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Abstract
A system of communicating automata is send-synchronizable if its set of send sequences (i.e., the
projection on send actions of its executions) is the same when communications are asynchronous and
when they are rendez-vous synchronizations. Send-synchronizability was claimed to be decidable
for the mailbox semantics (Basu and Bultan, 2011) and for the peer-to-peer semantics (Basu and
Bultan, 2016). Finkel and Lozes showed in 2017 that the proofs of these results are flawed, and
they proved that send-synchronizability is in fact undecidable for peer-to-peer systems. The send-
synchronizability problem for mailbox systems was left open. A partial solution was recently proposed
in (Di Giusto, Laversa and Peters, 2024). In this paper, we revisit the send-synchronizability problem
for mailbox systems. Firstly, we show that send-synchronizability is undecidable for mailbox systems,
thus closing the question left open in (Finkel and Lozes, 2023) and (Di Giusto, Laversa and Peters,
2024). Secondly, we show that send-synchronizability is decidable for the class of 1-schedulable
mailbox systems. A system is 1-schedulable if every execution can be re-scheduled into an equivalent
execution where each send is either immediately followed by its matching receive, or is never matched.
Despite the apparent similarity between send-synchronizability and 1-schedulability, the proof that
send-synchronizability is decidable for 1-schedulable mailbox systems is quite involved. We believe
that the techniques that we develop in this proof could be used to address other problems on mailbox
systems, such as the realizability problem.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Concurrent programming, Mailbox communication, Verification, Synchroniz-
ability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.15

Funding This work was (partially) supported by the grant ANR-23-CE48-0005 of the French National
Research Agency ANR (project PaVeDyS).

1 Introduction

Message-passing is a key synchronization mechanism for concurrent programming and distrib-
uted systems. In this model, processes running asynchronously synchronize by exchanging
messages over unbounded channels. Typically, the communication follows a peer-to-peer
model, which is particularly useful for reasoning about telecommunication protocols.

Recently, mailbox communication has attracted increased attention due to its role in multi-
thread programming, as seen in languages like Rust or Erlang. In mailbox communication
each process has a single incoming communication buffer, or mailbox, where messages from
other processes are multiplexed.

© Romain Delpy, Anca Muscholl, and Grégoire Sutre;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 15; pp. 15:1–15:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0006-0716-3787
https://orcid.org/0000-0002-8214-204X
https://orcid.org/0009-0004-3839-0005
https://doi.org/10.4230/LIPIcs.CONCUR.2025.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


15:2 Send-Synchronizability for Mailbox Communication

Asynchronous communication poses significant challenges for formal verification, since it
can easily emulate Turing machines. The quest for conditions that ensure decidability for
automatic verification has led to various restrictions, such as constraints on channel behavior
(e.g. lossiness [1, 12], or properties based on partial-orders [18, 14, 20]). More recently,
research has focused on restricting the communication protocols themselves [6, 16, 17, 8].

While synchronous communication offers great simplicity, its relevance extends beyond
verification. Many specification formalisms, such as choreography languages [2] and multi-
party session types [24, 22, 23], are built upon synchronous communication. This raises
a fundamental question, considering the inherent asynchrony of real-world systems: how
different is an asynchronous system from its idealized synchronous version, where every sent
message is instantaneously received?

Send-synchronizability offers one way to compare synchronous and asynchronous semantics.
The work [13] defined a system as (send-)synchronizable if the sequence of sent messages is
identical under both asynchronous and synchronous semantics. While [2] claimed decidability
for mailbox systems and later extended the claim to peer-to-peer systems [3], the latter claim
was refuted by [10, 11], showing undecidability for peer-to-peer systems. The decidability
of send-synchronizability for mailbox systems, however, remained an open question (see,
e.g., [9]), and this paper addresses it.

Send-synchronizability has been explored in several subsequent works [2, 4, 3, 11, 9]
with variations such as final states, or requiring that the same state is reached in both the
synchronous and asynchronous execution. For example, in [9], each process has a set of final
states. This generalized version was shown to be undecidable in [9], with final states playing
a key role in the proof. Our first contribution is to show that send-synchronizability remains
undecidable even in the standard setting of communicating systems without final states.

Our second contribution shows the decidability of send-synchronizability for 1-schedulable
systems. These systems, termed 1-synchronizable in [6] but renamed here for clarity, share
similarities with the synchronous semantics. However, a key difference is that not all messages
need to be received. A system is 1-schedulable if every execution can be reordered into
an equivalent one where each send is either immediately followed by its corresponding
receive, or remains unmatched. Being 1-schedulable is a decidable property, with PSPACE
complexity [6, 16]. We show that send-synchronizability is decidable for 1-schedulable
systems, but the proof is surprisingly intricated because of the unreceived messages. Our
proof employs partial-order techniques (commutations), with the main challenge being the
unmatched send events.

For convenience, technical terms and notations in the electronic version of this manuscript
are hyper-linked to their definitions (cf. https://ctan.org/pkg/knowledge).

2 Definitions and Notations

2.1 Mailbox message-passing systems
We let P denote a finite non-empty set of processes, and M denote a finite non-empty set
of message contents. The set of (communication) actions is Act = {p!q(m), q?p(m) | p, q ∈
P, p ̸= q, m ∈ M}. An action p!q(m) denotes a send by p of message m to q and an action
p?q(m) denotes a receive by p of message m from q. In both cases, the process performing
the action is p. A communicating finite-state machine [7] is a finite set of processes that
exchange messages, each process being given as a finite LTS. Recall that a (finite) labeled
transition system, LTS for short, is a quadruple (L, A, →, i) where L is a (finite) set of states,
A is a finite alphabet, → ⊆ L × A × L is a set of transitions, and i ∈ L is an initial state. In
the following definition, Actp denotes the set of actions a ∈ Act performed by p.

https://ctan.org/pkg/knowledge
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A Communicating Finite-State Machine (CFM for short) is a tuple A = (Ap)p∈P, where
each Ap is a finite LTS Ap = (Lp, Actp, →p, ip). States in Lp are called local states. The size
of A is defined as

∑
p∈P(|Lp| + | →p |).

The usual semantics of communication is peer-to-peer, with (at most one) fifo channel
for each pair of distinct processes. In this paper we focus on the mailbox semantics. Here,
every process has a receiving fifo queue in which every other process can enqueue messages.
We define the semantics by an associated global transition system.

Let A = (Ap)p∈P be a CFM. The global transition system associated with A is the LTS
T (A) = (CA, Act, →A, cin) with set of configurations CA = G ×

∏
p∈P(P × M)∗ consisting

of global states G =
∏

p∈P Lp (i.e., products of local states) and queue contents over the
alphabet P × M. Let ((ℓp)p∈P, (wp)p∈P) a−→A ((ℓ′

p)p∈P, (w′
p)p∈P) if

ℓp
a−→p ℓ′

p and ℓq = ℓ′
q for q ̸= p, where p is the process performing a.

Send actions: if a = p!q(m) then w′
q = wq (p, m) and w′

p′ = wp′ for p′ ̸= q.
Receive actions: if a = p?q(m) then (q, m) w′

p = wp and w′
p′ = wp′ for p′ ̸= p.

The initial configuration is cin = ((ip)p∈P, εP).
An execution of T (A) is a sequence ρ = c0

a1−→ c1 · · · an−−→ cn with ci ∈ CA such that
ci−1

ai−→A ci for every i. The sequence a1 · · · an is the label of the execution. The execution
is initial if c0 = cin.
▶ Remark 2.1. Note that the queue content includes the identity of the sender. This is
to exclude executions labelled by p!q(m) q?r(m) with p ̸= r. Without this addition such
executions would be allowed in the mailbox semantics, which is clearly not intended.

▶ Definition 2.2 (Trace). A trace of a CFM A is a sequence u ∈ Act∗ such that there exists
an initial execution of T (A) labelled by u. The set of all traces of A is denoted by Tr(A).

▶ Definition 2.3 (Viable). A sequence v ∈ Act∗ is called viable if for every p ∈ P:
for every prefix u of v, the number of receives of p in u is less or equal the number of
sends to p in u;
for every k, if the k-th receive of p in v has label p?q(m) then the k-th send to p in v has
label q!p(m).

▶ Definition 2.4 (Rendez-vous). A sequence from Act∗ is called a rendez-vous sequence if it
is of the form p1!q1(m1)q1?p1(m1) . . . pn!qn(mn)qn?pn(mn). Note that every send action is
matched in a rendez-vous sequence, and that such sequences are viable. We define Trrdv(A) ⊆
Tr(A) as the set of traces in Tr(A) that are rendez-vous.

The classical happens-before relation [21], frequently used in reasoning about distributed
systems, orders the actions of each process and every (matched) send action before its
matching receive. Because of mailbox semantics, an additional order arise between sends to
the same process. The happens-before relation together with the mailbox order naturally
associates a partial order with every trace, known as message sequence chart:

▶ Definition 2.5 (Message Sequence Chart). An MSC over P is an Act-labeled partially
ordered set M = (E, ⪯, λ) of events E, with λ : E → Act and ⪯ =(≤P ∪ msg ∪ <mb)∗ the
least partial order containing the relations ≤P, msg and <mb, which are defined as:
1. For every process p, the set of events on p is totally ordered by ≤P, and ≤P is the union

of these total orders.
2. msg is the set of matching send/receive event pairs. In particular, (e, f) ∈ msg implies

λ(e) = p!q(m) and λ(f) = q?p(m) for some p, q ∈ P and m ∈ M. Moreover, msg is
a partial bijection between sends and receives such that every receive is paired with a
(unique) send. A send is called matched if it is in the domain of msg, and unmatched
otherwise.

CONCUR 2025
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p0 p1 p2

m1
m0

m2

p0!p1(m0) p1!p2(m1) p2?p1(m1) p2!p1(m2) p1?p0(m0)

Figure 1 A sequence and its MSC. An unmatched send action is marked by a special arrowhead,
as for m2. We have here s0 <mb s2, so s0 ≺ s2, and s1 ∥ s0, with si the send of message mi.

3. for every process p, we order two sends e <mb e′ with e = q!p(m) and e′ = q′!p(m′) if
either e is matched and e′ is unmatched,
or (e, f), (e′, f ′) ∈ msg and f <P f ′.

We call <mb the mailbox order.

For two events e, f ∈ E we write e ∥ f if neither e ⪯ f nor f ⪯ e holds. For a set of
events F ⊆ E we write Past(F ) = {f | f ⪯ e for some e ∈ F} and Ftr(F ) = {f | e ⪯
f for some e ∈ F} for the causal past and future of F , respectively.

If u = u[1] . . . u[n] is a viable sequence of actions, then we can associate an MSC with u

by setting msc(u) = (E, ⪯, λ) with E = {e1, . . . , en}, λ(ei) = u[i], and the orders defined as
expected:

ei ≤P ej if u[i] and u[j] are performed by the same process and i ≤ j.
(ei, ej) ∈ msg if there exists k ≥ 1 and a process p such that u[i] is the k-th send to p

and u[j] is the k-th receive of p.
ei <mb ej if u[i] and u[j] are both sends to the same process p, u[i] is matched to some
u[k], and either u[j] is unmatched, or u[j] is matched to some u[ℓ] with k ≤ ℓ.

▶ Remark 2.6. By definition, for any viable sequence u, the associated MSC msc(u) is well-
defined. For the converse, for every MSC M, every (labelled) linearization of the partial order
⪯ of M is viable. Indeed, all receives of the same process are totally ordered by ≤P, and the cor-
responding sends are ordered in the same way because of the mailbox order. For example, the
sequence shown in Figure 1 is viable, but p1!p2(m1) p2?p1(m1) p2!p1(m2) p0!p1(m0) p1?p0(m0)
is not.

The next definition introduces an equivalence relation ≡ on sequences of actions. Two
viable sequences are equivalent up to commuting adjacent actions that are not ordered by
being on the same process, being a matching send/receive pair, or being two sends to the
same process that are not both unmatched.

▶ Definition 2.7 (Equivalence ≡). Two viable sequences u, v ∈ Act∗ are called equivalent if
msc(u) = msc(v) (up to isomorphism), and we write u ≡ v in this case.

In this paper, we define (as in [2, 10]) the observable behavior of a CFM as the set of
projections on sends. We set S = {p!q(m) | p, q ∈ P, p ̸= q, m ∈ M}. For a sequence u ∈ Act∗,
we denote by u|S the projection of u on S. For any X ⊆ Act∗, we write X|S = {u|S | u ∈ X}.

▶ Definition 2.8 (Send-synchronizability). Let A be a CFM. We say that A is send-
synchronizable if Tr(A)|S = Trrdv(A)|S.

The send-synchronizability problem is the question whether a CFM is send-synchronizable.
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3 Undecidability of Send-Synchronizability for Mailbox Systems

We show in this section that the send-synchronizability problem is undecidable. We rely
in our undecidability proof on the following decision problem, which is a variant of the
well-known Post correspondence problem.

Pre-MPCP

Input: A finite sequence of pairs (x1, y1), . . . , (xK , yK), with K ≥ 1, where
xi, yi ∈ Σ∗ for some finite alphabet Σ.

Output: Yes if there exists a sequence of indices i1, . . . , ik ∈ {1, . . . , K}, with
k ≥ 1, such that i1 = 1, xi1 · · · xik = yi1 · · · yik and |xi1 · · · xij | ≥
|yi1 · · · yij | for every j ∈ {1, . . . , k}.

It is well-known that Pre-MPCP is undecidable [19]. The remainder of this section
provides a reduction from Pre-MPCP to send-synchronizability.

Consider an instance I = (x1, y1), . . . , (xK , yK) of Pre-MPCP over a finite alphabet Σ.
We construct a CFM A(I) such that I is a positive instance of Pre-MPCP if, and only
if, A(I) is not send-synchronizable. The CFM A(I) comprises three processes, namely G

(the guesser), R (the relayer), and V (the verifier). So P = {G, R, V }. The set of message
contents is M = Σ∪Σ∪{$, $, #}, where Σ = {a | a ∈ Σ} is disjoint from Σ, and the messages
$, $ and # denote three distinct symbols that are not in Σ ∪ Σ. We choose to introduce a
copy Σ ∪ {$} of the alphabet Σ ∪ {$} in order to easily1 distinguish in the mailbox of V the
messages that were sent by G from the messages that were sent by R. The symbols $ and
$ are used to mark the end of the sequences xi1 · · · xik

and yi1 · · · yik
guessed by G. It is

understood that y1, . . . , yK are the words in Σ that are obtained from y1, . . . , yK by replacing
each letter a by a. The message # is sent by V when the two guessed sequences are equal.
The LTSes AG, AR and AV of the processes G, R and V are defined in Figures 2–4. To
ease understanding, the resulting communication topology, along with the potential message
contents in the channels, is depicted in Figure 5. In the description of the guesser process
(see Figure 2), we use the shortcuts G!R(xi) and G!V (yi) to reduce clutter. Let us explain
what we mean by these shortcuts. A transition ℓ

p!q(m1···mn)−−−−−−−−→ ℓ′, where mi ∈ M, stands
for the contiguous sequence of transitions ℓ = ℓ0

p!q(m1)−−−−−→ ℓ1 · · · ℓn−1
p!q(mn)−−−−−→ ℓn = ℓ′ where

ℓ1, . . . , ℓn−1 are intermediate states. The observant reader will notice that the LTSes AR and
AV contain silent transitions (from the initial state to the states D and N), which are not
allowed in our definition of CFM. This is merely a notational convenience to reduce clutter
in the figures. We may safely get rid of these silent transitions since send-synchronizability
of a CFM is not sensitive to such transitions.

The behavior of the guesser process G should be quite clear. It sends the two guessed
sequences and then waits for a message # from V , which it relays to R, signaling that the
guessed sequences form a solution. The relayer process R has two operating modes, a normal
mode (right-hand side of Figure 3) and a dummy mode (left-hand side of Figure 3). In
the normal mode, R simply relays to V every message that it receives from G. For V to
process its mailbox properly (see below), the send actions G!V (·) and R!V (·) need to be

1 In our global transition system T (A), each message content stored in a buffer is decorated with the
channel of the corresponding send action. So our construction would also work without the copy Σ ∪ {$}
of Σ ∪ {$}, but we believe that this copy makes our construction easier to read.

CONCUR 2025



15:6 Send-Synchronizability for Mailbox Communication

for i = 1, . . . , K

N
G!R(x1) G!V (y1) G!R($) G!V ($) G?V (#)

G!R(#)

G!R($)

G!R(xi) G!V (yi)

Figure 2 LTS AG of the guesser process G of the CFM A(I).

for m ∈ Σ ∪ {$, #}

ND

R?G(m) R!V (m)

R!V ($)

R?G(m)
for m ∈ Σ ∪ {$, #}

R?G(m)
for m ∈ Σ ∪ {$, #}

R!V (m)
for m ∈ Σ

Figure 3 LTS AR of the relayer process R of the CFM A(I).

for m ∈ Σ

ND

V ?R(m) V ?G(m)

V ?R($) V ?G($)

V !G(#)

V ?G(m)
for m ∈ Σ ∪ {$}

V ?R(m)
for m ∈ Σ ∪ {$}

Figure 4 LTS AV of the verifier process V of the CFM A(I).

G R

V

Σ, $, #

Σ, $ Σ, $, #

#

+

Figure 5 Topology of the CFM A(I) and message contents potentially exchanged along the
channels. The + sign serves as a reminder that the channels (G, V ) and (R, V ) are multiplexed into
a single mailbox.
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interleaved in lock-step (but there may be executions in T (A(I)) where this does not hold).
The purpose of the dummy mode is to make A(I) send-synchronizable if I is a negative
instance of Pre-MPCP. Notice that there is no switch between modes. Analogously, the
verifier process V has a normal mode and a dummy mode (right-hand and left-hand sides of
Figure 4, respectively). In the normal mode, V checks that the contents of its mailbox is of
the form a1a1 · · · anan$$. It then sends # to G if that is the case (otherwise it is blocked).
The purpose of the dummy mode is the same as for R. Observe that the message # sent by
V to G is relayed by G to R, and then relayed by R back to V , but V never receives it.

We first show that if I is a positive instance of Pre-MPCP, then A(I) is not send-
synchronizable.

▶ Lemma 3.1. If I is a positive instance of Pre-MPCP then there is an initial execution
in T (A(I)) leading to the configuration (N, N, N ; ε, ε, ε).

Proof sketch. G guesses a solution i1, . . . , ik, and sends xi1 · · · xik
$ and yi1 · · · yik

$ to R and
V , respectively. R relays xi1 · · · xik

$ to V with the appropriate delay so that the mailbox of
V is filled by G and R in lock-step. This is possible because our variant of PCP requires
that |xi1 · · · xij

| ≥ |yi1 · · · yij
| for every j ∈ {1, . . . , k}. We end up with a1a1 · · · anan$$ in

the mailbox of V . Then V empties its mailbox by iterating the cycle on N . ◀

▶ Corollary 3.2. If I is a positive instance of Pre-MPCP then there is a trace u ∈ Tr(A(I))
containing the action R!V (#), hence, A(I) is not send-synchronizable.

Now we show that if I is a negative instance of Pre-MPCP, then A(I) is send-
synchronizable. Some additional notations are needed. For every process p ∈ P, we let L(Ap)
denote the language recognized by the LTS Ap viewed as a non-deterministic automaton with
every state final, and we let u|p denote the projection of a sequence u ∈ Act∗ on Actp. We
also define match : S∗ → Act∗ as the morphism given by match(p!q(m)) = p!q(m) q?p(m).

▶ Lemma 3.3. If there is a trace in Tr(A(I)) containing the action R!V (#) then I is a
positive instance of Pre-MPCP.

▶ Lemma 3.4. For every trace u ∈ Tr(A(I)), if u does not contain the action R!V (#) then
match(u|S)|p ∈ L(Ap) for every process p ∈ {G, R, V }.

Proof sketch. Either u contains no send action to G, or u contains a single send action to
G, which is V !G(#). In that case, this action is necessarily after G!V ($) and before G!R(#).
In both cases, we get that match(u|S)|G ∈ L(AG).

All sends to R are from G and all sends by R are to V . The word sent by G to R in u is
a prefix of a word in Σ∗$#. The word sent by R to V in u is a prefix of a word in Σ∗$, since
u does not contain the action R!V (#). It follows that match(u|S)|R ∈ L(AR), by letting R

select the dummy mode.
The word sent to V in u is in (Σ ∪ Σ ∪ {$, $})∗, since u does not contain the action

R!V (#). If u contains no send action by V , then match(u|S)|V ∈ L(AV ), by letting V

select the dummy mode. Otherwise, u contains a single send action by V , which is V !G(#).
The definition of AV (together with the mailbox semantics) entails that the word sent to
V in u is of the form a1a1 · · · anan$$. Moreover, the action V !G(#) is necessarily after
G!V ($). We derive that match(u|S)|V coincides with the sequence of actions by V in u,
hence, match(u|S)|V ∈ L(AV ). ◀

CONCUR 2025
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▶ Corollary 3.5. If I is a negative instance of Pre-MPCP then A(I) is send-synchronizable.

We then get the next theorem from Corollaries 3.2 and 3.5.

▶ Theorem 3.6. The send-synchronizability problem is undecidable.

4 Send-synchronizability and 1-schedulable Systems

In this section we show that we can decide send-synchronizability for a subclass of CFMs
that we call 1-schedulable.2 We start by defining 1-schedulable systems and a commutation
relation over send sequences. Then we show that if all traces of a 1-schedulable CFM respect
a certain property (and we say the CFM is good in this case) then we can check if the CFM
is send-synchronizable. Next we show that any 1-schedulable CFM that is not good, cannot
be send-synchronizable. Finally we show that we can check if a 1-schedulable CFM is good.

▶ Definition 4.1 (1-scheduling and 1-schedulable). A viable sequence u ∈ Act∗ is a 1-scheduling
if every send action in u is either directly followed by its receive or it is unmatched. We also
say in that case that u is 1-scheduled. A sequence u ∈ Act∗ is 1-schedulable if there exists
v ≡ u such that v is a 1-scheduling.

A CFM A is 1-schedulable if every trace u ∈ Tr(A) is 1-schedulable.

From [8] (see also [16]) we know that 1-schedulability is a decidable property (PSPACE-
complete). To make the characterization formal, we need some notation first. Given a binary
relation ▷◁ over some set X, a ▷◁-cycle is any sequence (x1, . . . , xk) ∈ X, with k ≥ 1, such
that x1 ▷◁ x2 · · · ▷◁ xk+1, where xk+1 := x1. A viable sequence w is not 1-schedulable if,
and only if, msc(w) contains a (≺ ∪ msg−1)-cycle with at least two distinct sends [8]. For
example, the sequence 1!2(m) 2!1(m′) 1?2(m′) 2?1(m) is not 1-schedulable, as witnessed by
the cycle 1!2(m) <P 1?2(m′) msg−1 2!1(m′) <P 2?1(m) msg−1 1!2(m).

Throughout this section we will assume that the CFM A is 1-schedulable. Our character-
ization of send-synchronizability will rely on partial commutations applied to the observable
behaviors of rendez-vous traces.

▶ Definition 4.2 (Commutations). We define a commutation relation SI ⊆ S × S on the
alphabet S of sends as follows. Let a = p!q(m) and b = p′!q′(m′) be two send actions. Then
(a, b) ∈ SI if p ̸= p′, q ̸= q′ and q ̸= p′.

If (a, b) ∈ SI and w, w′ ∈ S∗ then we write wabw′ ⇒SI wbaw′, and we consider the reflexive-
transitive closure ∗⇒SI of this relation. We denote the commutative closure of a send sequence
v ∈ S∗ as ClSI (v) = {v′ ∈ S∗ | v

∗⇒SI v′}. We define ClSI (E), for E ⊆ S∗, as
⋃

v∈E ClSI (v).
The example in Figure 6 gives a first intuition about the role of commutations for send-

synchronizability. As seen there, if a CFM has an execution w as depicted on the left, and is
send-synchronizable, then it has to include also an execution as depicted on the right. This
entails that if 1!0(m)2!1(m′) is an observable behavior, then so is 2!1(m′)1!0(m).
▶ Remark 4.3. It is readily seen that one can check if a regular language L satisfies L = ClSI (L).
For this it is enough to check that wabw′ ∈ L entails wbaw′ ∈ L, for all words w, w′ and
(a, b) ∈ SI . Such a test can be done in Pspace, if L is described by an automaton.

2 This decidable class of systems originates from [6] and it is the same as 1-synchronizable there. To better
distinguish it from send-synchronizability we decided to rename it here into 1-schedulable. Comparison
with other close notions can be found in Section A.
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m

m′
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m′

m

Figure 6 In the left scenario, the two send events s and s′ satisfy s ∥ s′. Note that
(1!0(m), 2!1(m′)) ∈ SI , so 1!0(m) 2!1(m′) ⇒SI 2!1(m′) 1!0(m). To be send-synchronizable, a CFM
must also allow the scenario on the right, where s′ ≺ s.

4.1 From 1-schedulings to arbitrary traces via commutations
In this subsection we start with a sufficient condition that ensures that the send projections
of traces of A can be obtained via commutations from the send projections of 1-schedulings
of A (see Proposition 4.5). The definitions that follow are used in Lemma 4.4, that states
the relation between commutations and projections for a single trace.

Consider a viable sequence w. We introduce two binary relations 99K and ≪w
us over the

set of events E of msc(w), defined as follows:
f 99K e if there exists p ∈ P such that e is an unmatched send to p, f is a send from p,
and e ∥ f .
e ≪w

us f if there exists p ∈ P such that e and f are unmatched sends to p, e is before f in
w, and e ∥ f .

We say that w has a backward 99K arc if there exists two events e, f such that f 99K e

and e occurs before f in w. Consider for example the trace w1 in Figure 7a left: we have
s0 99K s1 99K s2 99K s0, so w1 has a backward 99K arc.

The objective of the ≪w
us relation is to enforce the order of unmatched sends to the same

process. Given two viable sequences w and w′, we write w ≡us w′ if w ≡ w′ and for every
process p, the order of unmatched sends to p is the same in w and w′. Notice that for every
viable sequences w, w′ such that w ≡ w′, we have w ≡us w′ if, and only if, the binary relations
≪w

us and ≪w′

us coincide.

▶ Lemma 4.4. Let w be a 1-scheduling and suppose that w has no backward 99K arc. Then
ClSI (w|S) = {w′|S | w′ is a viable sequence and w′ ≡us w}.

Proof. We write W = {w′|S | w′ ≡us w}.
We first show ClSI (w|S) ⊆ W recursively on the number of commutation steps. Initially

w|S ∈ W. Now we take u ∈ ClSI (w|S) ∩ W, and let u = u0 x y u1 with x, y ∈ S, u0, u1 ∈ S∗

and (x, y) ∈ SI . Let u′ = u0 y x u1 be the sequence of sends obtained by commuting x and y.
As u ∈ W, there is some v ≡us w such that v|S = u. We suppose w.l.o.g. that v = v0 x y v1:
if there were receives between x and y, each one could either swap with x to the left, or with
y to the right, since x, y cannot be on the same process, and the sequence obtained would
be ≡us equivalent to v. As (x, y) ∈ SI we know that they are not on the same process, and
they do not send to the same process, so x ∥ y and v ≡us v0 y x v1, hence u′ ∈ W.

Now we show that ClSI (w|S) ⊇ W by induction on the size of w. Initially, ε|S = ε. Let
w = u s r be a 1-scheduling without L99 arc. Consider some w′ ≡us w such that w′ = x s y r z,
with x, y, z ∈ Act∗. We have w|S = u|S s and w′|S = x|S s (yz)|S . We know that w ≡us xyz sr

so u ≡us xyz. The case where w = u s is dealt with similarly.
By induction, x|S(yz)|S ∈ ClSI (u), so x|S(yz)|S s ∈ ClSI (w). Now, we know that s is

concurrent with every event of yz. Moreover, there is no L99 arc. So for every s′ occurring
in (yz)|S : if s = p!q(m), then s′ is not on p, and it is neither a send to p (matched or not)
nor to q (matched or not), so (s′, s) ∈ SI , and w′|S ∈ ClSI (w). ◀
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A viable sequence w is called good if there exists a 1-scheduled sequence w′ such that
w ≡us w′ and w′ has no backward 99K arc. Otherwise w is called bad. Note that every good
viable sequence is necessarily 1-schedulable. A CFM A is good if every trace in Tr(A) is
good, and A is called bad otherwise.

▶ Proposition 4.5. For every good CFM A, it holds that Tr(A)|S is the closure under SI of
{w ∈ Tr(A) | w is a 1-scheduling}|S.

Proof. Let K and L be defined as K = K ′|S and L = L′|S , where

K ′ = {w ∈ Tr(A) | w is a 1-scheduling and has no backward 99K arc}
L′ = {w ∈ Tr(A) | w is a 1-scheduling}

Note that K ⊆ L ⊆ Tr(A)|S . We first show that Tr(A)|S = ClSI (K). Consider a trace w ∈
Tr(A). As w is good, there exists a trace w′ ∈ Tr(A) such that w ≡us w′, w′ is a 1-scheduling
and w′ has no backward 99K arc. It holds that ClSI (w′|S) = {u|S | u ≡us w′} according to
Lemma 4.4. As w′|S ∈ K and w ≡us w′, we get that w|S ∈ ClSI (K). The converse inclusion
ClSI (K) ⊆ Tr(A)|S immediately follows from Lemma 4.4. Since K ⊆ L ⊆ Tr(A)|S and
Tr(A)|S = ClSI (K), we derive that ClSI (K) ⊆ ClSI (L) ⊆ ClSI (ClSI (K)) = ClSI (K), hence,
Tr(A)|S = ClSI (K) = ClSI (L). ◀

The above proposition provides our first ingredient to decide the send-synchronizability
problem for 1-schedulable CFMs. Two additional ingredients are needed to complete our
decidability proof. First, we will show that every bad CFM is not 1-schedulable or not send-
synchronizable. Second, badness of a CFM will be shown to be decidable. We start with a
characterization of bad viable sequences. For a viable sequence w, a (≺ ∪ msg−1 ∪ 99K ∪ ≪w

us)-
cycle in msc(w) is called trivial if it is of the form (e, f, . . . , e, f) with (e, f) ∈ (msg ∪ msg−1),
or equivalently, if it does not contain two distinct sends.

▶ Lemma 4.6. For every viable sequence w, it holds that w is bad if, and only if, there exists
a (≺ ∪ msg−1 ∪ 99K ∪ ≪w

us)-cycle in msc(w) that is not trivial.

Proof sketch. Consider a viable sequence w. For short, let us write TrvCyc the condition
that every (≺ ∪ msg−1 ∪ 99K ∪ ≪w

us)-cycle in msc(w) is trivial. To prove the lemma, we show
that w is good if, and only if, TrvCyc holds. We consider the directed graph G whose nodes
are the events of msc(w) and whose edges are given by the relations <P, msg, <mb, msg−1,
99K and ≪w

us. Let H denote the directed graph obtained from G by, firstly, merging events
that are connected by an msg-arc, and secondly, removing all msg-arcs. It is readily seen that
TrvCyc is equivalent to the condition that H is acyclic. If TrvCyc holds, then the partial
order induced by H admits a linearization x1 · · · xn. By “unmerging” events in x1 · · · xn, we
get a linearization w′ of msc(w) such that w′ is 1-scheduled and w′ has no backward 99K-arc
nor backward ≪w

us-arc, hence, w is good. Conversely, if w is good then the sequence x1 · · · xn

of nodes of H that is induced by w contains every node of H and has no backward edge, so
H is acyclic, hence, TrvCyc holds. ◀

We now focus our attention to CFMs that are 1-schedulable. For this class of CFMs, we
obtain a characterization of badness of a CFM in terms of cycles that are simpler than those
of Lemma 4.6 in the sense that they contain no msg−1-arc.

▶ Lemma 4.7. For every 1-schedulable CFM A, if A is bad then there exists a (bad) trace
w ∈ Tr(A) such that msc(w) contains a (≺ ∪ 99K ∪ ≪w

us)-cycle.
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Proof. Consider a bad trace w ∈ Tr(A) of minimal length. Let Ξ denote the set of non-trivial
(<P ∪ msg ∪ <mb ∪ msg−1 ∪ 99K ∪ ≪w

us)-cycles in msc(w). We lexicographically order cycles
ξ in Ξ first by number of msg−1-arcs (accounting for the arc from the last event of ξ to the
first event of ξ), second by length of the cycle. By Lemma 4.6, the set Ξ is non-empty. Pick
a cycle ξ in Ξ of minimal length, and let us show that ξ contains no msg−1-arc.

We first observe that every event of msc(w) is in Past(C), where C denotes the set of
events of ξ. By contradiction, assume that this is not the case. There necessarily exists
an event e in msc(w) such that e ̸∈ Past(C), e is maximal for ≤P and e is a receive or
an unmatched send. Consider the sequence w′ corresponding to w with e removed. It is
readily seen that w′ is viable, hence, w′ ∈ Tr(A). Moreover, the cycle ξ is still a non-trivial
(≺ ∪ msg−1 ∪ 99K ∪ ≪w

us)-cycle in msc(w′). So by Lemma 4.6, w′ is a bad trace in Tr(A),
which contradicts the minimality of w.

By contradiction, assume that ξ contains an msg−1-arc. Up to a rotation of the cycle, we
may assume that ξ is of the form (e1, . . . , ek) with (ek, e1) ∈ msg−1. Note that k > 2 since ξ

is non-trivial. For readability, let us write s := e1 and r := ek. We make three observations.
1. The event r is maximal for ≤P. By contradiction, suppose that r <P f for some event f .

Since f ∈ Past(C), we get that f ⪯ ei for some 1 ≤ i ≤ k. Pick a (<P ∪ msg ∪ <mb)-path
(f1, . . . , fℓ) with f1 = f and fℓ = ei. We get that (ei, . . . , ek, f1, . . . , fℓ−1) is in Ξ and has
one less msg−1-arc than ξ, which contradicts the minimality of ξ.

2. The event s′ := ek−1 is a send and s′ <P r = ek. Indeed, as ek is a receive, ek−1 verifies
ek−1 <P r or (ek−1, r) ∈ msg. If (ek−1, r) ∈ msg then ek−1 = s = e1, hence, (e1, . . . , ek−2)
is in Ξ, which contradicts the minimality of ξ. So ek−1 <P r. It remains to show that ek−1
is a send. Suppose by contradiction that ek−1 is a receive. We either have ek−2 <P ek−1
or (ek−2, ek−1) ∈ msg. In the first case, ek−2 <P r = ek, hence, (e1, . . . , ek−2, ek) is
in Ξ, which is impossible by minimality of ξ. In the second case, (ek−2, ek−1) ∈ msg,
hence, ek−2 <mb s = e1. This entails that (e1, . . . , ek−2) is in Ξ, which is impossible by
minimality of ξ.

3. It holds that s ∥ s′. Let us prove this claim. We have s′ <P r and (r, s) ∈ msg−1. Note
that s ̸= s′ since s and s′ are sends by distinct processes. If s ≺ s′ then (s, s′, r, s) would
be a (≺ ∪ msg−1)-cycle with at least two distinct sends in msc(w), which is impossible
since w is 1-schedulable. If s′ ≺ s then ek−1 = s′ ≺ s = e1, hence, (e1, . . . , ek−1) is in Ξ,
which contradicts the minimality of ξ.

We now derive a contradiction, which will conclude the proof that ξ contains no msg−1-arc.
Consider the sequence w′′ corresponding to w with r removed. We have w′′ ∈ Tr(A) since
r is a receive and is maximal for ≤P, by our first observation above. The event r = ek is
the matching receive of s = e1 in msc(w), so s becomes an unmatched send in msc(w′′). In
msc(w′′), the event s′ = ek−1 is a send and s is a send to the process performing s′, by our
second observation above. Moreover, as s ∥ s′ in msc(w), by our third observation above,
we still have s ∥ s′ in msc(w′′). It follows that s′ 99K s in msc(w′′), hence, ek−1 99K e1. We
derive that (e1, . . . , ek−1) is a non-trivial (≺ ∪ msg−1 ∪ 99K ∪ ≪w

us)-cycle in msc(w′′). This
entails, by Lemma 4.6, that w′′ is bad, which contradicts the minimality of w. ◀

▶ Remark 4.8. Given a viable sequence w, a (≺ ∪ 99K ∪ ≪w
us)-cycle (e1, . . . , ek) in msc(w)

is called genuine if e1, . . . , ek are pairwise-distinct and, for every 1 ≤ i < j ≤ k, we have
ei ≺ ej implies j = i + 1 and ej ≺ ei implies i = 1 and j = k. Informally, a genuine cycle
is a simple cycle such that for every events e, f on the cycle, if e ≺ f then the subpath of
the cycle from e to f is a single ≺-arc. It is routinely checked that if msc(w) contains a
(≺ ∪ 99K ∪ ≪w

us)-cycle then it contains a genuine (≺ ∪ 99K ∪ ≪w
us)-cycle.
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1 2 3

m1

m0

m2

s0
s1

s2

(a) MSC of sequence
w1 = 3!1(m0) 2!3(m1) 1!2(m2).

1 2 3 4
m0

m1m2

s0
s1

s2
s3

m3

(b) MSC of sequence
w2 = 4!1(m0) 3!4(m1) 3!2(m2) 2?3(m2) 2!1(m3).

Figure 7 Sequences with pattern, and their MSC.

4.2 Bad CFMs
Our goal in this section is to analyze bad, 1-schedulable CFMs. We will show a necessary
condition for badness in terms of patterns (Proposition 4.10), and we will show that the
presence of a pattern prevents a CFM to be send-synchronizable (Proposition 4.11).

We focus on 1-scheduled traces, as they can be effectively constructed from the CFM
using automata. The binary relation ≪w

us needs to be relaxed as we might need to re-order
unmatched sends of a 1-scheduling in Tr(A) in order to exhibit a bad 1-schedulable trace
in Tr(A). Given a viable sequence w, we introduce the binary relation ∥us over the set of
events E of msc(w), defined by e ∥us f if there exists p ∈ P such that e and f are unmatched
sends to p and e ∥ f . Note that ∥us is symmetric and contains ≪w

us.
A pattern for a viable sequence w is an alternating sequence of send events (x1,y1,. . . ,xk,yk)

of msc(w) satisfying, with the convention that xk+1 := x1, the following conditions:
1. xi ⪯ yi, for every 1 ≤ i ≤ k,
2. yi 99K xi+1 or yi ∥us xi+1, for every 1 ≤ i ≤ k,
3. yi 99K xi+1 for some 1 ≤ i ≤ k,
4. xi ∥ xj and yi ∥ yj and xi ∥ yj , for every 1 ≤ i, j ≤ k with i ̸= j.

▶ Example 4.9. Figure 7 shows two examples of patterns. In Figure 7a the sequence w1 has
the pattern (s0, s0, s1, s1, s2, s2), with s0 99K s1, s1 99K s2 and s2 99K s0.
The pattern in Figure 7b is (s0, s0, s1, s3), with s0 99K s1, s1 ≺ s3, and s3 ∥us s0.

▶ Proposition 4.10. Let A be 1-schedulable CFM. If A is bad then there exists a trace
w ∈ Tr(A) that admits a pattern (x1, y1, . . . , xk, yk).

Proof. By Lemma 4.7 and Remark 4.8, there exists a trace w ∈ Tr(A) such that msc(w)
contains a genuine (≺ ∪ 99K ∪ ≪w

us)-cycle ξ. Observe that ξ necessarily contains a 99K arc.
The reason is that ≺ and ≪w

us are both contained in the total order over positions of w,
hence, there is no (≺ ∪ ≪w

us)-cycle in msc(w). In order to transform ξ = (e1, . . . , ek) into a
pattern, we insert “identity” arcs of the form (ei, ei) as needed to get an alternating sequence
(x1, y1, . . . , xk, yk) satisfying the first three conditions of the definition of patterns (recall
that ≪w

us is contained in ∥us). The fourth (and last) condition holds because ξ is genuine. ◀

▶ Proposition 4.11. Let A be 1-schedulable. If some 1-scheduling w ∈ Tr(A) contains a
pattern, then A is not send-synchronizable.

For the proof of Proposition 4.11 we first provide two technical lemmas. Recall that
patterns are cycles. Proposition 4.11 will show a contradiction to send-synchronizability by
listing the cycle in two ways. Lemma 4.12 identifies traces corresponding to different listings
of the cycle in a such way that the part before the cycle is the same. Lemma 4.13 relates
arcs of two equivalent traces with the same send-projection, one of which is rendez-vous.
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▶ Lemma 4.12. Let w ∈ Tr(A) contain some pattern (x1, y1, . . . , xk, yk). Let also Z =
{x1, y1, . . . , xk, yk}. Then for every 1 ≤ i ≤ k there exist u, v, u′ ∈ Act∗ with uvu′ ≡ w

satisfying the following:
u is a linearization of Past(Z) \ Ftr(Z)
uv is a linearization of Past(Z)
v contains xi, yi, . . . , xk, yk, x1, y1, . . . xi−1, yi−1 as subsequence.

Proof. As in Lemma 4.7 we start with a prefix containing all events that are ordered causally
before the events of the pattern: u is a linearization of Past(Z) \ Ftr(Z).

Consider some j, ℓ ∈ {1, . . . , k}, j ≠ ℓ. For readability we write Zi for the infix Past(yi) ∩
Ftr(xi) of msc(w), for every i.

Let also e ∈ Zj and f ∈ Zℓ. If e ⪯ f would hold true then, using f ⪯ yℓ and xj ⪯ e, we
would also get xj ⪯ yℓ, contradicting the definition of pattern. By symmetry, we conclude
that e ∥ f for all such e, f .

Therefore, for 1 ≤ i ≤ k we can define v as linearization of Zi, Zi+1, . . . Zk, Z1, . . . Zi−1.
By definition, v contains the subsequence xi, yi, . . . , xk, yk, x1, y1, . . . xi−1, yi−1. ◀

▶ Lemma 4.13. Consider w ∈ Tr(A) and w′ ∈ Trrdv(A) with w|S = w′|S. Then for every
send events x ̸= y in w, with x before y in w:

If x 99K y in w, then x <P z, where z is the matching receive of y in w′: (y, z) ∈ msg.
If x ∥us y in w, then x <mb y in w′.
If x ≺ y in w then x ≺ y in w′ by the same causal path.

Proof. If x 99K y in w, we know that x is a send on some process p and y is an unmatched
send to process p. Because w′ is a rendez-vous execution, with x before y, we get x <P z.

Now suppose that x ∥us y in w. Then x and y are two unmatched sends to the same
process. The two sends are matched in w′, with x′ <P y′, where (x, x′) ∈ msg, (y, y′) ∈ msg.
Thus x ≺ y in w′ because of <mb.

Finally, if x ≺ y in w, then x ≺ y holds also in w′ because every arc of type <P, msg, <mb

on the causal path from x to y is preserved in w′. ◀

Proof of Proposition 4.11. We assume that A is send-synchronizable, and consider some
w ∈ Tr(A) with pattern (x1, y1, . . . , xk, yk). We will assume that the pattern is minimal
w.r.t. the following parameter: the size of the pattern is the sum of the lengths of the shortest
paths from xj to yj , over all j.

By Lemma 4.12 we can assume that w = uv is a linearization of Past(Z), with Z =
{x1, y1, . . . , xk, yk}, and x1, y1, . . . , xk, yk occurs as subsequence of v. In addition, u is
linearization of Past(Z) \ Ftr(Z).

We know that (x1, y1, . . . , xk, yk) is a pattern in v, and we can assume w.l.o.g. that
yk 99K x1. Note that k > 1 since x1 ⪯ y1 (by definition of patterns) and x1 ∥ yk (by
definition of 99K). By Lemma 4.12, for every 1 ≤ i ≤ k there exists some v′ ≡ v such that
xi+1, yi+1, . . . , xk, yk, x1, y1, . . . , xi, yi is a subsequence of v′. Chose for example i = 1.

As A is send-synchronizable, there exist z, z′ ∈ Trrdv(A) such that (uv)|S = z|S and
(uv′)|S = z′|S . From Lemma 4.13, we get that there exists a (≺ ∪ msg−1)∗-path from x1 to
yk in z not going through rcv(x1), the receive matching x1. Indeed, for each 1 ≤ i ≤ k, we
have xi ≺ yi in w, so we still have it in z and it does not go through rcv(x1). We also have
yi 99K xi+1 or yi ∥us xi+1 in w, for every i. If yi 99K xi+1 then yi <P rcv(xi+1) msg−1 xi+1 in
z. If yi ∥us xi+1, then yi <mb xi+1 in z. In both cases the arcs do not use rcv(x1).

We inspect now M := msc(z). Let p be the process of the send yk (recall that it is also
the process of rcv(x1), because yk 99K x1 ). Because of pattern minimality, we can show that
the only send event on p in v is yk. Suppose that some s ̸= yk is a send on process p with

CONCUR 2025



15:14 Send-Synchronizability for Mailbox Communication

s in v. By definition of u, v, we have xk ⪯ s ≺ yk. But then the pattern (x1, y1, . . . , xk, s)
would be smaller, contradiction. Again by minimality, we can show that the only send to
p in v is x1. First there is no matched send to p in v, because such a send s would satisfy
s ≺ x1 as x1 is an unmatched send to p, hence, if xj ⪯ s ⪯ yj with 1 ≤ j ≤ k, then xj ≺ x1,
which is forbidden by the definition of patterns. Now if we had some s ̸= x1 unmatched send
event to p, with say xj ⪯ s ⪯ yj and 1 ≤ j < k, then the pattern (s, yj , . . . , xk, yk) would be
smaller. Finally, if j = k, so xk ⪯ s ≺ yk, then the predecessor of s on the causal path from
xk to s is an event on p, and we can shorten path from xk to yk, obtaining a smaller pattern.

Let us construct z♯ from z by moving rcv(x1) at the end of the sequence. Observe that
z = match(z|S) = match(u|S)match(v|S) and similarly z′ = match(u|S)match(v′|S), where
match : S∗ → Act∗ is the morphism defined by match(p!q(m)) = p!q(m) q?p(m). We derive
from the previous paragraph that the sequence of actions by p is rcv(x1)yk in match(v|S)
and ykrcv(x1) in match(v′|S). As rcv(x1) is the last receive by p in z, moving it at the end
of the sequence preserves viability, so z♯ is viable. Moreover, the sequence of actions by p in
z♯ coincides with that of z′, and the sequence of actions by q ̸= p in z♯ coincides with that of
z. Since z ∈ Tr(A) and z′ ∈ Tr(A), we get that z♯ ∈ Tr(A).

However, note that now there is a (≺ ∪ msg−1)-cycle with at least two distinct sends
in M ♯ := msc(z♯). Indeed, we still have in M ♯ the (≺ ∪ msg−1)+ -path of M from x1 to
yk, as this path does not go through rcv(x1), and yk <P rcv(x1) in M ♯, finishing the cycle
with (rcv(x1), x1) ∈ msg−1. So z♯ is not 1-schedulable because it contains a non-trivial
(≺ ∪ msg−1)+-cycle with at least two sends, which contradicts our assumption that A is
1-schedulable. ◀

4.3 Wrap-Up
In this section, we prove that send-synchronizability is decidable for 1-schedulable CFMs, by
assembling the results from the previous subsections. We start with the following observation,
which is an immediate consequence of Propositions 4.5, 4.10, and 4.11.

▶ Proposition 4.14. For every 1-schedulable CFM A, it holds that A is send-synchronizable
if, and only if, (1) A is good, (2) Trrdv(A)|S = {w ∈ Tr(A) | w is a 1-scheduling}|S and (3)
Trrdv(A)|S is closed under SI .

▶ Proposition 4.15. It is decidable to check if a 1-schedulable CFM is good.

Proof sketch. Let A be a 1-schedulable CFM. From Proposition 4.10, we know that A is
bad if there exists a trace with a pattern. The existence of a pattern can be checked on
a 1-scheduling, as by construction two equivalent traces have the same patterns, and A is
1-schedulable. Moreover the set of 1-scheduling of A is regular.

We guess a bad 1-scheduling on-the-fly, together with the sends that form the pattern.
We can assume that the pattern occurs in the order of the sequence. If there exists some
bad trace in Tr(A), then there is one with a pattern of size at most 2 × |P|, as otherwise
there would be at least three sends of the pattern on the same process, and we would have a
shortcut.

Let (x1, y1, . . . , xk, yk) be the pattern we read. We need to check that
for each 0 ≤ i ≤ k, xi ⪯ yi and yi ∥ xi+1 with either 99K or ∥us, and at least one 99K-arc.
and for each 0 ≤ i, j ≤ k with i ̸= j, xi ∥ xj and yi ∥ yj and xi ∥ yj .

To do so, we will keep for each send s of the pattern the set of processes with actions causally
ordered after s, and we will update these sets while reading the bad 1-scheduling. So we
need a memory of size O(|P|2). ◀
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From the two previous propositions, we get the following theorem.

▶ Theorem 4.16. The question whether a 1-schedulable CFM is send-synchronizable is
Pspace-complete.

Proof. Let A be a 1-schedulable CFM. From Proposition 4.15, we know that we can check in
polynomial space if A is good. The two sets Trrdv(A) and {w ∈ Tr(A) | w is a 1-scheduling}
are regular, so we can check in Pspace if they are equal. And from Remark 4.3, we know
that we can check if Trrdv(A)|S is closed under SI in Pspace.

For Pspace-hardness, we reduce from the automata intersection problem as in [8], with
a send that cannot be received if the intersection of the automata is not empty. ◀

5 Conclusion

We showed that send-synchronizability for mailbox CFMs is undecidable, thus closing the
question left open in [11, 9]. We also showed that we can decide in Pspace if a 1-schedulable
CFM (which is a property that can be checked in Pspace) is send-synchronizable. We think
that the techniques developed for the proof could be used to answer others problems for
mailbox CFMs, like the realizability problem. Moreover, even if the class of 1-schedulable
systems is decidable, it is quite restrictive. It can be interesting to see if our techniques can
be used for k-schedulable CFMs and the more general class of CFMs studied in [8].
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A 1-schedulability and related notions

Similar notions to 1-schedulability can be found in several papers [5, 17]. The way unmatched
sends are treated in the literature may differ in a significant way. Our notion of 1-schedulable
is the same as strongly 1-synchronisable in [5]. The notion of RSC in [15] is more restrictive
than 1-schedulable, as it does not allow to permute two unmatched sends to the same process.

Take as an example the trace 0!2(a) 0!1(b) 2!1(c) 2?0(a). It is 1-schedulable since it is
equivalent to 2!1(c) 0!2(a) 2?0(a) 0!1(b). But it is not RSC according to [15], since RSC
disallows permuting 0!1(b), 2!1(c). Note however that every 1-scheduling is an RSC execution.

B A necessary and sufficient condition for send-synchronizability

Let A be a CFM. Recall that A is send-synchronizable if, and only if, for every trace
u ∈ Tr(A), there exists a trace v ∈ Trrdv(A) with u|S = v|S . In fact, the trace v is unique
if it exists. Indeed, the only candidate for v is match(u|S). Recall that match : S∗ → Act∗

is the morphism defined by match(p!q(m)) = p!q(m) q?p(m). Observe that match(u)|S = u

for all u ∈ S∗. This leads us to the characterization of send-synchronizability in Lemma B.1
below. The following notations are used in this lemma. For every process p ∈ P, L(Ap) is
the language of the LTS Ap (viewed as a non-deterministic automaton with every state final)
and u|p is the projection of u ∈ Act∗ on Actp.

▶ Lemma B.1. A CFM A is send-synchronizable if, and only if, for every trace u ∈ Tr(A),
the sequence v = match(u|S) satisfies v|p ∈ L(Ap) for every process p ∈ P.

Proof. Assume that A is send-synchronizable. Let u ∈ Tr(A) and define v = match(u|S).
Since A is send-synchronizable, there exists u′ ∈ Trrdv(A) such that u|S = u′|S . We have
match(u′|S) = u′ since u′ ∈ Trrdv(A). It follows that u′ = v, hence, v ∈ Trrdv(A). This
entails that v|p ∈ L(Ap) for every process p ∈ P.

Conversely, let u ∈ Tr(A) and assume that v = match(u|S) satisfies v|p ∈ L(Ap) for every
process p ∈ P. The sequence v is clearly rendez-vous, according to the definition of match.
We derive that v ∈ Trrdv(A), since v|p ∈ L(Ap) for every process p ∈ P. The observation
that v|S = match(u|S)|S = u|S entails that u|S ∈ Trrdv(A)|S , which concludes the proof. ◀

C Proofs of Section 3

▶ Lemma 3.1. If I is a positive instance of Pre-MPCP then there is an initial execution
in T (A(I)) leading to the configuration (N, N, N ; ε, ε, ε).
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Proof. Consider a sequence of indices i1, . . . , ik ∈ {1, . . . , K}, with k ≥ 1, such that i1 = 1,
xi1 · · · xik

= yi1 · · · yik
and |xi1 · · · xij

| ≥ |yi1 · · · yij
| for every j ∈ {1, . . . , k}. Let us write

a1 · · · an, with ai ∈ Σ, the word xi1 · · · xik
(or, equivalently, the word yi1 · · · yik

). Define
ej = |xi1 · · · xij | and fj = |yi1 · · · yij |, for every j ∈ {1, . . . , k}. We also put e0 = f0 = 0.
Our assumptions on i1, . . . , ik entail, firstly, that ek = fk = n, and, secondly, that ej ≥ fj ,
xij = aej−1+1 · · · aej and yij = afj−1+1 · · · afj , for all j ∈ {1, . . . , k}.

We show that for every j ∈ {1, . . . , k}, there is an execution ρj in T (A(I)) from the
configuration (N, N, N ; ε, vR

j , vV
j ), with vR

j = afj−1+1 · · · aej−1 and vV
j = a1a1 · · · afj−1afj−1 ,

to the configuration (N, N, N ; ε, wR
j , wV

j ), with wR
j = afj+1 · · · aej and wV

j = a1a1 · · · afj afj .
In the execution ρj , the sequence of actions performed by G is G!R(xij

) G!V (yij
), the

sequences of receive and send actions performed by R are R?G(yij ) and R!V (yij ), respectively,
and V does not move. These sequences of actions are permitted by the LTSes AG and AR

(see Figures 2 and 3). To make it clear that such an execution ρj exists, we need to show
that these actions can be interleaved in a way that produces an viable sequence (that is, in
addition, permitted by the LTS AR). To reduce clutter, we define b1 = afj−1+1, . . . , bm = afj

,
where m = fj − fj−1. Note that yij = b1 · · · bm. Formally, the viable sequence labeling the
execution ρj is

G!R(xij
) · R?G(b1) R!V (b1) G!V (b1) · · · R?G(bm) R!V (bm) G!V (bm)

This sequence is viable because the contents z of R’s mailbox after G!R(xij
) verifies z =

vR
j · xij = afj−1+1 · · · aej , hence, z admits b1 · · · bm as prefix, since b1 · · · bm = afj−1+1 · · · afj

and ej ≥ fj . It is readily seen that the configuration (N, N, N ; ε, wR
j , wV

j ) obtained after ρj

verifies wR
j = afj+1 · · · aej

and wV
j = a1a1 · · · afj

afj
.

We also observe that there is an execution ρk+1 in T (A(I)) from the configuration
(N, N, N ; ε, ε, vV

k ), with vV
k = a1a1 · · · anan, to the configuration (N, N, N ; ε, ε, ε). The trace

of ρk+1 is the viable sequence V ?R(a1) V ?G(a1) · · · V ?R(an) V ?G(an). This sequence of
actions is permitted by the LTS AV (see Figure 4).

By concatenating the executions ρ1, . . . , ρk+1, we get an execution from (N, N, N ; ε, ε, ε)
to (N, N, N ; ε, ε, ε). But this execution does not start from the initial configuration of
T (A(I)). Along the execution ρ1, G does G!R(x1)G!V (y1), since i1 = 1. So G could as well
have started from its initial state. Obviously, the same goes for R and V , since they can move
silently from their initial state to the state N . Hence, there exists an execution ρ′

1 from the
initial configuration of T (A(I)) to the configuration obtained after ρ1. The concatenation
ρ′

1ρ2 · · · ρK provides an initial execution leading to the configuration (N, N, N ; ε, ε, ε). ◀

▶ Corollary 3.2. If I is a positive instance of Pre-MPCP then there is a trace u ∈ Tr(A(I))
containing the action R!V (#), hence, A(I) is not send-synchronizable.

Proof. Starting from the configuration (N, N, N ; ε, ε, ε), there is an execution in T (A(I))
labelled by

G!R($) R?G($) R!V ($) G!V ($) V ?R($) V ?G($) V !G(#) G?V (#) G!R(#) R?G(#) R!V (#) .

If I is a positive instance of Pre-MPCP then, according to Lemma 3.1 and the above
observation, there is a trace u ∈ Tr(A(I)) ending with R!V (#). Obviously, it holds that
u|S ∈ Tr(A(I))|S . But, as V contains no V ?R(#) transition, no trace in Trrdv(A(I))
contains the action R!V (#). Hence, u|S ̸∈ Trrdv(A(I))|S , which entails that A(I) is not
send-synchronizable. ◀
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▶ Lemma 3.3. If there is a trace in Tr(A(I)) containing the action R!V (#) then I is a
positive instance of Pre-MPCP.

Proof. Consider an initial execution ρ in T (A(I)) ending with the action R!V (#). By
construction, ρ also necessarily contains R?G(#), hence, it also contains G!R(#) and
G?V (#), which entails that it contains V !G(#). Therefore, in the execution ρ, the processes
R and V have each selected the normal mode, since there is no R!V (#) transition nor
V !G(#) transition in the dummy modes. Let π denote the prefix of ρ that ends just before
the V !G(#) action, and let u denote the trace labelling π. According to the definition of the
LTSes AG, AR and AV (see Figures 2–4), the projections u|G, u|R and u|V are as follows:

u|G = G!R(xi1) G!V (yi1) · · · G!R(xik
) G!V (yik

) · G!R($) G!V ($)
u|R = R?G(b1) R!V (b1) · · · R?G(bm) R!V (bm) · α

u|V = V ?R(a1) V ?G(a1) · · · V ?R(an) V ?G(an) · V ?R($) V ?G($)

for some i1, . . . , ik ∈ {1, . . . , K} with k ≥ 1 and i1 = 1, some a1, . . . , an ∈ Σ with n ≥ 0,
some b1, . . . , bm ∈ (Σ ∪ {$, #}) with m ≥ 0, and some α that is either ε or a receive action
R?G(·). The word a1a1 · · · anan$$ received by V is a prefix of a shuffle of the word b1 · · · bm

sent by R to V and of the word yi1 · · · yik
$ sent by G to V . So a1 · · · an$ is a prefix of

b1 · · · bm and a1 · · · an$ is a prefix of yi1 · · · yik
$. Since $ does not occur in yi1 · · · yik

, we
get that a1 · · · an = yi1 · · · yik

. Similarly, the word b1 · · · bm received by R is a prefix of the
word xi1 · · · xik

$ sent by G to R. We derive that a1 · · · an$ is a prefix of xi1 · · · xik
$. Since $

does not occur in xi1 · · · xik
, this entails that a1 · · · an$ = b1 · · · bm = xi1 · · · xik

$. We have
shown that xi1 · · · xik

= yi1 · · · yik
. It remains to prove that |xi1 · · · xij

| ≥ |yi1 · · · yij
| for all

j ∈ {1, . . . , k}. Before that, we observe that every send action to V is matched in u. Indeed,
the length of the word a1a1 · · · anan$$ received by V is 2(n + 1), and the length of the word
sent to V is |b1 · · · bm| + |yi1 · · · yik

$| = 2m = 2(n + 1). This means that the sequence of send
actions to V in u is R!V (b1) G!V (b1) · · · R!V (bm) G!V (bm).

We now show that |xi1 · · · xij
| ≥ |yi1 · · · yij

| for all j ∈ {1, . . . , k}. Let j ∈ {1, . . . , k} and
consider a prefix uj of u such that uj |G = G!R(xi1) G!V (yi1) · · · G!R(xij ) G!V (yij ). The
projection of uj on ActR may be written as uj |R = R?G(b1) R!V (b1) · · · R?G(bh) R!V (bh) · β

for some h ∈ {0, . . . , m} and some β that is either ε or a receive action R?G(·). The word
b1 · · · bh received by R is a prefix of the word xi1 · · · xij

sent by G to R, so |xi1 · · · xij
| ≥ h.

Now, the word sent to V in uj , say z, is a shuffle of the word b1 · · · bh sent by R to V and
of the word yi1 · · · yij

sent by G to V . The word z is also a prefix of the word b1b1 · · · bmbm

sent to V in u. This entails that |b1 · · · bh| = |yi1 · · · yij
| or |b1 · · · bh| = |yi1 · · · yij

| + 1. It
follows that h ≥ |yi1 · · · yij | and we conclude that |xi1 · · · xij | ≥ h ≥ |yi1 · · · yij |. ◀

▶ Lemma 3.4. For every trace u ∈ Tr(A(I)), if u does not contain the action R!V (#) then
match(u|S)|p ∈ L(Ap) for every process p ∈ {G, R, V }.

Proof. Let u ∈ Tr(A(I)) such that u does not contain the action R!V (#). We consider each
process in P = {G, R, V } separately. Recall that the LTSes AG, AR and AV of the processes
G, R and V are defined in Figures 2–4.

Let us start with the guesser process. According to the definition of AG, there exists a
sequence of indices i1, . . . , ik ∈ {1, . . . , K}, with k ≥ 1 and i1 = 1, such that the sequence
of send actions performed by G in u is a prefix of v · G!R($) G!V ($) G!R(#), where v =
G!R(xi1) G!V (yi1) · · · G!R(xik

) G!V (yik
). According to the definition of AR and AV , the

sequence of send actions to G in u is either empty or the single action V !G(#). Moreover, if

CONCUR 2025
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u contains V !G(#) then this action is necessarily after G!V ($) and before G!R(#). This is
due to the receive actions V ?G($) and G?V (#). We derive that match(u|S)|G is a prefix of
v · G!R($) G!V ($) G?V (#) G!R(#) and conclude that match(u|S)|G ∈ L(AG).

We now proceed to the relayer process. According to the definition of AG and AV , the
sequence of send actions to R in u is a prefix of a sequence of the form G!R(a1) · · · G!R(an) ·
G!R($) G!R(#), with n ≥ 0 and ai ∈ Σ. So the word sent to R in u is a prefix of a1 · · · an$#.
This entails that the sequence of send actions performed by R in u is in the language
{R!V (a) | a ∈ Σ}∗ · {ε, R!V ($)}, according to the definition of AR. Indeed, either R

selects the normal mode, in which case the word sent by R to V is a prefix of the word
a1 · · · an$ (recall that u does not contain the action R!V (#) by assumption), or R selects
the dummy mode, in which case the word sent by R to V is in the language Σ∗ · {ε, $}. We
derive that the projection of u on sends by R, or to R, is in the shuffle of the language
{R!V (a) | a ∈ Σ}∗ · {ε, R!V ($)} and the language {G!R(m) | m ∈ Σ ∪ {$, #}}∗. It follows
that match(u|S)|R is in the shuffle of the language {R!V (a) | a ∈ Σ}∗ · {ε, R!V ($)} and the
language {R?G(m) | m ∈ Σ ∪ {$, #}}∗. We conclude that match(u|S)|R ∈ L(AR), by letting
R select the dummy mode.

Let us finally address the verifier process. We consider two cases, depending on whether
u contains the action V !G(#) or not. If u does not contain the action V !G(#), then V does
not perform any send action in u, according to the definition of AV . The projection of u

on sends to V is in the language ({G!V (m) | m ∈ Σ ∪ {$}} ∪ {R!V (m) | m ∈ Σ ∪ {$}})∗,
according to the definition of AG and AR (recall that u does not contain the
action R!V (#) by assumption). It follows that match(u|S)|V is in the language
({V ?G(m) | m ∈ Σ ∪ {$}} ∪ {V ?R(m) | m ∈ Σ ∪ {$}})∗. We conclude that match(u|S)|V ∈
L(AV ), by letting V select the dummy mode.

Assume now that u contains the action V !G(#). According to the definition of AV , this
means that u|V is equal to V ?R(a1) V ?G(a1) · · · V ?R(an) V ?G(an) · V ?R($) V ?G($) V !G(#)
for some a1, . . . , an ∈ Σ with n ≥ 0. The mailbox semantics entails that the word sent to V

in u admits a1a1 · · · anan$$ as a prefix. When we dealt about the relayer process, we showed
that the word sent by R to V is in the language Σ∗ · {ε, $}. Moreover, according to the
definition of AG, the word sent by G to V is in the language Σ∗ · {ε, $}. So the word sent to
V in u is exactly a1a1 · · · anan$$. We derive that the sequence of send actions to V in u is
v = R!V (a1) G!V (a1) · · · R!V (an) G!V (an) · R!V ($) G!V ($). Moreover, the single send action
performed by V , namely V !G(#), is necessarily after G!V ($). This is due to the receive action
V ?G($). It follows that match(u|S)|V is equal to V ?R(a1) V ?G(a1) · · · V ?R(an) V ?G(an) ·
V ?R($) V ?G($) V !G(#), hence, match(u|S)|V = u|V . We conclude that match(u|S)|V ∈
L(AV ). ◀

▶ Corollary 3.5. If I is a negative instance of Pre-MPCP then A(I) is send-synchronizable.

Proof. If I is a negative instance of Pre-MPCP then we derive from Lemma 3.3 that no trace
in Tr(A(I)) contains the action R!V (#). It follows from Lemma 3.4 that match(u|S)|p ∈
L(Ap) for every trace u ∈ Tr(A(I)) and every process p ∈ {G, R, V }. We conclude thanks
to Lemma B.1 that A(I) is send-synchronizable. ◀
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