
Just Verification of Mutual Exclusion Algorithms
Rob van Glabbeek #Ñ

School of Informatics, University of Edinburgh, UK
School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

Bas Luttik #Ñ

Eindhoven University of Technology, The Netherlands

Myrthe S. C. Spronck1 #

Eindhoven University of Technology, The Netherlands

Abstract
We verify the correctness of a variety of mutual exclusion algorithms through model checking. We
look at algorithms where communication is via shared read/write registers, where those registers
can be atomic or non-atomic. For the verification of liveness properties, it is necessary to assume
a completeness criterion to eliminate spurious counterexamples. We use justness as completeness
criterion. Justness depends on a concurrency relation; we consider several such relations, modelling
different assumptions on the working of the shared registers. We present executions demonstrating
the violation of correctness properties by several algorithms, and in some cases suggest improvements.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Concurrency; Theory of computation → Verification by model checking

Keywords and phrases Mutual exclusion, safe registers, regular registers, overlapping reads and
writes, atomicity, safety, liveness, starvation freedom, justness, model checking, mCRL2

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.17

Related Version Full Version: https://doi.org/10.48550/arXiv.2507.13198 [28]

Supplementary Material Model (commit ff6122b): https://github.com/mCRL2org/mCRL2/tree/
master/examples/academic/non-atomic_registers

Funding Rob van Glabbeek: Supported by Royal Society Wolfson Fellowship RSWF\R1\221008.

1 Introduction

The mutual exclusion problem is a fundamental problem in concurrent programming. Given
N ≥ 2 threads,2 each of which may occasionally wish to access a critical section, a mutual
exclusion algorithm seeks to ensure that at most one thread accesses its critical section at any
given time. Ideally, this is done in such a way that whenever a thread wishes to access its
critical section, it eventually succeeds in doing so. Many mutual exclusion algorithms have
been proposed in the literature, and in general their correctness depends on assumptions one
can make on the environment in which these algorithms will be running. The present paper
aims to make these assumptions explicit, and to verify the correctness of some of the most
popular mutual exclusion algorithms as a function of these assumptions.

Correctness properties of mutual exclusion algorithms. A thread that does not seek to
execute its critical section is said to be executing its non-critical section. We regard leaving
the non-critical section as getting the desire to enter the critical section. After this happens,

1 Corresponding author
2 What we call threads are in the literature frequently referred to as processes or computers. We use

threads to distinguish between the real systems and our models of them, expressed in a process algebra.

© Rob van Glabbeek, Bas Luttik, and Myrthe S. C. Spronck;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 17; pp. 17:1–17:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rvg@cs.stanford.edu
https://theory.stanford.edu/~rvg/
https://orcid.org/0000-0003-4712-7423
mailto:s.p.luttik@tue.nl
https://www.win.tue.nl/luttik/
https://orcid.org/0000-0001-6710-8436
mailto:m.s.c.spronck@tue.nl
https://orcid.org/0000-0003-2909-7515
https://doi.org/10.4230/LIPIcs.CONCUR.2025.17
https://doi.org/10.48550/arXiv.2507.13198
https://github.com/mCRL2org/mCRL2/tree/master/examples/academic/non-atomic_registers
https://github.com/mCRL2org/mCRL2/tree/master/examples/academic/non-atomic_registers
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


17:2 Just Verification of Mutual Exclusion Algorithms

the thread is executing its entry protocol, the part of the mutual exclusion algorithm in
which it negotiates with other threads who gets to enter the critical section first. The critical
section occurs right after the entry protocol, and is followed by an exit protocol, after which
the thread returns to its non-critical section. When in its non-critical section, a thread is not
expected to communicate with the other threads in any way. Moreover, a thread may choose
to remain in its non-critical section forever after. However, once a thread gains access to its
critical section, it must leave it within a finite time, so as to make space for other threads.

The most crucial correctness property of a mutual exclusion algorithm is mutual exclusion:
at any given time, at most one thread will be in its critical section. This is a safety property.
In addition, a hierarchy of liveness properties have been considered. The weakest one is
deadlock freedom: Whenever at least one thread is running its entry protocol, eventually
some thread will enter its critical section. This need not be one of the threads that was
observed to be in its entry protocol. A stronger property is starvation freedom: whenever
a thread leaves its non-critical section, it will eventually enter its critical section. A yet
stronger property, called bounded bypass, augments starvation freedom with a bound on the
number of times other threads can gain access to the critical section before any given thread
in its entry protocol.

In this paper we check for over a dozen mutual exclusion protocols, and for six possible
assumptions on the environment in which they are running, whether they satisfy mutual
exclusion, deadlock freedom and starvation freedom. We will not investigate bounded bypass,
nor other desirable properties of mutual exclusion protocols, such as first-come-first-served,
shutdown safety, abortion safety, fail safety and self-stabilisation [38].

Memory models.3 In the mutual exclusion algorithms considered here, the threads com-
municate with each other solely by reading from and writing to shared registers. The main
assumptions on the environment in which mutual exclusion algorithms will be running
concern these registers. It is frequently assumed that (read and write) operations on registers
are “undividable”, meaning that they cannot overlap or interleave each other: if two threads
attempt to perform an operation on the same register at the same time, one operation will
be performed before the other. This assumption, sometimes referred to as atomicity, is
explicitly made in Dijkstra’s first paper on mutual exclusion [20]. Atomicity is sometimes
conceptualised as operations occurring at a single moment in time. We instead acknowledge
that operations have duration. Consequently, if operations cannot overlap in time, then, when
multiple operations are attempted simultaneously, the one performed first must postpone
the occurrence of the others by at least its own duration. One operation postponing another
is called blocking [18].

Deviating from Dijkstra’s original presentation, several authors have considered a variation
of the mutual exclusion problem where the atomicity assumption is dropped [36, 47, 37, 38,
52, 53, 4, 6]. Attempted operations can then occur immediately, without blocking each other.
We say these operations are non-blocking. In this context, read and write operations may
be concurrent, i.e. overlap in time. We must then consider the consequences of operations
overlapping each other.

3 A memory model describes the interactions of threads through memory and their shared use of the data.
The models reviewed here differ in the degree in which different register accesses exclude each other, and
in what values a register may return in case of overlapping reads and writes. In this paper, we do not
consider weak memory models, that allow for compiler optimisations, and for reads to sometimes fetch
values that were already changed by another thread. In [8] is has been shown that mutual exclusion
cannot be realised in weak memory models, unless those models come with memory fences or barriers
that can be used to undermine their weak nature.

https://en.wikipedia.org/wiki/Memory_model_(programming)


R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:3

In [39, 40], Lamport proposes a hierarchy of three memory models in this context,
specifically for single-writer multi-reader (SWMR) registers; such registers are owned by one
thread, and only that thread is capable of writing to it. Crucial for these definitions is the
assumption that every register has a domain, and a read of that register always yields a
value from that domain. It is also important to note that threads can only perform a single
operation at a time, meaning that a thread’s operations can never overlap each other.

A safe register guarantees merely that a read that is not concurrent with any write
returns the most recently written value.
A regular register guarantees that any read returns either the last value written before
it started, or the value of any overlapping write, if there is one.
An atomic register guarantees that reads and writes behave as though they occur in some
total order. This total order must comply with the real-time ordering of the operations:
if operation a ends before operation b begins, then a must be ordered before b.

These three memory models form a hierarchy, in the sense that any atomic register is regular,
and any regular one is safe. When we merely know that a register is safe, a read that overlaps
with any write might return any value in the domain of the register. In Section 3 we discuss
the generalisation of these memory models to multi-writer multi-reader (MWMR) registers,
ones that can be written and read by all threads.

Besides blocking and non-blocking registers, as explained above, we consider two interme-
diate memory models. The blocking model with concurrent reads requires (1) any scheduled
read or write to await the completion of any write that is in progress, and (2) any scheduled
write to await the completion of any unfinished read. However, reads from different threads
need not wait for each other and may overlap in time without ill effects. In the model of
non-blocking reads,4 we have (1) but not (2). This model, where writes block reads but reads
do not block writes, may apply when writes can abort in-progress reads, superseding them.

blocking reads and writes
blocking model with concurrent reads

blocking writes and non-blocking reads
non-blocking reads and writes

atomic registers
regular registers

safe registers

In this paper, we model six different memory models, which are illustrated above.
The blocking aspect of our memory models is captured via different concurrency relations
(Section 5). The distinction between safe, regular and atomic registers is captured via three
different process algebraic models (Section 3). Since the safe/regular/atomic distinction is
only relevant in models that allow writes to overlap reads and writes, we only make it for the
non-blocking model; for the other three memory models we reuse our atomic register models.

Completeness criteria. In previous work [50], we checked the mutual exclusion property of
several algorithms, with safe, regular and atomic MWMR registers, through model checking
with the mCRL2 toolset [16]. We did not check the liveness properties at that time; the
presence of certain infinite loops in our models introduced spurious counterexamples to such
properties, which hindered our verification efforts. As an example of what we call a “spurious
counterexample”, we frequently found violations to starvation freedom where one thread,
i, never obtained access to its critical section because a different thread, j, was endlessly
repeating a busy wait, or some other infinite cycle which should reasonably not prevent

4 In this terminology, from [18], a blocking read blocks a write; it does not refer to a read that is blocked.

CONCUR 2025



17:4 Just Verification of Mutual Exclusion Algorithms

i from progressing to its critical section. Yet, the model checker does not know this, and
can therefore only conclude that the property is not satisfied. In this paper, we extend our
previous work by addressing this problem and checking liveness properties as well.

One method for discarding spurious counterexamples from verification results is applying
completeness criteria: rules for determining which paths in the model represent real executions
of the modelled system. By ensuring that all spurious paths are classified as incomplete
and only taking complete paths into consideration when verifying liveness properties, we
can circumvent the spurious counterexamples. Of course, one must take care not to discard
true system executions by classifying those as incomplete. The completeness criterion must
therefore be chosen with care. Examples of well-known completeness criteria are weak fairness
and strong fairness. Weak fairness assumes that every task5 that eventually is perpetually
enabled must occur infinitely often; strong fairness assumes that if a task is infinitely often
enabled it must occur infinitely often [42, 5, 27]. In effect, making a fairness assumptions
amounts to assuming that if something is tried often enough, it will always eventually succeed
[27]. In that sense, these assumptions, even weak fairness, are rather strong, and may well
result in true system executions being classified as incomplete. In this paper, we therefore
use the weaker completeness criterion justness [27, 24, 14].

Unlike weak and strong fairness, justness takes into account how different actions in the
model relate to each other. Informally, it says that if an action a can occur, then eventually
a occurs itself, or a different action occurs that interferes with the occurrence of a. The
underlying idea of justness is that the different components that make up a system must all
be capable of making progress: if thread i wants to perform an action entirely independent
of the actions performed by j, then there can be no interference. However, if both threads
are interacting with a shared register, then we may decide that one thread writing to the
register can prevent the other from reading it at the same time, or vice versa. Which actions
interfere with each other is a modelling decision, dependent on our understanding of the real
underlying system. It is formalised through a concurrency relation, which must adhere to
some restrictions. In this paper we propose four concurrency relations, each modelling one
of the four major memory models reviewed above: non-blocking reads and writes, blocking
writes and non-blocking reads, the blocking model with concurrent reads, and blocking reads
and writes.

Model checking. Traditionally, mutual exclusion algorithms have been verified by pen-and-
paper proofs using behavioural reasoning. As remarked by Lamport [38], “the behavioral
reasoning used in our correctness proofs, and in most other published correctness proofs of
concurrent algorithms, is inherently unreliable”. This is especially the case when dealing
with the intricacies of non-atomic registers.6 This problem can be alleviated by automated
formal verification; here we employ model checking.

While the precise modelling of the algorithms, the registers and the employed completeness
criterion requires great care, the subsequent verification requires a mere button-push and
some patience. Since our model checker traverses the entire state-space of a protocol, the
verified protocols and all their registers need to be finite. This prevented us from checking

5 What constitutes a task differs from paper to paper; hence there are multiple flavours of strong and
weak fairness; here a task could be a read or write action of a certain thread on a certain register.

6 A good illustration of unreliable behavioural reasoning is given in [25, Section 21], through a short but
fallacious argument that the mutual exclusion property of Peterson’s mutual exclusion protocol, which
is known to hold for atomic registers, would also hold for safe registers. We challenge the reader to find
the fallacy in this argument before looking at the solution.



R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:5

the bakery algorithm [36], as it is one of the few mutual exclusion protocols that employs an
unbounded state space. Moreover, those algorithms that work for N threads, for any N ∈ N,
could be checked for small values of N only; in this paper we take N = 3. Consequently, any
failure of a correctness property that shows up only for > 3 threads will not be caught here.

As stated, we employed these methods in previous work to check mutual exclusion
algorithms. Although there we checked only safety properties, and did not consider the
blocking aspects of memory, this already gave interesting results. For instance, we showed
that Szymanski’s flag algorithm from [52], even when adapted to use Booleans, violates
mutual exclusion with non-atomic registers. Here, we expand this previous work by checking
deadlock freedom and starvation freedom in addition to mutual exclusion, and by including
blocking into our memory models. In total, we check the three correctness properties of
over a dozen mutual exclusion algorithms, for six different memory models. Among others,
we cover Aravind’s BLRU algorithm [6], Dekker’s algorithm [19, 3] and its RW-safe variant
[15], and Szymanski’s 3-bit linear wait algorithm [53]. In some cases where we find property
violations, we suggest fixes to the algorithms so that the properties are satisfied.

2 Preliminaries

A labelled transition system (LTS) is a tuple (S, Act, init, Trans) in which S is a finite set of
states, Act is a finite set of actions, init ∈ S is the initial state, and Trans ⊆ S ×Act × S is
a transition relation. We write s

a−→ s′ for (s, a, s′) ∈ Trans. We say an action a is enabled in
a state s if there exists a state s′ such that (s, a, s′) ∈ Trans.

A path π is a non-empty, potentially infinite alternating sequence of states and actions
s0a1s1a2 . . ., with s0, s1, . . . ∈ S and a1, a2, . . . ∈ Act, such that if π is finite, then its last
element is a state, and for all i ∈ N, si

ai+1−−−→ si+1. The first state of π is its initial state. The
length of π is the number of transitions in it.

We use a notion of parallel composition that is taken from Hoare’s CSP [33], where
synchronisation between components is enforced on all shared actions. It is defined as follows:
For some k ≥ 1, let P1, . . . , Pk be LTSs, where Pi = (Si, Acti, initi, Transi) for all 1 ≤ i ≤ k.
The parallel composition P1 ∥ . . . ∥ Pk of P1, . . . , Pk is the LTS P = (S, Act, init, Trans)
in which S = S1 × . . . × Sk, Act =

⋃
1≤i≤k Acti, init = (init1, . . . , initk), and a transition

((s1, . . . , sk), a, (s′
1, . . . , s′

k)) is in Trans if, and only if, a ∈ Act and the following are true for
all 1 ≤ i ≤ k: if a /∈ Acti, then si = s′

i, and if a ∈ Acti, then (si, a, s′
i) ∈ Transi.

Note that by this definition of Trans, if an action is in the action set of a component but
not enabled by that component in a particular state of the parallel composition, then the
composition cannot perform a transition labelled with that action.

As mentioned in the introduction, the completeness criterion we use for our liveness
verification is a variant of justness [24, 27]. Specifically, while justness is originally defined
on transitions, we here define it on action labels, an adaption we take from [14]. As stated
earlier, the definition of justness relies on the notion of a concurrency relation.

▶ Definition 1. Given an LTS (S, Act, init, Trans), a relation ⌣• ⊆ Act×Act is a concurrency
relation if, and only if:

⌣• is irreflexive.
For all a ∈ Act, if π is a path from a state s ∈ S to a state s′ ∈ S such that a is enabled
in s and a ⌣• b for all b ∈ Act occurring on π, then a is enabled in s′.

A concurrency relation may be asymmetric. We often reason about the complement of ⌣•,
⌣̸•. Read a ⌣• b as “a is independent from b” and a ⌣̸• b as “b interferes with/postpones a”.

CONCUR 2025



17:6 Just Verification of Mutual Exclusion Algorithms

▶ Observation 2. Concurrency relations can be refined by removing pairs; a subset of a
concurrency relation is still a concurrency relation.

Informally, justness says that a path is complete if whenever an action a is enabled along
the path, there is eventually an occurrence of an action (possibly a itself) that interferes
with it. This can be weakened by defining a set of blockable actions, for which this restriction
does not hold; a blockable action may be enabled on a complete path without there being a
subsequent occurrence of an interfering action. In this paper, the action of a thread to leave
its non-critical section will be blockable. This way we model that a thread may choose to
never take that option. We give the formal definition of justness, incorporating the blockable
actions. We represent the set of blockable actions as B. Its complement, B, is defined as
Act \ B, given a set of actions Act.

▶ Definition 3. A path π in an LTS (S, Act, init, Trans) satisfies B-⌣•-justness of actions
(JA⌣•

B ) if, and only if, for each suffix π′ of π, if an action a ∈ B is enabled in the initial state
of π′, then an action b ∈ Act occurs in π′ such that a ⌣̸• b.

We say that a property is satisfied on a model under JA⌣•

B if it is satisfied on every path of
that model, starting from the model’s initial state, that satisfies JA⌣•

B . If B and ⌣• are clear
from the context, we simply say that a path that satisfies JA⌣•

B is just.

3 Register models

In [50], we presented process-algebraic models of MWMR safe, regular and atomic registers.
Through the semantics of the process algebra, this determines an LTS for each register of a
given kind. In this paper, we use the same definitions for the three register types, but we have
altered the process-algebraic models to be more compact and better facilitate the definition
of the concurrency relations. The process-algebraic models can be found in Appendix A;
here we merely summarise the key design decisions.

A register model represents a multi-reader multi-writer read-write register that allows
every thread to read from and write to it. However, every thread may only perform a single
operation on the register at a time. The register model specifies the behaviour of the register
in response to operations performed by threads. Here we presuppose two disjoint finite sets:
T of thread identifiers (thread id’s) and R of register identifiers (register id’s). Additionally,
for every r ∈ R we reference the set Dr of all data values that the register r can hold.

Recall that read and write operations take time, and may hence be concurrent. Therefore
we represent a single operation with two actions: an invocation to indicate the start of the
operation, and a response to indicate its end. Two operations are concurrent if the interval
between their respective invocations and responses overlaps. The interface of a register is
represented by the following actions: a read by thread t ∈ T of register r ∈ R that returns
value d ∈ Dr is a start read action srt,r followed by a finish read action frt,r(d); a write of
value d ∈ Dr by a thread t ∈ T to register r ∈ R is a start write action swt,r(d) followed by a
finish write action fwt,r . In addition to this interface, which the threads can use to perform
operations on the register, the regular and atomic models also use register local actions; these
are internal actions by the register that are used to model the correct behaviour.

A register model requires some finite amount of memory to store a representation of
relevant past events. We store this in what we call the status object, which features a finite set
S of possible states. We abstract away from the exact implementation; for this presentation,
all that is relevant is which information can be retrieved from it. Amongst others, we use
the following access functions, which are local to any given register r:



R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:7

stor : S→ Dr, the value that is currently stored in the register.
wrts : S→ 2T, the set of thread id’s of threads that have invoked a write operation on
this register that has not yet had its response.

Any occurrence of a register action a induces a state change s
a−→ s′, resulting in an update

to these access functions. For instance, the actions swt,r(d) and fwt,r cause the updates
wrts(s′) = wrts(s) ∪ {t} and wrts(s′) = wrts(s) \ {t}, respectively.

3.1 Safe MWMR registers
To extend the single-writer definition of safe registers to a multi-writer one, we follow Lamport
in assuming that a concurrent read cannot affect the behaviour of a read or write. Lamport’s
SWMR definitions consider how concurrent writes affect reads, but not how concurrent writes
affect writes. Here we follow Raynal’s approach for safe registers: a write that is concurrent
with another write sets the value of the register to some arbitrary value in the domain of the
register [48]. We can summarise the behaviour of MWMR safe registers with four rules:
1. A read not concurrent with any writes on the same register returns the value most recently

written into the register.
2. A read concurrent with one or more writes on the same register returns an arbitrary value

in the domain of the register.
3. A write not concurrent with any other write on the same register results in the intended

value being set.
4. A write concurrent with one or more other writes on the same register results in an

arbitrary value in the domain of the register being set.

In our model of a safe register r, its status object maintains a Boolean variable ovrl for
each thread id, telling whether an ongoing read or write action of this thread overlapped
with a write by another thread. The value of ovrl is updated in a straightforward way each
time r experiences a register interface action srt,r , frt,r(d), swt,r(d) or fwt,r , aided by the
access function wrts. Using this function, our model can determine which of the above four
rules applies when a read or write finishes, and behave accordingly.

3.2 Regular MWMR registers
We wish to define regular MWMR registers as an extension of Lamport’s definition of SWMR
regular registers: a read returns either the last written value before the read began, or the
value of any concurrent write, if there is one. This is non-trivial; in [50] we present one
extension and compare it to four different suggestions from [49]. The complexity comes from
determining what the last written value is, given that writes may be concurrent with each
other. Here, following [50], we require that all threads see the same global ordering on writes
once those writes have completed. Hence, if two writes w1 and w2 occur concurrently, and
after their completion, but before the invocation of any other write, there are two reads r1
and r2, then either both r1 and r2 see w1’s value as the last written value, or they both see
w2’s value as the last written value. We generate the global ordering through the register
local order write action owt,r , which is scheduled between the start write action swt,r(d) and
the finish write fwt,r . This action does not represent any true internal behaviour by the
register; the interleaving of order write actions from various threads merely determines the
global ordering. Given a read, we say the “last written” value this read sees, and hence the
value this read may return in addition to those of overlapping writes, is the intended value of
the write whose ordering was the most recent before the read’s invocation.

CONCUR 2025



17:8 Just Verification of Mutual Exclusion Algorithms

In our process algebraic model, the value stor of the register is set when an action owt,r
occurs. During any read action of a thread t, that is, between srt,r and frt,r(d), the register
model builds a set of the possible return values on the fly. When the read starts, this set is
initialised to stor and the intended value of every active write. Subsequently, whenever a
write occurs, its intended value is added to the set. This way, at the finish read, the set will
contain exactly those values that the read could return.

3.3 Atomic MWMR registers
Lamport’s definition of SWMR atomic registers, namely that the register must behave as
though reads and writes occur in some strict order, is directly applicable to the MWMR case.
We reuse the register local order write action from the regular register model, and add the
similar order read action ort,r for read operations. This way, we generate an ordering on all
operations. In our process-algebraic model, stor is updated when the owt,r occurs, similar to
regular registers. For read operations, the value of stor when ort,r occurs is remembered,
and returned at the matching response.

4 Thread-register models

In our models, we combine processes representing both threads and registers. Similar to
how register processes may contain register local actions, threads may contain thread local
actions. Crucially, the local actions of both registers and threads are not involved in any
communication, meaning that the only way for two threads to communicate is by writing to
and reading from registers using the register interface actions.

The register models are mostly independent of the algorithm that we analyse with them;
the algorithm merely dictates a register’s identifier, domain, and initial value. However,
the thread models are fully dependent on the modelled algorithm, which dictates their
behaviour. Therefore, we cannot present an algorithm-independent thread process. Instead,
we presuppose the existence of an LTS Tt = (St, Actt, initt, Transt) and a set of thread local
actions TLoct for every t∈T such that Actt = {srt,r , frt,r(d), swt,r(d), fwt,r | r∈R, d∈Dr}∪
TLoct. We assume that all sets of thread local actions are pairwise disjoint and that all thread
LTSs Tt satisfy two properties, representing the reasonable implementation of read and write
operations. Firstly, on all paths from initt, each transition labelled srt,r for some r ∈ R
must go to a state where exactly the actions frt,r(d) for all d ∈ Dr are enabled. Similarly,
all transitions labelled swt,r(d) for some r ∈ R, d ∈ Dr must go to states where only fwt,r is
enabled. Secondly, transitions labelled frt,r(d) or fwt,r are only enabled in these states.

We combine thread and register LTSs into thread-register models. For the following
definition, we let Rr = (Sr, Actr, initr, Transr) be the LTS associated with each r ∈ R.

▶ Definition 4. A thread-register model is a six-tuple (S, Act, init, Trans, thr , reg), such that
(S, Act, init, Trans) is a parallel composition of thread and register LTSs and

thr : Act → T is a mapping from actions to thread id’s; and
reg : Act → R∪{⊥} is a mapping from actions to register id’s and the special value ⊥ /∈R.

thr and reg are defined in the obvious way, e.g., thr(srt,r) = t and reg(srt,r) = r. Crucially,
for a thread local action a, reg(a) = ⊥.

Note that by our construction of the thread and register LTSs, every action in Act appears in
at most two components of the parallel composition. Specifically, for all t ∈ T and at ∈ TLoct,
at appears only in Tt; for all t ∈ T, r ∈ R, ort,r and owt,r appear only in Rr; and for all
t ∈ T, r ∈ R and d ∈ Dr, srt,r , frt,r(d), swt,r(d) and fwt,r appear exactly in Tt and Rr.



R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:9

5 Justness for thread-register models

In order to obtain a suitable notion of justness for our thread-register models, we need to
choose both B and ⌣•. Only thread local actions will be blockable; we define B in Section 6.

The concurrency relation, on the other hand, should relate the register interface actions.
This is how we represent whether it is reasonable for one thread’s operations on a register
to interfere with (and thereby postpone) another thread’s operations on that register. We
use four different concurrency relations in our verifications, representing the four different
models of blocking described in Section 1. These concurrency relations do not reference the
thread local actions outside of the thr mapping, so we can already present these relations
before giving more details on the precise models. To establish that the relations we present
are indeed concurrency relations, we first establish a property of our models. We call this
property thread consistency.

▶ Definition 5. An LTS (S, Act, init, Trans) is thread consistent with respect to a mapping
thr : Act → T if, and only if, for all states s ∈ S, if an action a ∈ Act is enabled in s and
there exists a transition s

b−→ s′ for some s′ ∈ S, b ∈ Act such that thr(a) ̸= thr(b), then a is
also enabled in s′.

The correctness of our concurrency relations (cf. Definition 1) relies on our thread-register
models being thread-consistent. The proof of this fact is given in Appendix B.

▶ Lemma 6. Let M = (S, Act, init, Trans, thr , reg) be a thread-register model. Then the
LTS (S, Act, init, Trans) is thread consistent with respect to the mapping thr .

For the definitions of our four concurrency relations, we fix a thread-register model
M = (S, Act, init, Trans, thr , reg). We also introduce two predicates on Act: sr? and sw?.
For an action a ∈ Act, these are defined as:

sr?(a) = ∃t∈T,r∈R.(a = srt,r) sw?(a) = ∃t∈T,t∈R,d∈Dr .(a = swt,r(d)).

The thread interference relation, ⌣•
T , expresses that every action is independent from

every other action unless the two actions belong to the same thread; every two actions by
the same thread interfere with each other. It captures the memory model with non-blocking
reads and writes. This is the coarsest concurrency relation we will use.

▶ Definition 7. ⌣•
T = {(a, b) | a, b ∈ Act, thr(a) ̸= thr(b)}

▶ Lemma 8. ⌣•
T is a concurrency relation for M .

This follows by a straightforward application of Lemma 6. The details are in [28, Appendix D].
The model with blocking writes and non-blocking reads is captured by the signalling

reads relation, ⌣•
S .

▶ Definition 9. ⌣•
S = ⌣•

T \ {(a, b) | a, b ∈ Act, sr?(a) ∨ sw?(a), sw?(b), reg(a) = reg(b)}

Intuitively, this is the same as ⌣•
T except that one thread starting a write to a register can

interfere with a write to or a read from that same register by another thread. However, a
read cannot interfere with another thread’s read or write. This concurrency relation has
a precedent in [21, 14]. There, reads are modelled as signals, which differ from standard
actions in that they do not block any other actions. Hence the name of this relation.

The blocking model with concurrent reads is captured by the interfering reads relation,
⌣•

I . This is a further refinement from ⌣•
S , where a start read can interfere with a start

write on the same register, but cannot interfere with a start read.

▶ Definition 10. ⌣•
I = ⌣•

S \ {(a, b) | a, b ∈ Act, sw?(a), sr?(b), reg(a) = reg(b)}

CONCUR 2025



17:10 Just Verification of Mutual Exclusion Algorithms

This goes with the idea that performing a write on a memory location can only be done
when the memory is reserved: repeated reads can prevent the memory from being reserved
for a write, but as long as there is no write all the reads can take place concurrently.

Finally, the model of blocking reads and writes is captured by the all interfering relation,
⌣•

A, a refinement of ⌣•
I where a start read can also interfere with another start read.

▶ Definition 11. ⌣•
A = ⌣•

I \ {(a, b) | a, b ∈ Act, sr?(a), sr?(b), reg(a) = reg(b)}

In this model, every operation on a register fully reserves that register for only that operation,
and hence can prevent any other operation from taking place at the same time.

▶ Lemma 12. ⌣•
S , ⌣•

I and ⌣•
A are concurrency relations for M .

Proof. This follows from Lemma 8 and Observation 2. ◀

As stated in the introduction, we capture six memory models. We obtain three variants of
the non-blocking model by combining the ⌣•

T relation with the safe, regular and atomic
register models. The remaining three memory models are represented by combining ⌣•

S ,
⌣•

I and ⌣•
A with the atomic register model. In [28, Appendix E], we formally characterise

just paths in our thread-register models for all six variants. In [28, Appendix F], we prove
that using the atomic register model, which allows overlapping writes, for the three memory
models with blocking writes is sound for verification purposes.

6 Verification

Below, we collect over a dozen mutual exclusion algorithms from the literature. We also present
altered versions of several algorithms, incorporating fixes we propose. All these algorithms,
and the registers themselves, have been translated to the process algebra mCRL2 [30]. The
mCRL2 files are available as supplementary material. We give the most important design
decisions regarding this translation here; further details can be found in [28, Appendix G].
The only operations on registers we allow are reading and writing. Hence, more complicated
statements that may have been present in the original presentation of an algorithm, such as
compare-and-swap instructions, are converted into these primitive operations. A statement
like “await ∀i∈T : x(i)”, where x is some condition on a thread id i, is modelled as a recursive
process that checks each thread id from smallest to largest, waiting for each until x(i) is
satisfied. Where an algorithm does not specify the initial value of a register, we take the
lowest value from the given domain.

We use ct and nct, with t ∈ T, as thread local actions. These actions represent a thread
entering its critical section and leaving its non-critical section, respectively. We define
B = {nct | t ∈ T} to capture that a thread may always choose to remain in its non-critical
section indefinitely; this is an important assumption underlying the correctness of mutual
exclusion protocols.

We did our verification with the mCRL2 toolset [16]. To this end, we encoded mutual
exclusion, deadlock freedom, and starvation freedom in the modal µ-calculus, the logic used
to represent properties in the mCRL2 toolset. We used the patterns from [51] to incorporate
the justness assumption into our formulae for deadlock freedom and starvation freedom.
The full modal µ-calculus formulae appear in [28, Appendix H] (and also as supplementary
material). Besides the correctness properties discussed in Section 1, Dijkstra [20] requires
that the correctness of the algorithms may not depend on the relative speeds of the threads.
This requirement is automatically satisfied in our approach, since we allow all possible
interleavings of thread actions in our models.

https://github.com/mCRL2org/mCRL2/tree/master/examples/academic/non-atomic_registers
https://github.com/mCRL2org/mCRL2/tree/master/examples/academic/non-atomic_registers


R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:11

We checked mutual exclusion, deadlock freedom, and starvation freedom. If mutual
exclusion is not satisfied, we do not care about the other two properties. Additionally, if
deadlock freedom is not satisfied, we know that starvation freedom is not satisfied either.
We can therefore summarise our results in a single table: X if none of the three properties
are satisfied, M if only mutual exclusion is satisfied, D if only mutual exclusion and deadlock
freedom hold, and S if all three are satisfied. See Table 1. As stated previously, we verify
liveness properties under justness, where we employ ⌣•

T for safe and regular registers and
all four concurrency relations ⌣•

T , ⌣•
S , ⌣•

I and ⌣•
A for atomic registers. We checked

with 2 threads for algorithms designed for 2 threads, and with 3 for all others. We restrict
ourselves to at most 3 threads because, due to the state-space explosion problem, even models
with only 3 threads frequently take hours or even days to check these properties on.

We list the origin of each algorithm in the table; the results of verifying our proposed
alternate versions are indicated by “alt.”. For the algorithms we discuss in detail, we include
their pseudocode. Therein we merely present the entry and exit protocols of an algorithm,
separated by the instruction critical section. Implicitly these instructions alternate with
the non-critical section, and may be repeated indefinitely. We use N for the number of
threads. As identifiers for threads, we use the integers 0 . . . N−1. So T = {0, . . . , N−1}.
When presenting pseudocode, we give the algorithm for an arbitrary thread i. When N = 2,
we use the shorthand notation j = 1− i.

In the subsequent sections, we discuss the most interesting results. Pseudocode and
further discussion of the algorithms not covered here appear in [28, Appendix I].

6.1 Impossibility of liveness with ⌣•
I

Perhaps the most notable result in Table 1 is that no algorithm satisfies either liveness
property under JA⌣•

I

B or JA⌣•
A

B . Since ⌣•
A is a refinement of ⌣•

I , we focus on the behaviour
for ⌣•

I . When we take ⌣•
I as our concurrency relation, then one thread’s read of a register

can interfere with another thread’s write to that same register. It turns out that when this
is the case, starvation freedom is impossible for algorithms that rely on communication via
registers. The following argument is adapted from [23, 25]. Assume that Alg is an algorithm
that satisfies starvation freedom. Let i and j be different threads, and assume that all other
threads, if any, stay in their non-critical section forever. Since Alg is starvation-free, thread i

must be capable of freely entering the critical section if thread j is not competing for access.
Hence, thread j must communicate its interest in the critical section to thread i as part of its
entry protocol. Since reading from and writing to registers is the only form of communication
we allow, thread j must, in its entry protocol, write to some register reg, which i must read
in its own entry protocol. As long as i does not read j’s interest from reg, thread i can
enter the critical section freely. Therefore, if thread i’s read of reg can block thread j’s write
to reg, thread i can infinitely often access the critical section without ever letting thread j

communicate its interest, thus never letting thread j enter.
For this argument it is crucial that right after i’s read of reg, thread i enters and then

leaves the critical section and returns to its entry protocol, where it engages in another read
of reg, so quickly that thread j has not yet started its write to reg in the meantime. This uses
the requirement on mutual exclusion protocols that their correctness may not depend on the
relative speeds of the threads. Without that requirement one can easily achieve starvation
freedom even with blocking reads, as demonstrated in [25].

The argument above explains why starvation freedom is never satisfied for ⌣•
I or ⌣•

A.
However, it does not explain why we also never observe deadlock freedom. After all, in the
execution sketched above, while thread j is stuck in its entry protocol, thread i infinitely

CONCUR 2025



17:12 Just Verification of Mutual Exclusion Algorithms

Table 1 Verification results.

Algorithm # threads Safe Regular Atomic
T T T S I A

Anderson [4] 2 S S S S M M

Aravind BLRU [6] 3 S S S M M M
Aravind BLRU (alt.) 3 S S S S M M

Attiya-Welch (orig.) [9] 2 D S S D M M
Attiya-Welch (orig., alt.) 2 S S S D M M
Attiya-Welch (var.) [49] 2 M M S D M M
Attiya-Welch (var., alt.) 2 S S S D M M

Burns-Lynch [17] 3 D D D D M M

Dekker [3] 2 M M S D M M
Dekker (alt.) 2 M M S S M M
Dekker RW-safe [15] 2 S S S D M M
Dekker RW-safe (DFtoSF) 2 S S S S M M

Dijkstra [20] 3 M D D M M M

Kessels [34] 2 X X S S M M

Knuth [35] 3 M S S M M M

Lamport 1-bit [38] 3 D D D D M M
Lamport 1-bit (DFtoSF) 3 S S S S M M
Lamport 3-bit [38] 3 S S S S M M

Peterson [46] 2 X X S S M M

Szymanski flag (int.) [52] 3 X X S S M M
Szymanski flag (bit) [52] 3 X X X X X X
Szymanski 3-bit lin. wait [53] 3 X X X X X X
Szymanski 3-bit lin. wait (alt.) 2 S S S S M M



R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:13

Algorithm 1 Peterson’s algorithm.

1: flag[i]← true
2: turn ← i

3: await flag[j] = false∨ turn = j

4: critical section
5: flag[i]← false

Algorithm 2 Dekker’s algorithm.

1: flag[i]← true
2: while flag[j] = true do
3: if turn = j then
4: flag[i]← false
5: await turn = i

6: flag[i]← true
7: critical section
8: turn ← j

9: flag[i]← false

Algorithm 3 Aravind’s BLRU algorithm.

1: flag[i]← true
2: repeat
3: stage[i]← false
4: await ∀j ̸=i : flag[j] = false∨date[i] < date[j]
5: stage[i]← true
6: until ∀j ̸=i : stage[j] = false
7: critical section
8: date[i]← max(date[0], ..., date[N − 1]) + 1
9: if date[i] ≥ 2N − 1 then

10: ∀j∈[0...N−1] : date[j]← j

11: stage[i]← false
12: flag[i]← false

often accesses the critical section. While we do not (yet) have an argument that deadlock
freedom is impossible to satisfy if reads can block writes for all possible algorithms, we do
observe this to be the case for all algorithms we have analysed.

For many algorithms, it is possible for both competing threads to become stuck in
their entry protocol. Consider, for example, Peterson’s algorithm from [46], here given as
Algorithm 1. If turn is initially 0, and thread 1 manages to set flag[1] to true before thread 0
starts the competition, then on line 3 thread 0 will get stuck in a busy waiting loop. Thread
1 needs to set turn to 1 to let thread 0 pass line 3, but thread 0’s repeated reads of turn
prevent this write from taking place, resulting in both threads being trapped in the entry
protocol. An alternative way to get a deadlock freedom violation is via the exit protocol.
Once a thread has finished its critical section access, it needs to communicate that it no
longer requires access to the other thread. In Peterson’s, this is done on line 5 by setting
the thread’s flag to false. However, if the other thread is repeatedly reading this register,
such as is done on line 3, then the completion of the exit protocol can be blocked, once again
preventing both threads from accessing their critical sections.

We see similar behaviour in all algorithms we analyse. Frequently, although not always,
the problem lies in busy waiting loops. Given this behaviour, it would be interesting to
modify our models to treat busy waiting reads differently from normal reads, and only allow
normal reads to interfere with writes. This would give us greater insight into whether for
some of the algorithms it is truly the busy waiting that is the source of the deadlock freedom
violation. We leave this as future work.

6.2 Aravind’s BLRU algorithm
Aravind’s BLRU algorithm [6], here given as Algorithm 3, is designed for an arbitrary number
of threads N . Every thread has three registers: flag and stage, Booleans that are initialised
at false, and a natural number date, initialised at the thread’s own id. We observe that
this algorithm satisfies all three properties with safe and regular registers, as claimed in [6].
However, with atomic registers, deadlock freedom is violated under JA⌣•

S

B . The following

CONCUR 2025



17:14 Just Verification of Mutual Exclusion Algorithms

execution for two threads demonstrates this violation:
Thread 1 moves through lines 1 through 5, setting flag[1] and stage[1] to true. Note that
thread 1 can go through line 4 because flag[0] = false.
Thread 0 can similarly move through lines 1 through 5; while flag[1] = true, we do have
that date[0] = 0 < 1 = date[1], so it can pass through line 4. However, on line 6, thread 0
observes stage[1] = true, so it has to return to line 2.

At this point, thread 0 can repeat lines 2 through 5 endlessly, as long as thread 1 does not
set stage[1] to false. Note that the resulting infinite execution satisfies JA⌣•

S

B : thread 1’s
read of stage[0], which it has to perform on line 6, is repeatedly blocked by thread 0’s writes
to stage[0] on lines 3 and 5.

This violation can easily be fixed by preventing a thread from endlessly repeating the loop
in the entry protocol while the other thread’s stage is false. This can be done by altering line
4 to instead say await ∀j ̸=i : flag[j] = false ∨ (date[i] < date[j] ∧ stage[j] = false). While
this makes it more difficult to progress through line 4, it is impossible for all threads to get
stuck there: if all threads are on line 4, then stage is false for all of them, and so the one
with the lowest date can go to line 5. Indeed, as is shown in Table 1, with this modification
Aravind’s algorithm now satisfies starvation freedom under JA⌣•

S

B .

6.3 Dekker’s algorithm
Dekker’s algorithm originally appears in [19]. There is no clear pseudocode given there, so
we use the pseudocode from [3], here given as Algorithm 2. The algorithm uses a Boolean
flag per thread, initially false, and a multi-writer register turn, initially 0. An execution
showing that Dekker’s algorithm does not satisfy starvation freedom with safe registers is
reported in [15]. This same execution can be found by mCRL2:

Thread 0 goes through the algorithm without competition, and starts setting flag[0] to
false in the exit protocol, when it is currently true.
Thread 1 starts the competition and reads flag[0] = false, the new value, on line 2. It
can therefore go to the critical section, and set turn to 0 in the exit protocol.
Thread 1 then starts the competition again, now reading flag[0] = true, the old value, on
line 2. Since turn = 0, it goes to line 5 and starts waiting for turn to be 1.
Thread 0 finishes the exit protocol and never re-attempts to enter the critical section.

Since thread 0 will never set turn to 1, thread 1 can never escape line 5. This execution
violates deadlock freedom as well as starvation freedom, and is also applicable to regular
registers. The phenomenon where two reads concurrent with the same write return first the
new and then the old value is called new-old inversion, and is explicitly allowed by Lamport
in his definitions of safe and regular registers [40]. An interesting quality of this execution is
that it relies on thread 0 only finitely often executing the algorithm. If we did not define the
actions nct for all t ∈ T to be blockable, this execution would be missed.

In [15] the following improvements are suggested to make the algorithm “RW-safe”, i.e.,
correct with safe registers: on line 5, await turn = i ∨ flag[j] = false, and on line 8, only
write to turn if its value would be changed. Our model checking confirms that with these
alterations, starvation freedom is satisfied with both safe and regular registers.

In [45], it is claimed that Dekker’s algorithm without alterations is correct with non-
atomic registers. Instead of dealing with the spurious violations of liveness properties via
completeness criteria, they use the model checking tool UPPAAL [10] to compute the
maximum number of times a thread may be overtaken by another thread. They determine
that bound to be finite and conclude starvation freedom is satisfied. However, the deadlock



R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:15

freedom violation observed here and in [15] shows a thread never gaining access to the critical
section while only being overtaken once. Hence, finding a finite upper bound to the number
of overtakes is insufficient to establish deadlock freedom.

As can be observed in Table 1, both the version of Dekker’s algorithm presented in [3] and
the RW-safe version from [15] are starvation-free with atomic registers under JA⌣•

T

B , but only
deadlock-free under JA⌣•

S

B . In both variants, this is because one thread, say 0, can remain
stuck on line 5 trying to perform a read, while the other thread, in this case 1, repeatedly
executes the full algorithm without having to wait on thread 0, since flag[0] = false. In
the process, thread 1 writes to the variable that thread 0 is trying to read, meaning this
execution is just under JA⌣•

S

B .
This starvation freedom violation can be easily fixed for the presentation in [3], since

the variable that thread 0 is trying to read on line 5 is turn. If we alter the algorithm so
that a thread only writes to turn on line 8 if this would change the value, then starvation
freedom is satisfied. This change is part of the changes suggested in [15], yet that version of
the algorithm is not starvation-free under JA⌣•

S

B . This is due to the other change: on line 5,
thread 0 now also has to read flag[1], the value of which thread 1 does change every time it
executes the algorithm. This violation therefore cannot be fixed so easily.

6.4 Szymanski’s 3-bit linear wait algorithm

Algorithm 4 Szymanski’s 3-bit linear wait algorithm.

1: a[i]← true
2: for j from 0 to N−1 do await s[j] = false
3: w[i]← true
4: a[i]← false
5: while s[i] = false do
6: j ← 0
7: while j < N ∧ a[j] = false do j ← j + 1
8: if j = N then
9: s[i]← true

10: j ← 0
11: while j < N ∧ a[j] = false do j ← j + 1
12: if j < N then s[i]← false
13: else
14: w[i]← false
15: for j from 0 to N − 1 do await w[j] = false
16: if j < N then
17: j ← 0
18: while j < N ∧ (w[j] = true ∨ s[j] = false) do j ← j + 1
19: if j ̸= i ∧ j < N then
20: s[i]← true
21: w[i]← false
22: for j from 0 to i− 1 do await s[j] = false
23: critical section
24: s[i]← false

CONCUR 2025



17:16 Just Verification of Mutual Exclusion Algorithms

In [53], Szymanski proposes four mutual exclusion algorithms. Here, we discuss the first:
the 3-bit linear wait algorithm, which is claimed to be correct with non-atomic registers. See
Algorithm 4. Each thread has three Booleans, a, w, and s, all initially false. An execution
showing a mutual exclusion violation for safe, regular, and atomic registers with three threads
for the 3-bit linear wait algorithm is given in [50].

With two threads, we do still get a mutual exclusion violation with safe and regular
registers, given in detail in [50], but not with atomic registers. The violation specifically
relies on reading w[j] before s[j] on line 18, so that there can be new-old inversion on s[j],
while still obtaining the value of w[j] from before the other thread started writing to s[j].
We therefore considered the alternative, where s[j] is read before w[j] on line 18. With this
change and only two threads, the algorithm satisfies all expected properties.

The observation that Szymanski’s 3-bit linear wait algorithm violates mutual exclusion
with three threads is also made in [44]. They suggest a different way to make the algorithm
correct for two threads: instead of swapping the reads on line 18, they require a thread to
also read w[j] on line 22. We did not investigate this suggested change further, as we prefer
the solution that does not require an additional read.

6.5 From deadlock freedom to starvation freedom
In [48, Section 2.2.2], an algorithm is presented to turn any mutual exclusion algorithm that
satisfies mutual exclusion and deadlock freedom into one that satisfies starvation freedom as
well. It is due to Yoah Bar-David (1998) and first appears in [54]. We take the pseudocode
from [26], where it is proven that this algorithm works for safe, regular and atomic registers.

To confirm the correctness of the algorithm experimentally, we applied it to Lamport’s
1-bit algorithm [38], which (by design) does not satisfy starvation freedom at all, and to the
RW-safe version of Dekker’s algorithm [15], where starvation freedom only fails due to writes
interfering with reads. The results are given in the table with “DFtoSF”. We indeed find
that starvation freedom is now satisfied where previously only deadlock freedom was.

7 Related work

To the best of our knowledge, we are the first to do automatic verification of mutual exclusion
algorithms while incorporating both which operations can block each other and the effects of
overlapping write operations. The two elements have been considered separately previously.

In [14], starvation-freedom of Peterson’s algorithm with atomic registers is checked using
mCRL2 under the justness assumption. Two different concurrency relations are considered,
which are similar to our ⌣•

S and ⌣•
A.

There have been many formal verifications of mutual exclusion algorithms with atomic
registers [11, 43, 29]. Non-atomic registers have been covered less frequently, and their
verification is often restricted to single-writer registers [41, 15]. The safety properties of
mutual exclusion algorithms with MWMR non-atomic registers were verified using mCRL2
in [50]. In several papers by Nigro, including [44, 45], safety and liveness verification with
MWMR non-atomic registers has been done using UPPAAL.

A major drawback of our approach is that we only consider a small number of parallel
threads. There has been much work in the literature on parametrised verification, where the
correctness of an algorithm is established for an arbitrary number of threads [13, 22, 55, 12].
Where these techniques handle liveness, it is under forms of weak or strong fairness, not
justness. To our knowledge, these techniques have not yet been applied in the context



R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:17

of non-atomic registers. While several papers on parametrised verification, such as [2, 1],
mention dropping the atomicity assumption, this refers to evaluating existential and universal
conditions on all threads in a single atomic operation, rather than atomicity of the registers.

In [7, 31, 32] and other work by Hesselink, interactive theorem proving with the proof
assistant PVS is used to check safety and liveness properties (under fairness) of mutual
exclusion algorithms for an arbitrary number of threads with non-atomic registers. To our
knowledge, the case of writes overlapping each other has not been covered with this technique.

8 Conclusion

When it comes to analysing the correctness of algorithms, particularly when considering
non-atomic registers, behavioural reasoning is often insufficient. Mistakes can be subtle, and
may depend on edge-cases that are easily overlooked. Model checking is a solution here; we
formally model the threads executing the algorithm, as well as the registers through which
they communicate, and the entire state-space is searched for possibly violations of correctness
properties. In this work, we verify a large number of mutual exclusion algorithms using the
model checking toolset mCRL2. We expand on previous work by checking liveness properties
– deadlock freedom and starvation freedom – in addition to the main safety property. To
circumvent spurious violating paths in our models, we incorporate the completeness criterion
justness into our verifications. We checked algorithms under six different memory models,
where a memory model is a combination of a register model (safe, regular, or atomic) and a
model of which register access operations can block each other. The former dimension we
capture in the models themselves, by modelling the behaviour of the three types of register.
The latter, we capture in the concurrency relations employed as part of justness. We found a
number of interesting violations of correctness properties, and in some cases could suggest
improvements to algorithms to fix these violations. We find that there are several algorithms
that satisfy all three properties for four out of six memory models. For three threads, this
is accomplished by the fixed version of Aravind’s BLRU algorithm and Lamport’s 3-bit
algorithm. If we also consider algorithms for just two threads, then Anderson’s algorithm
and the fixed version of Szymanski’s 3-bit linear wait algorithm also meet this bar. We
also considered an algorithm to turn deadlock-free algorithms into starvation-free ones, and
experimentally confirmed that it indeed works for Dekker’s algorithm made RW-safe and
Lamport’s 1-bit algorithm.

References

1 Parosh Aziz Abdulla, Frédéric Haziza, and Lukáš Holík. Parameterized verification through
view abstraction. International Journal on Software Tools for Technology Transfer, 18(5):495–
516, 2016. doi:10.1007/s10009-015-0406-x.

2 Parosh Aziz Abdulla, Noomene Ben Henda, Giorgio Delzanno, and Ahmed Rezine. Handling
parameterized systems with non-atomic global conditions. In Francesco Logozzo, Doron A.
Peled, and Lenore D. Zuck, editors, Verification, Model Checking, and Abstract Interpretation
(VMCAI’08), volume 4905 of Lecture Notes in Computer Science, pages 22–36. Springer, 2008.
doi:10.1007/978-3-540-78163-9_7.

3 K. Alagarsamy. Some myths about famous mutual exclusion algorithms. SIGACT News,
34(3):94–103, 2003. doi:10.1145/945526.945527.

4 James H. Anderson. A fine-grained solution to the mutual exclusion problem. Acta Informatica,
30(3):249–265, 1993. doi:10.1007/BF01179373.

CONCUR 2025

https://doi.org/10.1007/s10009-015-0406-x
https://doi.org/10.1007/978-3-540-78163-9_7
https://doi.org/10.1145/945526.945527
https://doi.org/10.1007/BF01179373


17:18 Just Verification of Mutual Exclusion Algorithms

5 Krzysztof R. Apt and Ernst-Rüdiger Olderog. Proof rules and transformations dealing with
fairness. Science of Computer Programming, 3(1):65–100, 1983. doi:10.1016/0167-6423(83)
90004-7.

6 Alex A. Aravind. Yet another simple solution for the concurrent programming control
problem. IEEE Transactions on Parallel and Distributed Systems, 22(6):1056–1063, 2011.
doi:10.1109/TPDS.2010.172.

7 Alex A. Aravind and Wim H. Hesselink. Nonatomic dual bakery algorithm with bounded
tokens. Acta Informatica, 48(2):67–96, 2011. doi:10.1007/s00236-011-0132-0.

8 Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, and
Martin T. Vechev. Laws of order: expensive synchronization in concurrent algorithms cannot
be eliminated. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’11), pages
487–498. ACM, 2011. doi:10.1145/1926385.1926442.

9 Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations, and
advanced topics (2nd ed.). Wiley series on parallel and distributed computing. Wiley, 2004.

10 Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on uppaal. In
Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time
Systems, International School on Formal Methods for the Design of Computer, Communication
and Software Systems, (SFM-RT’04), volume 3185 of Lecture Notes in Computer Science,
pages 200–236. Springer, 2004. doi:10.1007/978-3-540-30080-9_7.

11 Mordechai Ben-Ari. Principles of the Spin model checker. Springer, 2008. doi:10.1007/
978-1-84628-770-1.

12 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith,
and Josef Widder. Decidability in parameterized verification. SIGACT News, 47(2):53–64,
2016. doi:10.1145/2951860.2951873.

13 Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model checking.
In E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided Verification (CAV’00),
volume 1855 of Lecture Notes in Computer Science, pages 403–418. Springer, 2000. doi:
10.1007/10722167_31.

14 Mark Bouwman, Bas Luttik, and Tim A. C. Willemse. Off-the-shelf automated analysis of
liveness properties for just paths. Acta Informatica, 57(3-5):551–590, 2020. doi:10.1007/
s00236-020-00371-w.

15 Peter A. Buhr, David Dice, and Wim H. Hesselink. Dekker’s mutual exclusion algorithm
made RW-safe. Concurrency and Computation: Practice and Experience, 28(1):144–165, 2016.
doi:10.1002/cpe.3659.

16 Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.
de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2 toolset for
analysing concurrent systems – improvements in expressivity and usability. In Tomás Vojnar
and Lijun Zhang, editors, Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’19), held as part of the European Joint Conferences on Theory and Practice of
Software (ETAPS’19), Part II, volume 11428 of Lecture Notes in Computer Science, pages
21–39. Springer, 2019. doi:10.1007/978-3-030-17465-1_2.

17 James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion.
Information and Computation, 107(2):171–184, 1993. doi:10.1006/inco.1993.1065.

18 Flavio Corradini, Maria Rita Di Berardini, and Walter Vogler. Time and fairness in a process
algebra with non-blocking reading. In Mogens Nielsen, Antonín Kucera, Peter Bro Miltersen,
Catuscia Palamidessi, Petr Tuma, and Frank D. Valencia, editors, SOFSEM’09: Theory and
Practice of Computer Science, 35th Conference on Current Trends in Theory and Practice
of Computer Science, volume 5404 of Lecture Notes in Computer Science, pages 193–204.
Springer, 2009. doi:10.1007/978-3-540-95891-8_20.

https://doi.org/10.1016/0167-6423(83)90004-7
https://doi.org/10.1016/0167-6423(83)90004-7
https://doi.org/10.1109/TPDS.2010.172
https://doi.org/10.1007/s00236-011-0132-0
https://doi.org/10.1145/1926385.1926442
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-1-84628-770-1
https://doi.org/10.1007/978-1-84628-770-1
https://doi.org/10.1145/2951860.2951873
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1002/cpe.3659
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1006/inco.1993.1065
https://doi.org/10.1007/978-3-540-95891-8_20


R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:19

19 Edsger W Dijkstra. Over de sequentialiteit van procesbeschrijvingen (ewd-35). Center for
American History, University of Texas at Austin, 1962. URL: http://www.cs.utexas.edu/
users/EWD/ewd00xx/EWD35.PDF.

20 Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965. doi:10.1145/365559.365617.

21 Victor Dyseryn, Rob J. van Glabbeek, and Peter Höfner. Analysing mutual exclusion using
process algebra with signals. In Kirstin Peters and Simone Tini, editors, Proceedings Combined
24th International Workshop on Expressiveness in Concurrency and 14th Workshop on
Structural Operational Semantics (EXPRESS/SOS’17), volume 255 of Electronic Proceedings
in Theoretical Computer Science, pages 18–34, 2017. doi:10.4204/EPTCS.255.2.

22 Dana Fisman and Amir Pnueli. Beyond regular model checking. In Ramesh Hariharan,
Madhavan Mukund, and V. Vinay, editors, Foundations of Software Technology and Theoretical
Computer Science (FST&TCS’01), volume 2245 of Lecture Notes in Computer Science, pages
156–170. Springer, 2001. doi:10.1007/3-540-45294-X_14.

23 Rob J. van Glabbeek. Is speed-independent mutual exclusion implementable? (Invited talk). In
Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory
(CONCUR’18), volume 118 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.CONCUR.2018.3.

24 Rob J. van Glabbeek. Justness - A completeness criterion for capturing liveness properties
(extended abstract). In Mikolaj Bojanczyk and Alex Simpson, editors, Foundations of Software
Science and Computation Structures (FOSSACS’19), held as part of the European Joint
Conferences on Theory and Practice of Software (ETAPS’19), volume 11425 of Lecture Notes
in Computer Science, pages 505–522. Springer, 2019. doi:10.1007/978-3-030-17127-8_29.

25 Rob J. van Glabbeek. Modelling mutual exclusion in a process algebra with time-outs.
Information and Computation, 294:105079, 2023. doi:10.1016/j.ic.2023.105079.

26 Rob J. van Glabbeek and Daniele Gorla. On the notions of bounded bypass, and how to make
any deadlock-free mutex protocol satisfy one of them, 2025. To appear.

27 Rob J. van Glabbeek and Peter Höfner. Progress, justness, and fairness. ACM Computing
Surveys, 52(4), 2019. doi:10.1145/3329125.

28 Rob J. van Glabbeek, Bas Luttik, and Myrthe S.C. Spronck. Just verification of mutual
exclusion algorithms, 2025. Full version of the present paper. doi:10.48550/arXiv.2507.
13198.

29 Jan Friso Groote and Jeroen J. A. Keiren. Tutorial: Designing distributed software in mCRL2.
In Kirstin Peters and Tim A. C. Willemse, editors, Formal Techniques for Distributed Objects,
Components, and Systems - 41st IFIP WG 6.1 International Conference, FORTE 2021, Held
as Part of the 16th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings, volume 12719, pages 226–243,
Cham, 2021. Springer. doi:10.1007/978-3-030-78089-0_15.

30 Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of Communicating
Systems. MIT Press, 2014. doi:10.7551/mitpress/9946.001.0001.

31 Wim H. Hesselink. Mechanical verification of lamport’s bakery algorithm. Science of Computer
Programming, 78(9):1622–1638, 2013. doi:10.1016/j.scico.2013.03.003.

32 Wim H. Hesselink. Mutual exclusion by four shared bits with not more than quadratic
complexity. Science of Computer Programming, 102:57–75, 2015. doi:10.1016/j.scico.2015.
01.001.

33 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, 1985.
34 Joep L. W. Kessels. Arbitration without common modifiable variables. Acta Informatica,

17:135–141, 1982. doi:10.1007/BF00288966.
35 Donald E. Knuth. Additional comments on a problem in concurrent programming control.

Communications of the ACM, 9(5):321–322, 1966. doi:10.1145/355592.365595.
36 Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Communications

of the ACM, 17(8):453–455, 1974. doi:10.1145/361082.361093.

CONCUR 2025

http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
https://doi.org/10.1145/365559.365617
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1007/3-540-45294-X_14
https://doi.org/10.4230/LIPIcs.CONCUR.2018.3
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1016/j.ic.2023.105079
https://doi.org/10.1145/3329125
https://doi.org/10.48550/arXiv.2507.13198
https://doi.org/10.48550/arXiv.2507.13198
https://doi.org/10.1007/978-3-030-78089-0_15
https://doi.org/10.7551/mitpress/9946.001.0001
https://doi.org/10.1016/j.scico.2013.03.003
https://doi.org/10.1016/j.scico.2015.01.001
https://doi.org/10.1016/j.scico.2015.01.001
https://doi.org/10.1007/BF00288966
https://doi.org/10.1145/355592.365595
https://doi.org/10.1145/361082.361093


17:20 Just Verification of Mutual Exclusion Algorithms

37 Leslie Lamport. The mutual exclusion problem: Part I—a theory of interprocess communication.
J. ACM, 33(2):313–326, 1986. doi:10.1145/5383.5384.

38 Leslie Lamport. The mutual exclusion problem: Part II—statement and solutions. J. ACM,
33(2):327–348, 1986. doi:10.1145/5383.5385.

39 Leslie Lamport. On interprocess communication. Part I: basic formalism. Distributed Comput.,
1(2):77–85, 1986. doi:10.1007/BF01786227.

40 Leslie Lamport. On interprocess communication. Part II: algorithms. Distributed Comput.,
1(2):86–101, 1986. doi:10.1007/BF01786228.

41 Leslie Lamport. The TLA+ Hyperbook, 2015. chapter 7.8.4: The Real Bakery Algorithm.
URL: http://lamport.azurewebsites.net/tla/hyperbook.html.

42 Daniel Lehmann, Amir Pnueli, and Jonathan Stavi. Impartiality, justice and fairness: The
ethics of concurrent termination. In Shimon Even and Oded Kariv, editors, Automata,
Languages and Programming (ICALP’81), volume 115 of Lecture Notes in Computer Science,
pages 264–277. Springer, 1981. doi:10.1007/3-540-10843-2_22.

43 Radu Mateescu and Wendelin Serwe. Model checking and performance evaluation with CADP
illustrated on shared-memory mutual exclusion protocols. Science of Computer Programming,
78(7):843–861, 2013. Special section on Formal Methods for Industrial Critical Systems
(FMICS 2009 + FMICS 2010) & Special section on Object-Oriented Programming and
Systems (OOPS 2009), a special track at the 24th ACM Symposium on Applied Computing.
doi:10.1016/j.scico.2012.01.003.

44 Libero Nigro. Verifying mutual exclusion algorithms with non-atomic registers. Algorithms,
17(12), 2024. doi:10.3390/a17120536.

45 Libero Nigro, Franco Cicirelli, and Francesco Pupo. Modeling and analysis of Dekker-based
mutual exclusion algorithms. Computers, 13(6):133, 2024. doi:10.3390/computers13060133.

46 Gary L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters,
12(3):115–116, 1981. doi:10.1016/0020-0190(81)90106-X.

47 Gary L. Peterson. A new solution to lamport’s concurrent programming problem using small
shared variables. ACM Transactions on Programming Languages and Systems (TOPLAS),
5(1):56–65, 1983. doi:10.1145/357195.357199.

48 Michel Raynal. Concurrent Programming - Algorithms, Principles, and Foundations. Springer,
2013. doi:10.1007/978-3-642-32027-9.

49 Cheng Shao, Jennifer L. Welch, Evelyn Pierce, and Hyunyoung Lee. Multiwriter consistency
conditions for shared memory registers. SIAM Journal on Computing, 40(1):28–62, 2011.
doi:10.1137/07071158X.

50 Myrthe S. C. Spronck and Bas Luttik. Process-algebraic models of multi-writer multi-
reader non-atomic registers. In Guillermo A. Pérez and Jean-François Raskin, editors, 34th
International Conference on Concurrency Theory (CONCUR’23), volume 279 of LIPIcs.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. Full version available at https:
//arxiv.org/abs/2307.05143. doi:10.4230/LIPIcs.CONCUR.2023.5.

51 Myrthe S. C. Spronck, Bas Luttik, and Tim A. C. Willemse. Progress, justness and fairness
in modal µ-calculus formulae. In Rupak Majumdar and Alexandra Silva, editors, 35th
International Conference on Concurrency Theory (CONCUR’24), volume 311 of LIPIcs. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.CONCUR.2024.38.

52 Boleslaw K. Szymanski. A simple solution to lamport’s concurrent programming problem
with linear wait. In Jacques Lenfant, editor, Proceedings of the 2nd international conference
on Supercomputing (ICS’88), pages 621–626. ACM, 1988. doi:10.1145/55364.55425.

53 Boleslaw K. Szymanski. Mutual exclusion revisited. In Joshua Maor and Abraham Peled,
editors, Next Decade in Information Technology: Proceedings of the 5th Jerusalem Conference
on Information Technology, pages 110–117. IEEE Computer Society, 1990. doi:10.1109/JCIT.
1990.128275.

54 Gadi Taubenfeld. Synchronization algorithms and concurrent programming. Pearson Education,
2006.

https://doi.org/10.1145/5383.5384
https://doi.org/10.1145/5383.5385
https://doi.org/10.1007/BF01786227
https://doi.org/10.1007/BF01786228
http://lamport.azurewebsites.net/tla/hyperbook.html
https://doi.org/10.1007/3-540-10843-2_22
https://doi.org/10.1016/j.scico.2012.01.003
https://doi.org/10.3390/a17120536
https://doi.org/10.3390/computers13060133
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1145/357195.357199
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1137/07071158X
https://arxiv.org/abs/2307.05143
https://arxiv.org/abs/2307.05143
https://doi.org/10.4230/LIPIcs.CONCUR.2023.5
https://doi.org/10.4230/LIPIcs.CONCUR.2024.38
https://doi.org/10.1145/55364.55425
https://doi.org/10.1109/JCIT.1990.128275
https://doi.org/10.1109/JCIT.1990.128275


R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:21

55 Lenore D. Zuck and Amir Pnueli. Model checking and abstraction to the aid of parameterized
systems (a survey). Computer Languages, Systems & Structures, 30(3):139–169, 2004. doi:
10.1016/j.cl.2004.02.006.

A Register models

In this appendix, we expand on the material of Section 3, by giving the formal process-
algebraic models of the registers. First, we present the general structure of such a model
and explain how to translate it to an LTS. We then give the three models, as well as the
definitions of all the access and update functions. We leave the status object abstract: it is
not necessary to define the data structure itself, as long as it is clear what information can
be retrieved from it.

A.1 Structure and functions
Recall that we use T for the thread identifiers, R for register identifiers, and that for every
r ∈ R, the set Dr contains all values that r may hold. Additionally, we use a status object as
the finite memory of a register, the set of possible statuses being S.

We define the following structure, shared by all three register models. Let γ∈{saf , reg, ato},
then each model looks as follows, for some number n:

Regγ(r : R, s : S) =
∑
t∈T

∑
d∈Dr

∑
0≤j<n

(cj(s, t, d)→ aj(t, d) · Regγ(r, uj(s, t, d))) (1)

This represents a register with id r, that tracks its status with s. The process first sums over
t ∈ T and d ∈ Dr, allowing interaction by all threads and with all possible data parameters.
Furthermore, it has n summands, each of the form cj(s, t, d)→ aj(t, d) · Regγ(r, uj(s, t, d))
where cj(s, t, d) is a Boolean condition, aj(t, d) is an action, and uj is an update function
that takes s, t and d and returns the updated status object s′ ∈ S. Such a process equation
gives rise to an LTS. Given a predefined initial state init ∈ S, the LTS of Regγ(r, init) is:

(S,
⋃

0≤j<n

{aj(t, d) | t∈T, d∈Dr}, init,
⋃

0≤j<n

{(s, aj(t, d), uj(s, t, d)) | t∈T, d∈Dr∧cj(s, t, d)}) (2)

We now describe the initial state and the update functions. As stated above, we do
not wish the go into the implementation details of the status object. Instead, we define a
collection of access functions which retrieve information from the current state. The initial
state, as well as the effects of the update functions, are then defined by how they alter the
results of the access functions. We use the following access functions, which are local to any
given register r:

stor : S→ Dr, the value that is currently stored in the register.
rds : S→ 2T, the set of thread id’s of threads that have invoked a read operation on this
register that has not yet had its response.
wrts : S→ 2T, the set of thread id’s of threads that have invoked a write operation on
this register that has not yet had its response.
pend : S→ 2T, the set of thread id’s of threads that have invoked an operation that has
not been ordered yet. Only used by the regular and atomic models.
rec : S× T→ Dr, a mapping that allows us to record a single data value per thread, for
instance used to remember what value was passed with a start write action.
The predicate ovrl on S× T, which stores whether an ongoing read or write operation of
a thread has encountered an overlapping write. Only used by the safe model.

CONCUR 2025

https://doi.org/10.1016/j.cl.2004.02.006
https://doi.org/10.1016/j.cl.2004.02.006


17:22 Just Verification of Mutual Exclusion Algorithms

posv : S× T → 2Dr , a mapping that stores a set of values per thread, representing the
possible return values of an ongoing read by a thread. Only used by the regular model.

The initial state init is defined as follows, for all t ∈ T and a pre-defined initial value dinit :

stor(init) = dinit wrts(init) = ∅ rec(init, t) = dinit posv(init, t) = ∅
rds(init) = ∅ pend(init) = ∅ ovrl(init, t) = false

The initial value dinit of a register depends on the modelled algorithm.
We now define the update functions in a similar way to the initial state: by showing how

the return values of the access functions are altered by the update function. Each update
function corresponds to an action and is applied when that action occurs; if the action’s name
is a, the update function is called ua. Not every update function uses the data parameter
that is passed to it according to (1); in these cases we only give the thread id and status
parameters. If an access function is not mentioned, then its return value after the update is
the same as before. Given an arbitrary state s ∈ S, thread id t ∈ T and data value d ∈ Dr:
If s′ = usr(s, t), then:

rds(s′) = rds(s) ∪ {t} ovrl(s′, t) = (wrts(s) > 0)
pend(s′) = pend(s) ∪ {t} posv(s′, t) = {stor(s)} ∪ {d′ | ∃t′∈wrts(s).rec(s, t′) = d′}

If s′ = ufr(s, t), then:

rds(s′) = rds(s) \ {t}

If s′ = usw(s, t, d), then for all t′ ̸= t:

wrts(s′) = wrts(s) ∪ {t} rec(s′, t) = d ovrl(s′, t) = (wrts(s) > 0)
pend(s′) = pend(s) ∪ {t} posv(s′, t′) = posv(s, t′) ∪ {d} ovrl(s′, t′) = true

If s′ = ufw(s, t, d), then:

stor(s′) = d wrts(s′) = wrts(s) \ {t}

If s′ = uor(s, t), then:

pend(s′) = pend(s) \ {t} rec(s′, t) = stor(s)

If s′ = uow(s, t, d), then:

stor(s′) = d pend(s′) = pend(s) \ {t}

These formal definitions correspond to the intuitive descriptions given above. Of note is
that ovrl(s′, t′) is set to true whenever a thread t ̸= t′ starts a write, even if t′ is not actively
reading or writing. This is done for simplicity of the definition: when t′ starts reading or
writing, it will reset its own ovrl to the correct value, depending on whether there is an
overlapping write active at that point. Something similar is done with posv: when a write
is started, its value gets added to the posv sets of every other thread, even if they are not
actively reading. When a thread starts reading, it sets its own posv correctly.

We now give the three register models.

A.2 Safe MWMR registers
See Figure 1 for the process equation representing our safe register model.

The correspondence between the process and the four rules given for MWMR safe registers
in Subsection 3.1 is rather direct: the first two summands allow a thread that is not currently
reading or writing to begin a read or a write, and the remaining four each represent one
of the four rules, in order. Note that, in the case of a finish write without overlap, we use
rec to retrieve which value this thread intended to write so that the register state can be
appropriately updated.



R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:23

Regsaf (r : R, s : S) =

∑
t∈T

∑
d∈Dr



(t /∈ (rds(s) ∪ wrts(s)))→ srt,r · Regsaf (r, usr(s, t))
+ (t /∈ (rds(s) ∪ wrts(s)))→ swt,r(d) · Regsaf (r, usw(s, t, d))
+ (t ∈ rds(s) ∧ ¬ovrl(s, t))→ frt,r(stor(s)) · Regsaf (r, ufr(s, t))
+ (t ∈ rds(s) ∧ ovrl(s, t))→ frt,r(d) · Regsaf (r, ufr(s, t))
+ (t ∈ wrts(s) ∧ ¬ovrl(s, t))→ fwt,r · Regsaf (r, ufw(s, t, rec(s, t)))
+ (t ∈ wrts(s) ∧ ovrl(s, t))→ fwt,r · Regsaf (r, ufw(s, t, d))


Figure 1 Safe register process.

A.3 Regular MWMR registers
See Figure 2 for the process equation representing our regular register model. Recall that
regular registers use the order write action to generate a global ordering on all write operations
on a register on the fly.

Regreg(r : R, s : S) =

∑
t∈T

∑
d∈Dr


(t /∈ (rds(s) ∪ wrts(s)))→ srt,r · Regreg(r, usr(s, t))

+ (t /∈ (rds(s) ∪ wrts(s)))→ swt,r(d) · Regreg(r, usw(s, t, d))
+ (t ∈ rds(s) ∧ d ∈ posv(s, t))→ frt,r(d) · Regreg(r, ufr(s, t))
+ (t ∈ wrts(s) ∧ t ∈ pend(s))→ owt,r · Regreg(r, uow(s, t, rec(s, t)))
+ (t ∈ wrts(s) ∧ t /∈ pend(s))→ fwt,r · Regreg(r, ufw(s, t, stor(s)))



Figure 2 Regular register process.

Similar to the safe register process, the first two summands are merely allowing an idle
thread to begin a read or write operation. The third summand corresponds to finishing a
read by returning a value that is in the set of possible values to be returned for this read.
Recall that, by the definition of posv, this set is constructed as follows: when a read starts,
the set is initialised to the current stored value of the register and the intended write value
of every active write. Subsequently, whenever a write occurs, its intended value is added
to the set. This way, at the finish read, the set will contain exactly those values that the
read could return. The fourth summand allows the occurrence of the ordering action; at this
time the intended value of the write, which was temporary stored in the access function rec,
is logged as the stored value of the register. The final summand describes the ending of a
write operation. The ufw update function will set the stored value to whatever data value
is passed. In this case, the stored value should not change at the finish write, since it was
already changed at the order write. Hence, we simply pass stor(s). Note that we use pend
to determine if the order write action still has to occur.

A.4 Atomic MWMR registers
See Figure 3 for our model of MWMR atomic registers. Recall that, in addition to the order
write action, the atomic register model also uses the order read action. This way, it generates
an ordering on all operations on a register.

CONCUR 2025



17:24 Just Verification of Mutual Exclusion Algorithms

Regato(r : R, s : S) =

∑
t∈T

∑
d∈Dr



(t /∈ (rds(s) ∪ wrts(s)))→ srt,r · Regato(r, usr(s, t))
+ (t /∈ (rds(s) ∪ wrts(s)))→ swt,r(d) · Regato(r, usw(s, t, d))
+ (t ∈ rds(s) ∧ t ∈ pend(s))→ ort,r · Regato(r, uor(s, t))
+ (t ∈ wrts(s) ∧ t ∈ pend(s))→ owt,r · Regato(r, uow(s, t, rec(s, t)))
+ (t ∈ rds(s) ∧ t /∈ pend(s))→ frt,r(rec(s, t)) · Regato(r, ufr(s, t))
+ (t ∈ wrts(s) ∧ t /∈ pend(s))→ fwt,r · Regato(r, ufw(s, t, stor(s)))


Figure 3 Atomic register process.

Summands one, three and five are the invocation, ordering and response of a read
operation respectively. Similarly, summands two, four and six are the invocation, ordering
and response of a write operation. We use pend to determine whether an operation’s order
action still has to occur. When a read is ordered, we save the current stored value of the
register in rec, so that this value can be returned when the read ends. For writes, we already
update stor when the write is ordered, meaning that when the write ends we do not want to
change stor further and just pass the current value back.

B Thread consistency proof

In the [28, Appendix C], we provide a detailed proof of Lemma 6. Here, we give a less
detailed version.

▶ Lemma 6. Let M = (S, Act, init, Trans, thr , reg) be a thread-register model. Then the
LTS (S, Act, init, Trans) is thread consistent with respect to the mapping thr .

Proof. Consider a thread-register model M = (S, Act, init, Trans, thr , reg) and a specific
state s ∈ S. Let a be an arbitrary action enabled in s and assume there exists a transition
s

b−→ s′ to some s′ ∈ S such that thr(a) ̸= thr(b). We must prove that a is enabled in s′. Let
thr(a) = t and reg(a) = r. Note that a is either a thread local action, or a register (local or
interface) action. We consider both cases.

If a is a thread local action, then it is enabled whenever a is enabled in the LTS belonging
to t. Since b is an action by a different thread, the local state of the LTS of t is not
affected by b, and so is the same in both s and s′. Thus, a is still enabled in s′.
If a is not a thread local action, then r ̸= ⊥ and a involves the register r. Note that if
reg(b) ̸= r, then b can affect neither the local state of the LTS of t nor the local state
of the LTS of r, so a is guaranteed to still be enabled in s′. We proceed under the
assumption that reg(b) = r. It is still the case that b cannot affect the local state of the
LTS associated with t, so this cannot prevent a from being enabled in s′. It therefore
remains to prove that a is enabled in the local state of the LTS associated with r in s′.
Let sr be the local state of the LTS associated with r in s, and s′

r be its equivalent in s′.
We proceed by considering which action a is.

If a is srt,r , swt,r(d) for some d ∈ Dr, fwt,r , ort,r or owt,r , then whether it is enabled in
state s′ is only dependent on t’s presence in a subset of rds(s′

r), wrts(s′
r) and pend(s′

r).
Adding t to or removing t from these sets can only be done by update functions that
belong to actions c with thr(c) = t. Since thr(b) ̸= t, the inclusion of t in these sets is
unaltered between sr and s′

r. Hence, since a is enabled in sr, it is also enabled in s′
r.



R. van Glabbeek, B. Luttik, and M. S. C. Spronck 17:25

It remains to consider the case that a is frt,r(d) for some d ∈ Dr. We must show that,
even if b is an operation on the register r, t can still read the value from r in s′ that it
could read in s. We do a case distinction on the type of register r.
∗ If r is a safe register, then d can be read in s because ovrl(sr, t) or stor(sr) = d. In

the former case, regardless of which action b is, it will still be the case that ovrl(s′
r, t)

holds, so t can still return d. In the latter case, while it is possible that b changes
the stored value of r if b = fwthr(b),r , this means that thr(b) is an active writer while
t is an active reader, so there is overlap. Thus, stor(s′

r) = d or ovrl(s′
r, t) is true.

Either way, t can still return d in s′.
∗ If r is a regular register, then d is in posv(sr, t). The set of possible values only

grows as long as a read is active; it only resets when a new read starts. Since b

cannot be a start read by t, d is in posv(s′
r, t), and so t can return d in s′.

∗ If r is atomic, then when the finish read action a occurs, it simply returns the
value that was previously recorded when the read was ordered. Since thr(b) ̸= t,
rec(sr, t) = rec(s′

r, t). Therefore t can still return d in s′.
In each case, we have shown that a is enabled in s′. ◀

CONCUR 2025


	1 Introduction
	2 Preliminaries
	3 Register models
	3.1 Safe MWMR registers
	3.2 Regular MWMR registers
	3.3 Atomic MWMR registers

	4 Thread-register models
	5 Justness for thread-register models
	6 Verification
	6.1 Impossibility of liveness with mathbin{concsym}_I
	6.2 Aravind's BLRU algorithm
	6.3 Dekker's algorithm
	6.4 Szymanski's 3-bit linear wait algorithm
	6.5 From deadlock freedom to starvation freedom

	7 Related work
	8 Conclusion
	A Register models
	A.1 Structure and functions
	A.2 Safe MWMR registers
	A.3 Regular MWMR registers
	A.4 Atomic MWMR registers

	B Thread consistency proof

