
Partial-Order Reduction Is Hard
Frédéric Herbreteau #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Sarah Larroze-Jardiné #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Igor Walukiewicz #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Abstract
The goal of partial-order methods is to accelerate the exploration of concurrent systems by examining
only a representative subset of all possible runs. The stateful approach builds a transition system
with representative runs, while the stateless method simply enumerates them. The stateless approach
may be preferable if the transition system is tree-like; otherwise, the stateful method is more effective.

In the last decade, optimality has been a guiding principle for developing stateless partial-order
reduction algorithms, and without doubt contributed to big progress in the field. In this paper we
ask if we can get a similar principle for the stateful approach. We show that in stateful exploration,
a polynomially close to optimal partial-order algorithm cannot exist unless P=NP. The result holds
even for acyclic programs with just await instructions. This lower bound result justifies systematic
study of heuristics for stateful partial-order reduction. We propose a notion of IFS oracle as a useful
abstraction. The oracle can be used to get a very simple optimal stateless algorithm, which can then
be adapted to a non-optimal stateful algorithm. While in general the oracle problem is NP-hard, we
show a simple case where it can be solved in linear time.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Formal verification, Concurrent systems, Partial-order reduction, Complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.22

Funding Frédéric Herbreteau: Supported by the French government in the framework of the France
2030 programme IdEx université de Bordeaux / RRI ROBSYS.
Igor Walukiewicz: Supported by ANR grant PaVeDys, ANR-23-CE48-0005.

1 Introduction

The goal of partial-order methods is to speed up explicit state exploration of concurrent
systems. The state space of such systems grows exponentially with the number of processes.
Fortunately, many runs of a concurrent system can usually be considered equivalent, so it is
enough to explore only one run in each equivalence class. For example, if one process assigns
x := 2 and another y := 3 then the order of execution of these two operations is usually
irrelevant; the two interleavings are equivalent, and it is enough to explore only one of the
two. This reduces the number of visited states as well as the exploration time. In some cases,
the reductions are very substantial.

In recent years, we have seen novel applications of partial-order methods. One is proving
the properties of concurrent programs [10], where equivalence between runs is not only used
to reduce the number of proof objectives, but also to simplify proof objectives by choosing
particular linearizations. Similarly, in symbolic executions [9] or in testing [28], partial-order
can be used to limit the exploration space while still being exhaustive. Another application
is verification of timed systems using recently developed local-time zones [15]. All these
applications rely on explicit state enumeration, as opposed to symbolic methods such as SAT
or BDDs.

© Frédéric Herbreteau, Sarah Larroze-Jardiné, and Igor Walukiewicz;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 22; pp. 22:1–22:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fh@labri.fr
https://orcid.org/0000-0002-1029-2356
mailto:sarah.larroze-jardine@u-bordeaux.fr
https://orcid.org/0009-0001-2048-2575
mailto:igw@labri.fr
https://orcid.org/0000-0001-8952-7201
https://doi.org/10.4230/LIPIcs.CONCUR.2025.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

22:2 Partial-Order Reduction Is Hard

Pi∈[1,n]
•

• •
•

ai bi

ci di

Small transition system

•
•
•

•
a1

b1

c1

d1

· · · •
•
•

•
an

bn

cn

dn

Big transition system

• •
•

•

•

•

•

a1

b1

an

bn

...
•

•

•

•

•

•

c1

d1

cn

dn

... 2n

Figure 1 Consider a concurrent system consisting of processes P1, . . . , Pn, with no dependency
between actions. Two trace-optimal transition systems, one of linear size and one of exponential size.

The first partial-order methods were proposed about 35 years ago under the names of
stubborn sets, persistent sets, or ample sets [34, 14, 20]. In 2005, Flanagan and Godefroid
introduced stateless dynamic partial-order reductions [12], making stateless methods a
focal point of subsequent research. In 2014, Abdulla et al. proposed a notion of trace-
optimality1 [1], and a race reversal technique, initiating a new cycle of work on stateless
partial-order methods [6, 5, 18, 22, 23, 3, 21, 24, 4].

In this paper, we focus on stateful partial-order reduction methods, that have seen
relatively less progress over the last two decades [29, 37, 8, 7]. A partial-order algorithm
produces a reduced transition system containing a representative for each equivalence class
of runs of the system. A stateless approach produces a tree of runs, but saves memory
by storing only one run at a time. In contrast, a stateful approach keeps all visited states
in memory so that an exploration can be stopped if a state is revisited. Each of the two
approaches has its advantages. When the objective is to verify existing code by running an
instrumentation of it, the states are too complex to keep in memory, so stateless exploration
is the only solution. When verifying pseudocode, say of a mutual exclusion protocol, the
number of non-equivalent runs may be several orders of magnitude bigger than the number
of states, rendering the stateless approach infeasible. The stateful approach is then necessary.

Our first question is whether we can find a guiding principle for the stateful approach
similar to the trace-optimality for the stateless approach. The example in Figure 1 shows
why we cannot just settle on trace optimality. The two transition systems in the figure are
both trace-optimal, since no two maximal paths are equivalent. But one is of linear size
and the other is of exponential size. The obvious parameter for optimality of the stateful
approach is the size of the transition system. So our question is whether a state-optimal, or
close to optimal, partial-order algorithm can exist.

It is not difficult to see that getting a reduced system of exactly the minimal size is
NP-hard. Our main result says something much stronger: even approximating the minimal
size within a polynomial factor remains NP-hard (Theorem 5). This holds even for acyclic
concurrent programs using only await and write instructions. Arguably, this looks like a
minimal sensible set of instructions. If we allowed cycles then we could simulate await with
active wait, reducing the set of instructions to just reads and writes.

This negative result justifies starting a systematic study of heuristics for stateful partial-
order reduction. We propose an approach based on a notion of IFS oracle. This oracle
expresses an important sub-problem encountered in partial-order reduction algorithms,
namely avoiding so called sleep-blocked executions. Our proposal is to concentrate on the
heuristics for this oracle to improve the efficiency of stateful methods. We justify this
approach by showing that in the stateless setting, the IFS oracle gives a very simple trace-

1 We use the term trace-optimality instead of simply optimality as in op.cit. to differentiate from state-
optimality we consider in this paper.

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:3

optimal algorithm. We show how to adapt this algorithm to the stateful approach. Finally,
we narrow our study down to a special case, generalizing some settings considered in the
stateless literature [5, 22], where the IFS oracle can be computed in linear time.

Before starting, we would like to shortly discuss the models of concurrent systems we are
using. In recent years it is common to consider a model of processes with shared variables,
eventually adding lock instructions. This is the model we are using for our lower bound.
However, we also consider a stronger model of concurrent systems synchronizing on shared
actions. This model can encode variables, and most of the synchronization mechanisms used
in practice. For this reason we prefer this model for our positive results. Moreover, since
the model is strong, our lower bound result is easier to prove for it, so it serves as a good
intermediate step in our proof.

In this work we assume that programs are acyclic. Dealing with cycles in partial-order
reduction is a separate problem from the reduction itself, and complicates the algorithms
substantially. Finding a clean way of dealing with cycles in partial-order reduction is beyond
the scope of this paper.

To summarize our three principal contributions are:
A strong lower bound showing that, assuming P ≠ NP, no deterministic algorithm can
construct a reduced transition system for a concurrent program P, of polynomial size
relative to the minimal size of a reduced system for P, while working in time polynomial
in the size of its input and its output (Theorem 5). This holds even if every process in
the program is acyclic and uses only await and write instructions.
A notion of IFS oracle and a simple trace-optimal stateless algorithm using this oracle.
We adapt this algorithm to the stateful approach.
A special subcase of linear fully non-blocking systems, where the IFS oracle can be
computed in linear time. This case covers some situations considered in the stateless
partial-order reduction literature.

1.1 Related Work
The literature on partial-order methods has expanded rapidly in the last decade. In this brief
discussion, we focus only on results that are closely related to our work, primarily citing
more recent papers.

Partial-order methods have been introduced around 1990 [34, 13, 20]. Applications
requiring stateful partial-order methods [11] are still based on the same basic principles.
Another significant concept for us here is the use of lexicographic ordering to identify
representative runs [36, 19, 35]. We also highlight a Petri net unfolding-based approach [32, 8]
that distinguishes itself by using prime event structures instead of transition systems.

There are already two NP-hardness results in the literature on partial-order methods. The
first is the NP-hardness of computing optimal ample sets [30]. The second is NP-hardness of
computing so-called alternatives in the context of unfolding based methods [8]. These results
can be compared to our observation (Proposition 22) that IFS problem is NP-complete. Our
main negative result is much stronger. It does not address a particular method of doing
partial-order reduction, but shows that any method must be NP-hard, even when instead of
optimality we just want to be polynomially close to optimal.

Stateless partial-order reduction, initiated by [12], gained momentum thanks to [1]. This
approach has been the focus of extensive research in recent years, culminating in truly
stateless algorithms using only polynomial-sized memory [22, 3]. Extensions of stateless
techniques to systems admitting blocking, like some synchronization mechanisms, have been
proposed very recently [18, 23]. Await instructions we use in our lower bound are blocking.
We consider non-blocking systems in our positive result in Proposition 24.

CONCUR 2025

22:4 Partial-Order Reduction Is Hard

The race reversal technique introduced in [1] has been partially adapted for use in
stateful methods [37, 7]. Apart from that, the stateful methods still rely on the original
stubborn/persistent set approach. The unfolding based partial-order methods have seen
developments like the k-partial alternatives [8]. Although IFS oracle comes from standard
concepts and problems in partial-order methods, we hope this notion will help to advance
the stateful approach.

Apart from typical programs with variables, partial-order methods have been adapted to
various frameworks, including actor programs [33], event driven programs [2, 17, 25], and
MPI programs [31]. This motivates us to use the shared actions model in our positive results.

2 Modeling concurrent systems

For our lower bounds we will consider a very simple standard model of concurrent programs
with variables and locks. Variables range over finite domains, and locks are binary. The only
operations on variables are write and await. The later operation blocks until the value of a
variable is in a specified set of values. We do not need a read operation in our constructions,
so we do not mention it to simplify the presentation.

A process is a directed acyclic graph with edges labeled by instructions. The instructions
come from the set:

Σ ::= w(x, i) | await(x, I) | acq(l) | rel(l)

Here, w(x, i) sets the value of variable x to i, await(x, I) blocks until the value of x is in the
set of values I, acq(l) acquires lock l, and rel(l) releases it. In case of acyclic processes, it is
natural to have the blocking await instruction. For example, all classical mutual exclusion
algorithms rely on it. If we had cycles, await could be simulated with an active wait.

A concurrent program P is a finite set of processes, over finite sets of variables and locks.
Each variable has a finite domain. All variables and locks are global, meaning that they are
shared by all processes. A conditional instruction is modeled by branching in the processes.
The semantics of a program P is given by a transition system TS(P). Its states consist of a
local state for each process, and a value for each variable and lock. In the initial state, each
process is in its initial local state, and each variable and lock have value 0. The transitions
in TS(P) are defined according to the usual semantics of instructions from Σ. Observe that
TS(P) is acyclic since each process is acyclic.

We will also consider a much more flexible and expressive model, that we call concurrent
system. It consists of a collection of processes synchronizing on common actions. Synchro-
nization on actions can directly encode variables, locks, and many other synchronization
primitives. In the context of this paper it will be easier to show the lower bound in this
model than in the model with variables and locks. But, since the model is strong the lower
bound result for this model is relatively weak. This is why we will eventually refine the lower
bound construction to concurrent programs without locks.

A concurrent system S is determined by an alphabet Σ of abstract actions, and a set
of processes that are graphs with edges labeled by actions. A process must be action
deterministic: for every s ∈ S and a ∈ Σ there is at most one t with s

a−→ t. The term
process is used both in the case of concurrent systems, and concurrent programs, but it will
always be clear from the context which model we are using.

Every action a has its domain, dom(a), that is a set of processes using it. We write
sp

b−→p if there is an outgoing b-transition from state sp of process p. For a sequence of
actions v we write dom(v) for

⋃
{dom(a) : a appears in v}, and sp

v−→p if there is a path
labeled v from sp in process p.

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:5

// i ∈ {0, 1}
Process Pi :

R[i] := 1
T := i
await (

R[1-i] = 0
or T ̸= i)

// C.S.
R[i] := 0

PiP
•

•

•

•

•

w(Ri, 1)

w(T, i)

await
R1−i = 0

await
T ̸= i

w(Ri, 0)

S Pi

•

•

•

•

•

r1
i

ti

r=0
1−i t ̸=i

r0
i

Ri

0

1

r=0
i

r1
ir0

i

T

0

1

t0, t̸=1

t1

t1, t̸=0

t0

TS
•

• •
• • •

• • • •
• • • • • •

• • • •
• •
• •
• •

r1
0 r1

1
t0

r1
1 r1

0

t1

r=0
1

r1
1 t0 t1 r1

0
r=0

0
r0

0 r1
1 t1 t0 r1

0
r0

1

r1
1 r0

0

t1

t ̸=0
t̸=1 t0

r0
1

r1
0

t1 r0
0r0

1 t0

r=0
0 r=0

1
r0

1 r0
0

Figure 2 Peterson’s mutex algorithm with 2 processes: pseudocode (left), modeled as a concurrent
program P (middle left), as a concurrent system S (middle right), and their semantics TS (right).

The semantics of a concurrent system S is a transition system TS(S) whose states are
tuples of states of process transition systems, S =

∏
p∈Proc Sp; the initial state is the tuple

consisting of initial states of each process, s0 = {s0
p}p∈Proc; every action a synchronizes

processes involved in it: s a−→ s′ if sp
a−→p s

′
p for p ∈ dom(a), and s′

p = sp for p ̸∈ dom(a).
We write enabled(s) for the set of actions labeling transitions outgoing from the global state
s of TS(S).

Finally, we impose an acyclicity condition: for every action a, at least one of the processes
in dom(a) must be acyclic. This guarantees that the global transition system is acyclic.

We will need to talk about runs in a transition system TS, be it TS(P) for a concurrent
program P or TS(S) for a concurrent system S. A run is a path in the transition system
TS, not necessarily from the initial state. We write s v−→ t if there is a run labeled with a
sequence of actions v from s to t. Sometimes we write just s v−→ when t is not relevant. A
maximal run is a run reaching a terminal state – a state with no outgoing transitions. A full
run is a maximal run starting in the initial state.

Figure 2 on the left shows Peterson’s mutual exclusion algorithm for 2 processes. The
middle-left picture shows its modeling as a concurrent program P = {P0, P1}. It has three
variables: R0, R1 and T that range over {0, 1} as in the pseudocode. The middle-right
picture shows the same algorithm modeled as a concurrent system S = {P0, P1, R0, R1, T}.
Processes P0 and P1 implement the code while the other processes model the variables R[0],
R[1] and T . Action rj

i writes the value j to variable R[i]. Action r=0
i checks if the variable

R[i] has value 0; observe that it is enabled in the top state where R[i] has value 0, but not in
the bottom state where it has value 1. Similarly, for actions of T . Processes in S synchronize
on common actions. For instance, r1

0 synchronizes P0 and R0, while t ̸=1 synchronizes P1 with
T . We write this as dom(r1

0) = {P0, R0} and dom(t̸=1) = {P1, T}. The transition system
TS is shown on the right. It represents both TS(P) and TS(S), although we have chosen to
show labels from S. Each full run corresponds to an execution of Peterson’s algorithm.

3 Partial-order reduction

The initial motivation for partial-order reduction comes from the observation that some
sequences of actions may be considered equivalent, and only one of the equivalent sequences
needs to be explored. The equivalence relation on sequences is defined in terms of the
independence relation on actions: two sequences are por-equivalent if one can be obtained
from the other by permuting adjacent independent actions. We will use ≈ to denote a
por-equivalence relation on sequences of actions. As we will see our arguments do not rely
on a particular independence relation, as long as two actions using different processes and
different resources are independent.

CONCUR 2025

22:6 Partial-Order Reduction Is Hard

For concurrent programs with variables the classical independence relation says that two
actions of different processes are independent if either they use different variables or they use
the same variable and both of them are awaits. In particular lock operations are dependent.

For concurrent systems, the most common independence relation is the one coming from
Mazurkiewicz trace theory [26]. Two actions a, b ∈ Σ are independent if they have disjoint
domains: aIb if dom(a) ∩ dom(b) = ∅.

It will also be useful to use the dual concept of dependent actions. Two actions are
dependent, written aDb, if they are not independent. For example, when dom(a)∩dom(b) ̸= ∅
in case of Mazurkiewicz independence. These notions are extended to sequences: aIv means
that a is independent of all actions in v, and aDv that a is dependent on some action from
v. We write Da for the set of actions dependent on a.

The goal of partial-order reduction is to construct, for a given concurrent system S or
a concurrent program P, a reduced transition system representing all full runs in TS(S) or
TS(P) (recall that these are maximal runs from the initial state).

▶ Definition 1. We say that TSr is a reduced transition system for TS if it is:
sound: every full run of TSr is a full run in TS, and
complete: for each full run u in TS there is a full run v in TSr such that u ≈ v

A general approach for constructing a reduced transition system is to determine for each
state s of TS a covering source set [1]: a subset of enabled actions that is sufficient to explore.
For example, if every sequence starting from b is equivalent to a sequence starting from c

then we may choose to include only b in the source set. The notion of the first action modulo
an equivalence relation ≈ on sequences is central for partial-order reduction.

first(u) = {b : ∃v. bv ≈ u} .

We want a source set in a state to be large enough to contain a first action of at least
one representative from every equivalence class of maximal runs from the state. Using the
above definition this can be formulated as: a source set in s should intersect every first(u)
for u a maximal run from s. We formalize this as follows.

▶ Definition 2. For a state s of TS we define First(s) as the set of first sets of all maximal
runs from s:

First(s) = {first(u) : u is a maximal run from s} .

A set of actions B is a covering source set in s if B ∩ F ̸= ∅ for every F ∈ First(s).

In particular, if B contains all enabled actions from s then B is a covering source set at s.
Intuitively, smaller covering source sets should give smaller reduced transition systems. This
is not always true. A bigger but incomparable w.r.t. set inclusion covering source set may
give a better reduction.

Observe that the notion of a covering source set depends on the por-equivalence relation
≈, as the definition of first depends on it.

Suppose we have an assignment of a set of actions source(s) for every state s of TS. We
can use it to restrict the transition relation to transitions allowed by source sets: define
s

a=⇒ t when s
a−→ t and a ∈ source(s). If every source(s) is a covering source set in s then

this restricted transition relation is enough.

▶ Proposition 3. Let TS be a finite acyclic transition system with a transition relation −→.
Suppose =⇒ is the restricted transition relation derived from a covering source set assignment.
For every state s of TS, and every maximal run s

u−→ there is a run v ≈ u with s v=⇒.

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:7

This proposition allows us to construct a reduced transition system by keeping only
=⇒ transitions and states reachable from the initial state using these transitions. We
must underline though that source sets are not the only mechanism needed in partial-order
reduction. Sleep-sets are another important ingredient (c.f. Remark 21).

4 Partial-order reduction is NP-hard

Recall that the goal of partial-order reduction is to construct for a given program P or a
given system S, a reduced system that is sound and complete. Among such systems we would
ideally like to construct one with the smallest number of states. We write minTS(P) for the
smallest number of states of a sound and complete reduced transition system for P. Similarly,
we write minTS(S) for a system S. There may be several non-isomorphic transition systems
with a minimal number of states.

Stateless algorithms use the concept of trace-optimality. This means that there are no
two equivalent runs in the reduced transition system. As we have noted in the introduction,
this concept is not very useful for our purposes. Indeed, the example from Figure 1 shows
two trace-optimal transition systems, one of linear size and the other of exponential size. So
in stateful partial-order reduction we should aim for a reduced transition system of small
size. Even more so as there are also examples where the smallest reduced transition system
is necessarily not trace-optimal.

In this section, we show that there is no polynomial-time algorithm for constructing a
reduced transition system that is polynomially close to optimal. The next definition makes
this precise.

▶ Definition 4. We say that Alg is an excellent POR algorithm if there are polynomials
q(x) and r(x) such that given a concurrent program P, the algorithm constructs a sound and
complete transition system for P of size bounded by q(minTS(P)) in time r(|P| + minTS(P)).

We use the same definition for concurrent systems S.

The main result of this section is

▶ Theorem 5. If P̸=NP then there is no excellent POR algorithm, even for concurrent
programs using only write and await operations.

We will prove this theorem in three steps. First we will consider concurrent systems.
The flexibility of synchronization operations makes the constructions used in the proof much
simpler, and the arguments can be supported by figures of a reasonable size. In the next
step we adapt the construction to concurrent programs with locks and await. In the last
step we eliminate locks. The proof is structured in such a way that the same statements
need to be proved in each of the three steps.

4.1 Synchronizations
The proof of Theorem 5 uses an encoding of the 3-SAT problem φ into a concurrent system
Sφ. If φ is not satisfiable then Sφ has a small reduced transition system. If it is satisfiable
then all reduced transition systems for Sφ are big. With such an encoding we show that an
excellent POR algorithm would give a polynomial-time algorithm for deciding 3-SAT.

Consider a 3-CNF formula over literals {x1, . . . , xn} ∪ {x̄1, . . . , x̄n} and with k clauses:

φ = (α1
1 ∨ α1

2 ∨ α1
3) ∧ · · · ∧ (αk

1 ∨ αk
2 ∨ αk

3)

where each αi
j is a literal.

CONCUR 2025

22:8 Partial-Order Reduction Is Hard

Vi

•

•
θi λi

xi

V̄i

•

•
θi λi

x̄i

E
•

•
e

Ē
•

•

•

b

ē

Lmb • • • • •
e

ē

λ1

λ1

λn

λn

Tht • • • • • • • •
θ1

θ1

θn

θn

α1
1

α1
2

α1
3

αk
1

αk
2

αk
3 b

Figure 3 Concurrent system Sφ for the lower bound argument.

• • •
• •

e θ1

θ1

λ1

λ1

• •
• •

θn

θn

λn

λn

•
α1

1
α1

2
α1

3

• •
αk

1
αk

2
αk

3

•
b

Figure 4 A sound a complete transition system for Sφ when φ is not SAT.

The concurrent system Sφ is presented in Figure 3. It has two processes for each
propositional variable, Vi and V̄i, two special processes Lmb, and Tht, and two auxiliary
processes E and Ē. For every i = 1, . . . , n we have a process Vi corresponding to variable xi.
Process Vi has two states: top and bottom. There are two transitions from top to bottom
state, the θi transition intuitively says that xi should be true, and λi that it should be false.
This choice is not encoded in the reached state though, as the two transitions go to the same
bottom state where a transition on xi is possible; interactions with special processes will
make the difference. Process V̄i is similar, but now we have θ̄i, λ̄i, and x̄i actions.

Apart from the variable processes Vi and V̄i, we have two special processes Lmb and Tht.
Only Tht depends on formula φ. Process Lmb synchronizes on λi actions, and Tht on θi

actions. Process Lmb starts with a choice between e and ē, while the second part of Tht
corresponds to the clauses of the formula φ, and finishes with action b. Finally, there are two
auxiliary processes E and Ē. The first does e that is enabled in the initial state. The second
can do ē, but only after doing b, and this in turn can happen only when Tht terminates.

▶ Lemma 6. If φ is not SAT then all runs of Sφ start with e. In other words, e ∈ first(w)
for every full run w of Sφ.

Proof. Suppose w is a full run without e in first(w). Since e is always possible until ē is
executed, we must have ē on w. This must be preceded by b. So the first part, call it u, of w
consists of synchronizations of variable processes Vi and V̄i with Tht, without Lmb moving
until Tht completes its run, that is until it does b. From the form of Tht it follows that the
first part of u is a sequence u1 . . . un where each ui is either θi or θ̄i. This defines a valuation
v. At this stage, the variable processes corresponding to literals true in v are in their bottom
states where the actions on these literals are possible. The other variable processes are in
their top states where the action on the corresponding literals are impossible. So, since Lmb
cannot move, Tht can get to action b iff v is a satisfying valuation. As φ is not SAT this is
impossible. Hence, such w cannot exist. ◀

From the above proof we can actually see that ē appears on the run iff φ is satisfiable. We
do not need this fact in the rest of the argument, but it may be helpful to fix the intuitions.

▶ Lemma 7. If φ is not SAT then the transition system from Figure 4 is a sound and
complete transition system for Sφ.

Proof. First observe that in the state just before α’s, all variable processes are in their
bottom states, so all events xi and x̄i are enabled. Thus, all local paths of Tht on α’s are
feasible. Then action b is possible, but ē is disabled since Lmb is in its bottom state. Thus,
the transition system from Figure 4 is sound: every full path is a run of Sφ.

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:9

It remains to verify that the transition system is complete. By Lemma 6, e is a first
action of all full runs of Sφ. Take such a run ew. Looking at Sφ we see that after e there
are four possible actions: λ1, λ̄1, θ1, θ̄1. We will consider only the case when the next action
is θ1 as the argument for the other possibilities is analogous. So w = θ1u1λ̄1u

′
1 for some

sequences u1 and u′
1; observe that λ̄1 must appear on the run, as after eθ1 there is no action

that can disable it. Since the only action on which Lmb can synchronize is λ̄1, all actions
in u1 are synchronizations with Tht. Clearly they do not involve V̄1, as there is no way to
execute θ̄1 at this stage. Hence, u1 is independent of λ̄1 giving us that w is trace equivalent
to θ1λ̄1u1u

′
1. Repeating this reasoning we obtain that w is trace equivalent to a run in the

transition system from Figure 4. ◀

▶ Lemma 8. If φ is SAT then there are runs containing ē. In every sound and complete
reduced transition system for Sφ there are at least as many states as there are satisfying
valuations for φ.

Proof. For a valuation v we consider a run wv taking θi if v(xi) = true and taking θ̄i if
v(xi) = false. For example, if x1, and xn hold but x2 does not hold in v then this run would
look something like:

θ1θ̄2 . . . θnα
1
i1
. . . αk

ik
bēλ̄1λ2 . . . λ̄n

Here αj
ij

is a literal that holds in the clause j. Since v is a satisfying valuation, process Tht
can get to b.

Observe that there is no concurrency in the run wv. All θ and θ̄ actions synchronize with
process Tht. Then b and ē are also dependent on each other as they happen on the same
process. Action ē is the first action of Lmb. It is followed by a sequence of actions of process
Lmb.

Consider two different valuations v1x and v2 satisfying φ. Let s1 be the state of system Sφ

reached after ē on the run wv1 . Similarly, for s2 and wv2 . In state s1, the variable processes
that are in the bottom states are those corresponding to literals that are true in v1 and
similarly for v2. Since v1 and v2 are distinct valuations, the states s1 and s2 are distinct. So
any sound and complete transition system for Sφ must have at least as many states as there
are satisfying valuations of φ. ◀

We write |φ| for the length of φ. Observe that this is an upper bound on the number of
variables as well as on the number of clauses in φ, namely, n, k < |φ|.

▶ Corollary 9. If φ is not SAT then minTS(Sφ) ≤ 6|φ| states. If φ is SAT then minTS(Sφ)
is bigger than the number of satisfying valuations for φ.

Now, we prove Theorem 5 for concurrent systems. Suppose to the contrary that Alg is
an excellent POR algorithm. We use it to solve SAT in deterministic polynomial time.

Let q(x) and r(x) be the polynomials associated to Alg. Namely, Alg working in time
r(|S| + |minTS(S)|) produces a sound and complete reduced transition system of size at most
q(|minTS(S)|).

Given a formula ψ, consider an integer m and a formula

φ ≡ ψ ∧ (z1 ∨ z2) ∧ · · · ∧ (z2m−1 ∨ z2m)

where z1, . . . , z2m are new variables. Clearly φ is satisfiable iff ψ is. If ψ is satisfiable then φ
has at least 2m satisfying valuations.

CONCUR 2025

22:10 Partial-Order Reduction Is Hard

Vi

•

• •

• •

•

•

acq(λi) acq(θi)

li := 1 ti := 1

li == 2 ti == 2

xi := 1

V̄i

•

• •

• •

•

•

acq(λi) acq(θi)

li := 1 ti := 1

li == 2 ti == 2

x̄i := 1

Lmb • • • • • • •
e == 1

e == 0
l1 == 1

l1 := 2

ln == 1

ln := 2

Tht • • • • • • • • • •
t1 == 1

t1 := 2

tn == 1

tn := 2
α1

1

α1
2

α1
3

αn
1

αn
2

αn
3 e := 1

Figure 5 Processes Vi and V̄i for propositional variable i, and special processes Lmb and T ht.
Await instructions are written as equality checks, and writes as assignments. Instruction αj

i tests if
the corresponding variable is 1.

Now we construct our system Sφ and run Alg on it for r(12|φ|) time. If φ is not SAT
then, by Corollary 9, the algorithm stops and produces a sound and complete transition
system. If φ is SAT then by Corollary 9 the algorithm cannot stop in this time as the smallest
sound and complete transition system for Sφ has at least 2m states, and we can choose m
big enough so that 2m > r(6|φ|).

4.2 Await and locks
In this section we show that the same phenomenon appears in concurrent programs. Here
instead of direct synchronizations we have variables and locks. The only operations on
variables are write and await.

The argument follows the same lines as the one for the direct synchronizations. Observe
that the proof of Theorem 5 above uses Lemmas 6, 7 and 8. So it is enough to show that the
three lemmas hold for concurrent programs with locks and variables to prove Theorem 5.

Given a propositional formula φ, we build a concurrent program Pφ. As in the previous
construction, we will have two processes for each propositional variable in φ, and two special
processes: one for lambdas and one for thetas. However, we do not need processes E and Ē
anymore. Initially all variables in P are set to 0.

Figure 5 shows the processes Vi and V̄i for propositional variable i, as well as the two
special processes Lmb and Tht. The processes Vi and V̄i use two locks, λi and θi. After
acquiring one of the two locks, each process sets the corresponding variable li or ti to 1 in
order to communicate their choice to the two special processes Tht and Lmb. Next, it awaits
an acknowledgment from the special process in the form of the value of the variable li or ti
becoming 2. Finally, it sets xi or x̄i to 1.

The two special processes Lmb and Tht are quite similar to the previous construction.
Only process Tht depends on the formula φ we are encoding. Process Lmb first tests if the
value of the variable e is 0 or 1. Next it awaits for variable l1 to become 1, and then sets it
to 2. The same pattern repeats for l2 up to ln. Similarly, process Tht awaits for variable
ti to become 1, and then sets it to 2. After that, it tests if the formula is true, under the
chosen valuation, and finally sets e to 1.

As in the previous section, we claim that if φ is not satisfiable, then there is a sound and
complete transition system of a small size. This transition system has a similar structure to
the one in the previous section (Figure 4), but is longer due to additional actions await and
write. So our argument, while similar, becomes more complicated too.

▶ Lemma 10. If φ is not satisfiable, then e can be set to 1 only after Lmb process executes
e == 0.

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:11

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

(Vi)
acq(θi)

acq(θi)
(V̄i)

(Vi)
ti := 1

ti := 1
(V̄i)

(T ht)
ti == 1

ti == 1
(T ht)

(T ht)
ti := 2

ti := 2
(T ht)

(Vi)
ti == 2

ti == 2
(V̄i)

(Vi)
xi := 1

x̄i := 1
(V̄i)

(V̄i)
acq(λi)

acq(λi)
(Vi)

(V̄i)
li := 1

li := 1
(Vi)

(Lmb)
li == 1

li == 1
(Lmb)

(Lmb)
li := 2

li := 2
(Lmb)

(V̄i)
li == 2

li == 2
(Vi)

(V̄i)
x̄i := 1

xi := 1
(Vi)

Figure 6 Block of actions in TS(Pφ) when φ is not satisfiable. Await instructions are written as
equality checks, and writes as assignments.

Proof. Suppose not. Then there is a run setting e to 1 without doing e == 0; meaning that
e is set to 1 before Lmb moves. On this run all ti must be set to 1 by processes Vi and V̄i,
and then set to 2 by process Tht. Exactly one among processes Vi and V̄i can proceed to
setting xi or x̄i to 1; as the other needs to acquire λi, and then wait for li to become 2.
Hence, when Tht reaches its α part, only one of xi or x̄i is set to 1. This defines a valuation,
and Tht can set e to 1 if and only if this valuation satisfies φ. Hence, if φ is not satisfiable,
then Tht cannot set e to 1. ◀

▶ Lemma 11. If φ is not satisfiable, then there is a sound and complete transition system
of size O(n).

We describe the transition system TS(Pφ). By the previous lemma, if φ is not satisfiable,
Lmb must perform e == 0 before e is set to 1. Thus, every run is equivalent to a run starting
with e == 0. Then after the first transition, TS(Pφ) is a sequence of blocks as shown in
Figure 6. The upper line and the lower line depend on which process takes the θi lock and
the λi lock. Then, these n blocks in TS(Pφ), we have the α part of process Tht, including
the last transition that sets variable e to 1. So the size of the transition system TS(Pφ) is
linear in the size of φ.

The proof of the third lemma is the same as for the previous construction.

▶ Lemma 12. If φ is SAT then there are runs containing e == 1. In every sound and
complete reduced transition system for Pφ there are at least as many states as there are
satisfying valuations for φ.

The three lemmas give us the proof of Theorem 5 for concurrent programs with locks
and variables.

4.3 Just await
The previous construction uses locks and await instructions on variables. There is a number
of classical algorithms for implementing locks with await, like Peterson, Bakery, or Szymanski.
So it is natural to ask if we could eliminate locks from our construction. This is the goal of
this section.

In the previous construction we used n locks, but each lock was shared between only two
processes, and taken only once. We cannot just use one of the standard lock implementations
out of the box because our construction is based on Vi and V̄i competing for two locks.
Moreover, we need to be careful with the number of states of the resulting transition system.
So while there are no important new ideas in the encoding below, we face a challenge
resembling a bit the classical problem of writing a program that prints itself.

Our solution is inspired by Peterson’s mutual exclusion algorithm for 2 processes that
uses a shared variable turn (T in Figure 2) to order the processes when they both request
access to the critical section. Figure 7 (left) shows the two processes Vi and V̄i that only use

CONCUR 2025

22:12 Partial-Order Reduction Is Hard

Vi

•
•

• •
• •

•
•
•

turni := 1

turni == 2 turni == 0

li := 1 turni := 2

li == 2
ti := 1

ti == 2

xi := 1

V̄i

•
•

• •
• •

•
•
•

turni := 0

turni == 2 turni == 1

li := 1 turni := 2

li == 2
ti := 1

ti == 2

x̄i := 1

Block

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

(Vi)
turni
:= 1

(V̄i)
turni
:= 0

(V̄i)
turni
:= 0

(Vi)
turni
:= 1

(Vi)
turni
== 0

(V̄i)
turni
== 1

(Vi)
turni
:= 2

(V̄i)
turni
:= 2

(V̄i)
turni
== 2

(Vi)
turni
== 2

(V̄i)
x̄i

:= 1

(Vi)
xi

:= 1

Figure 7 Processes Vi and V̄i without locks for propositional variable i (left), and block of actions
in TS(Pφ) when φ is not satisfiable (right). Await instructions are written as equality checks, and
writes as assignments.

instructions await and write. Following the principle of Peterson’s algorithm, the processes
Vi and V̄i share a variable turni that replaces the lock operations, and that ensures that
one of Vi and V̄i will set ti while the other will set li. The await instructions on variable
turni are followed by the same sequences of actions on ti or li as previously. The two special
processes Lmb and Tht are as in Figure 5. For notational convenience, we assume that the
variables turni are initialized to 2, whereas e is initialized to 0. The differences between Vi

and V̄i are highlighted in Figure 7.
The proof takes the same three steps as the previous one.

▶ Lemma 13. If φ is not satisfiable, then e can be set to 1 only after Lmb process performs
e == 0.

Proof. Suppose there is a run where e == 0 is not a first action. This can only happen
when e := 1 is executed before process Lmb starts. Hence, all ti must be set to 1 by variable
processes. This means that exactly one of the processes Vi or V̄i can complete its operations
and set xi or x̄i to 1; while the other will not pass li == 2. If φ is not satisfiable then this is
not enough for Tht process to reach the point where it can set e to 1. ◀

▶ Lemma 14. If φ is not satisfiable, then there is a sound and complete transition system
of size O(n).

The argument is similar to the one for the construction with locks. TS(P) has a similar
structure as before, with blocks as in Figure 7 (right).

▶ Lemma 15. If φ is SAT then there are runs containing e == 1. In every sound and
complete reduced transition system for Pφ there are at least as many states as there are
satisfying valuations for φ.

The third lemma is the same as in the previous construction, and its proof is also the
same. The tree lemmas give us the proof of Theorem 5 for concurrent programs using only
await operations.

5 An approach to partial-order reduction

In the light of the negative results from the previous section, it is clear that practical
approaches to stateful partial-order reduction should be based on heuristics, and cannot
aim at optimality, or even at approximate optimality up to a polynomial factor. In this
section we propose a concrete problem, that when solved with a satisfactory heuristic should
advance the quality of our partial-order methods. This approach also allows to make a link
with stateless partial-order methods. It leads to a simple trace-optimal algorithm for the
stateless case for a restricted class of concurrent systems.

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:13

We start with a simple algorithm for constructing trace-optimal reduced transition systems.
It uses three ingredients that we describe in more details later.

Lexicographic order on sequences allowing to determine a representative run for each
class of a por-equivalence relation ≈.
Sleep sets giving enough information about the exploration context.
An oracle “includes first sets”, denoted IFS , permitting to avoid sleep-blocked runs.

Lexicographic ordering has been already used in the context of partial-order reduction [19].
Sleep sets are one of the classical concepts for partial-order methods [14]. IFS oracle is
a direct way of avoiding sleep-blocked executions, a well known challenge in partial-order
reduction [1]. Our contribution here is to make the IFS problem explicit. Without surprise
at this stage, the IFS problem is NP-hard, but we show one case where it is polynomial.

Let us fix a concurrent system S. Let us also assume that we have some linear ordering on
actions of S. This determines a lexicographic ordering on sequences of actions. Given some
equivalence relation on sequences we can use the lexicographic order to define representatives
for equivalence classes of ≈ relation.

▶ Definition 16. We say that w is a lex-sequence if w is the smallest lexicographically among
all sequences equivalent to it: that is the smallest sequence in {v : v ≈ w}. A lex-run of
TS(S) is a run whose labels form a lex-sequence.

We are going to present an algorithm enumerating full lex-runs of TS(S). For this we
will use the “includes first set (IFS)” oracle. The idea is as follows. Suppose the algorithm
has reached a state s and produced a sleep set sleep(s) containing actions that need not be
explored from s. We would like to check if there is something left to be explored. We need
to check if the exploration is not sleep-blocked, namely, if there is a maximal run u from s

with first(u) ∩ sleep(s) = ∅. If there is such run, we need to explore one of the actions in
first(u) from s.

▶ Definition 17 (IFS). Let s be a state of TS(S) and B a subset of actions. We say that
B includes a first-set in s if there is a maximal run u from s with first(u) ⊆ B. We write
IFS(s,B) when there exists such a maximal run u.

Listing 1 presents a very simple algorithm enumerating all full lex-runs of TS(S). The
algorithm also gives us an opportunity to explain sleep sets in details. Each node n of the
tree constructed by the algorithm is a pair consisting of a state of TS(S), denoted s(n), and
a set of actions sleep(n). For readability, we write enabled(n) instead of enabled(s(n)), for
the set of outgoing actions from s(n).

Sleep sets are a very elegant mechanism to gather some information about the exploration
context. They can be computed top-down when constructing an exploration graph. At the
root, the sleep set is empty. For a node n and a transition n

e−→ ne we have sleep(ne) =
(sleep(n)∪{a1, . . . , ak})−De, where a1, . . . , ak are labels of transitions from n created before
the e-transition; and the final −De term means that we remove all the actions dependent on
e. The intuition behind this formula is as follows. Assume that we keep an invariant:

(sleep-invariant): after exploration of a node n for every maximal run u from s(n) in
TS such that first(u) ∩ sleep(n) = ∅ we have a path v from n with u ≈ v.

Then the formula for sleep(ne) says that we need not explore from ne a run starting, say,
with a1 if a1Ie. This is because when looking from n such a run has a1 in its first set, and it
has already been explored from a1’s successor of n.

CONCUR 2025

22:14 Partial-Order Reduction Is Hard

Listing 1 Lex exploration with sleep sets, constructs a tree of maximal runs.

1 procedure main(S):
2 create node n0 with s(n0) = s0 and sleep(n0) = ∅
3 TreeExplore(n0)
4

5 procedure TreeExplore(n):
6 Sl := sleep(n) // invariant: Sl = sleep(n) ∪ {labels of transitions outgoing from n}
7 while enabled (n) − Sl ̸= ∅:
8 choose smallest e ∈ (enabled (n) − Sl) w.r.t. linear ordering on actions
9 let s′ such that s(n) e−→ s′ in TS(S)

10 if IFS(s′, enabled (s′) − (Sl − De)):
11 create node n′ with s(n′) = s′ and sleep(n′) = Sl − De

12 add edge n
e−→ n′

13 TreeExplore(n′)
14 Sl := Sl ∪ {e}

The algorithm from Listing 1 examines all enabled transitions in a node n in our fixed
order on actions. For every enabled transition s(n) e−→ s′ it uses the IFS oracle in Line 10
to decide if it is necessary to explore it. If the answer is positive, then it creates node n′

with an appropriate sleep set. If not, then it skips the transition. This guarantees that the
algorithm is trace-optimal.

▶ Lemma 18. The algorithm in Listing 1 constructs a tree such that: (i) every full run in
the tree is a full lex-run of TS(S), and (ii) for every full run u of TS(S) there is a unique
full run v in the tree with v ∼ u.

We could use this algorithm in stateless model-checking if we had an implementation of
IFS(s,B). In a stateful version, the algorithm is not very interesting as trees produced by
this algorithm can be, and often are, orders of magnitude bigger than TS(S), the transition
system of S without any reduction. But we can modify the algorithm to produce a graph
instead of a tree. For this we need to introduce a subsumption relation between nodes.

▶ Definition 19. We say that n subsumes n′, in symbols n ◁ n′ if the states in n and n′

are the same: s(n) = s(n′), and there are less sleep-blocked actions from n than from n′:
sleep(n) ⊆ sleep(n′).

Observe that if n subsumes n′, all runs that are not sleep blocked from n′ are also not
sleep blocked from n. Thus replacing n′ by n still yields a sound and complete reduced
transition system. Thus, we add subsumption to Listing 1 as shown in Listing 2. We first
check if the successor s′ of s is subsumed by an existing node in line 11. If yes, then, instead
of creating a new node, we add an edge to the subsuming node (line 12). Otherwise, we
proceed as in Listing 1. Observe that the algorithm in Listing 2 builds a directed acyclic
graph (DAG) instead of a tree, hence avoiding visiting a node more than once.

The new algorithm does not satisfy a statement as in Lemma 18 because edges added due
to the subsumption relation may create paths that are not lex-runs. We can get a variant of
this optimality property when looking at states. Let us call a state lex-useful if it appears on
a full lex-run.

▶ Lemma 20. The algorithm with subsumption in Listing 2 builds a reduced transition system
TSr such that: (i) every full run in TSr is a full lex-run of TS(S), and (ii) for every full
run u of TS(S) there is a full run v in TSr with v ∼ u. Moreover, for every node n, its state
s(n) is lex-useful.

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:15

Listing 2 Lex exploration with sleep sets and subsumption, constructs a graph.

1 procedure main(S):
2 create node n0 with s(n0) = s0 and sleep(n0) = ∅
3 Explored := ∅
4 DAGExplore(n0)
5

6 procedure DAGExplore(n):
7 Sl := sleep(n) // invariant: Sl = sleep(n) ∪ {labels of transitions outgoing from n}
8 while enabled (n) − Sl ̸= ∅:
9 choose smallest e ∈ (enabled (n) − Sl) w.r.t. linear ordering on actions

10 let s′ such that s(n) e−→ s′ in TS(S)
11 if ∃n′′ ∈ Explored such that n′′ ◁ (s′, Sl − De):
12 add edge n

e−→ n′′

13 else if IFS(s′, enabled (s′) − (Sl − De)):
14 create node n′ with s(n′) = s′ and sleep(n′) = Sl − De

15 add edge n
e−→ n′

16 DAGExplore(n′)
17 Sl := Sl ∪ {e}
18 add n to Explored

Pac

•

• •
a c

Sac

•a c

Pb

•
•b

Sb

•

b

Transition system
•

• •
• • •

a b

b c a

Figure 8 Sleep sets are needed for optimality.

▶ Remark 21. Sleep sets are needed for the optimality result, in a sense that some information
about exploration context is needed. Consider the system of four process in Figure 8 (left)
and its runs (right). The algorithm first explores the run ab, and then in the root state asks
if there is a run where a is not a first action. The answer is positive because of the run bc.
The algorithm then decides to explore b as it is the smallest enabled action. At this point it
arrives at nb. Without a sleep set it has no choice but to explore both a and c from nb. But
ba ∼ ab so this is not trace-optimal. With sleep sets we get a ∈ sleep(nb) which is exactly
what is needed to block unnecessary exploration. So an idealized view suggested by Section 3
that partial-order reduction boils down to finding good covering source sets is not the whole
story. Fortunately, the additional required information is easy to compute from the context.

5.1 The IFS oracle
The use of IFS queries gives a very clean approach to partial-order reduction, unfortunately
the IFS problem is NP-hard.

▶ Proposition 22. The following problem is NP-hard: given a concurrent system S, its
global state s, and a set of actions B, does IFS(s,B) hold?

Proof. Suppose we are given a 3CNF formula φ consisting of m clauses over variables
x1, . . . , xn. Say the j-th clause is of the form (α1

j ∨ α2
j ∨ α3

j) where each α is either some
variable xi or its negation x̄i. We will construct a concurrent program Pφ such that φ is
satisfiable if and only if IFS(s0, B) holds for the initial state s0 and B some set of actions
we make precise below.

CONCUR 2025

22:16 Partial-Order Reduction Is Hard

P0
i • • •

acq(ei) rel(x̄i)

P1
i • • •

acq(ei) rel(xi)
Ci

j • • • •
acq(αi

j) rel(αi
j) rel(cj)

D • • • • •
acq(c1) acq(cm) acq(f)

F • •
acq(f)

Figure 9 A concurrent program Pφ with locks encoding SAT(φ) for a 3CNF formula φ.

All actions in Pφ will implement taking or releasing a lock. There is one lock per
propositional variable and its negation, {x1, . . . , xn, x̄1, . . . , x̄n}; one per clause, {c1, . . . , cm};
one additional lock for every variable {e1, . . . , en} in Pφ, as well as a special lock f .

System Pφ is presented in Figure 9. For every propositional variable xi there are two
processes P 0

i and P 1
i . For every clause (α1

j ∨ α2
j ∨ α3

j) there are processes C1
j , C

2
j , C

3
j .

Additionally, there are two processes D and F .
Consider the state s where every process is in its initial state, and where the locks

{x1, . . . , xn, x̄1, . . . , x̄n, c1, . . . , cm} are taken whereas the other locks are available. At this
point the only processes enabled are F , and the processes corresponding to propositional
variables, namely P 0

1 , P
1
1 , . . . , P

0
n , P

1
n . Process F can take the lock f . For each i, either

process P 0
i or process P 1

i takes the lock ei which amounts to choosing a value for variable xi,
as either the lock xi or the lock x̄i is released, respectively. This may allow some process
corresponding to a clause to move. For example, suppose xi was released, and α1

j , the first
literal of the j-th clause, is xi. Then process C1

j can take xi and release xi thus testing if xi

was available. If the lock was available, then it can release cj . Releasing cj intuitively means
that the j-th clause is satisfied. Thus, all locks c1, . . . , cm can be released if and only if the
formula φ is satisfied by the valuation determined by locks from {x1, . . . , xn, x̄1, . . . , x̄n} that
have been released. If all c1, . . . , cm are released then process D can take all these locks and
then take f . So if φ is satisfiable then there is a maximal run of the system where acq(f) is
not a first action. If φ is not satisfiable then there is no way to release all the locks c1, . . . , cm,
so D cannot take f . In this case acq(f) is in the first set of every maximal run because
process F can always take f . This shows that IFS(s,Σ − {acq(f)}) holds iff φ is satisfiable
(where Σ is the set of all actions in Pφ). ◀

In our opinion it is worthwhile to study heuristics for the IFS problem. One possibility
is to use existing static [14, 30, 34] or dynamic [12, 1, 18, 22] partial-order techniques to
compute, for each node, a set of actions to visit to ensure completeness. Another intriguing
approach consists in encoding IFS(s,B) as a SAT problem, and then use a solver. This
makes sense since the IFS problem is NP-hard. Designing heuristics that are efficient in
practice is out of the scope of this paper. Still, we show that the IFS problem can actually
be solved efficiently in a special case of non-blocking systems.

There is a simple setting where the IFS test can be done in polynomial time. Here
the only operations are reads and writes, and programs are straight lines, in particular
there are no conditionals. This case is indeed considered in the stateless model-checking
literature [5, 22]. We generalize this situation to the case when we have variables but no
operation on a variable can ever be blocked. So instead of just reads and writes we can also
have operations like test-and-set, or fetch-and-add.

▶ Definition 23. An extended concurrent program is a concurrent program P with arbitrary
instructions on variables. It is fully non-blocking if in every state every first action of every
process is enabled. It is linear if every process is a sequence of instructions, meaning there is
no branching or conditionals.

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:17

We use the term fully non-blocking to differentiate from non-blocking from [1] that is rather
a forward non-blocking condition.

▶ Proposition 24. If P is a linear, fully non-blocking extended concurrent program then IFS
test can be done in polynomial time.

Recall that IFS(s,B) means that there is a maximal run u from s with first(u) ⊆ B. Let
B̄ denote the set of actions not in B. For a sequence v of actions we denote by B̄v the set
B̄ −Dv, namely the set of actions in B̄ that are not dependent on actions in v. Then, we
can check if IFS(s,B) by constructing a run as follows. Suppose v is an already constructed
run from s. Extend v with the smallest action enabled in the state reached after v, that is
not in B̄v. When there is no such action return true if v is maximal, and false otherwise.

Thus, in the case covered by the above proposition the algorithm from Listing 1 is optimal
and works in polynomial time w.r.t. size of the constructed tree. It works differently than
race-reversal algorithms [1, 3].

The IFS test is NP-hard when one of the two conditions of Proposition 24 is lifted. This
does not preclude that there is some case between fully non-blocking and blocking for which
IFS is in Ptime. However, it is quite hard to imagine how to weaken the linearity condition.

6 Conclusions

Our main result is a negative one, indicating that we cannot hope for too much in terms of
theoretically good partial-order algorithms. It has been known before that certain existing
partial-order methods are NP-hard [30], but here we show that no method can be both
polynomially close to optimal and not NP-hard.

As we have explained in the introduction, we believe that stateful partial-order methods
have applications, and that there are even more applications to come. In this context our
negative result gives us an argument for looking at well motivated heuristics rather than
for a theoretically grounded result. We propose a new schema of a partial-order reduction
algorithm based on IFS test. While in general the test is NP-complete, we hope that good
heuristics for this test can translate into progress in partial-order methods. This is a direction
we are actively investigating.

There is a big variety of concurrent systems, in particular depending on communication
operations between processes. We have exhibited one case when IFS test can be done in
Ptime. Intuitively, it captures “fully non-blocking” situations. An interesting question is
what happens in the forward non-blocking case [1], or maybe to some other formalization of
non-blocking in the spirit wait-free operations [16] or MPI [27].

References
1 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Source Sets:

A Foundation for Optimal Dynamic Partial Order Reduction. Journal of the ACM, 64(4):1–49,
2017. doi:10.1145/3073408.

2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Frederik Meyer Bønneland, Sarbojit Das, Bengt
Jonsson, Magnus Lang, and Konstantinos Sagonas. Tailoring Stateless Model Checking
for Event-Driven Multi-threaded Programs. In Étienne André and Jun Sun, editors, Automated
Technology for Verification and Analysis, pages 176–198. Springer Nature Switzerland, 2023.
doi:10.1007/978-3-031-45332-8_9.

3 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Sarbojit Das, Bengt Jonsson, and Konstantinos
Sagonas. Parsimonious optimal dynamic partial order reduction. In Arie Gurfinkel and Vijay
Ganesh, editors, Computer Aided Verification - 36th International Conference, CAV 2024,

CONCUR 2025

https://doi.org/10.1145/3073408
https://doi.org/10.1007/978-3-031-45332-8_9

22:18 Partial-Order Reduction Is Hard

Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part II, volume 14682 of Lecture Notes
in Computer Science, pages 19–43. Springer, 2024. doi:10.1007/978-3-031-65630-9_2.

4 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Sarbojit Das, Bengt Jonsson, and Konstantinos
Sagonas. Trading space for simplicity in stateless model checking. In Susanne Graf, Paul
Pettersson, and Bernhard Steffen, editors, Real Time and Such - Essays Dedicated to Wang
Yi to Celebrate His Scientific Career, volume 15230 of Lecture Notes in Computer Science,
pages 79–97. Springer, 2025. doi:10.1007/978-3-031-73751-0_8.

5 Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlogiannis, and Viktor
Toman. Stateless Model Checking Under a Reads-Value-From Equivalence. In Alexandra Silva
and K. Rustan M. Leino, editors, Computer Aided Verification, volume 12759, pages 341–366.
Springer International Publishing, 2021. doi:10.1007/978-3-030-81685-8_16.

6 Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil
Vaidya. Data-centric dynamic partial order reduction. Proceedings of the ACM on Programming
Languages, 2(POPL):1–30, 2018. doi:10.1145/3158119.

7 Berk Cirisci, Constantin Enea, Azadeh Farzan, and Suha Orhun Mutluergil. A Pragmatic
Approach to Stateful Partial Order Reduction. In Cezara Dragoi, Michael Emmi, and Jingbo
Wang, editors, Verification, Model Checking, and Abstract Interpretation, volume 13881, pages
129–154. Springer Nature Switzerland, 2023. doi:10.1007/978-3-031-24950-1_7.

8 Camille Coti, Laure Petrucci, César Rodríguez, and Marcelo Sousa. Quasi-optimal par-
tial order reduction. Formal Methods in System Design, 57(1):3–33, 2021. doi:10.1007/
s10703-020-00350-4.

9 Frank S. De Boer, Marcello Bonsangue, Einar Broch Johnsen, Violet Ka I Pun, S. Lizeth
Tapia Tarifa, and Lars Tveito. SymPaths: Symbolic Execution Meets Partial Order Reduction.
In Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, and Mattias Ulbrich,
editors, Deductive Software Verification: Future Perspectives, volume 12345, pages 313–338.
Springer International Publishing, 2020. doi:10.1007/978-3-030-64354-6_13.

10 Azadeh Farzan. Commutativity in Automated Verification. In 2023 38th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–7. IEEE, 2023. doi:10.1109/
LICS56636.2023.10175734.

11 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski. Sound sequentialization for con-
current program verification. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, pages 506–521. ACM, 2022.
doi:10.1145/3519939.3523727.

12 Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order Reduction for Model
Checking Software. In POPL’05, 2005.

13 Patrice Godefroid. Using partial orders to improve automatic verification methods. In
Edmund M. Clarke and Robert P. Kurshan, editors, Computer-Aided Verification, pages
176–185. Springer, 1991. doi:10.1007/BFb0023731.

14 Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems An
Approach to the State-Explosion Problem. PhD thesis, Université de Liège, 1994.

15 R. Govind, Frédéric Herbreteau, Srivathsan, and Igor Walukiewicz. Abstractions for the local-
time semantics of timed automata: A foundation for partial-order methods. In Proceedings of
the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 1–14. ACM,
2022. doi:10.1145/3531130.3533343.

16 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991. doi:10.1145/114005.102808.

17 Casper S. Jensen, Anders Moller, Veselin Raychev, Dimitar Dimitrov, and Martin Vechev.
Stateless model checking of event-driven applications. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, pages 57–73. Association for Computing Machinery, 2015.
doi:10.1145/2814270.2814282.

https://doi.org/10.1007/978-3-031-65630-9_2
https://doi.org/10.1007/978-3-031-73751-0_8
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1145/3158119
https://doi.org/10.1007/978-3-031-24950-1_7
https://doi.org/10.1007/s10703-020-00350-4
https://doi.org/10.1007/s10703-020-00350-4
https://doi.org/10.1007/978-3-030-64354-6_13
https://doi.org/10.1109/LICS56636.2023.10175734
https://doi.org/10.1109/LICS56636.2023.10175734
https://doi.org/10.1145/3519939.3523727
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1145/3531130.3533343
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/2814270.2814282

F. Herbreteau, S. Larroze-Jardiné, and I. Walukiewicz 22:19

18 Bengt Jonsson, Magnus Lang, and Konstantinos Sagonas. Awaiting for Godot Stateless Model
Checking that Avoids Executions where Nothing Happens. In {22nd Formal Methods in
Computer-Aided Design, {FMCAD} 2022. IEEE, 2022.

19 Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic Partial Order Reduction: An
Optimal Symbolic Partial Order Reduction Technique. In Ahmed Bouajjani and Oded Maler,
editors, Computer Aided Verification, volume 5643, pages 398–413. Springer Berlin Heidelberg,
2009. doi:10.1007/978-3-642-02658-4_31.

20 Shmuel Katz and Doron Peled. Verification of distributed programs using representative
interleaving sequences. Distributed Computing, 6(2):107–120, 1992. doi:10.1007/BF02252682.

21 Michalis Kokologiannakis, Rupak Majumdar, and Viktor Vafeiadis. Enhancing GenMC’s
Usability and Performance. In Bernd Finkbeiner and Laura Kovács, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 66–84. Springer Nature
Switzerland, 2024. doi:10.1007/978-3-031-57249-4_4.

22 Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor Vafeiadis. Truly
stateless, optimal dynamic partial order reduction. Proceedings of the ACM on Programming
Languages, 6(POPL):1–28, 2022. doi:10.1145/3498711.

23 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. Unblocking Dynamic
Partial Order Reduction. In Constantin Enea and Akash Lal, editors, Computer Aided
Verification, volume 13964, pages 230–250. Springer Nature Switzerland, 2023. doi:10.1007/
978-3-031-37706-8_12.

24 Michalis Kokologiannakis, Iason Marmanis, and Viktor Vafeiadis. SPORE: combining symmetry
and partial order reduction. Proc. ACM Program. Lang., 8(PLDI):1781–1803, 2024. doi:
10.1145/3656449.

25 Pallavi Maiya, Rahul Gupta, Aditya Kanade, and Rupak Majumdar. Partial Order Reduction
for Event-Driven Multi-threaded Programs. In Marsha Chechik and Jean-François Raskin,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 680–697.
Springer, 2016. doi:10.1007/978-3-662-49674-9_44.

26 Antoni W. Mazurkiewicz. Introduction to trace theory. In Volker Diekert and Grzegorz
Rozenberg, editors, The Book of Traces, pages 3–41. World Scientific, 1995. doi:10.1142/
9789814261456_0001.

27 Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.1,
November 2023. URL: https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf.

28 Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. Trace aware random testing for
distributed systems. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–29,
2019. doi:10.1145/3360606.

29 Doron Peled. Partial-order reduction. In Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages 173–190. Springer,
2018. doi:10.1007/978-3-319-10575-8_6.

30 Doron A. Peled. All from one, one for all: on model checking using representatives. In
Costas Courcoubetis, editor, Computer Aided Verification, 5th International Conference, CAV
’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in
Computer Science, pages 409–423. Springer, 1993. doi:10.1007/3-540-56922-7_34.

31 The Anh Pham. Efficient State-Space Exploration for Asynchronous Distributed Programs:
Adapting Unfolding-Based Dynamic Partial Order Reduction to MPI Programs. These de
doctorat, Rennes, Ecole normale superieure, 2019.

32 César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. Unfolding-based
Partial Order Reduction. LIPIcs, Volume 42, CONCUR 2015, 42:456–469, 2015. doi:
10.4230/LIPICS.CONCUR.2015.456.

33 Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and
Gul Agha. TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing
Actor Programs. In Holger Giese and Grigore Rosu, editors, Formal Techniques for Distributed
Systems, pages 219–234. Springer, 2012. doi:10.1007/978-3-642-30793-5_14.

CONCUR 2025

https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1007/BF02252682
https://doi.org/10.1007/978-3-031-57249-4_4
https://doi.org/10.1145/3498711
https://doi.org/10.1007/978-3-031-37706-8_12
https://doi.org/10.1007/978-3-031-37706-8_12
https://doi.org/10.1145/3656449
https://doi.org/10.1145/3656449
https://doi.org/10.1007/978-3-662-49674-9_44
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1142/9789814261456_0001
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/10.1145/3360606
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.4230/LIPICS.CONCUR.2015.456
https://doi.org/10.4230/LIPICS.CONCUR.2015.456
https://doi.org/10.1007/978-3-642-30793-5_14

22:20 Partial-Order Reduction Is Hard

34 Antti Valmari. Stubborn sets for reduced state space generation. In G. Goos, J. Hartmanis,
D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli,
G. Seegmüller, J. Stoer, N. Wirth, and Grzegorz Rozenberg, editors, Advances in Petri
Nets 1990, volume 483, pages 491–515. Springer Berlin Heidelberg, 1991. doi:10.1007/
3-540-53863-1_36.

35 Bjorn Wachter, Daniel Kroening, and Joel Ouaknine. Verifying multi-threaded software with
impact. In 2013 Formal Methods in Computer-Aided Design, pages 210–217. IEEE, 2013.
doi:10.1109/FMCAD.2013.6679412.

36 Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole Partial Order Reduction.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 4963, pages 382–396. Springer Berlin Heidelberg, 2008.
doi:10.1007/978-3-540-78800-3_29.

37 Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. Efficient State-
ful Dynamic Partial Order Reduction. In Klaus Havelund, Rupak Majumdar, and Jens
Palsberg, editors, Model Checking Software, pages 288–305. Springer, 2008. doi:10.1007/
978-3-540-85114-1_20.

https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1109/FMCAD.2013.6679412
https://doi.org/10.1007/978-3-540-78800-3_29
https://doi.org/10.1007/978-3-540-85114-1_20
https://doi.org/10.1007/978-3-540-85114-1_20

	1 Introduction
	1.1 Related Work

	2 Modeling concurrent systems
	3 Partial-order reduction
	4 Partial-order reduction is NP-hard
	4.1 Synchronizations
	4.2 Await and locks
	4.3 Just await

	5 An approach to partial-order reduction
	5.1 The IFS oracle

	6 Conclusions

