A State-Based O(mlog n) Partitioning Algorithm
for Branching Bisimilarity

Jan Friso Groote =
Department of Computer Science, Eindhoven University of Technology, The Netherlands

David N. Jansen &

Key Laboratory of System Software, Chinese Academy of Sciences, Beijing, China

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

——— Abstract

We present a new O(mlogn) algorithm to calculate branching bisimulation equivalence, which
is the finest commonly used behavioural equivalence on labelled transition systems that takes
the internal action 7 into account. This algorithm combines the simpler data structure of an
earlier algorithm for Kripke structures (without action labels) with the memory-efficiency of a later
algorithm partitioning sets of labelled transitions. It employs a particularly elegant four-way split
of blocks of states, which refines a block under two splitters and isolates all new bottom states,
simultaneously. Benchmark results show that this new algorithm outperforms the best known
algorithm for branching bisimulation both in time and space.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms;
Software and its engineering — Formal software verification

Keywords and phrases Algorithm, Branching bisimulation, Partition refinement of states
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2025.18

Funding David N. Jansen: This work is supported by ISCAS Basic Research ISCAS-JCZD-202302
and is part of the European Union’s Horizon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant no. 101008233.

1 Introduction

Branching bisimulation relates behaviourally equivalent states in labelled transition systems
that represent behaviour [4]. It takes internal or invisible steps 7 into account and preserves
the branching structure of processes. It is slightly finer than weak bisimulation [11].

Almost immediately after the discovery of branching bisimulation a decently efficient
O(mn)-algorithm (where m is the number of transitions and n is the number of states) became
available [7]. This was a great asset not only because it allowed to decide quickly whether
states were branching bisimilar, but also because it could be used as an efficient preprocessing
step for many other behaviour equivalences that take internal steps into account.

A major improvement was the development of an O(mlogn) algorithm [8, 5], working on
Kripke structures, which can be regarded as labelled transition systems where all transitions
are labelled with 7, as, at the time, it was not clear how to efficiently deal with multiple
transition labels. This algorithm could be applied to arbitrary labelled transition systems
by translating them to Kripke structures where one extra state was introduced for every
transition in the original transition system [1]. As the number of transitions is generally
much larger than the number of states, this is costly, both in time and space.

Following [14], where it was proposed to use equivalence classes of transitions to avoid
redoing work that has already been done, a new algorithm was developed that works directly
on labelled transition systems [10]. By avoiding the costly translation to Kripke structures,
this algorithm was 40% faster than the best algorithm known until then.

? Jan Friso Groote a.nd David N. Ja.nsen;

37 icensed under Creative Commons License CC-BY 4.0
36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 18; pp. 18:1-18:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:J.F.Groote@tue.nl
https://orcid.org/0000-0003-2196-6587
mailto:dnjansen@ios.ac.cn
https://orcid.org/0000-0002-6636-3301
https://doi.org/10.4230/LIPIcs.CONCUR.2025.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

18:2

A State-Based O(mlog n) Partitioning Algorithm for Branching Bisimilarity

However, the use of equivalence classes of transitions feels unpleasant, given that there
are in general far more transitions than states. So, the purpose of this paper is to design an
algorithm that avoids partitioning transitions. The essential step that enables us to do so is
the efficient grouping of transitions with the same transition label. Instead of the complex
trickery used in previous algorithms, we employ a very natural and elegant four-way split of
blocks, which is an extension of the three-way split used in the classical algorithm for strong
bisimulation on Kripke structures by Paige and Tarjan [12, 2]. The fourth block collects the
infamous “new bottom states”, that invalidate the stability invariant, allowing us to isolate
the work to repair this invariant, avoiding much of the complexity of earlier algorithms.

The result is a new algorithm that is not only simpler and more elegant, but also faster
and more memory-efficient than all its predecessors, although it has the same O(mlogn)
time complexity — here we assume that the number of action labels is smaller than the
number of transitions. Especially on large transition systems with many transitions a 40%
reduction in memory usage and a fourfold reduction in time appears to be possible.

2 Branching Bisimilarity
In this section we define labelled transition systems and branching bisimilarity.

» Definition 2.1 (Labelled transition system). A labelled transition system (LTS) is a triple
A = (S, Act,—) where

1. S is a finite set of states. The number of states is denoted by n.

2. Act is a finite set of actions including the internal action 7.

3. > C S x Act x S is a transition relation. The number of transitions m is always finite.
It is common to write s = s’ for (s,a,s’) € —. We write s — s’ € T instead of (s,a,s’) € T
for T C —. We also write s — S’ for the set of transitions {s = s’ | s/ € S’}, and likewise
S; % Sy for the set {s1 = 55 | 51 € S; and s9 € So}. We refer to all actions except 7 as the
visible actions. The transitions labelled with 7 are called invisible. If s = s’, we say that
from s, the state s, the action a, and the transition s % s" are reachable. We write in(s) for
the incoming transitions of state s and out(s) for the outgoing transitions of s. Likewise, we
write in(B) and out(B) for all incoming and outgoing transitions of a set B C S.

» Definition 2.2 (Branching bisimilarity). Let A = (S, Act, —) be a labelled transition system.
We call a relation R C S x S a branching bisimulation relation iff it is symmetric and for all
s,t € S such that s R ¢ and all transitions s — s’ we have:

1. a=7and s’ Rt, or

2. there is a sequence t — --- — t' % " such that s Rt and s’ R t".

Two states s and t are branching bisimilar, denoted by s < t, iff there is a branching
bisimulation relation R such that s R t.

If we restrict the definition of branching bisimilarity such that states are only related if they
both have, or both have not an infinite sequence of 7’s through branching bisimilar states,
we obtain the notion of divergence-preserving branching bisimulation. This notion is useful
as it — contrary to branching bisimilarity — preserves liveness properties. The algorithm that
is presented below can be used for divergence-preserving branching bisimilarity with only a
minor modification.

Given an equivalence relation R, a transition s — t is called R-inert iff a = 7 and s R t.
Ift S5t 5o Sty Dty =t such that t Rt; for 1 < i < n, we say that the state t,,
the action a, and the transition t,, — t' are R-inertly reachable from t. Note that we can use
these notions in combination with (divergence-preserving) branching bisimilarity as they are
all equivalence relations.

J. F. Groote and D. N. Jansen

3 The Main Algorithm

In this section we give a description of the main part of the algorithm to determine the
branching bisimulation equivalence classes of a given LTS (5, Act, —).

Removal of Inert Loops. As the first step of the algorithm the LTS is preprocessed to
contract each 7-strongly connected component (SCC) into a single state. This step is valid
since all states in a 7-SCC are branching bisimilar. For divergence-preserving branching
bisimilarity, the 7-self-loops are replaced by a special non-internal action. In both cases,
T-self-loops can be suppressed and therefore, from this point onwards, as the algorithm does
not change the structure of the LTS further, all 7-paths in the LTS are finite, formalised by
the following lemma.

» Lemma 3.1 (No 7-loops). After contracting 7-SCCs into single states, there is no 7-loop
in the LTS, i.e., for every sequence s; — sy — --- — s, it holds that s; # s; for all
1<i<j<n.

In every set of states B C S, the states without 7-transition to another state in B are
called bottom states. The set of bottom states in B is denoted by Bottom(B). Lemma 3.1
implies the following lemma:

» Lemma 3.2. For every nonempty set of states B C .S, we have
1. Bottom(B) # 0.

2. For every state s € B, there is a path of 7-transitions within B leading to a bottom state.

Partition Refinement. The algorithm is a partition refinement algorithm of sets of states
where two partitions of states are iteratively refined.

» Definition 3.3 (Partition). For a set X a partition P of X is a disjoint cover of X, i.e.,
P={B; C X |B; #0,1 <i<k}suchthat BNB; =0 foralll <i< j<kand
X = U1§i§k B;.

A partition Q is a refinement of P, and P is coarser than Q, iff for every B’ € Q there is
some B € P such that B’ C B.

A partition induces an equivalence relation in the following way: s =p t iff there is some
B € P containing both s and ¢t. We call a transition P-inert iff it is =p-inert, i.e., exactly if
it is a transition s — ¢ with s,t € P for some P € P.

Our algorithm uses two partitions B and C of states. The main partition B contains
blocks, typically denoted with the letter B, recording the current knowledge about branching
bisimilarity. Two states are in different blocks iff the algorithm has found a proof that they
are not branching bisimilar, formulated contrapositionally by the following invariant:

» Invariant 3.4 (B preserves branching bisimilarity). For all states s,t € S, if s €t, then
there is some block B € B such that s,t € B.

Stability. We desire to make the partition B “stable” in the sense that blocks of B cannot
be split further as all states in each block are branching bisimilar. This notion of stability is
defined as follows. Consider two sets of states B, B’ C S. We say that two states s,t € B
are stable under B’ iff if s & s’ for any s’ € B’ then

either B= B’ and a = T,

or there are t1,...,t, € Bandt € B’ such that t =t1, k> 1land t; — -+ 5t — t'.

18:3

CONCUR 2025

18:4

A State-Based O(mlog n) Partitioning Algorithm for Branching Bisimilarity

A partition B of S is stable under a set of states B’ C S iff for all B € B and s,t € B it holds
that s and ¢ are stable under B’. If B is stable under every B € B we say that B is stable.

An important property is that if a partition B is stable, then the induced equivalence
relation =g is a branching bisimulation.

Constellations. In order to remember which instabilities have already been resolved we
introduce a second partition C of the set of states S of which B is a refinement. We call the
blocks in C constellations and we typically denote constellations with the letter C'.

The partition C records the current knowledge about stability by guaranteeing that B
is always stable under each constellation C' € C. Using Lemma 3.2 this follows from the
following invariant.

» Invariant 3.5 (B is stable under the constellations in C). If there is a transition s % ¢ with
t € C for some constellation C € C and s € B for some block B € B, and the transition is
not C-inert (i.e., @ # 7 or s ¢ C), then every bottom state s’ € B has a transition in s’ = C.

The goal of the algorithm is to let the partition of constellations C and the partition of
blocks B coincide. If B = C, then B is stable, and, using Invariants 3.4 and 3.5, the partition
B exactly characterises branching bisimulation. As this is the core purpose of our algorithm,
we formulate it as a theorem, although the proof is straightforward.

» Theorem 3.6. If B =C, then =5 = <.

The main idea of the algorithm is to refine C until it coincides with B. After refining C,
one may have to refine B to reestablish Invariant 3.5. For this to work, we use two essential
subroutines, namely four-way-splitB (Algorithm 2) and stabiliseB (Algorithm 3). We first
give a summary of what these functions do, after which we explain the overall algorithm. In
Sections 4 and 5 their underlying algorithms are explained.

The function four-way-split3(B, SmallSp, LargeSp) splits a block B in B in at most four
sub-blocks based on two disjoint sets of transitions SmallSp and LargeSp that start in B.
We require that at least one of these two sets is non-empty. If both are non-empty, every
state in B can B-inertly reach a transition in at least one of the two. The four sub-blocks
are the following:

AvoidLrg: If LargeSp # @, AvoidLrg contains the states in B that cannot B-inertly reach
LargeSp. If LargeSp = &, then AvoidlLrg = @.

AvoidSml: If SmallSp # @, AvoidSml contains the states in B that cannot B-inertly reach
SmallSp. If SmallSp = @, then AvoidSml = @.

ReachAlw: states in B that can always B-inertly reach both splitters SmallSp and LargeSp
if both are non-empty. Otherwise, ReachAlw consists of states in B that can always
B-inertly reach the non-empty splitter. “Always ...reach” here also means: if a B-inert
transition starts in such a state, its target state, which is in B, must also be in ReachAlw.

NewBotSt: states in B that do not fit in any of the three sets above. Original bottom states
cannot end up in NewBotSt, and new bottom states will always end up in this sub-block.

Figure 1 contains two examples of how a block B’ is split. Here unlabelled transitions
are B-inert transitions in B’. The next lemma expresses that new bottom states end up in
NewBotSt and Invariant 3.4 is preserved under the four-way-split.

» Lemma 3.7. Consider a partition B and B € B. Assume given a € Act and disjoint
Bsml; Blrg C B with a 75 Tor B ¢ Bomi U Blrgo Let

SmallSp := B % U Bsml and LargeSp :== B % UBIrg-

J. F. Groote and D. N. Jansen

(NewBotSt

a/a/a/a/ a/a/a\a N a a \a\a

'

¢¢/C’\¢B¢V’/ \@‘\B¥

a a T

Figure 1 Left: four-way-splitB(B’, B’ — B, B’ — C'\ B). Right: four-way-split3(B’, B’ — B, 2).

Assume further that SmallSp U LargeSp # @. Let B’ be the partition (B\ {B}) U ({AvoidLrg,
AvoidSml, ReachAlw, NewBotSt} \ {@}) with the mentioned sets being the results of the call

four-way-splitB(B, SmallSp, LargeSp).

Then

1.
2.

3.

For any state s € NewBotSt it holds that s ¢ Bottom(B).

For any state s € Bottom(AvoidLrg) U Bottom(AvoidSml) U Bottom(ReachAlw) it holds
that s € Bottom(B).

If Invariant 3.4 holds for B, then Invariant 3.4 holds for B'.

Proof.

1.

We use contraposition. Assume that s € Bottom(B). Then s does not have an outgoing
B-inert transition. By construction s ends up in one of the sets AvoidSml, AvoidlLrg and
ReachAlw. Hence, s & NewBotSt.

. This follows by observing that if there is a bottom state s € B where By is any of the

blocks AvoidLrg, AvoidSml and ReachAlw which was not a bottom state in B, then there
is transition s — s’ with s’ € B but s’ ¢ B,. Going through the various cases, it follows
that s cannot be in any of the three sets Bg, and therefore must be part of NewBotSt.
Using that Invariant 3.4 is valid for B, we only need to show that two states s, € B that
have been moved to different blocks in B’ are not branching bisimilar.

Assume s € ReachAlw and t € AvoidSml. Then s can B-inertly reach SmallSp. This
means, using the invariant and the conditions of this lemma, it can reach a non-<-inert
transition in SmallSp. As t € AvoidSml, ¢ cannot mimic this transition, and hence

s ¥, t. More concretely, all states in ReachAlw and AvoidSml are not branching bisimilar.

Similarly, one proves that the states in ReachAlw and AvoidlLrg, respectively, the states in
AvoidSml and AvoidlLrg are not branching bisimilar.

Now assume s € NewBotSt. We claim that s can B-inertly reach both SmallSp and
LargeSp unless they are empty, and s can B-inertly reach AvoidSml or AvoidLrg. This
can be seen as follows. If s € B can B-inertly reach SmallSp but not LargeSp (and
LargeSp # &), then s € AvoidlLrg. Similarly, if s € B can B-inertly reach LargeSp but not

SmallSp (and SmallSp # @), then s € AvoidSml. So, s can reach all non-empty splitters.

As s ¢ ReachAlw, it can B-inertly reach a bottom state s’ € Bottom(B) \ ReachAlw. As
s" ¢ NewBotSt (by dictum 1), we have s’ € AvoidSml or s’ € AvoidLrg.

If ¢t € AvoidSml or ¢t € AvoidlLrg, then s can B-inertly reach a non-*,-inert transition in
SmallSp or LargeSp, respectively, that ¢ cannot mimic.

18:5

CONCUR 2025

18:6

A State-Based O(mlog n) Partitioning Algorithm for Branching Bisimilarity

Now consider ¢ € ReachAlw. We know that s can B-inertly reach a state s’ € AvoidSml U

AvoidLrg, and as argued above ¢ #, s’. Suppose we can find a state t' reachable with

internal transitions from ¢ that mimics the path from s to s’ such that ¢’ < s’. Using

Invariant 3.4 for B, ¢’ must be B-inertly reachable and ¢’ € B. But then ¢’ € ReachAlw

and s’ #,t. So, no such t’ exists, and hence s ¥, t. <
The following lemma explains which calls to four-way-split3 are needed to reestablish Invari-
ant 3.5 after splitting a constellation C' € C \ B. For now we exclude blocks that contain new
bottom states, i.e. sub-blocks of NewBotSt, cf., Lemma 3.7.1 and 3.7.2.

» Lemma 3.8. Consider a partition B refining a partition of constellations C for which
Invariant 3.5 holds. Let the refined set of constellations C' be (C \ {C}) U {B,C'\ B} for
some Be Band C €Cand B C C.

Let B’ be the result of the iterative refinements (B8’ \ {B’}) U ({AvoidLrg, AvoidSml,
ReachAlw, NewBotSt} \ {@}) with the mentioned sets being the results of the following calls.
Assume that for every action a € Act these calls take place for blocks B’ € B’ satisfying
the indicated conditions such that S is covered by these blocks B’, blocks not satisfying the
conditions, singleton blocks with |B’| = 1, or blocks that refine some block NewBotSt:

a a

four-way-splitB(B’, B = B, B’ — C\B) if a # 7 or B'ZC, and there are s1, s2 € B’ such
that s1 i> t1, 82 i) to and t1 € B,tz (S C’\B7

four-way-splitB(B’, B’ = B, @) if B C C'\ B and there is an s € B’ such that
s > tandt € B,
four-way-splitB(B’, B' = C'\ B, @) if B’ C B and there is an s € B” such that

s > tand t e C\ B.

Then Invariant 3.5 holds for all blocks in B’ (except for those that refine some block NewBotSt)
and C'.

Proof. Consider a state s € B for any block B € B’ not refining any NewBotSt. Assume that
a non-C’-inert transition s = ¢ exists with ¢ € C' for some constellation C' € C'. So, a # 7 or
s ¢ C. We must prove that any s’ € Bottom(B) has a transition s’ % ¢’ with t' € C.
Let B’ be the block B C B’ € B. Note that s’ € Bottom(B’) by Lemma 3.7.2.
Case C' Z C: That means that C' € C. Using Invariant 3.5 (for B’ € B and C € C), s’ has
a transition s’ = ¢’ with ¢’ € C.
Case BC C,a=7and C = B: If BC B= DB, then s = t were C'-inert. So, we can
assume B C C \ B. There is a block B" with B C B" C B’ such that a call

four-way-splitB(B", B" = B, @)
must have taken place. In this case B is a sub-block of ReachAlw or NewBotSt. In the
last case there is nothing to check. But B C ReachAlw implies that s’ € Bottom(B) has
a transition s’ = ' with ¢’ € B, as had to be shown.

Case (BZ Cora+# 7)and C = B: If (B% C\ B) = @, we know by Invariant 3.5 (for
B’ € Band C € () that s’ € Bottom(B) has a transition s’ = ' with ¢ € C, and as the
transition cannot go to C'\ B, it must go to B, which we had to prove.

Otherwise, (B % C'\ B) # @, and there is a block B” with B C B” C B’ for which a call

four-way-splitB(B”, B" % B,B" % C'\ B)
took place with B a sub-block of AvoidlLrg, ReachAlw or NewBotSt. The last case does
not lead to a proof obligation. But B C AvoidLrg or B C ReachAlw implies that
s’ € Bottom(B) has a transition s’ % ¢ with ¢’ € B, as had to be shown.

J. F. Groote and D. N. Jansen

Algorithm 1 Branching bisimulation partitioning.

1.1:
1.2:
1.3:
1.4:
1.5:
1.6:
1.7:
1.8:

1.9:
1.10:
1.11:
1.12:
1.13:
1.14:

1.15:
1.16:
1.17:
1.18:
1.19:
1.20:

Find 7-SCCs and contract each of them to a single state O(| Act] + m)
C:={S}; B:={S}; has_new_bottom_states(S) := true e
Call stabiliseB() to create the initial partition
while a B € B exists such that B ¢ C do } < n iterations
Select some B € B and C € C such that B C C and |B| < $|C|
C:=(C\{C})uU{B,C\ B} and maintain data structures accordingly O(lin(B))
M:={sSt|scSacAct,t € B, anda# 7 or s ¢ B} .
Split B under the outgoing transitions that have just become non-C-inert + split
by calling four-way-splitB(B, B = (C \ B), @)
while M # () do } < |in(B)] iter’ns
Pick some BLC set SmallSp := (B’ 2+ B) C M for some block B’
M = M\ SmallSp
if |B’| > 1 A —has__new__bottom__states(B') then
if B CCAa=r7 then
Split B’ under the transitions that have become non-C-inert | O(1)
by calling four-way-split3(B’, SmallSp, @) + split
else
LargeSp := B' % (C'\ B)
if LargeSp # @ then
Split B’ by calling four-way-split3(B’, SmallSp, LargeSp)
Call stabilise3() to stabilise blocks with new bottom states
return B

Case B CC,a=7and C = C\ B: If BC C'\ B, then s Iy ¢ were C'-inert. So we can

assume B C B = B’. There is a block B” with B C B” C B such that a call
four-way-splitB(B", B” = C'\ B, @)

must have taken place, where B is a sub-block of ReachAlw or NewBotSt. The latter case
is not interesting. Again, B C ReachAlw implies that s’ € Bottom(B) has a transition
s' 5 t' with t € C'\ B, as had to be shown.

Case (BZ Cora=r7)and C =C\ B: If (B B) =@, we know by Invariant 3.5 (for

B’ € Band C €() that s’ € Bottom(B) has a transition s’ = ¢’ with ¢ € C, and as the
transition cannot go to B, it must go to C'\ B, which we had to prove.
Otherwise, (B % B) # @, and there is a block B” such that B C B” C B’ and a call

four-way-splitB(B”, B" % B,B" % C\ B)

must have taken place, and B is a subset of AvoidSml or ReachAlw or NewBotSt. We can
ignore the latter case. But B C AvoidSml or B C ReachAlw implies that s’ € Bottom(B)
has a transition s’ % ¢’ with ¢ € C'\ B, as had to be shown. <

Blocks with new bottom states, which were excluded by Lemma 3.8, are handled by the
function stabiliseB. It assumes that blocks without new bottom states are already stable
and stabilises the blocks with new bottom states, which concretely means that it refines
them under all their outgoing non-C-inert transitions such that for the resulting partition

Invariant 3.5 holds, while maintaining Invariant 3.4.

Main Algorithm. We are now in the situation to explain Algorithm 1. First we need to
take care that the Invariants 3.4 and 3.5 become valid. Therefore, in line 1.2 we set the
partition B and the set of constellations C to {S}. This makes Invariant 3.4 trivially true.

18:7

CONCUR 2025

18:8

A State-Based O(mlog n) Partitioning Algorithm for Branching Bisimilarity

If a block B has new bottom states, we use the predicate has_new__bottom__states(B) to
indicate so. This is not only the case when block B is a refinement of some block NewBotSt
but it also applies to the initial block, and this is explicitly indicated in line 1.2. Invariant 3.5
is now made valid by one call to stabiliseB3 in line 1.3. Concretely, this call splits {S} into a
partition B such that all bottom states in each block B in B have exactly the same outgoing
non-B-inert actions, while keeping branching bisimilar states in the same block.

As stated above, the purpose of the main algorithm is to refine C such that it ultimately
coincides with B. This happens in the loop starting at line 1.4. If B and C do not coincide,
there is at least one block B C C' with size smaller than or equal to % |C|. We replace the
constellation C' in C by two new constellations B and C'\ B (line 1.6).

Our main task is to make Invariant 3.5 valid again. This is done by taking care that
all calls to four-way-split3 as required by Lemma 3.8 are performed. This guarantees that
Invariant 3.5 is valid except for blocks of the form NewBotSt. Therefore, one extra call is
needed to stabiliseB3 in line 1.19.

In order to effectively carry out the four-way-splits, transitions are organised in block-
label-constellation sets (BLC sets). Every BLC set contains the transitions B % C for a
specific block B € B, action a € Act, and constellation C' € C. Whenever a constellation or a
block is split (lines 1.6 and 2.45) these BLC sets are updated.

In line 1.8 there is a call to four-way-splitB(B, B = (C'\ B), @) that corresponds with
the third case in Lemma 3.8. So, that case has been covered.

For the remainder we put all non-C-inert transitions to block B in a set M. By traversing
the BLC sets in M the other required calls to four-way split are done. In line 1.5 such a BLC
set SmallSp = B’ % B for some block B’ is selected. For the complexity, it is important
that [B| < 1 |C| as this implies that the selected BLC set is small, hence its name.

If B’ has only one state or is a refinement of some block NewBotSt and hence has new
bottom states, according to Lemma 3.8 it does not need to be considered to be split (line 1.12).

Otherwise, there are two situations. The first one is when a = 7 and B’ was part of the
constellation C (line 1.13). As M does not contain 7-transitions from B to B, this means
B’ € C'\ B and the required second call four-way-split3(B’, SmallSp, @) in Lemma 3.8 is made.
The other situation, i.e., the else part at lines 1.15-1.18, exactly satisfies the conditions of
the first mentioned call to four-way-split in Lemma 3.8. As the algorithm traverses all BLC
sets that are part of M, the whole set S is covered as required in Lemma 3.8.

From Lemma 3.8 it follows that at line 1.19 of the algorithm, Invariant 3.5 holds for
all blocks, except for those that are of the shape NewBotSt. As stated above one call to
stabiliseB is sufficient to restore Invariant 3.5 for all blocks. Just for the record, Invariant 3.4
remains valid, as each call to four-way-split53 preserves it (see Lemma 3.7.3), and, as explained
in Section 5, stabiliseB refines B only using four-way-split3 also.

This means that at line 1.4 of Algorithm 1 both invariants hold. If the condition of the
while is not valid, the partitions B and C are equal, and as argued above, these resulting
partitions coincide exactly with branching bisimulation. As the initial set of states S is finite,
the partition C can only be refined finitely often, which happens in the body of the while
loop. This means that this algorithm always terminates with the required answer.

4 Four-Way Split

This section explains how four-way-splitB(B, SmallSp, LargeSp) refines block B under two
splitters, i.e., sets of transitions SmallSp and LargeSp. The sets contain all transitions from
B with a given label a to one or two given constellations.

J.F.

Groote and D. N. Jansen

Algorithm 2 Refine a block under one or two sets of transitions.

18:9

2.1:
2.2:

2.3:

2.4:
2.5:
2.6:
2.7:

2.8:

2.9:
2.10:
2.11:
2.12:
2.13:
2.14:
2.15:
2.16:
2.17:
2.18:
2.19:
2.20:
2.21:
2.22:
2.23:
2.24:
2.25:
2.26:
2.27:
2.28:
2.29:
2.30:
2.31:
2.32:
2.33:
2.34:
2.35:
2.36:
2.37:
2.38:
2.39:
2.40:

2.41:
2.42:
2.43:
2.44:
2.45:
2.46:
2.47:
2.48:

function four-way-split3(block B,small splitter SmallSp,large splitter LargeSp)
ReachAlw := {s € Bottom(B) | (SmallSp = @ V 3s % t € SmallSp) A
(LargeSp = @ v 3s = t € LargeSp)}
AvoidLrg := {s € Bottom(B) | (SmallSp = @V Is = t € SmallSp) A
—(LargeSp = @ Vv 35 % t € LargeSp)}
AvoidSml := Bottom(B) \ (ReachAlw U AvoidLrg)
if AvoidLrg = & A AvoidSml = & then
return // B is stable under SmallSp and LargeSp.
pot-ReachAlw := {s € B\ Bottom(B) | 3s % t € SmallSp A
(LargeSp = @ Vv 35 % t € LargeSp)}
:= {s € B\ Bottom(B) | 3s % t € SmallSp A
—(LargeSp = @ V 35 % t € LargeSp)}

HitSmall

for all s € pot-ReachAlw do
s.count := |s = B]
NewBotSt := @; pot-Avoidlrg := &;
begin coroutines
If some subset becomes too large at any time, abort its coroutine immediately.
cor R = ReachAlw, AvoidSml, AvoidLrg do
for all s € R do
for all t = s € in(s) do
if ¢t ¢ B\ NewBotSt then
Skip t = s (go to line 2.16)
if t ¢ pot-R then
if R = AvoidSml At € HitSmall
V3Rt € pot-R’ then
Add t to NewBotSt
Skip t = s (go to line 2.16)
Add t to pot-R
t.count := |t = B|
t.count :=t.count — 1
if t.count # 0 then
Skip t =+ s (go to line 2.16)
if R = AvoidlLrg then
for all t % u € out(t) do
ift 2 ue LargeSp then
Add t to NewBotSt
Skip t =+ s (go to line 2.16)
Add t to R
Declare R finished
if 3 coroutines have finished then
Terminate the coroutines
NewBotSt := NewBotSt U (pot-R \ R)
if ReachAlw&AvoidLrg are finished then
NewBotSt := NewBotSt U
HitSmall \ (ReachAlw U AvoidLrg)
end coroutines
if NewBotSt is unfinished A ReachAlw U AvoidLrg U AvoidSml = B then
Declare NewBotSt finished and the largest subset aborted
Create sub-blocks for the finished, non-empty subsets
Update transitions that have become non-B-inert and BLC sets
if NewBotSt # @ then
has_new_bottom__states(NewBotSt) := true
return

pot-AvoidSml := &

loop forever
for all unexplored s € NewBotSt do
for all t = s € in(s) do
if t € B then
Add t to NewBotSt
if 2 coroutines have finished then
if LargeSp is fully explored
V AvoidLrg is finished then
Declare NewBotSt finished
Terminate the coroutines
Pick unexplored t 2> s € LargeSp
if ¢ ¢ ReachAlw U AvoidSml
At ¢ Bottom(B) then
Add t to NewBotSt

O(|SmallSpl)

or

O(|Bottom(B) % S
N LargeSp|)

O(|in(R)|)

or
O(|in(NewBotSt)|
+ |out(NewBotSt)|
+ |out(finished)|)

O(|out(AvoidLrg)|
+ |out(Bottom(
NewBotSt))|)

O(|in(R)])

O(|SmallSp|)

O(|in(finished)|
F |out(finished)|)

CONCUR 2025

18:10

A State-Based O(mlog n) Partitioning Algorithm for Branching Bisimilarity

Splitting block B must be done in a time proportional to the size of SmallSp and the
sizes of all but the largest block into which B is split. The principle “process the smaller
half” then implies that every state and transition is only visited O(logn) times. However,
we do not know a priori which of the three parts are the smallest. Therefore, we start four
coroutines for the four parts, run them in lockstep and abort the coroutine that belongs to
the largest part. This ensures that time proportional to the three smallest parts is used.

Preconditions. At least one splitter must be non-empty. If both splitters are given (as

in line 1.18 of Algorithm 1), it is known that every bottom state of B has a transition in

at least one of the two splitters. We use data structures such that it is possible to quickly

determine whether states with a transition in SmallSp also have a transition in LargeSp.
We now go through the pseudocode shown as Algorithm 2.

Preparation: Splitting the Bottom States. In lines 2.2-2.11, the algorithm initialises a
number of sets of states, mainly to decide for every bottom state to which part it belongs.

In lines 2.2-2.4 in case SmallSp # & every transition in SmallSp is visited, and its source
state is moved to ReachAlw or AvoidlLrg, depending on whether it has a transition in LargeSp
or not. Bottom states that have not been moved belong to AvoidSml. In case SmallSp = &,
the transitions in LargeSp that start in a bottom state are traversed, to move these bottom
states to ReachAlw. The states that have not been moved belong to AvoidLrg.

If some non-bottom state has a transition in SmallSp, it is not immediately known to
which part it belongs; it might happen that it has a B-inert transition to another part. If the
non-bottom state has a transition in the small splitter but not in LargeSp # @ (like s15 in
Figure 1 at the left), it may end up in any part except AvoidSml. To register this such a state
is temporarily added to HitSmall in line 2.8. It will be processed further in line 2.20 left.

If the non-bottom state has a transition in all (non-empty) splitters, it is potentially in
ReachAlw, unless it has a B-inert transition to one of the other sub-blocks. In the latter case,
it will be in NewBotSt. We add it temporarily to pot-ReachAlw to register this in line 2.7.

If all bottom states belong to ReachAlw, the split is trivial (lines 2.5-2.6). Even if all
bottom states belong to one of AvoidLrg or AvoidSml, there still can be some non-bottom
states with transitions causing a split. Such states will be moved to NewBotSt.

Coroutines: Extending the Splits to Non-bottom States. After all bottom states have
been distributed over the initial sets, we have to extend the distribution to the non-bottom
states. To stay within the time bounds, we need to find all the states in the three smallest
parts in time proportional to the number of their incoming and outgoing transitions.

Of the four coroutines, three (for ReachAlw, AvoidSml and AvoidLrg) are almost the same.
Their code is shown on the left of lines 2.12-2.41, where we use the keyword cor to indicate
the three coroutines. The basic idea is the following. If all outgoing B-inert transitions
of some non-bottom state go to the same set, the state also belongs to this set. To avoid
checking any transition more than once, we go through all incoming B-inert transitions of
the respective set and count how many outgoing B-inert transitions of its source are not yet
known to point to this set. If the B-inert transitions point to different sets, the state belongs
to NewBotSt (line 2.21 left).

If the number of unknown transitions is 0, the source is added to the respective set, unless
it has an incompatible transition in a splitter: states with a transition in both splitters can
only be in ReachAlw or NewBotSt and were therefore already added to pot-ReachAlw; this
ensures that they move to NewBotSt as soon as it is found out that they have a transition to

J. F. Groote and D. N. Jansen

Algorithm 3 Stabilise the partition with respect to new bottom states.

3.1: function stabiliseB3()
3.2: =0
3.3: for all blocks B with has_new__bottom__states(B) do
34: Q:=QU{s S t|seBA
(a # TV constellation(s) # constellation(t))}
3.5: for all s € Bottom(B) do
3.6: Move the non-C-inert transitions out of s O(|out(Bottom(B))|)
to the front of their BLC sets
3.7 has__new__bottom__states(B) := false

O(|out(Bottom™ (B))|)

3.8: while Q # @ do }§ out(Bottom™ (B))| iter’ns

3.9: Pick some BLC set Sp:= (B % C) C Q
3100 Q:=0\ S5

3.11: if |B| > 1 then O(1) + split
3.12: Split B under Sp by calling four-way-split3(B, &, Sp)
3.13: if the split produced some NewBotSt # & then
3.14: Q:=0U{s S t|(sHt)¢ ONse NewBotSt A O (Jout(Bottom™(
(a # 7V constellation(s) # constellation(t))} NewBotSt)) \ Q)

3.15: for all s € Bottom(NewBotSt) ‘d'o O (|out(Bottom(
3.16: Move the non-C-inert transitions out of s NewBotSt))|)

to the front of their BLC sets
3.17: has_new__bottom__states(NewBotSt) := false

3.18: return

AvoidSml or AvoidlLrg. — States with a transition in SmallSp but not in LargeSp cannot be
in AvoidSml. If they would be added to that set, the test in line 2.20 left ensures that they
will be added to NewBotSt instead. — States with a transition in LargeSp but not in SmallSp
cannot be in AvoidlLrg. But as the algorithm is not allowed to go through all transitions in
LargeSp a priori, they are more difficult to handle. Only if the number of unknown transitions
is 0 and the state is still a candidate for AvoidLrg, we are allowed to spend the time to check
whether it has a transition in LargeSp by looking through its non-C-inert outgoing transitions
in lines 2.29-2.33 left. Section 6 explains why this fits the time bounds.

When all incoming B-inert transitions of a set have been visited, no more states can be
added, so that set is finished. The states that had some B-inert transitions to the set but still
have unknown transitions must have transitions to some other set as well, so they are added
to NewBotSt in line 2.38 left. If AvoidSml is the only coroutine that still runs on the left side,
any unassigned states remaining in HitSmall also belong to NewBotSt, as they cannot be in
AvoidSml (see lines 2.39-2.40 left).

The fourth coroutine, the one for NewBotSt, follows a slightly simpler principle. Every B-
inert predecessor of a NewBotSt-state is also in NewBotSt, independent of other transitions it
might have. This happens in line 2.18 right. The other three coroutines may also occasionally
add states to NewBotSt and therefore, different from the first three coroutines, we cannot
end the coroutine as soon as all incoming B-inert transitions of the current NewBotSt have
been visited. Instead, we wait in an (outer) infinite loop. The outer loop can terminate when
at least AvoidLrg and one other coroutine have finished.

If only the coroutines for AvoidLrg and NewBotSt are still running, the latter will go
through LargeSp to find states that cannot be in AvoidlLrg in lines 2.24-2.27 right. If the
source state of some transition in LargeSp has not yet been inserted into a sub-block, it
cannot be in AvoidlLrg, so it must be in NewBotSt.

18:11

CONCUR 2025

18:12

A State-Based O(mlog n) Partitioning Algorithm for Branching Bisimilarity

5 Stabilising New Bottom States

In this section we explain stabilise3 given in Algorithm 3. The procedure stabilise 3 goes
through all blocks with new bottom states and completely stabilises them.

Algorithm 3 shows the pseudocode of the stabilisation. In lines 3.3-3.7, all transitions
out of the states in blocks with new bottom states are collected in Q. Additionally, all
non-C-inert transitions out of bottom states, which are all new, are put to the front of their
BLC sets. In line 3.12 there is a call to four-way-splitB that only traverses these transitions
in front of the BLC set to determine whether B needs to be split.

In lines 3.8-3.12, each BLC set is iteratively chosen as potential splitter Sp and its source
block B is stabilised under it. In the preparation phase of four-way-split3, we can now
visit the transitions in Sp starting in bottom states without spending time to pick them
from between those starting in non-bottom states. If this refinement leads to further new
bottom states, the sub-block NewBotSt is not empty. This block with new bottom states is
immediately added to 0 as it requires to be stabilised again, see lines 3.13-3.17.

To ensure that every transition out of a new bottom state is visited only a bounded
number of times, we have to take into account that some transitions out of the set NewBotSt
may already be in Q and do not need to be added a second time.

6 Complexity

We attribute computation steps to certain transitions or states in the LTS to account for the

time bound. There are three kinds of timing attributions:

C. When a constellation C' is split into B and C'\ B, time is spent proportionally to the
states and incoming and outgoing transitions of B.

B. When a block B is split into AvoidLrg, AvoidSml, ReachAlw and NewBotSt, time is spent
proportionally to the states and incoming and outgoing transitions of the three smallest
sub-blocks.

N. When a new bottom state is found, time is spent proportionally to this state and its
outgoing transitions.

We first formulate three lemmas to distribute all execution steps (except the initialisation)

over the three cases above, and then state the main timing result.

» Lemma 6.1. Every step in four-way-splitB (Algorithm 2) falls under one of the timing
items C, B, or N above.

Proof. We can ignore the coroutine for the largest sub-block because it is aborted as soon
as it is clearly the largest (line 2.13) or the three other coroutines are finished. The time it
spends is at most proportional to the time attribution of the second-largest coroutine.
Initialisation (lines 2.2-2.11): If the function is called from the main algorithm, SmallSp
either consists of outgoing transitions of B (line 1.8) or of incoming transitions of B
(lines 1.14 and 1.18). Then the sets ReachAlw, AvoidlLrg, AvoidSml, pot-ReachAlw and
HitSmall can be initialised by going through the transitions in SmallSp, which falls under
timing item C. Note that we require that for states with a transition in SmallSp, one
can determine in time O(1) whether they have a transition in LargeSp. This allows to
distinguish ReachAlw from AvoidlLrg and pot-ReachAlw from HitSmall.
If the function is called from stabiliseBB (line 3.12), SmallSp = &, and LargeSp consists
of outgoing transitions of a block with new bottom states. Then the sets ReachAlw and
AvoidLrg can be distinguished by going through those transitions in LargeSp that start in

J. F. Groote and D. N. Jansen

(new) bottom states, which falls under timing item N. The other sets in the initialisation
are empty. Note that we only spend time on transitions in LargeSp starting in bottom
states because we singled them out in lines 3.6 and 3.16.
All coroutines: Every coroutine generally runs a loop over all states in the respective sub-
block and its incoming transitions. This can immediately be attributed to timing item B.
Coroutine for AvoidLrg (lines 2.29-2.33 left): The coroutine for Avoidlrg, once it has
found a state t with t.count = 0, still needs to check whether ¢t has a transition in LargeSp
that could not be handled during initialisation. Depending on the outcome of this check,
we attribute the time spent on the loop in lines 2.29-2.33 left differently:
If ¢ has no transition in LargeSp, we conclude that ¢t € AvoidLrg, and we can attribute
the time to the outgoing transitions of AvoidlLrg, i.e. to timing item B.
If, however, t has a transition in LargeSp, it is added to NewBotSt in line 2.32 left, and
it becomes a new bottom state: all its outgoing B-inert transitions point to another
sub-block (namely AvoidlLrg). Therefore we can attribute this to timing item N.
Finalising a sub-block R = ReachAlw, AvoidSml or AvoidLrg: In line 2.38 left, states in
pot-R \ R are moved to NewBotSt. Every such state has a transition to R, so this is
attributed to timing item B. In lines 2.39-2.40 left, the HitSmall-states are moved to
NewBotSt. Because |HitSmall| < |SmallSp|, we can attribute this to timing item C.
Coroutine for NewBotSt: This coroutine has an outer infinite loop in line 2.14 right, when
all states that are known to be in NewBotSt are already explored and the coroutine
has to wait until a different coroutine adds another state to NewBotSt. Note that this
will only happen as long as at least two coroutines different from NewBotSt are running.
So, we can attribute the waiting time to the smaller of the two sub-blocks. When only
the coroutines for AvoidLrg and NewBotSt are unfinished, the latter goes through the
transitions in LargeSp in lines 2.24-2.27 right. Source states of these transitions cannot
be in AvoidLrg, so they either are in a finished sub-block (and then that sub-block is not
the largest one, so we are allowed to spend time on its outgoing transitions under timing
item B) or they are in NewBotSt (and then they also fall under timing item B).
Final administration (lines 2.42-2.46): This can be organised in a way that only the states
in the three smallest sub-blocks and their outgoing transitions are moved to new blocks
and new BLC sets, respectively. So, we attribute it to timing item B. |

» Lemma 6.2. Every step in stabilise5 (Algorithm 3) falls under one of the timing items C,
B, or N above.

Proof. It can happen that we have to stabilise a block with new bottom states under BLC
sets whose transitions all start in non-bottom states, but then after the respective call to
four-way-splitB, this BLC set will contain a transition that starts in a new bottom state. We
denote the set of the new bottom states together with these prospective new bottom states
by “Bottom™ (B)”.

Initialisation (lines 3.3-3.7): If one adds transitions to Q in constant time per BLC set in
line 3.4, then time O(|Bottom™ (B)|) is spent. Lines 3.5-3.7 access new bottom states
and their outgoing transitions. All these steps can be attributed to timing item N.

Main loop (lines 3.8-3.12): In every iteration one BLC set in Q is handled, so there cannot
be more iterations than transitions starting in Bottom™ (B) (summed over all blocks B
with new bottom states). The call to four-way-splitB3 is attributed according to Lemma 6.1.

Adding another new bottom block (lines 3.13-3.17): This is the same operation as the
loop body for the initialisation (lines 3.4-3.7), so we can attribute the timing in the same
way. When adding new transitions to 0, one only has to take care not to spend time on
BLC sets that have been added already earlier. <

18:13

CONCUR 2025

18:14

A State-Based O(mlog n) Partitioning Algorithm for Branching Bisimilarity

» Lemma 6.3. Every step in the main loop in Algorithm 1 (lines 1.4-1.19) falls under one
of the timing items C, B, or N above.

Proof. Splitting a constellation (lines 1.4-1.8): This part of the algorithm handles the
states and transitions of B and is attributed to timing item C.

Stabilising under B and C'\ B (lines 1.9-1.19): Except for the calls to four-way-split3
and stabiliseB (which fall under Lemmas 6.1 and 6.2), these lines use constant time per
iteration. Because M C in(B), there are not too many iterations. |

» Theorem 6.4. Under the reasonable assumption |Act| € O(m) and n € O(m), the running
time of Algorithm 1 including its subroutines is in O(mlogn).

Proof. Initialisation. The calculation of the 7-SCCs (line 1.1) takes O(m) time via a standard
algorithm [13]. Line 1.2 includes constructing the initial BLC sets. The essential step is
to (bucket-)sort the transitions according to actions in time O(|Act| +m) = O(m).

Steps under timing item C. State s can be in the small new constellation B (line 1.6) at
most log, n times. Whenever this happens, time in O(1 + |in(s)| 4 |out(s)|) is spent.
Summing over all states, the total running time under timing item C is in O(mlogn).

Steps under timing item B. State s can be in a small sub-block (when calling four-way-splitB3)
at most log, n times. Whenever this happens, time in O(1 + |in(s)| + |out(s)|) is spent.
Summing over all states, the total running time under timing item B is in O(mlogn).

Steps under timing item N. State s is treated as new bottom state at most once during
the whole algorithm. When this happens, time in O(1 + |out(s)|) is spent. Summing over
all states, the total running time under timing item N is in O(m).

As now every part of the algorithm is accounted for, either directly or through one of the
above lemmas, the result follows. |

Data Structures that Satisfy the Timing Constraints. We believe that many data structures
are straightforward to implement, and we only describe the less obvious data structures here.

Transitions are stored in three orderings: incoming transitions per state (used e.g. in
lines 1.6-1.7 and 2.16), outgoing transitions per state (used e.g. in lines 2.30 left and 3.6),
and transitions per BLC set (used e.g. in lines 2.24 right and 3.4). The outgoing transitions
are grouped per label and target constellation, and every block has a list of BLC sets with
transitions that start in this block.

When splitting a constellation (line 1.6), the groups for outgoing transitions per state to
C are split into two, such that the groups for SmallSp and LargeSp are next to each other.
This allows to find out quickly whether a state with an outgoing transition in one of them also
has a transition in the other (used to distinguish ReachAlw from AvoidlLrg and pot-ReachAlw
from HitSmall in lines 2.2-2.8). Similarly, the list entries for BLC sets containing transitions
to C are split into two adjacent ones, and line 1.16 can find LargeSp (given SmallSp) in time
O(1).

During stabiliseB, we place BLC sets that are in O near the end of the list, so that
line 3.14 only spends time on BLC sets that are currently not in Q.

To be absolutely sure that our correctness and timing analysis, as well as the implement-
ation are correct we instrumented the implementation with both assertions and counters
counting each operation on states and transitions and ran it on a large number of transition
systems, most of which were randomly generated. Besides the invariants and the overall
time bounds, it is checked that after the coroutines are finished, the counters for the largest
sub-block have not been increased more often than the others, and also that the coroutine
for NewBotSt did not wait too often without doing assignable work.

J. F. Groote and D. N. Jansen

Table 1 Branching bisimulation benchmarks. — Running times are rounded to significant digits;
trailing zeroes without following decimal point are insignificant. Bold times indicate the algorithm
that is faster with 95% confidence.

After SCC After reduction JGKW This paper

#states| #trans | #states | #trans | time |memory| time |memory
vasy_ 574 13561 BS7TM| 1.4M 3,577 16,168 20 s| 1.3 G| 10 s| .91G
vasy__6020_19353 | 1.4 M| 3.9M 256 510 1.7s| .83G| 3. s| .83G
vasy_ 11125290 1.1 M| 5.3M 265 1,300 11. s .56G 6. s| 41G
cwi_ 2165 8723 .22M| 8.7M 4,256/ 20,880| 20 s| .95G | 10 s| .7T1G
vasy__6120_11031 61M| 11 M 2,505 5358/ 20 s| 14 G| 20 s| 1.1 G
vasy_ 2581 11442 | 2.6 M| 11 M| 704,737|3,972,600| 30 s| 1.4 G| 20 s| 1.5 G
vasy_ 422013944 | 4.2 M| 14 M]|1,186,266|6,863,329| 40 s| 2.1 G| 20 s| 1.4 G
vasy_4338 15666 | 4.3 M| 16 M| 704,737|3,972,600| 50 s| 1.8 G| 30 s| 1.8 G
cwi_2416_17605 2.2 M| 16 M 730 2,899 9. s|] 1.6 G| 20 s| 1.1 G
vasy_11026_24660|11 M| 25 M| 775,618|2,454,834| 80 s| 2.9 G| 60 s| 2.6 G
vasy_ 12323 2766712 M| 28 M| 876,944|2,780,022| 90 s| 3.3 G| 70 s| 3.0 G
vasy 8082 42933 | 8.1 M| 42 M 290 680| 90 s| 4.5 G| 50 s| 3.3 G
cwi_ 7838 59101 7.8 M| 58 M| 62,031 470,230{200 s| 5.9 G |120 s| 4.2 G
1394-fin-vvlarge 38 M| 8 M| 607,942|1,590,210{300 s| 10 G |200 s| 8.1 G
cwi_33949 16531834 M|165 M| 12,463 71,466/500 s| 1.8 G |500 s| 1.3 G

7 Benchmarks

In Table 1 we show some benchmarks illustrating the performance of the new algorithm. The
benchmarks are mainly taken from the VLTS benchmark set'. We show the number of states
and transitions after removal of 7-cycles under the header “After SCC”. In the next columns
the number of states after branching bisimulation reduction are given. Subsequently, the
time and memory required to apply branching bisimulation algorithms are given where the
time is taken to calculate the branching bisimulation equivalence classes starting with the
7-loop reduced transition systems. We compare the fastest known branching bisimulation
algorithm headed “JGKW?” with the algorithm presented in this paper. The row starting
with 1394-fin-vvlarge reports on reducing the state space obtained from the mCRL2 model
of the 1394 firewire protocol with 20 data elements as described in [3].

The results are obtained on a computer with an Intel Xeon Gold 6136 CPU at 3.00GHz
processors and plenty of memory. Every benchmark was run 30 times. We removed the five
fastest and the five slowest times and report the average of the remaining 20. Times are
rounded to significant digits; trailing zeroes not followed by a decimal point are insignificant.
The algorithm in this paper has almost always a better time and memory performance than
JGKW. We also implemented optimisations, one of which performs initialisation without
BLC sets. Never being detrimental, this further reduces the running time up to a factor 2.
But as they are not in line with the presented algorithm we decided not to report them.

In both compared implementations states and label indices are stored as 64-bit numbers.
We can substantially cut down on memory requirements by compressing these encodings, as is
for instance done in [9], where incidentally an algorithm for strong bisimulation is compared to
an algorithm for branching bisimulation applied to calculate a strong bisimulation reduction.
As such comparisons are not very informative, we took care that the implementations of
the two algorithms use the same implementation style. Both compared algorithms, along

! http://cadp.inria.fr/resources/vlts.

18:15

CONCUR 2025

http://cadp.inria.fr/resources/vlts

18:16

A State-Based O(mlog n) Partitioning Algorithm for Branching Bisimilarity

with a number of others, can be tried in the freely available mCRL2 toolset [6] available
at https://www.mcrl2.org and are part of the summer 2025 release. This toolset is open-
source, which means that that the complex implementation code for these algorithms can be
extracted and used elsewhere if so desired.

—— References

1

10

11

12

13

14

Rocco De Nicola and Frits Vaandrager. Action versus state based logics for transition systems.
In I. Guessarian, editor, Semantics of systems of concurrent processes: LITP spring school
on theoretical computer science, volume 469 of LNCS, pages 407—419. Springer, Berlin, 1990.
doi:10.1007/3-540-53479-2_17.

Jean-Claude Fernandez. An implementation for an efficient algorithm for bisimulation equival-
ence. Science of Computer Programming, 13(2-3):219-236, 1990. doi:10.1016/0167-6423(90)
90071-K.

Hubert Garavel and Bas Luttik. Four formal models of IEEE 1394 link layer. In Frédéric Lang
and Matthias Volk, editors, Proceedings Sixth Workshop on Models for Formal Analysis of
Real System [MARS], volume 399 of EPTCS, pages 21-100, 2024. doi:10.4204/EPTCS.399.5.
Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in bisimulation
semantics. J. ACM, 43(3):555-600, 1996. doi:10.1145/233551.233556.

Jan Friso Groote, David N. Jansen, Jeroen J.A. Keiren, and Anton J. Wijs. An O(mlogn)
algorithm for computing stuttering equivalence and branching bisimulation. ACM Trans.
Comput. Logic, 18(2):Article 13, 2017. doi:10.1145/3060140.

Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of Communicating
Systems. MIT Press, 2014. URL: https://mitpress.mit.edu/9780262547871/.

Jan Friso Groote and Frits Vaandrager. An efficient algorithm for branching bisimulation and
stuttering equivalence. In M. S. Paterson, editor, Automata, languages and programming [IC-
ALP], volume 443 of LNCS, pages 626—638. Springer, Berlin, 1990. doi:10.1007/BFb0032063.
Jan Friso Groote and Anton Wijs. An O(mlogn) algorithm for stuttering equivalence and
branching bisimulation. In Marsha Chechik and Jean-Francois Raskin, editors, Tools and
algorithms for the construction and analysis of systems: TACAS, volume 9636 of LNCS, pages
607—624. Springer, Berlin, 2016. doi:10.1007/978-3-662-49674-9_40.

Jules Jacobs and Thorsten Wiimann. Fast coalgebraic bisimilarity minimization. Proc. ACM
Program. Lang., T(POPL):1514-1541, 2023. doi:10.1145/3571245.

David N. Jansen, Jan Friso Groote, Jeroen J.A. Keiren, and Anton Wijs. An O(m log n)
algorithm for branching bisimilarity on labelled transition systems. In Armin Biere and
David Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems:
TACAS, Part II, volume 12079 of LNCS, pages 3—20. Springer, Cham, 2020. doi:10.1007/
978-3-030-45237-7_1.

Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, Berlin,
1980. doi:10.1007/3-540-10235-3.

Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM J. Comput.,
16(6):973-989, 1987. doi:10.1137/0216062.

Robert Tarjan. Depth-first search and linear graph algorithms. STAM J. Comput., 1(2):146-160,
1972. d0i:10.1137/0201010.

Antti Valmari. Bisimilarity minimization in O(mlogn) time. In Giuliana Franceschinis and
Karsten Wolf, editors, Applications and Theory of Petri Nets: PETRI NETS, volume 5606 of
LNCS, pages 123—-142. Springer, Berlin, 2009. doi:10.1007/978-3-642-02424-5_9.

https://www.mcrl2.org
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1016/0167-6423(90)90071-K
https://doi.org/10.1016/0167-6423(90)90071-K
https://doi.org/10.4204/EPTCS.399.5
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/3060140
https://mitpress.mit.edu/9780262547871/
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1145/3571245
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1137/0216062
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-642-02424-5_9

	1 Introduction
	2 Branching Bisimilarity
	3 The Main Algorithm
	4 Four-Way Split
	5 Stabilising New Bottom States
	6 Complexity
	7 Benchmarks

