiveness as deterministic pebble transducers
(polyregular functions), and whether they are also amenable to an efficient composition like
their pebble-less counterparts. Our paper fills this gap.

Our Contributions

1. Reversible Pebble Transducers. We define reversible pebble transducers with equality
tests allowing to check whether two pebbles are dropped on the same position, in addition
to the basic tests allowing to check if a pebble is dropped on the current head position.

2. Equivalent notions for pebble transducers. We show that pebble transducers with
basic tests only, as well as those extended with equality tests are equivalent. More
precisely, given a k-pebble transducer with equality tests having n states, we show that
we can construct an equivalent k-pebble transducer with basic tests having O(nk2) states.
The construction preserves both determinism and reverse-determinism.

3. Composition of Reversible Pebble Transducers. We show that reversible pebble
transducers are closed under composition. Given points 1,2 above, we allow equality
tests while studying composition. To be precise, given reversible pebble transducers T
and T ′ with states Q, Q′, having n,m ≥ 0 pebbles, we construct a reversible pebble
transducer T ′′ with nm+ n+m pebbles and (i) 2 · |Q| · |Q′| states when m = 0, and (ii)
O(|Q|m+2 · |Q′| · (n+ 1)m+3) states when m > 0.
To compare with the existing composition approaches [13] and [4], the number of pebbles
we require for composition matches with [13] who showed that this is the optimal number
of pebbles needed. Regarding the number of states, [13] relies on the composition of
deterministic two-way transducers, which, as mentioned before, incurs at least a doubly

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:3

exponential blowup. As can be seen from (ii) above, reversibility gives a much better
complexity. The high level description for composition in [4] does not give details on the
number of states, and incurs n extra pebbles. As such, we do not compare with them.

4. Uniformization of non-deterministic Reversible Pebble Transducers. Given
a non-deterministic pebble transducer T with k pebbles and n states, we construct a
reversible pebble transducer T ′ with 2O((kn)2) states which uniformizes the relation [[T]]
computed by T , i.e., computes a function [[T ′]] ⊆ [[T]] with same domain.
The uniformization [13] of non-deterministic to deterministic pebble transducers is done
using results from [14], where uniformization is done via a sequence of tranformations,
namely: (i) transductions computed by a 0-pebble transducer are definable using non-
determinsitic MSO transductions, which can be uniformized using deterministic MSO
transductions, (ii) deterministic MSO transductions are computed by deterministic two-
way transducers. The uniformization for a given k-pebble transducer [13] is then computed
as a composition of a k-counting transduction and the deterministic two-way transducer
obtained in (ii). Due to (ii), this may incur a non-elementary complexity, while our
uniformization technique only has an exponential complexity.

5. Polyregular functions as Reversible Pebble Transducers. Polyregular functions
can be realized as (a) deterministic two-way pebble transducers [4] or, (b) as a composition
of sequential functions, squaring and iterated reverse functions [5]. This results in two
possibilities to compute a reversible pebble transducer for a polyregular function.
a. If the polyregular function is presented as a deterministic two-way pebble transducers
then we may use the uniformization construction of Item 4 to obtain an equivalent
reversible pebble transducer.
b. If a polyregular function f is given as a modular expression involving sequential,
squaring and iterated reverse functions, then one can directly synthesize a reversible
pebble transducer computing f using (i) the reversible transducers for squaring and
iterated reverse given in Figures 1 and 5 (ii) reversible transducers for the sequential
functions obtained using [10, Theorem 2], and (iii) our composition of the resultant
reversible pebble transducers. Note that the reversible machines in Figures 1 and 5
are small with 6/5 states and 1/0 pebbles respectively. Once again, this is better than
constructing first from the modular expression a deterministic pebble transducer for
function f and then uniformizing it to get a reversible one.

2 Reversible Pebble Transducers

Pebble Transducers with Equality Tests

In this section, we consider pebble transducers enhanced with equality tests between pebble
positions, in addition to the classical query checking only if a pebble is present/absent at the
head position. The equality tests are inspired from [5], where ≤-comparisons between any
two pebble positions, as well as between the head and any pebble are allowed. Enhancing
the basic tests, on whether a pebble is present/absent at the head, by allowing to check for
any pair of pebbles whether or not they are at the same position is useful, especially when
composing two pebble transducers.

A k-pebble automaton with equality tests (k-PA=) is given by a tupleA = (Q,Σ, δ, k, qi, qf)
where Q is a finite set of states, Σ is the finite input alphabet, δ is the transition relation
(see below), and qi, qf ∈ Q respectively are initial and final states.

CONCUR 2025

14:4 Reversible Pebble Transducers

Given an input word u ∈ Σ∗, we define positions pos(u) = {1, . . . , |u|}. We visualise the
input of a PA as a circular word #u where # /∈ Σ is an endmarker reached when moving
right (resp. left) from the last (resp. first) position of u. Keeping this in mind, we work with

an extended set of positions epos(u) = {0, 1, . . . , |u|}. For instance, # a b c d

0 1 2 3 4.

The head of the automaton during a run over u, occupies a position from epos(u), denoted
h. The states Q of the pebble automaton are partitioned into 3 disjoint sets, Q+1 ⊎Q0 ⊎Q−1
signifying movement of the head to the right, no movement of the head and movement of
the head to the left, respectively. Given h ∈ epos(u) and a state q ∈ Q, we define h + q = h
if q ∈ Q0; h + q = (h + 1 mod (|u|+ 1)) if q ∈ Q+1; and h + q = (h − 1 mod (|u|+ 1)) if
q ∈ Q−1. The intuition is that if the head moves to the right of the last position of the word,
then it reads #, and if the head moves to the left from #, it reads the last position of u.

Likewise, the pebbles are dropped on epos(u) and follow a stack policy. We denote by
peb ∈ epos(u)≤k the stack of positions where pebbles are dropped.

A configuration of a k-pebble automaton on the input word u is a tuple C = (q, peb, h) ∈
Q× epos(u)≤k × epos(u). In this configuration, the head of the automaton reads position h,
there are |peb| pebbles dropped and the i-th pebble (1 ≤ i ≤ |peb|) is dropped on position
pebi ∈ epos(u). The initial configuration is (qi, ε, 0) and the accepting (final) configuration is
(qf , ε, 0). Hence, in order to accept, the automaton should lift all pebbles and move back to
the endmarker. Wlog, we assume that qi, qf ∈ Q0 with qi ̸= qf , and there are no transitions
starting from qf or going to qi.

Transitions are of the form t = (q, a, φ, op, q′) with states q, q′ ∈ Q, input letter a ∈ Σ# =
Σ ∪ {#}, test φ which is a conjunction of atoms of the form (h = pi), ¬(h = pi), (pi = pj)
or ¬(pi = pj) (with 1 ≤ i, j ≤ k), and operation op of the form1 dropi, lifti or nop (with
1 ≤ i ≤ k). Transition t is enabled at configuration C = (q, peb, h) (denoted C |= t) if:
1. the letter read is a, i.e., a = (#u)h
2. peb, h |= φ: the test succeeds, where

peb, h |= (h = pi) if 1 ≤ i ≤ |peb| and pebi = h,
peb, h |= (pi = pj) if 1 ≤ i, j ≤ |peb| and pebi = pebj ,

3. peb, h |= op: the operation can be executed where
peb, h |= nop is always true, and we let nop(peb, h) = peb,
peb, h |= dropi if |peb| = i− 1, and we let dropi(peb, h) = peb · h,
peb, h |= lifti if |peb| = i and h = pebi, and we let lifti(peb, h) = peb1 · · · pebi−1.

When C |= t we have C t−→ C ′ = (q′, peb′, h′) where peb′ = op(peb, h) and h′ = h + q′.
Notice that the top pebble may be lifted from the pebble stack only when it is on the

position being read. We often simply write pi (resp. ¬pi) for the atomic test (h = pi) (resp.
¬(h = pi)). Note that, if a transition t = (q, a, pi, dropj , q

′) is enabled at some configuration
C, then i < j and C ′ |= (pi = pj) where C t−→ C ′.

An equality test pi = pi allows to check if the size of the pebble stack is at least i. This is
not possible if we only use atoms of the form pi or ¬pi (which is not an expressivity problem
since one may always store the size of the pebble stack in the state of the automaton).

A run of A is a sequence C0
t1−→ C1 · · ·

tn−→ Cn where Cℓ are configurations on the input
word u and tℓ ∈ δ are transitions of A. The run is initial if C0 = (qi, ε, 0) and final if
Cn = (qf , ε, 0). It is accepting if it is both initial and final.

1 We chose to specify with index i of drop and lift which pebble is dropped or lifted. This allows to get
determinism or reverse-determinism without adding extra tests to transitions. We could have simply
used drop and lift at the expense of adding tests to transitions to ensure (reverse-) determinism.

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:5

The automaton is deterministic if for all pairs of transitions t = (q, a, φ, op, r) and
t′ = (q, a, φ′, op′, r′), if t and t′ may be simultaneously enabled (at some configuration
C) then t = t′. The fact that an operation op is enabled may be written as a test op:
nop = true, dropi = (pi−1 = pi−1) ∧ ¬(pi = pi) (with p0 = p0 identified with true), and
lifti = (h = pi) ∧ ¬(pi+1 = pi+1). Then, the transitions t and t′ may be simultaneously
enabled if and only if the test φ ∧ op ∧ φ′ ∧ op′ is satisfiable. This gives a more syntactic
definition of determinism. In particular, a transtion t with operation lifti and a transition t′
with atomic test ¬pi cannot be simultaneously enabled.

We define the reverse opr of an operation op by nopr = nop, dropr
i = lifti and liftr

i = dropi.
Notice that if peb, h |= op then op(peb, h), h |= opr and peb = opr(op(peb, h), h).

A transition t = (q, a, φ, op, q′) is reverse-enabled at configuration C ′ = (q′, peb′, h′)
(denoted C ′ |=rev t) if there is a configuration C = (q, peb, h) enabling t such that C t−→ C ′.
More explicitly, the only possibility for configuration C is given by h = h′− q′ (corresponding
to h′ = h + q′), and peb = opr(peb′, h) (corresponding to peb′ = op(peb, h)). Then, C ′ |=rev t

iff peb′, h′− q′ |= opr and opr(peb′, h′− q′), h′− q′ |= φ. In this case, we write C = t−1(C ′) =
(q, opr(peb′, h′− q′), h′− q′). In particular, a transtion t with operation dropi and a transition
t′ with atomic test ¬pi and operation nop cannot be simultaneously reverse-enabled.

The automaton is reverse-deterministic if for all pairs of transitions t = (q, a, φ, op, r) and
t′ = (q′, a, φ′, op′, r), if t and t′ may be simultaneously reverse-enabled (at some configuration
C ′) then t = t′.

The pebble automaton is reversible if it is both deterministic and reverse-deterministic.
A k-pebble transducer with equality tests (k-PT=) T = (Q,Σ, δ, k, qi, qf ,Γ, µ) is a k-

pebble automaton (k-PA=) A = (Q,Σ, δ, k, qi, qf) extended with an output alphabet Γ and
an output function µ mapping each transition of A to a word in Γ∗. The semantics of T is
a relation [[T]] ⊆ Σ∗ × Γ∗ consisting of all pairs (u, v) such that there is an accepting run
C0

t1−→ C1 · · ·
tn−→ Cn on #u with v = µ(t1) · · ·µ(tn).

A pebble transducer is deterministic (reverse-deterministic, reversible) whenever the
underlying pebble automaton is. The semantics of a deterministic (reverse-deterministic,
reversible) pebble transducer is a partial function.
▶ Remark 2.1. Even though the semantics of 0-pebble transducers is different to that of
two-way transducers as defined in [10], the two models are equivalent. Given a transducer
with n states using one semantics, one can build a transducer realising the same relation
using the other semantics, with O(n) states. Moreover, determinism and reverse-determinism
are preserved by this translation (see the extended version [11]).

Basic Pebble Transducers

A (basic) pebble automaton (k-PA) or transducer (k-PT) is one in which equality tests
of the form (pi = pj) or ¬(pi = pj) are not used. In some cases, we use a bit vector
b = (b1, . . . , bk) ∈ {0, 1}k to denote a full test φ which is a conjunction over all 1 ≤ i ≤ k of
atoms pi if bi = 1 and ¬pi if bi = 0.

▶ Example 2.2. Figure 1 depicts a reversible 1-pebble transducer computing the squaring
function. This function outputs the concatenation of as many copies of the input word
as there are letters in it. For the ith copy, the ith letter is marked. The blue part of the
transducer copies its input and marks the positions on which the unique pebble is dropped.
The black and red part initially drops the pebble on the first position, then lifts the pebble and
drops it on the next position at each iteration. It moves to state q2 and ends when the pebble
is lifted from the last position. Without looking at the pebble operations, the transducer is

CONCUR 2025

14:6 Reversible Pebble Transducers

0 +1 0
#

+1 +1 +1

q0 q1 q2

q3 q4 q5

a ∈ Σ, drop1

a ∈ Σ, ¬p1

#

a ∈ Σ, ¬p1 | a

a ∈ Σ, p1 | a

#
a ∈ Σ, ¬p1

a ∈ Σ, lift1

Figure 1 Reversible 1-pebble transducer for the function squaring. The labels i ∈ {0, +1, −1}
inside the states represent that they lie in Qi. To keep the figure light, ε-outputs of transitions are
omitted. The same transducer with state q3 in Q−1 would also compute the squaring function.

0 +1 0
#

−1 +1

q0 q1 q2

q3 q4

a ∈ Σ, ¬p1 | a
|!

a ∈ Σ, ¬p1

a ∈ Σ, drop1 | a a ∈ Σ, lift1

Figure 2 Reversible 1-pebble transducer for the function all prefixes in reverse.

deterministic (resp. reverse-deterministic) at every state except state q5 (resp. q3). However,
since the lift1 operation can only be triggered at the position on which the pebble 1 is
dropped, the pebble guards lift1 and ¬p1 cannot be simultaneously enabled, and thus the
transducer is deterministic at q5. Symmetrically, the reverse of a drop1 operation can only
be enabled on the position marked by p1, and thus drop1 and ¬p1 cannot be simultaneously
reverse-enabled, and then the transducer is reverse-deterministic at q3, proving that we have
a reversible transducer.

▶ Example 2.3. Figure 2 represents a reversible 1-pebble transducer for the function which
maps a word to the concatenation of the reverse of all its prefixes, with a ! symbol between
each one. A run of this transducer on the word abb produces the word a!ba!bba!.
Using the same arguments as in the previous example, one can show that the transducer is
reversible.

3 Simulating equality tests of pebbles

In this section, we show the equivalence between a basic k pebble transducer (k-PT) and
a k pebble transducer allowing equality tests (k-PT=). The precise statement is given by
Theorem 3.1, followed by a proof sketch, the full proof can be found in [11].

▶ Theorem 3.1. Given a k-pebble transducer with equality tests A having n states, one can
construct a basic k-pebble transducer B with n2k2 states such that [[A]] = [[B]].

Moreover, if A is deterministic (reverse-deterministic, reversible) then so is B.

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:7

Sketch of proof. The main idea while simulating A is to keep track of which pairs of pebbles
are on the same position in a coherent manner: that is, if pi = pj and pj = pℓ then we also
have pi = pℓ. While constructing B, we store the equalities of the positions of the k pebbles
as a k×k boolean matrix M where Mi,i = 1 represents that the ith pebble has been dropped,
and Mi,j = 1 if the ith and jth pebbles are on the same position. Then if we denote by Q
the set of states of A, the set of states of B is Q′ = Q× {0, 1}k2 .

We now explain how the information is used and updated. Initially, no pebble is dropped,
and the initial state of B is (qi, 0) where 0 denotes the k × k zero matrix and qi is the initial
state of A. Similarly, a run is accepting only when all pebbles are lifted. Thus the final state
of B is (qf , 0) where qf is the final state of A. Recall that basic pebble transducers can see
whether a given pebble is at the same position as the reading head, thus transitions of A
involving a guard of the form h = pi or ¬(h = pi) can be kept in B. Tests of the form pi = pj

are replaced by true if Mi,j = 1 and by false otherwise. On transitions where there is no
pebble lifting or dropping, the matrix M does not need to be updated. The ith pebble pi can
be dropped only if the (i− 1)th pebble is already dropped (that is, Mi−1,i−1 = 1) and the
ith one is not (Mi,i = 0). On dropping pi, the matrix M is updated by setting all coefficients
Mi,j and Mj,i to 1 if j = i or (j < i and h = pj), and 0 otherwise. Note that to do this,
each transition of A with a dropi action is duplicated into 2i−1 disjoint transitions testing
which subsets of p1, . . . , pi−1 are present at the head. Only one transition can then be fired,
depending on the bit vector generated by the pebbles at the current position. Similarly, the
ith pebble pi can be lifted if and only if h = pi and no larger pebbles are dropped (i = k or
Mi+1,i+1 = 0). On lifting pi, the matrix M is updated by setting all coefficients of the ith

row and column to 0. However to ensure the preservation of reverse-determinism, each lifti

transition is duplicated into 2i−1 transitions that have complete and disjoint tests for the
current bit vector over pebbles p1, . . . , pi−1.

Finally, suppose that A is reversible. The only extra transitions added to B are when a
pebble is dropped or lifted. However, all the duplicate transitions that have been added in B
have disjoint tests (enforced by disjoint bit vectors). Thus B is deterministic since A is. On
the other hand, consider we want to reverse a lifti transition in A. This means that the ith

pebble was at the previous position of the reading head, and further, there is only one bit
vector (enriching the ith row and column of M) which was valid at the previous step. The
correct predecessor matrix is then the only one where the ith row and column is coherent
with the bit vector of the previous position. ◀

4 Composition of pebble transducers

The goal of this section is to give an efficient (in the size of the resulting transducer)
construction for the composition of pebble transducers. Since the construction is rather
involved, we start with two simpler cases. The first one described in Section 4.1 shows how
to compose a reversible n-pebble transducer with the reverse function rev : Γ∗ → Γ∗ which
takes a string of letters and outputs the sequence of letters in reverse order. For instance,
rev(abac) = caba. The second simpler case is the composition of a reversible n-pebble
transducer with a deterministic 0-pebble transducer. This case is addressed in Section 4.2.
Finally, the general case is solved in Section 4.3.

4.1 Reversing the output of a reversible pebble transducer
Let T = (Q,Σ, δ, n, qi, qf ,Γ, µ) be a reversible n-pebble transducer, possibly with equality
tests. The goal is to construct a reversible transducer T r = (Q′,Σ, δ′, n, q′

i, q
′
f ,Γ, µ′) which

outputs the reverse of the string produced by T : dom(T r) = dom(T) and for all u ∈ dom(T),
the string [[T r]](u) is the reverse of the string [[T]](u).

CONCUR 2025

14:8 Reversible Pebble Transducers

The set of states of T r is Q′ = Q but the polarity of the states is reversed: Q′
+1 = Q−1,

Q′
0 = Q0 and Q′

−1 = Q+1. The initial and final states are exchanged: q′
i = qf and q′

f = qi.
The transitions are also reversed in the following way. Let t = (q, a, φ, op, q′) be a transition
of T . Then, tr = (q′, a, (φ, op)r, q) is a transition of T r with µ′(tr) = µ(t). We define
(φ, op)r = op(φ), opr: the operation is simply opr but the test op(φ) depends on both φ and
op. It remains to define op(φ). We want that peb, h |= φ iff op(peb, h), h |= op(φ), assuming
that op(peb, h) is defined. We let op(φ1 ∧ φ2) = op(φ1) ∧ op(φ2) and op(¬φ) = ¬op(φ). We
let nop(φ) = φ, and the remaining cases are given below

dropℓ(h = pi) =
{

(h = pi) if i < ℓ

false otherwise
dropℓ(pi = pj) =

{
(pi = pj) if i, j < ℓ

false otherwise

liftℓ(h = pi) =


(h = pi) if i < ℓ

true if i = ℓ

false otherwise
liftℓ(pi = pj) =



(pi = pj) if i, j < ℓ

(h = pi) if i < j = ℓ

(h = pj) if j < i = ℓ

true if i = j = ℓ

false otherwise

We can easily check that peb, h |= φ iff op(peb, h), h |= op(φ) when op(peb, h) is defined.
Recall that, when peb′ = op(peb, h) is defined, then opr(peb′, h) is defined and we have
peb = opr(peb′, h). With t = (q, a, φ, op, q′) and tr = (q′, a, op(φ), opr, q), we deduce that

(q, peb, h) t−→ (q′, peb′, h′) iff (q′, peb′, h′ − q′) tr

−→ (q, peb, h− q) (1)

We deduce that, for u ∈ Σ∗, the following sequence is a run of T on #u

(q1, peb1, h1) t1−→ (q2, peb2, h2) t2−→ (q3, peb3, h3) · · · tm−1−−−→ (qm, pebm, hm)

if and only if the following sequence is a run of T r on #u

(q1, peb1, h1−q1) tr
1←− (q2, peb2, h2−q2) tr

2←− (q3, peb3, h3−q3) · · ·
tr

m−1←−−− (qm, pebm, hm−qm)

Now, the run of T is accepting iff (q1, peb1, h1) = (qi, ε, 0) and (qm, pebm, hm) = (qf , ε, 0).
Since qi, qf ∈ Q0, we deduce that the run of T is accepting if and only if the corresponding run
of T r is accepting, i.e., (qm, pebm, hm − qm) = (q′

i, ε, 0) = (qf , ε, 0) and (q1, peb1, h1 − q1) =
(q′

f , ε, 0) = (qi, ε, 0).
We deduce that dom(T r) = dom(T) and, by definition of µ′, for u ∈ dom(T), the string

[[T r]](u) is the reverse of the string [[T]](u).
To show that T r is deterministic, consider a pair of transitions tr1 = (q′, a, (φ1, op1)r, q1)

and tr2 = (q′, a, (φ2, op2)r, q2) where t1 = (q1, a, φ1, op1, q
′) and t2 = (q2, a, φ2, op2, q

′) are
transitions of T . Assume that tr1 is enabled at some configuration C ′ = (q′, peb′, h′). Using
(1), we deduce that t1 is reverse-enabled at configuration C = (q′, peb′, h′ + q′). Similarly,
if tr2 is enabled at C ′ then t2 is reverse-enabled at C. Since T is reverse-deterministic, we
deduce that T r is deterministic.

We can prove similarly that T r is reverse-deterministic using the fact that T is de-
terminisitic. In particular, we show using (1) that transition tr is reversed-enabled at
some configuration C ′ = (q, peb, h) if and only if transition t is enabled at configuration
C = (q, peb, h + q). We deduce that T r is reversible.

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:9

4.2 Composition: Simple case
In this subsection, we prove the following result.

▶ Theorem 4.1. Let T = (Q,Σ, δ, n, qi, qf ,Γ, µ) be a reversible n-pebble transducer (possibly
with equality tests) computing a function f : Σ∗ → Γ∗. Let T ′ = (Q′,Γ, δ′, 0, q′

i, q
′
f ,∆, µ′) be

a deterministic 0-pebble transducer computing a function g : Γ∗ → ∆∗. We can construct a
deterministic n-pebble transducer T ′′ with at most 2 · |Q| · [Q′| many states computing the
composition g ◦ f : Σ∗ → ∆∗. Moreover, if T ′ is reversible then so is T ′′.

Proof. Wlog, we assume that transducer T outputs at most one letter on each transition, i.e.,
µ(t) ∈ Γ ∪ {ε} for each transition t of T . This can be done while preserving reversibility in
the following way: a transition t = (q, a, φ, op, s) producing v1 · · · vn (n ≥ 2) is decomposed
into n transitions t1 = (q, a, φ ∧ op, nop, (q, v1)), tn = ((q, v1 . . . vn−1), a, φ, op, s) and for
1 < i < n, ti = ((q, v1 . . . vi−1), a, φ ∧ op, nop, (q, v1 . . . vi)). We set µ(ti) = vi. Since we
maintain the tests φ and op in the sequence of transitions ti, even if a state (q, v) happens
to be used by several transitions they should be disjoint due to the reversibility of the inital
transducer. It will be also more convenient to assume that, when running on #u with
u ∈ Σ∗, the transducer T writes #v with v ∈ Γ∗. This is achieved by setting µ(t0) = #
where t0 = (qi,#, true,−,−) is the unique transition enabled at the initial configuration
C0 = (qi, ε, 0) of T (pebble stack empty and head on position 0). Finally, we also assume
that the transducer T ′ always fully read its input. This will allow us to ensure that the
transducer T ′′ only accepts words that belong to dom(T). This can be achieved by addding
to T ′ a single state r ∈ Q′

+1, and if (q′
i,#, φ, op, s) is the initial transition of δ′, we replace

it with (q′
i,#, true, nop, r), (r, a, true, nop, r) for a ̸= # and (r,#, φ, op, s). This construction

preserves reversibility.
We construct the n-pebble transducer T ′′ = (Q′′,Σ, δ′′, n, q′′

i , q
′′
f ,∆, µ′′) as a synchronized

product of T and T ′. The set of states is Q′′ = (Q × Q′) ∪ (Q̂ × (Q′
−1 ∪ Q′

+1)) where
Q̂ = {q̂ | q ∈ Q} is a disjoint copy of Q. We have |Q′′| ≤ 2 · |Q| · [Q′|. We define

Q′′
0 = (Q×Q′) ∪ (Q̂0 × (Q′

−1 ∪Q′
+1))

Q′′
+1 = (Q̂+1 ×Q′

+1) ∪ (Q̂−1 ×Q′
−1)

Q′′
−1 = (Q̂+1 ×Q′

−1) ∪ (Q̂−1 ×Q′
+1) .

The initial state is q′′
i = (qi, q

′
i) ∈ Q′′

0 and the final state is q′′
f = (qi, q

′
f) ∈ Q′′

0 .
The intuition is that, in a state (q, q′) ∈ Q×Q′, transducer T ′′ will synchronize a pair

(t, t′) of transitions of T and T ′ where the output µ(t) ∈ Γ of t is the input letter of t′. On
the other hand, when T ′′ is in a state (q̂, q′), it will simulate the computation of T forward
if q′ ∈ Q′

+1 (resp. backward if q′ ∈ Q′
−1) using transitions t of T producing µ(t) = ε until

the computation reaches a transition t of T producing a letter µ(t) ∈ Γ.
To handle the fact that the input of T is a circular word, we extend δ with the transition

tf,i = (qf ,#,¬(p1 = p1), nop, qi) which is only enabled in the final configuration (qf , ε, 0) of
T and moves to the initial configuration (qi, ε, 0). We let µ(tf,i) = ε.

We define now the transitions δ′′ and the output function µ′′. Let t = (q, a, φ, op, s) be a
transition of T . If µ(t) = a′ ∈ Γ, for each transition t′ = (q′, a′, s′) of T ′, we introduce in T ′′

the synchronized transition t′′ defined in Equations (tr-a)–(tr-c) with µ′′(t′′) = µ′(t′).
Firstly, we synchronize a transition and switch to the simulation mode that will search for

either the next or previous production, depending on the polarity of the destination state. If
T ′ is going to the right, we advance in the run of T and apply the transition t. If T ′ is going

CONCUR 2025

14:10 Reversible Pebble Transducers

to the left, we need to start rewinding T to compute the transition which led to state q:

t′′ = (q, q′) a,φ,op−−−−→ (ŝ, s′) if s′ ∈ Q′
+1 (tr-a)

t′′ = (q, q′) a,φ∧op,nop−−−−−−−→ (q̂, s′) if s′ ∈ Q′
−1 (tr-b)

t′′ = (q, q′) a,φ∧op,nop−−−−−−−→ (q, s′) if s′ ∈ Q′
0 (tr-c)

Secondly, if we are in simulation mode of T , we need to keep simulating until we reach a non
empty production of T . Hence if µ(t) = ε then we stay in the simulation mode of T . For
each q′ ∈ Q′

−1 ∪Q′
+1, we introduce in T ′′ the following transitions t′′ with µ′′(t′′) = ε. Note

that depending on the polarity of q′, we either need to advance or rewind the computation
of T . Rewinding is done following the constructions detailled in Section 4.1.

t′′ = (q̂, q′) a,φ,op−−−−→ (ŝ, q′) if q′ ∈ Q′
+1 (mv-a)

t′′ = (ŝ, q′) a,(φ,op)r

−−−−−−→ (q̂, q′) if q′ ∈ Q′
−1 (mv-b)

Finally, if µ(t) = a′ ∈ Γ we found the transition of T which produces the input letter a′ to
be read by T ′. Hence, we switch from the simulation mode of T to its synchronization mode.
For each q′ ∈ Q−1 ∪Q+1, we add the following transitions t′′ with µ′′(t′′) = ε.

t′′ = (q̂, q′) a,φ∧op,nop−−−−−−−→ (q, q′) if q′ ∈ Q′
+1 (sw-a)

t′′ = (ŝ, q′) a,(φ,op)r

−−−−−−→ (q, q′) if q′ ∈ Q′
−1 (sw-b)

We prove in Appendix A.1 that the constructed transducer T ′′ is deterministic (Claim A.1),
and that T ′′ is reverse-deterministic if T ′ is reversible (Claim A.2). We prove now the
correctness of the construction, i.e., that T ′′ computes the function g ◦ f . We fix u ∈
dom(f) ⊆ Σ∗ and v = f(u) ∈ Γ∗. We consider the accepting run of T on #u producing #v:

C0 = (qi, ε, 0) t0−→ C1
t1−→ C2

t2−→ · · ·CN
tN−−→ CN+1 = (qf , ε, 0)

where Cℓ = (qℓ, pebℓ, hℓ) are configurations and tℓ ∈ δ \ {tf,i} are transitions of T . Notice
that the configurations in this accepting run are pairwise distinct. This follows from the fact
that the automaton is deterministic and there are no transitions (other than tf,i) starting
from the final state qf .

For each position i ∈ epos(v), let encode(i) be the index of the transition in the above
run producing the letter at position i in #v. Since µ(t0) = # we have j0 = 0. Also, µ(tℓ) = ε

if encode(i) < ℓ < encode(i+ 1) and µ(tencode(i)) ∈ Γ ∪ {#} if i ∈ epos(v).
The main idea is to encode the head position h′ of T ′ by the configuration Cencode(h′). More

precisely, the encoding of a configuration C ′ = (q′, h′) of T ′ on #v is defined as encode(C ′) =
((qℓ, q

′), pebℓ, hℓ) where ℓ = encode(h′). The proof of Claim 4.2 is in Appendix A.1.

▷ Claim 4.2. There is a transition (q′, h′) t′

−→ (s′, h′ + s′) of T ′ on #v if and only if there is
a nonempty run encode((q′, h′)) +−→ encode((s′, h′ + s′)) of T ′′ on #u which does not use an
intermediate state in Q×Q′.

Now, we can show that the transducer T ′′ computes the function g ◦f . With the notation
above, assuming that v ∈ dom(g) we consider the accepting run ρ′ of T ′ on #v:

C ′
0 = (q′

i, 0) t′
0−→ C ′

1
t′

1−→ C ′
2 · · ·C ′

N ′
t′

N′−−→ C ′
N ′+1 = (q′

f , 0) . (2)

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:11

Using Claim 4.2 we obtain the accepting run ρ′′ of T ′′ on #u

encode(C ′
0) = ((qi, q

′
i), ε, 0) +−→ encode(C ′

1) +−→ encode(C ′
2)

· · · encode(C ′
N ′) +−→ encode(C ′

N ′+1) = ((qi, q
′
f), ε, 0) .

It is easy to see that ρ′′ produces the same output string g(v) as ρ′. We get [[T ′′]](u) =
g(v) = g ◦ f(u).

Conversely, an accepting run ρ′′ of T ′′ on #u can be split according to its visits to states
in Q×Q′:

C ′′
0 = ((qi, q

′
i), ε, 0) +−→ C ′′

1
+−→ C ′′

2 · · ·C ′′
N ′

+−→ C ′′
N ′+1 = ((qi, q

′
f), ε, 0) .

where the C ′′
i are the configurations with state in Q×Q′. We have C ′′

0 = encode(C ′
0). By

induction, and using Claim 4.2, we can easily show that, for 0 ≤ i ≤ N ′, there are transitions
t′i and configurations C ′

i+1 such that C ′
i

t′
i−→ C ′

i+1 on #v and C ′′
i+1 = encode(C ′

i+1). We
deduce that (2) gives an accepting run ρ′ of T ′ on #v. Again, the output string [[T ′′]](u) of
ρ′′ is the same as the output string g(v) of ρ′. Because we assumed that T ′ reads its whole
input, by emulating T ′ we know that the transducer T ′′ fully simulates T , which ensures
that it accepts an input u if, and only if, it belongs to dom(T) and T (u) belongs to dom(T ′).

This concludes the proof of Theorem 4.1. ◀

▶ Example 4.3. We illustrate the construction from Theorem 4.1, with T being a slight
modification of the squaring function realized by the transducer from Figure 1, and T ′ is the
function iterated reverse realized by the transducer from Figure 5. The squaring function is
modified as such: instead of outputting marked letters a when reading the letter on which
the pebble is placed, from state q4, it outputs !. Now the output of this automaton is of a
form that is expected for the function iterated reverse.

We show a fragment of the run of T ′′ on the input #u = #bcd. On this input, T
produces the output #v = #!cdb!dbc!, on which T ′ produces !bdc!cdb. The fragment of the
run illustrated below starts when transducer T ′ reads the second ! of v, and needs to rewind
the computation of T in order to process the infix cdb of u. Notice that to produce the
second ! of v, T is producing the second copy of u, hence the pebble placed on the c in the
initial configuration of the run. The fragment ends when T ′ is done reversing the current
infix, and is about to find the previous ! symbol.

Transitions of the type (mv-b) are represented by ⇝, those of the type (sw-b) by 99K,
and those of the type (tr-b) by →. Notice that in this fragment of run, no transition where
T ′ needs to go right on #v are represented. The run is as follow:

(
(q4, q

′
1), 2, 2

) c→
1

(
(q̂4, q

′
2), 2, 1

) b
99K

2

(
(q4, q

′
2), 2, 1

) b|b→
3

(
(q̂4, q

′
2), 2, 0

) #
⇝
4

(
(q̂3, q

′
2), 2, 3

)
d
⇝
5

(
(q̂3, q

′
2), 2, 2

) c
⇝
6

(
(q̂1, q

′
2), ε, 1

) b
⇝
7

(
(q̂5, q

′
2), 1, 0

) #
⇝
8

(
(q̂4, q

′
2), 1, 3

)
d
99K

9

(
(q4, q

′
2), 1, 3

) d|d→
10

(
(q̂4, q

′
2), 1, 2

) c
99K
11

(
(q4, q

′
2), 1, 2

) c|c→
12

(
(q̂4, q

′
2), 1, 1

)
Notice how after transition 3, because T ′ still requires to move left, the computation of

T is rewound and goes back to the first copy of u produced by T . Transition 6 undoes the
drop1 operation, hence the ε in the following configuration, and transition 7 undoes the lift1,
effectively moving the pebble one position to the left.

CONCUR 2025

14:12 Reversible Pebble Transducers

4.3 Composition: General case
Now, we prove the general case of composition of pebble transducers.

▶ Theorem 4.4. Let T = (Q,Σ, δ, n, qi, qf ,Γ, µ) be a reversible n-pebble transducer (possibly
with equality tests) computing a function f : Σ∗ → Γ∗. Let T ′ = (Q′,Γ, δ′,m, q′

i, q
′
f ,∆, µ′) be a

deterministic m-pebble transducer computing a function g : Γ∗ → ∆∗. Let r = (n+1)(m+1)−1.
We can construct a deterministic r-pebble transducer T ′′ = (Q′′,Σ, δ′′, r, q′′

i , q
′′
f ,∆, µ′′) with

equality tests computing the composition g ◦ f : Σ∗ → ∆∗. The number of states of T ′′ is at
most O(|Q|m+2 · |Q′| · (n+ 1)m+3). Moreover, if T ′ is reversible then so is T ′′.

To simplify the construction, we first show that we may restrict to reversible pebble
transducers that do not move their head when dropping or lifting a pebble.

▶ Lemma 4.5. For each reversible n-pebble transducer T = (Q,Σ, δ, n, qi, qf ,Γ, µ), we can
construct a reversible n-pebble transducer T ′ = (Q′,Σ, δ′, n, q′

i, q
′
f ,Γ, µ′) with |Q′| ≤ 3|Q|,

computing the same function, and such that every transition in T ′ which moves the head has
operation nop.

Proof. Let Qop = Q × {drop, lift}. We let Q′ = Q ∪Qop, q′
i = qi, q′

f = qf , Q′
0 = Q0 ∪Qop,

Q′
+1 = Q+1 and Q′

−1 = Q−1. We define now δ′ and µ′. Each transition t = (q, a, φ, nop, s)
of T also appears in T ′, and for each transition t = (q, a, φ, op, s) of T where op ̸= nop, we
define the following two transitions of T ′:

t′ = (q, a, φ, op, (q, op))
t′′ = ((q, op), op(φ) ∧ opr, nop, s)

with output µ′(t′) = µ(t) and µ′(t′′) = ε. Note that we abuse notation as we forget the index
of the action op in the state (q, op). We claim that T ′ is reversible (see [11]).

Finally, it is easy to see that there is a one-to-one correspondence between the accepting
runs of T and the accepting runs of T ′, moreover this correspondence preserves the output
string produced. Hence, [[T]] = [[T ′]]. ◀

The rest of the section is devoted to the proof of Theorem 4.4.
As in Section 4.2, we assume that transducer T outputs at most one letter on each

transition, and that it writes #v with v ∈ Γ∗ when running on #u with u ∈ Σ∗. Using
Lemma 4.5, we also assume that transitions t′ = (q′, a′, φ′, op′, s′) of T ′ do not both drop/lift
a pebble and move the head: if op′ ̸= nop then s′ ∈ Q′

0.
We fix u ∈ dom(f) ⊆ Σ∗ and v = f(u) ∈ Γ∗. We consider the accepting run of T on #u

producing #v:

C0
t0−→ C1

t1−→ C2
t2−→ · · ·CN

tN−−→ CN+1 (3)

where Cℓ = (qℓ, pebℓ, hℓ) are configurations and tℓ ∈ δ are transitions of T .
As in Section 4.2, for each position i ∈ epos(v), we let encode(i) be the index of the

transition in the above run producing the letter at position i in #v. Again, the main idea is
to encode a position i ∈ epos(v) by the configuration Cencode(i). Since T ′ has pebbles, this
encoding is used not only for the head h′ of T ′, but also for the pebbles dropped by T ′.

Recall that the ℓ-th configuration in (3) is Cℓ = (qℓ, pebℓ, hℓ). Consider a configuration
C ′ = (q′, peb′, h′) of T ′ on #v. Let k = |peb′|, ji = encode(peb′

i) for 1 ≤ i ≤ k, and
j = encode(h′). Let [n+ 1] = {1, . . . , n+ 1}. Define encode(C ′) = C ′′ = (q′′, peb′′, h′′) where

q′′ = (qj , q
′, (qji)1≤i≤k, (1 + |pebji

|)1≤i≤k) ∈ Q×Q′ ×Qk × [n+ 1]k ⊆ Q′′
0

peb′′ = pebj1hj1 · · · pebjk
hjk

pebj and h′′ = hj .

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:13

The set Q′′
0 of 0-states of T ′′ contains

⋃m
k=0 Q×Q′ ×Qk × [n+ 1]k. The initial and final

states are q′′
i = (qi, q

′
i, (), ()) and q′′

f = (qi, q
′
f , (), ()) respectively. It remains to define the

other states in Q′′, the transition function δ′′ and the output function µ′′.
We explain below how a transition C ′ t′

−→ C ′
1 of T ′ will be simulated in T ′′ by a sequence

of transitions of the form encode(C ′) +−→ encode(C ′
1).

Consider a state q′′ = (q, q′, x, y) ∈ Q × Q′ × Qk × [n + 1]k for some 0 ≤ k ≤ m, with
x = (xi)1≤i≤k and y = (yi)1≤i≤k. Let t = (q, a, φ, op, s) be a transition of T which produces
an output letter a′ = µ(t) ∈ Γ. Consider a transition t′ = (q′, a′, φ′, op′, s′) of T ′ which reads
the output produced by t. The goal is to synchronize the pair of transitions (t, t′) as we
did in Section 4.2. We first explain how to write a test ξ checking whether both t and t′

are “enabled” at a configuration C ′′ = (q′′, peb′′, h) of T ′′. This is intended to be used in
particular when C ′′ is of the form encode(C ′) for some configuration C ′ of T ′.

We introduce some notation. For each 0 ≤ ℓ ≤ k, we let dℓ = y1 + · · ·+ yℓ which can be
recovered from the state q′′ of T ′′. Given an offset d ≥ 0 and a test φ of T , we write φ+d

the test obtained by adding d to the pebble indices: pi = pj is replaced with pi+d = pj+d

and h = pj is replaced with h = pj+d. Finally, let ξ0 = (p0 = p0) ∧ ¬(pn+1 = pn+1) which
will be used, shifted by some offset, to check the size of the pebble stack.

▷ Claim 4.6. Let C ′′ = (q′′, peb′′, h) be a configuration of T ′′ with q′′ = (q, q′, x, y). Let ψ
be a test of T and ψ′ be a test of T ′.
1. peb′′, h |= ξ+dk

0 if and only if dk ≤ |peb′′| ≤ dk + n.
We assume below that we are in this case and we write peb′′ = peb1h1 · · · pebkhkpeb with
|pebℓhℓ| = yℓ for 1 ≤ ℓ ≤ k and 0 ≤ |peb| ≤ n.

2. peb′′, h |= ψ+dk if and only if peb, h |= ψ.
3. We can construct a formula ξ(q′′, ψ′) such that, for all peb′, h′ with |peb′| = k and (a)

peb′
i = peb′

j iff xi = xj , pebi = pebj and hi = hj ; and (b) h′ = peb′
j iff q = xj , peb = pebj

and h = hj , we have peb′′, h |= ξ(q′′, ψ′) if and only if peb′, h′ |= ψ′.

Proof. Items 1 and 2 are clear. For Item 3 we let ξ(q′′, ψ′) be the formula ψ′ in which we
replace each atom of the form h′ = p′

i by
false if i > k or xi ̸= q,(∧yi−1

ℓ=1 pℓ+dk
= pℓ+di−1

)
∧ (h = pdi

) ∧ ¬(pyi+dk
= pyi+dk

) otherwise;
and each atom of the form p′

i = p′
j by

false if i > k or j > k or xi ̸= xj or yi ̸= yj ,∧yi

ℓ=1 pℓ+di−1 = pℓ+dj−1 otherwise. ◁

Let ξ = (ξ0∧φ∧op)+dk ∧ξ(q′′, φ′∧op′). From Claim 4.6, assuming that C ′′ = encode(C ′),
we see that C ′′ |= ξ if and only if t is enabled at C = (q, peb, h) and t′ is enabled at
C ′ = (q′, peb′, h′). We explain now how to synchronize the pair of transitions (t, t′) from
state q′′. Given an offset d ≥ 0 and an operation op of T , we write op+d the operation shifted
by d: drop+d

i = dropi+d, lift+d
i = lifti+d and nop+d = nop.

Case nop. We have t′ = (q′, a′, φ′, nop, s′) with s′ ∈ Q′. We check whether the pair (t, t′)
is enabled with ξ and we implement the move induced by s′ of the head of T ′ on #v as we
did in Section 4.2. To do so, we introduce the following transition with µ′′(t′′) = µ′(t′):

t′′ = (q, q′, x, y) a,ξ,op+dk

−−−−−−→ (ŝ, s′, x, y) if s′ ∈ Q′
+1 (gtr-a)

t′′ = (q, q′, x, y) a,ξ,nop−−−−→ (q̂, s′, x, y) if s′ ∈ Q′
−1 (gtr-b)

t′′ = (q, q′, x, y) a,ξ,nop−−−−→ (q, s′, x, y) if s′ ∈ Q′
0 (gtr-c)

CONCUR 2025

14:14 Reversible Pebble Transducers

Here, Q̂ = {q̂ | q ∈ Q} is a disjoint copy of Q. The polarity of a simulation state (q̂, q′, x, y) ∈
Q̂× (Q′

−1 ∪Q′
+1)×Qk × [n+ 1]k with 0 ≤ k ≤ m is the product of the polarity of q and the

polarity of q′. When in a simulation state (q̂, q′, x, y), we simulate T forward or backward
depending on the polarity of q′ using transitions producing ε until we reach a transition
producing a symbol from Γ. For each transition t = (q, a, φ, op, s) of T with µ(t) = ε we
introduce the following transition t′′ in T ′′ with µ′′(t′′) = ε:

t′′ = (q̂, q′, x, y) a,φ+dk ,op+dk

−−−−−−−−−→ (ŝ, q′, x, y) if q′ ∈ Q′
+1 (gmv-a)

t′′ = (ŝ, q′, x, y) a,((φ,op)r)+dk

−−−−−−−−−→ (q̂, q′, x, y) if q′ ∈ Q′
−1 (gmv-b)

and for each transition t = (q, a, φ, op, s) of T with µ(t) ∈ Γ we introduce the following
transition t′′ in T ′′ with µ′′(t′′) = ε in order to switch back from the simulation mode to the
synchronization mode:

t′′ = (q̂, q′, x, y) a,(φ∧op)+dk ,nop−−−−−−−−−−→ (q, q′, x, y) if q′ ∈ Q′
+1 (gsw-a)

t′′ = (ŝ, q′, x, y) a,((φ,op)r)+dk

−−−−−−−−−→ (q, q′, x, y) if q′ ∈ Q′
−1 (gsw-b)

As in the proof of Theorem 4.1, we can show that T ′′ is reversible at simulation states of the
form (q̂, q′, x, y). We can also prove similarly the following analog of Claim 4.2.

▷ Claim 4.7. Assuming that the operation of t′ is nop, there is a transition of T ′

C ′ = (q′, peb′, h′) t′

−→ C ′
1 = (s′, peb′, h′ + s′) on #v if and only if there is a nonempty

run encode(C ′) +−→ encode(C ′
1) of T ′′ on #u where intermediate states are simulation states.

Case lift. We have t′ = (q′, a′, φ′, liftk′ , s′) with 1 ≤ k′ ≤ m and s′ ∈ Q′
0 from our

assumption on T ′ (Lemma 4.5). We still check that the pair (t, t′) is enabled with ξ =
(ξ0 ∧ φ ∧ op)+dk ∧ ξ(q′′, φ′ ∧ liftk′). Thanks to ξ(q′′, liftk′), we get k′ = k, q = xk, pebk = peb
and hk = h. We use the lift-gadget given in Figure 3 to pop the top yk pebbles, i.e., hkpeb (in
reverse order). We enter and leave the lift-gadget with the following transitions where s′′ =
(q, s′, (x1, . . . , xk−1), (y1, . . . , yk−1)) ∈ Q′′

0 , ξ′ = (ξ0 ∧ φ ∧ op)+(dk−yk) ∧ ξ(s′′, op′(φ′) ∧ op′r),
µ′′(t′′first) = µ′(t′) and µ′′(t′′last) = ε:

t′′first = q′′ a,ξ,nop−−−−→ (q′′,−1) (lift-a)

t′′last = (q′′, 0) a,ξ′,nop−−−−−→ s′′ (lift-b)

The blue tests are added to ensure reverse determinism at the internal states. Also, when
the before last transition is taken we see pdk

. Hence, the head is on the same position at the
beginning and at the end of the gadget.

Case drop. The operation of transition t′ is op′ = dropk′ (1 ≤ k′ ≤ m). We still check
that the pair (t, t′) is enabled with ξ = (ξ0 ∧ φ ∧ op)+dk ∧ ξ(q′′, φ′ ∧ dropk′). Thanks to
ξ(q′′, dropk′), we get k′ = k + 1. We use the drop-gadget given in Figure 4 to push h and
then peb (in this order) on the pebble stack. We enter and leave the drop-gadget with the
following transitions where 1 ≤ z ≤ n + 1, s′′ = (q, s′, (x1, . . . , xk, q), (y1, . . . , yk, z)) ∈ Q′′

0 ,
ξ′ = (ξ0 ∧ φ ∧ op)+(dk+z) ∧ ξ(s′′, op′(φ′) ∧ op′r), µ′′(t′′first) = µ′(t′) and µ′′(t′′last) = ε:

t′′first = q′′ a,ξ,dropdk+z−−−−−−−−→ (q′′, z, 1) (drop-a)

t′′last = (q′′, z, z) a,ξ′,nop−−−−−→ s′′ (drop-b)

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:15

0 +1 +1 · · · +1 +1 0 0

q′′ (q′′, −1) (q′′, −2) (q′′, −yk + 1) (q′′, −yk) (q′′, 0) s′′

a, ξ, nop

¬pdk
∧

¬pdk+yk−1

pdk−1

liftdk+yk−1

¬pdk−1 ∧

¬pdk+yk−2

¬pdk−yk+2

∧ ¬pdk+1

p1+dk−1

liftdk+1

¬pdk−yk+1

∧ ¬pdk

liftdk a, ξ′, nop

Figure 3 Simulation of liftk. The first state is q′′ = (q, q′, (x1, . . . , xk), (y1, . . . , yk)) ∈ Q′′
0 and

dk = y1 + · · · + yk. The internal states are of the from (q′′, −ℓ) ∈ Q′′
+1 for 0 ≤ ℓ ≤ yk. The

last state is s′′ = (q, s′, (x1, . . . , xk−1), (y1, . . . , yk−1)) ∈ Q′′
0 . The test on the first transition is

ξ = (ξ0 ∧ φ ∧ op)+dk ∧ ξ(q′′, φ′ ∧ op′). The test on the last transition is ξ′ = (ξ0 ∧ φ ∧ op)+(dk−yk) ∧
ξ(s′′, op′(φ′) ∧ op′r).

0 +1 +1 · · · +1 +1 0

q′′ (q′′, z, 1) (q′′, z, 2) (q′′, z, z − 1) (q′′, z, z) s′′

a, ξ

dropdk+z

¬pdk+z

∧ ¬pdk+1

pdk+1

dropdk+z+1

¬pdk+z+1

∧ ¬pdk+2

¬pdk+2z−2

∧ ¬pdk+z−1

pdk+z−1

dropdk+2z−1

¬pdk+2z−1

∧ ¬pdk+z

a, ξ′, nop

Figure 4 Simulation of dropk+1 with z any number such that 1 ≤ z ≤ n + 1.
The first state is q′′ = (q, q′, (x1, . . . , xk), (y1, . . . , yk)) ∈ Q′′

0 and dk = y1 + · · · + yk. The
internal states are of the from (q′′, z, ℓ) ∈ Q′′

+1 for 1 ≤ ℓ ≤ z. The last state is s′′ =
(q, s′, (x1, . . . , xk, q), (y1, . . . , yk, z)) ∈ Q′′

0 . The test on the first transition is ξ = (ξ0 ∧ φ ∧ op)+dk ∧
ξ(q′′, φ′ ∧ op′). The test on the last transition is ξ′ = (ξ0 ∧ φ ∧ op)+(dk+z) ∧ ξ(s′′, op′(φ′) ∧ op′r).

On the first transition of the gadget, the test ξ makes sure that the pebble stack is of
the form peb′′ = peb1h1 · · · pebkhkpeb with |pebℓhℓ| = yℓ for 1 ≤ ℓ ≤ k and 0 ≤ |peb| ≤ n.
The operation dropdk+z on the first transition is only possible if z = |peb|+ 1 and it allows
to determine the size of peb. Since op′r = liftk+1, the test ξ′ on the last transition contains
ξ(s′′, liftk+1) which contains the test pdk+z. This test makes sure that at the end of the
gadget, the head of T ′′ is on the same position of the input word #u as it was at the
beginning. The drop gadget is deterministic at the internal states. The blue tests are added
to make this gadget reverse deterministic at the internal states.

We claim that T ′′ is deterministic, and that if T ′ is reverse-deterministic then T ′′ is
reverse-deterministic (see [11] for detailed proofs).

5 Generators for Pebble Transducers

Set of generators. In [5], the class of polyregular functions is defined as the smallest class
of functions closed under composition that contains the sequential functions, the squaring
function and the iterated reverse function. The iterated reverse function acts on an alphabet
Σ enriched with a special symbol ! and maps a word u0!u1! . . .!un to ur

0!ur
1! . . .!ur

n. By proving
that each of these generators can easily be realized by a reversible pebble transducer and using
Theorem 4.4, we prove that reversible pebble transducers realize all polyregular functions.
This also gives a way to generate them using these basic blocks and composition.

Using [10, Theorem 2] as well as Remark 2.1, we get that any sequential function, realized
by a transducer T with n states, can be realized by a reversible 0-pebble transducer with O(n2)
states. A reversible 1-pebble transducer for the squaring function was given in Example 2.2.
Finally, we give a reversible 0-pebble transducer for the iterated reverse in Figure 5.

CONCUR 2025

14:16 Reversible Pebble Transducers

0 +1 +1 0

−1

q′

0
q′

1

q′

2

q′

3

q′

f

a ∈ Σ | ε a ∈ Σ | ε

a ∈ Σ | a

| ε # | ε

#, ! | ε #, ! | ε

! | ! # | ε

Figure 5 A 0-pebble transducer realizing the iterated reverse function. As there is no pebble, we
omitted the tests and the pebble actions.

Uniformizing Pebble transducers. Another way to generate reversible pebble transducers is
to start from a possibly non deterministic pebble transducer and uniformize it by a reversible
pebble transducer. This section provides a procedure to do this, while preserving the number
of pebbles used by the given transducer. By uniformizing a relation R, we mean extract a
function f such that dom(f) = dom(R) and f ⊆ R.

▶ Theorem 5.1. Given a k-pebble transducer T with n states (possibly with equality tests),
one can construct a k-pebble reversible transducer R with 2O((kn)2) states such that [[R]] is a
uniformization of [[T]].

Proof. The proof relies on the composition of reversible pebble transducers, the uniformiza-
tion result from [10] and lemmas formally stated and proven in Appendix B. T can be
decomposed into a basic reversible k-pebble transducer Ck, a reversible 0-pebble transducer
C=

k enabling equality tests, and a 0-pebble transducer T0 with respectively O(k), O(2k2) and
O(kn) states. The transducer Ck associates to a word u the word of length |#u||#u|k that
is the sequence of possible configurations of a k pebble transducer over the word u. The
transducer C=

k adds the truth values of equality tests to the configurations. The 0-pebble
transducer T0 uses this information to simulate T . Then, by Remark 2.1, T0 is transformed
into a two-way transducer T ′

0 with O(kn) states. We can then use [10, Theorem 4] to obtain
a reversible two-way transducer RT with 2O((kn)2) states. Using Remark 2.1 back, RT
is transformed into a 0-pebble transducer RP with 2O((kn)2) states. We can conclude by
composing Ck with C=

k and composing the result with RP using Theorem 4.1 twice. We
obtain a reversible k-pebble transducer R with 2O((kn)2) states. ◀

References

1 Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In 30th
International Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2010, volume 8 of LIPIcs. Leibniz Int. Proc. Inform., pages 1–12. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2010. doi:10.4230/LIPICS.FSTTCS.2010.1.

2 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the 23rd
EACSL Annual Conference on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 -
18, 2014, pages 9:1–9:10. ACM, 2014. doi:10.1145/2603088.2603151.

3 Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular function
expressions. In Mizuho Hoshi and Shinnosuke Seki, editors, 22nd International Conference on
Developments in Language Theory, DLT 2018, volume 11088 of Lecture Notes in Computer
Science, pages 96–108. Springer, 2018. doi:10.1007/978-3-319-98654-8_8.

https://doi.org/10.4230/LIPICS.FSTTCS.2010.1
https://doi.org/10.1145/2603088.2603151
https://doi.org/10.1007/978-3-319-98654-8_8

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:17

4 Mikolaj Bojanczyk. Polyregular functions. CoRR, abs/1810.08760, 2018. doi:10.48550/
arXiv.1810.08760.

5 Mikolaj Bojanczyk. Transducers of polynomial growth. In Christel Baier and Dana Fisman,
editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,
Israel, August 2 - 5, 2022, pages 1:1–1:27. ACM, 2022. doi:10.1145/3531130.3533326.

6 Mikolaj Bojanczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and first-
order list functions. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 125–134, 2018. doi:
10.1145/3209108.3209163.

7 Mikolaj Bojanczyk, Sandra Kiefer, and Nathan Lhote. String-to-string interpretations with
polynomial-size output. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 106:1–106:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ICALP.2019.106.

8 Michal P. Chytil and Vojtěch Jákl. Serial composition of 2-way finite-state transducers and
simple programs on strings. In Automata, languages and programming (Fourth Colloq., Univ.
Turku, Turku, 1977), pages 135–137. Lecture Notes in Comput. Sci., Vol. 52. Springer, Berlin,
1977.

9 Bruno Courcelle. Monadic second-order definable graph transductions: a survey [see
MR1251992 (94f:68009)]. Theoret. Comput. Sci., 126(1):53–75, 1994. Seventeenth Collo-
quium on Trees in Algebra and Programming (CAAP ’92) and European Symposium on
Programming (ESOP) (Rennes, 1992). doi:10.1016/0304-3975(94)90268-2.

10 Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On reversible transducers.
In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, Warsaw,
Poland, volume 80 of LIPIcs, pages 113:1–113:12. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.113.

11 Luc Dartois, Paul Gastin, Loïc Germerie Guizouarn, and Shankaranarayanan Krishna. Re-
versible pebble transducers. CoRR, 2025. doi:10.48550/arXiv.2506.11334.

12 Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular Transducer Expressions
for Regular Transformations. In Martin Hofmann, Anuj Dawar, and Erich Grädel, editors, Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic In Computer Science (LICS’18),
pages 315–324, Oxford, UK, July 2018. ACM Press. doi:10.1145/3209108.3209182.

13 Joost Engelfriet. Two-way pebble transducers for partial functions and their composition.
Acta Informatica, 52(7-8):559–571, 2015. doi:10.1007/S00236-015-0224-3.

14 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Transactions on Computational Logic, 2(2):216–254,
2001. doi:10.1145/371316.371512.

15 Joost Engelfriet and Sebastian Maneth. Two-way finite state transducers with nested pebbles.
In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of Computer
Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30,
2002, Proceedings, volume 2420 of Lecture Notes in Computer Science, pages 234–244. Springer,
2002. doi:10.1007/3-540-45687-2_19.

A Composition of pebble transducers

A.1 Composition: Simple case

▷ Claim 4.2. There is a transition (q′, h′) t′

−→ (s′, h′ + s′) of T ′ on #v if and only if there is
a nonempty run encode((q′, h′)) +−→ encode((s′, h′ + s′)) of T ′′ on #u which does not use an
intermediate state in Q×Q′.

CONCUR 2025

https://doi.org/10.48550/arXiv.1810.08760
https://doi.org/10.48550/arXiv.1810.08760
https://doi.org/10.1145/3531130.3533326
https://doi.org/10.1145/3209108.3209163
https://doi.org/10.1145/3209108.3209163
https://doi.org/10.4230/LIPICS.ICALP.2019.106
https://doi.org/10.1016/0304-3975(94)90268-2
https://doi.org/10.4230/LIPIcs.ICALP.2017.113
https://doi.org/10.48550/arXiv.2506.11334
https://doi.org/10.1145/3209108.3209182
https://doi.org/10.1007/S00236-015-0224-3
https://doi.org/10.1145/371316.371512
https://doi.org/10.1007/3-540-45687-2_19

14:18 Reversible Pebble Transducers

Proof. (=⇒) Assume that T ′′ has a transition (q′, h′) t′

−→ (s′, h′ + s′) on #v. Let a′ be the
letter of #v at position h′. Let ℓ = encode(h′) and ℓ′ = encode(h′ + s′). We have µ(tℓ) = a′

and t′ = (q′, a′, s′). Let t′′ℓ be the transition of T ′′ constructed from the pair (t, t′) using
Equations (tr-a)–(tr-c).

If s′ ∈ Q′
0 then ℓ′ = ℓ and encode((q′, h′)) t′′

ℓ−→ encode((s′, h′ + s′)): we are done.
Assume that s′ ∈ Q′

+1. Then ℓ′ > ℓ.2 For each ℓ < i < ℓ′, let t′′i be the transition of T ′′

constructed from ti by (mv-a). Let t′′ℓ′ be the transition of T ′′ constructed from tℓ′ by (sw-a).
We can easily check that

((qℓ, q
′), pebℓ, hℓ)

t′′
ℓ−→ ((ˆqℓ+1, s

′), pebℓ+1, hℓ+1)
t′′

ℓ+1···t′′
ℓ′−1−−−−−−−→ ((q̂ℓ′ , s′), pebℓ′ , hℓ′)

. . .
t′′

ℓ′−−→ ((qℓ′ , s′), pebℓ′ , hℓ′)

Therefore, encode((q′, h′))
t′′

ℓ t′′
ℓ+1···t′′

ℓ′−1t′′
ℓ′

−−−−−−−−−−→ encode((s′, h′ + s′)).
The third case is s′ ∈ Q′

−1. Then ℓ′ < ℓ.3 For each ℓ′ < i < ℓ, let t′′i be the transition of
T ′′ constructed from ti by (mv-b). Let t′′ℓ′ be the transition of T ′′ constructed from tℓ′ by
(sw-b). We can easily check that

((qℓ, q
′), pebℓ, hℓ)

t′′
ℓ−→ ((q̂ℓ, s

′), pebℓ, hℓ − qℓ)
t′′

ℓ−1−−−→ ((ˆqℓ−1, s
′), pebℓ−1, hℓ−1 − qℓ−1)

· · ·
t′′

ℓ′+1−−−→ ((ˆqℓ′+1, s
′), pebℓ′+1, hℓ′+1 − qℓ′+1)

t′′
ℓ′−−→ ((qℓ′ , s′), pebℓ′ , hℓ′ − 0)

We deduce that encode((q′, h′))
t′′

ℓ t′′
ℓ−1···t′′

ℓ′+1t′′
ℓ′

−−−−−−−−−−→ encode((s′, h′ + s′)) as desired.
(⇐=) The converse can be shown similarly by noting that, depending on the polarity

of s′, in a run encode((q′, h′)) +−→ encode((s′, h′ + s′)) which has no intermediate states in
Q×Q′, the sequence of transitions used is one of
(a) a transition constructed with (tr-a), followed by a (possibly empty) sequence of transitions

constructed with (mv-a), followed by a transition constructed with (sw-a),
(b) a transition constructed with (tr-b), followed by a (possibly empty) sequence of transitions

constructed with (mv-b), followed by a transition constructed with (sw-b),
(c) a single transition constructed with (tr-c). ◁

▷ Claim A.1. The transducer T ′′ from Theorem 4.1 is deterministic.

Proof. Consider two transitions t′′1 and t′′2 starting from some state q′′, reading some a ∈ Σ
and both enabled at some configuration C ′′ = (q′′, peb, h) of T ′′.

Assume first that q′′ = (q̂, q′) with q′ ∈ Q′
+1. For each i ∈ {1, 2}, let ti = (q, a, φi, opi, si)

be the transition of T giving rise to t′′i with (mv-a) or (sw-a). Since t′′i is enabled at
configuration C ′′, we deduce that ti is enabled at configuration C = (q, peb, h). Hence, t1, t2
are both enabled at C. We get t1 = t2 by determinism of T and therefore t′′1 = t′′2 .

Assume now that q′′ = (ŝ, q′) with q′ ∈ Q′
−1. For each i ∈ {1, 2}, let ti = (qi, a, φi, opi, s)

be the transition of T giving rise to t′′i with (mv-b) or (sw-b). Since t′′i is enabled at
configuration C ′′, we deduce that tri is enabled at configuration C = (s, peb, h). Therefore,
by (1), transition ti is reverse-enabled at configuration C ′ = (s, peb, h + s). Hence, t1, t2 are
both reverse-enabled at C ′. We get t1 = t2 by reverse-determinism of T . Hence, t′′1 = t′′2 .

2 Or ℓ = |v| and ℓ′ = 0 which can be handled similarly using the extra transition tf,i producing ε allowing
to move from the final configuration of T to its initial configuration.

3 Or ℓ = 0 and ℓ′ = |v| which can be handled similarly using the extra transition tf,i.

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:19

Finally, assume that q′′ = (q, q′). For each i ∈ {1, 2}, let ti = (q, a, φi, opi, si), a′
i = µ(ti)

and t′i = (q′, a′
i, s

′
i) be the transitions of T and T ′ giving rise to t′′i with (tr-a), (tr-b) or

(tr-c). Since t′′i is enabled at C ′′, we deduce that ti is enabled at configuration C = (q, peb, h).
Hence, t1, t2 are both enabled at C and we get t1 = t2 by determinism of T . It follows that
a′

1 = µ(t1) = µ(t2) = a′
2 and we get t′1 = t′2 by determinism of T ′. Therefore t′′1 = t′′2 . ◁

▷ Claim A.2. If the transducer T ′ from Theorem 4.1 is reversible, then T ′′ is reverse-
deterministic.

Proof. Consider two transitions t′′1 and t′′2 of T ′′ ending in some state q′′, reading some a ∈ Σ
and both reverse-enabled at some configuration C ′′ = (q′′, peb, h).

Assume first that q′′ = (ŝ, s′) with s′ ∈ Q′
+1. For each i ∈ {1, 2}, let ti = (qi, a, φi, opi, s)

be the transition of T giving rise to t′′i with (mv-a) or (tr-a). Since t′′i is reverse-enabled
at configuration C ′′, we deduce that ti is reverse-enabled at configuration C = (s, peb, h).
Hence, t1, t2 are both reverse-enabled at C and we get t1 = t2 = t by reverse-determinism of
T . Now, either µ(t) = ε and both t′′1 and t′′2 are constructed from t and s′ with (mv-a). We
get t′′1 = t′′2 . Or µ(t) = a′ ∈ Γ and t′′i is constructed from t and some transition t′i = (q′

i, a
′, s′)

of T ′ with (tr-a). Using the reverse-determinism of T ′, we deduce that t′1 = t′2 and t′′1 = t′′2 .
Assume now that q′′ = (q, q′) ∈ Q′′

0 . Depending on the polarity of q′, both transitions t′′1
and t′′2 are constructed with the same case (sw-a), (sw-b) or (tr-c) from some transitions t1
and t2 of T . In the cases (sw-a) or (tr-c), the pebble stack does not change when executing t′′i
whose operation is nop, and the head does not move since q′′ ∈ Q′′

0 . Since t′′i is reverse-enabled
at C ′′, we deduce that peb, h |= φi ∧ opi. Hence, t1 and t2 are both enabled at configuration
C = (q, peb, h). It follows that t1 = t2 using the determinism of T , and then t′′1 = t′′2 ,
using the reverse-determinism of T ′ in case (tr-c). Consider now the case (sw-b) and let
ti = (q, a, φi, opi, si). Since t′′i is reversed-enabled at C ′′, we deduce that tri is reverse-enabled
at C = (q, peb, h). By (1), this implies that ti is enabled at (q, peb, h + q). We conclude as in
the previous case that t1 = t2 and t′′1 = t′′2 .

Finally, assume that q′′ = (q̂, q′) ∈ Q̂×Q′
−1. For each i ∈ {1, 2}, let ti = (q, a, φi, opi, si)

be the transition of T giving rise to t′′i with (mv-b) or (tr-b). In case (mv-b), we see that tri is
reverse-enabled at (q, peb, h) and using (1) we deduce that ti is enabled at C = (q, peb, h + q).
In case (tr-b), we note that the pebble stack does not change while executing transition
t′′i and the head moves by the polarity of q′′. Since t′′i is reverse-enabled at C ′′, we have
peb, h−q′′ |= φi∧opi. Using h−q′′ = h+q we deduce that ti is enabled at C = (q, peb, h+q).
We have shown that in both cases (mv-b) or (tr-b), transitions t1 and t2 are both enabled
at C. It follows that t1 = t2 using the determinism of T , and then t′′1 = t′′2 , using the
reverse-determinism of T ′ in case (tr-b). ◁

CONCUR 2025

14:20 Reversible Pebble Transducers

0 +1 0

+1 +1 +1

q0 q1 q2

q3

q4

q5

#

#,

drop1

a ∈ Σ,

drop1

a ∈ Σ, ¬p1

| (#, b)

a ∈ Σ | (a, b)

#

a ∈ Σ, ¬p1

a ∈ Σ ∪ {#},

lift1

0 +1 0

+1 C+1

k−1 +1

q0 q1 q2

q3 q5

#

#,

drop1

a ∈ Σ,

drop1

a ∈ Σ, ¬p1

#

a ∈ Σ, ¬p1

a ∈ Σ ∪ {#},

lift1

Figure 6 Reversible transducers for the function C1 (left) and Ck (right). The production b of
C1 is the bit corresponding to h = p1. The transitions are actually duplicated. The self-loop on q4

reading a ∈ Σ stands for two transitions (q4, a, p1, q4) producing (a, 1) and (q4, a, ¬p1, q4) producing
(a, 0). Similarly, the transition from q3 to q4 reading # is duplicated.
In Ck, we use a copy C+1

k−1 of Ck−1 where all the pebble indices are incremented by 1. The transition
in Ck from q3 labelled # goes to the initial state of C+1

k−1 which is a 0-state, hence the head does
not move. Similarly, the transition in Ck labelled # going to q5 starts from the final state of C+1

k−1.
When it appears in Ck, b stands for the bit vector giving the truth value of each h = pi for 1 ≤ i ≤ k.
It is actually a macro for 2k disjoint transitions.

B Generators for pebble transducers

We give the supporting lemmas and their proof required for Theorem 5.1.
Given an integer k ≥ 1 and a word u, we define the marking of u for k-configurations as

the word Ck(u) on (Σ∪{#})×{0, 1}k which is the lexicographically ordered sequence of every

possible marking of k positions in #u. For instance, we have C1(ab) = # a b # a b # a b

1 0 0 0 1 0 0 0 1 and

C2(ab) =
a b # a b # a b # a b # a b # a b # a b # a b # a b

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

.

▶ Lemma B.1. Given an integer k ≥ 1 and an alphabet Σ, one can construct a reversible
k-pebble transducer Ck with O(k) states such that for all input word u ∈ Σ∗, Ck(u) is the
marking of u for k-configurations.

Proof. The machine for C1 is given in Figure 6 (left). It is a slightly modified version of
the squaring function of Figure 1, mainly to accomodate the fact that C1 also produces the
endmarker # at each iteration.

For k > 1, the machine Ck is defined using an enhanced Ck−1 as a blackbox. Indeed, the
marking for k-configurations over a word u can be defined as the k − 1 marking iterated
|#u| times, where each iteration is marked by the new pebble on a different position of #u,
in order. Then Ck uses a modified C+1

k−1 that outputs its marking plus the one of the new
pebble. It is described in Figure 6 (right). ◀

▶ Lemma B.2. Given an integer k ≥ 1 and an alphabet Σ, one can construct a reversible
0-pebble transducer C=

k with O(2k2) states that reads [[Ck]](u) and adds to each copy of #u in
[[Ck]](u) a k × k boolean matrix M such that Mi,j = 1 if and only if i and j mark the same
position in this copy of #u.

L. Dartois, P. Gastin, L. Germerie Guizouarn, and S. Krishna 14:21

Sketch of proof. Informally, the transducer C=
k reads a marking of #u and computes the

matrix M along this copy. Then, when reaching a new pair (#, b), it goes back to output the
copy enriched with the matrix M . Special care has to be taken to ensure reverse-determinism.
In particular, the transducer C=

k needs to undo the computation done before moving again
to the next marked copy of #u. Details can be found in [11]. ◀

▶ Lemma B.3. Given a k-pebble (k ≥ 1) transducer T with n states, one can construct a
0-pebble transducer T0 with O(kn) states such that [[T]] = [[T0]] ◦ [[C=

k]] ◦ [[Ck]].

Proof. The idea is to simulate the moves of the pebbles of T with moves of the reading head
of T0 along the sequence of k-configurations produced by Ck. The tests φ are validated using
the information added by C=

k .
Informally, the transducer T0 remembers in its state the number of pebbles dropped by T .

It uses the configuration where the unused pebbles are on the same position as the reading
head. Then, when the simulation of T drops a pebble i, T0 is already reading a configuration
where the pebble i is at the current position. The transducer T0 simply needs to increment
the number of pebbles dropped. Conversely, if a pebble i is lifted, it means the reading head
is on a position where the pebble i is present. Hence it only needs to decrement its number
of pebbles dropped.

The move of the reading head uses the fact that the configurations are output by Ck in
lexicographic order. If the head moves to the left while having i pebbles dropped, T0 moves
left until it sees a position where pebbles i+ 1 to k are all present. The first such position is
the previous one from where we started due to the lexicographic order. It is also the correct
position to maintain the invariant that all undropped pebbles are placed at the same position
as the head. A move right is treated symmetrically.

Because the input word of u is read in a cyclic fashion, this might create issue for T0
as consecutive endmarkers # do not belong to the same marking. More precisely, given
any position in Ck(u), its corresponding endmarker is the closest (possibly itself) #-labelled
position on its left. So if during the computation T0 reaches the endmarker # moving left
and need to keep moving left, T0 needs to move to a position where all pebbles 1 to i are
unchanged, but pebbles i+ 1 to k are on the last letter of the word. This is done by reaching
the closest position on the right where pebbles i+ 1 to k are on an endmarker # (or ⊢⊣ in
the case where we reach the end of the word) then moving to the position on the left.

Symmetrically, if the computation of T0 reaches an endmarker # with a single right move,
it means that pebbles i + 1 to k were on the last position of u, then T0 moves left to the
closest position where pebbles i+ 1 to k are all on the endmarker #.

Formally, let T = (Q,Σ, δ, k, qi, qf ,Γ, µ). We define T0 = (P,Σ′, γ, 0, pi, pf ,Γ, ν) where
Σ′ = Σ× {0, 1}k × {0, 1}k2 , P ⊆ (Q× {0, . . . , k} × {s,mr,mℓ})∪ {pi, pf} where s stands for
simulation, and mℓ, mr stand for move left and right respectively. We divide P into

P0 = (Q× {0, . . . , k} × {s}) ∪ {pi, pf},
P+1 = Q× {0, . . . , k} × {mr},
P−1 = Q× {0, . . . , k} × {mℓ} .

To avoid the more convoluted cases, we assume that in T transitions with action drop or
lift do not move the reading head (this is especially needed for #). Note that this can be
enforced by decomposing a drop and move transition into two transitions (see Lemma 4.5).

For 0 ≤ i ≤ k, we denote by b+i any vector where b+i
j = 1 for all i < j ≤ k and we denote

by b−i any vector where b−i
j ̸= 1 for some j > i.

CONCUR 2025

14:22 Reversible Pebble Transducers

Given an integer 0 ≤ i ≤ k, a bit vector b and a matrix M , we say that b,M, i |= (h = pℓ)
(resp. pℓ = pℓ′) if ℓ ≤ i and bℓ = 1 (resp. ℓ, ℓ′ ≤ i and Mℓ,ℓ′ = 1).

The transitions in γ and the output function ν are defined below, where a denotes a letter
different from #, σ is any letter (possibly #), b is any k-bit vector and M is a k× k boolean
matrix. We omit the tests and operations in transitions as T0 is pebbleless. All transitions
output ε except those of Item 3 below.
1. (pi,⊢⊣, (qi, 0,mr)) and ((qi, 0,mr), (#, b+0,M1), (qi, 0, s)).
2. ((qf , 0, s), (#, b+0,M1), (qf , 0,mℓ)) and ((qi, 0,mr),⊢⊣, pf).
3. ((q, i, s), (σ, b+i,M), (q′, i′,m)) if there exists a transition t = (q, σ, φ, op, q′) in T such

that b+i,M, i |= φ and op ∈ {nop, dropi+1, lifti} and bi = 1 if op = lifti. In this case,

i′ =


i if op = nop
i+ 1 if op = dropi+1

i− 1 if op = dropi

and m =


s if q′ ∈ Q0

mℓ if q′ ∈ Q−1 ∧ σ ̸= #
mr if q′ ∈ Q+1 or q′ ∈ Q−1 ∧ σ = #

The production of this transition is the same as t.
Note that, the head of T0 moves left or right when q′ ∈ Q−1 or q′ ∈ Q+1. But in
general, the head of T0 does not reach immediately the position where the simulation of
T continues. We have to skip positions with a bit vector of the form b′−i′ and handle
carefully the endmarker #. This is the purpose of the following transitions.

4. If q ∈ Q−1 then ((q, i,mℓ), (σ, b−i,M), (q, i,mℓ)) and ((q, i,mℓ), (σ, b+i,M), (q, i, s)).
5. If q ∈ Q−1 then ((q, i,mr), (a, b,M), (q, i,mr)) and ((q, i,mr), (#, b−i,M), (q, i,mr)) and

((q, i,mr), (#, b+i,M), (q, i,mℓ)) and ((q, i,mr),⊢⊣, (q, i,mℓ)).
Note that, when moving right we reach # with a bit vector of the form b+i then the
previous letter also has a bit vector of the form b+i. Hence, the transition taken from
(q, i,mℓ) will go directly to the simulation mode (q, i, s). If moving right we reach the
endmarker ⊢⊣ then the previous letter has a bit vector of the form b+0.

6. If q ∈ Q+1 then ((q, i,mr), (σ, b−i,M), (q, i,mr)) and ((q, i,mr), (a, b+i,M), (q, i, s)).
7. If q ∈ Q+1 then ((q, i,mr), (#, b+i,M), (q, i,mℓ)) and ((q, i,mr),⊢⊣, (q, i,mℓ)) and

((q, i,mℓ), (a, b,M), (q, i,mℓ)) and ((q, i,mℓ), (#, b−i,M), (q, i,mℓ)) and
((q, i,mℓ), (#, b+i,M), (q, i, s)).

We remark that T0 is obtained from T by decomposing its transitions into separate
sequences of transitions. The bit vectors and the matrices M allow us to check the tests
of transitions of T . The producing transitions of T0 correspond to the ones of T and the
accepting runs of T0 correspond to the accepting runs of T . Hence for any input word u,
u ∈ dom(T) if, and only if [[C=

k]]([[Ck]](u)) ∈ dom(T0) and [[T]] = [[T0]] ◦ [[C=
k]] ◦ [[Ck]]. ◀

	1 Introduction
	2 Reversible Pebble Transducers
	3 Simulating equality tests of pebbles
	4 Composition of pebble transducers
	4.1 Reversing the output of a reversible pebble transducer
	4.2 Composition: Simple case
	4.3 Composition: General case

	5 Generators for Pebble Transducers
	A Composition of pebble transducers
	A.1 Composition: Simple case

	B Generators for pebble transducers

