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Abstract
We demonstrate a surprising and first-of-its-kind expressive equivalence between decidable metric
and freeze logics over timed words in pointwise semantics. Our main result states that Metric
Interval Temporal Logic with future, past and Pnueli modalities, MITPPL, and full unilateral timed
propositional temporal logic with both future and past temporal modalities, UPTL, have identical
expressiveness. One of the highlights of this paper, which allows for this equivalence, is to prove
that UPTL formulas admit monadic decomposition. Our result also implies that several decidable
logics for real-time specifications, such as one-variable UPTL, unilateral MITPPL, and Q2MLO, are
all expressively equivalent, and the reductions between them are effective. Hence, our result unifies
the fragmented expressiveness boundary of timed temporal logics. As corollaries, we resolve the
open question of the decidability for full UPTL, and the variable or clock hierarchy problem for the
future fragment of UPTL.
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1 Introduction

Timed logics provide means to declaratively specify properties of real-time systems. They
extend discrete time temporal logics such as linear temporal logic (LTL) by associating
real-time intervals with temporal modalities, or with freeze quantifiers. An important
research goal in the algorithmic verification of real-time systems is to balance the desire
for more expressive logics with their decidability and tractability. Timed logics have two
main semantics : pointwise (or event-based), where it is represented as a sequence of (events,
timestamp) pairs called a timed word, and continuous, where it is represented as a signal (as
a function from non-negative real numbers to a set of events).

There has been a long quest for highly expressive, yet decidable real-time temporal logics
[1, 32, 9, 11, 26, 21, 24, 15, 8, 22, 23]. It is well known that timed propositional temporal
logic TPTL, which extends LTL with “freeze” quantifiers to record the time elapsed [3], and
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24:2 Expressive Equivalence Between Decidable Timed Logics.
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Figure 1 The expressiveness comparison (over timed words) of various timed logics studied in
the literature. An arrow from L1 to L2 means that L1 is more expressive than L2. A dashed arrow
between L1 and L2 means that strict containment wrt. expressiveness is still open. A solid arrow
implies strict containment. Logics within the same box are equi-expressive. Our main contribution
is to establish the equivalences shown in this figure.

metric temporal logic MTL, which extends LTL with temporal operators indexed by real-
time intervals [20], are expressive but undecidable [4, 28] in both pointwise and continuous
semantics. Moreover, TPTL (respectively, TPTL[Fut] the future only fragment of TPTL)
is strictly more expressive than MTL (and MTL[Fut], respectively) in both pointwise and
continuous semantics [5, 29]. This has led to a search for logics that restrict the expressiveness
of TPTL and MTL in various ways to recover the decidability.

The continuous semantics naturally extends the first order theory of untimed words, and
techniques from the untimed setting can be generalized, albeit with non-trivial extensions,
such as adapting the separation lemma for expressive completeness [19]. In the pointwise
semantics, these expressive completeness (and other equivalences) break down, leading
to fragmented sublogics with varying expressiveness. This makes adapting traditional
techniques difficult, and expressive equivalences in pointwise semantics are rare. Even though
the continuous semantics is theoretically more well-behaved [12], the pointwise semantics is
more amenable to practical implementations for verification applications [7, 10]. Currently,
the expressiveness landscape for decidable real-time temporal logics – especially under the
pointwise semantics – is quite fragmented: there are a number of different proposals that
maintain decidability, but many questions remain unanswered about their relative expressive
power. This paper attempts to fill in this gap.

Figure 1 shows a reasonably complete view of the current decidability/expressiveness
landscape in the pointwise semantics1. The arrows L→ L′ in the figure indicate that logic L
is strictly more expressive than logic L′. At the top of the figure sits the undecidable logics
TPTL and MTL. Towards the bottom sits MITL, with an EXPSPACE-complete satisfiability
problem [1, 2]. More recently, a number of other decidable logics have been proposed and
studied independently. These logics either extend MITL with counting operators (Pnueli
modalities) MITPPL [14, 13], or restrict TPTL to unilateral constraints of the form (T−x)≤u
or (T−x)≥l (UPTL) [24] or define syntactic fragments of a monadic first-order logic with
metric and order restricting the number of variables (Q2MLO)[11, 9, 30, 32].

1 In this paper, we implicitly assume logics have both future and past modalities. When we restrict a logic
L to only future modalities, we explicitly denote it as L[Fut]. Our results span finite and infinite words.
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Our Contributions.

1. Equivalence between Metric and Freeze timed logics. We show a surprising
expressive equivalence between the metric logic MITPPL and the freeze logic UPTL. To
the best of our knowledge, this is the first expressive equivalence result for a metric
temporal logic and a freeze logic which works in both pointwise and continuous semantics.
The key technical ingredient that enables us to prove our main result is that the formulas
of UPTL (and UPTL[Fut]) admit monadic decomposition. That is, every UPTL (or
UPTL[Fut]) formula with multiple free variables can be reduced to a Boolean combination
of formulas containing only one free variable preserving equivalence. The only other
such known equivalences are in continuous semantics between TPTL[Q] and MTL[Q] [19],
and TPTL and MTL with counting [18]. Together with known equivalences from the
literature [17], this implies that the logics MITPPL, UPTL, and Q2MLO are all expressively
equivalent (see the box in the middle of Figure 1).

2. Potential Applications. The reduction of freeze logics to metric logics has practical
implications for algorithmic verification. A key feature of MITL (and MITPPL) is that the
satisfaction of any subformula is “local”, i.e. can be defined with respect to a single point
– the point of assertion. This property simplifies compositional verification for decidable
metric logics and has enabled tools like MightyL [6] for MITL[Fut] and the more recent
MightyPPL [27] for MITPPL. Since our reduction translates freeze logics into metric
logics, it facilitates the use of these tools for verifying UPTL properties, broadening their
applicability in practice.

3. Refining the Expressiveness Boundary of Freeze Timed Logics. We address open
problems from [24] regarding the decidability of the full logic UPTL (with future and
past modalities). In particular, we show that (1) the satisfiability and model-checking
problems for UPTL are decidable, and (2) UPTL has the same expressive power as its
one-variable fragment, indicating that increasing the number of variables in UPTL does
not enhance expressiveness.

2 Preliminaries

Let R≥0, N, N>0, Q, Q≥0, and Z respectively represent the set of non-negative reals, naturals
(including 0), naturals (excluding 0), rationals, non-negative rationals, and integers. Let ⟨
denote left open “(” or left closed “[”, and ⟩ denote right open “)” or right closed “]”, and let
I denote the set of all intervals ⟨l, u⟩ for l ≤ u, l ∈ N, u ∈ N ∪ {∞}. Let true and false be
denoted by ⊤ and ⊥, respectively. Given any sequence ⅁ = a1, a2, . . . ,, |⅁| denote length of
the sequence.

Let AP be a finite set of propositional variables, and let ΣAP = 2AP be the finite set
containing all subsets of AP. An infinite timed word (or just timed words) ρ over ΣAP
is an infinite sequence of pairs of letters and non-decreasing time stamps of the form
ρ = (σ1, τ1)(σ2, τ2) . . . where for all i > 0, σi ∈ ΣAP, τi ∈ R≥0, and 0 ≤ τi ≤ τi+1. A finite
timed word is a finite sequence of pairs of letters and non-decreasing time stamps.

For i > 0, we define ρ[i] = σi for the element of ΣAP at the ith position of ρ. The set of
all timed words over Σ is denoted TΣω. A timed word is called Zeno if the sequence (τi)i≥0
converges, and non-Zeno otherwise. We restrict ourselves to non-Zeno infinite timed words
(henceforth called timed words), which is the usual convention, as Zeno words allow infinite
actions within a finite duration, which does not model a natural behaviour.

CONCUR 2025
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2.1 Metric Temporal Logic with Pnueli Modalities, MTLPPL
Formulas of MTLPPL are defined over a set of propositional variables AP as follows:
φ := a | ¬φ | φ ∧ φ | φUI φ | φ SI ψ | PnI(φ1, . . . , φk) |

←−
PnI(φ1, . . . , φk)

where a ∈ AP and I is an interval in I. Given a timed word ρ = (σ1, τ1)(σ2, τ2) . . . over
ΣAP, a position i ∈ N>0, and any a ∈ AP, we define the pointwise-semantics of MTLPPL
inductively. We define ρ, i |= a iff a ∈ σi, and conjunction, disjunction, and negation in the
usual way. For temporal modalities, we define:

ρ, i |= φ1 UI φ2 iff ∃j > i s.t. τj − τi ∈ I, ρ, j |= φ2, and ∀i < k < j, ρ, k |= φ1;
ρ, i |= φ1 SI φ2 iff ∃j < i s.t. τi − τj ∈ I, ρ, j |= φ2, and ∀j < k < i, ρ, k |= φ1;
ρ, j |= PnI(φ1, . . . , φk) iff ∃ik>ik−1>. . .>i1>j s.t. ∀1 ≤ n ≤ k, τin

−τj∈I, and ρ, in|=φn;
ρ, j |=

←−
PnI(φ1, . . . , φk) iff ∃ik<ik−1<. . .<i1<j s.t. ∀1 ≤ n ≤ k, τj−τin

∈I, and ρ, in|=φn.
We define the language of φ as JφK = {(ρ, i)|ρ, i |= φ}. Notice that we use strict semantics for
both U and S, as it can easily express “next” and “previous” modalities, unlike the non-strict
variants. Derived operators I (eventually), □I (globally),

←
I (past),

←
I (globally in the

past), O (next) and
←
O (previous) are written in terms of U and S as follows. I φ = ⊤UI φ,

□Iφ = ¬ I ¬φ,
←

I φ = ⊤ SI φ,
←

I φ = ¬
←

I ¬φ, Oφ = ⊥U[0,∞) φ and
←
O φ = ⊥ S[0,∞) φ.

For the sake of succinctness, we omit the subscript when the intervals are [0,∞). Hence,
φ U[0,∞) ψ and φ S[0,∞) ψ are written as φ U ψ and φ S ψ, respectively. We define some
important subclasses of MTLPPL. The subclass Metric Interval Temporal Logic with Pnueli
modalities, written MITPPL, consists of all MTLPPL formulas where the intervals I are
non-singular (i.e., of the form ⟨l, u⟩, where l < u). Metric Temporal Logic (MTL) and
Metric Interval Temporal Logic (MITL) are fragments of MTLPPL and MITPPL, respectively,
without Pnueli modalities. Unilateral fragments of MITL and MITPPL (denoted by UMITL
and UMITPPL, respectively) are subclasses where the intervals are either of the form ⟨0, u⟩
or ⟨l,∞).
Example. For the UMITPPL formula φ = Pn(0,2)(a, b, c), ρ, 1|=φ for ρ=({a}, 0)({a}, .5)
(∅, .9) ({b, c}, 1.1)({a, b, c}, 1.8) . . . , since τ5 − τ1 = 1.8, τ4 − τ1 = 1.1, τ2 − τ1 = 0.5 all
lie in (0, 2), and ρ, 2|=a, ρ, 4|=b and ρ, 5|=c. However, ρ′, 1 ⊭ φ for ρ′=({a}, 0)({c}, .1)
({b, c}, 1.1)({a, b}, 1.9)(∅, 2) . . . .

2.2 Timed Propositional Temporal Logic, TPTL
TPTL [4] is an extension of linear temporal logic (LTL) with real-valued variables and freeze
quantifiers which allow subformulas to freeze the timestamps of the present point to a
particular variable. We define the TPTL formulas in negation normal form, i.e. where the
negation operator is only applied to atomic formulas. It is well known [24] that any formula in
TPTL can be converted to an equivalent formula in negation normal form (NNF), and as such,
we introduce TPTL in NNF, where all negations appear only at the level of propositional
variables. Formulas in TPTL (in negation normal form) over a finite set X of freeze variables
and AP is defined as2:
φ:= a | ¬a | φ∧φ | φ∨φ | x.φ | (T − x)∼c | φUφ | φSψ | □φ |

←
φ, a ∈ AP, x ∈ X, c ∈ Z.

Given a timed word ρ = (σ1, τ1)(σ2, τ2) . . . over ΣAP, a position i ∈ N>0, a valuation
ν : X → R≥0 of the variables, and any a ∈ AP, we define the pointwise-semantics of TPTL
inductively. Propositions a ∈ AP, conjunctions, disjunctions, U, S, □, and

←
formulas are

evaluated as in LTL. In addition,

2 In literature, the negation normal form usually admits a “Release” modality (and its past counterpart),
but they can be expressed using “U” and “□” (respectively, S and

←
) without negations. Moreover, we

use strict versions of U and S modalities.
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ρ, i, ν |= x.φ iff ρ, i, ν′ |= φ, where ν′ = ν[x ← τi] is a valuation s.t. ν′(y) = ν(y) for
y ̸= x, and ν′(x) = τi. Further, x.φ is called a freeze quantifier. The timestamp τi of ρ is
“frozen” in x ∈ X before evaluating φ.
ρ, i, ν |= (T −x) ∼ c iff τi−ν(x) ∼ c. Intuitively, at the ith position of ρ, the time elapsed
since the last time x was frozen (i.e. τi − ν(x)) is compared with c ∈ Z. If the last time x
was frozen happens to be at position j ≤ i, then ν(x) = τj and τi − τj is the time elapse
since freezing x.

We denote by k-TPTL the class of TPTL formulas with k freeze variables; so
TPTL=

⋃
k≥0 k-TPTL. The derived modalities next (O), eventually ( ), sometime ago (

←
),

and previous (
←
O) are defined as usual.

Open and Closed TPTL Formulas. A constraint (T − x) ∼ c appearing in a TPTL formula
φ is called closed if it lies within the scope of a freeze variable x., and open otherwise. A
freeze variable x in a TPTL formula φ is called a free variable if any occurrence of x in φ

appears in an open constraint. We write φ(x1, . . . , xk) to denote that the free variables in φ
are x1, . . . , xk. When the free variables in a formula are clear from the context, we just write
φ for φ(x1, . . . , xk). A TPTL formula is closed iff it does not contain any free variable; an
open formula is one which is not closed.

▶ Example. The formula ψ=x.((a∧(T − z)≤2) U [b∧y.( a∧(T−y)<1 ∧ (T−x)<2)]) is
open. φcnt=x.( (a∧ (a∧(T − x)<1))) is closed.

The satisfaction of a closed TPTL formula is independent of any valuation ν of its variables
since each constraint (T − x) ∼ c lies in the scope of a freeze quantifier x., the value of x
only depends on the time elapsed since it was frozen. Hence, we define the language of a
TPTL formula φ only if it is closed. We define the language of a closed formula φ as JφK =
{(ρ, i)|ρ, i |= φ}. The formula φcnt above encodes the property that there are at least two a in
the next time interval of unit length; it is known [11] that φcnt does not have an equivalent MTL
formula. Then (ρ, 1)∈JφcntK where ρ=({a}, 0.2)({a, b}, 0.45)(∅, .75)({b}, .8)({c}, .95) . . . .

Polarity of a TPTL formula. Let (T − x) ∼ c be an open constraint in formula φ. The
polarity of (T − x) ∼ c denoted Pol((T − x) ∼ c) is defined to be the singleton set {≤} if
∼∈ {<,≤}, and {≥} if ∼∈ {>,≥}. The polarity of a TPTL formula φ denoted Pol(φ) is
defined when all open constraints in φ have the same polarity. Pol(φ) is the polarity of the
open constraints in φ. We define the polarity of a closed TPTL formula as the set {≤,≥}
since it has no open constraints.

Unilateral Timed Propositional Temporal Logic, UPTL. A TPTL formula φ is UPTL iff
Pol(ψ) is defined for all subformulas ψ of φ. Let k-UPTL denote UPTL formulas using k

freeze variables, and UPTL=
⋃

k≥0 k-UPTL.

▶ Example. Consider φ = x.[ (a ∧ (T − x) > 2 ∧ (T − y) > 3)]. Pol((T − y) > 3) = {≥} =
Pol(φ). Likewise, Pol(κ) = {≤} for κ = x.( (a ∧ (T − x) > 2 ∧ (T − y) < 3)). However,
Pol(ψ) is undefined for the subformula ψ = (a ∧ (T − x) > 2 ∧ (T − y) < 3) of κ, since
Pol((T − x) > 2) = {≥} while Pol((T − y) < 3) = {≤}.

Future Fragments of Logics. For any logic L defined so far, L[Fut] denotes its future
fragment, one which does not involve any past (or past Pnueli) modalities. For instance,
UPTL[Fut] is the fragment of UPTL with only future modalities [24].

CONCUR 2025
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▶ Remark 2.1. Notice that MTLPPL (and UMITPPL) properties can be translated to
1-TPTL (1-UPTL) preserving the languages by applying the following reduction inductively.
PnI(a1, . . . , ak) ≡ x.( (a1 ∧ (T−x)∈I ∧ (a2 ∧ (T − x)∈I ∧ (. . . (ak ∧ (T − x)∈I) . . .).
Moreover, a1 UI a2 ≡ x.(a1 U (a2 ∧ (T−x)∈I)). Similar reductions apply for S and

←−
Pn.

2.3 First Order Logic of Metric and Order, FOMLO
Formulas of FOMLO are defined over a signature containing monadic predicates a(x) where
a ∈ AP, order predicates x ∼ y for ∼∈ {<,>,=,≤,≥} and a set of metric predicates
∆ = {(x⊖ y) ∼ c | c ∈ Z,∼∈ {≤,≥, <,>,=}}, where x, y are first-order variables. Syntax of
FOMLO formula φ(x1, . . . , xk) is defined as:
φ(x1, . . . , xk) :: a(xi) | xi ∼ xj | (xi⊖xj)∼c | φ ∨ φ | φ ∧ φ | ¬φ | Qx.φ(x, x1, . . . , xk),
where Q ∈ {∃,∀} and is interpreted over timed words ρ along with valuation
ν : {x1, . . . , xk}→ N>0. ρ, ν |= (x⊖y)∼c for ν(x) = j, ν(y) = i iff τj − τi ∼ c, where τj and
τi are timestamps of points i, j in ρ, respectively. Hence, the variables range over positions
of timed words. The semantics of the remaining operators are identical to that of first-order
logic with < predicate (FO[<]) over words(see [31][11] for more details). For a FOMLO
formula φ(x) with one free variable, the language Jφ(x)K is defined as {(ρ, i) | ρ, ν |= φ(x)
with ν(x) = i}.

Q2MLO [11] is a syntactic fragment of FOMLO where, in the grammar of FOMLO,
metric predicates (x⊖ y) ∼ c are replaced by the timed monadic formula ψ(x) whose syntax
is ψ(x) := ∃y.[(y⊖x < u) ∧ (y⊖x > l) ∧ φ(x, y)] where l, u ∈ Z, l ̸= u, and φ(x, y) is a
well-formed Q2MLO formula. Q2MLO can be seen as an extension of FO[<] with timed
monadic formulas.
Example. The formula ∃y.∃z.[x>y>z ∧ a(y) ∧ b(z) ∧ (z ⊖ x) > 15 ∧ (z ⊖ y) < 30]
is in FOMLO but not in Q2MLO, as there is a subformula containing time constraints
involving two free variables.

2.4 Expressive Equivalence
Let ϕ and ψ be in TPTL. Then ϕ is said to be equivalent to ψ iff for any timed word ρ, any
point i of ρ, and any valuation ν over free variables of ϕ and ψ, ρ, i, ν |= ϕ iff ρ, i, ν |= ψ.
The equivalence between two Q2MLO formulas is defined in the classical sense. We say that
two formulas φ and ψ are language equivalent iff JφK = JψK. Logic L1 is at least as expressive
as L2 (denoted by L2 ⪯ L1) iff for any formula φ in L1, there exists a language equivalent
ψ in L2. L1 and L2 are said to be equally expressive (denoted by L1 ≡ L2) iff L1 ⪯ L2 and
L2 ⪯ L1. Finally, L1 is said to be strictly more expressive than L2 (denoted by L2 ≺ L1) iff
L2 ⪯ L1, and L2 and L1 are not equally expressive.
Extension to rational constants. For any logic L, let L[Q] denote the extension of L where
the constants used in the timing constraints are from the set Q≥0. For example, aU[0, 1

2 ] b is
not in MITL but is in MITL[Q].

3 Main Results

In this section, we discuss our main result (Theorem 3.1) connecting UPTL and MITPPL. A
”guided tour” to navigate supporting results for each theorem is given in Figure 2.

▶ Theorem 3.1.
(1) UPTL ≡ 1-UPTL ≡ MITPPL ≡ UMITPPL ≡ Q2MLO.
(2) MITL[Q]≡UPTL[Q]≡1-UPTL[Q]≡MITPPL[Q]≡UMITPPL[Q]≡Q2MLO[Q].



H.-M. Ho, S. N. Krishna, K. Madnani, R. Majumdar, and P. Pandya 24:7

Theorem 3.1

Theorem 3.3

Theorem 3.4

Theorem 3.5

Lemma 3.6

Lemma 4.5

Lemma 4.17∗

∗Lemma 4.17 is a
stronger version
of Lemma 3.6

Lemma 4.6 Lemma 4.7

Lemma 4.8

Lemma 4.4

Prop. 4.15
Remark 4.12 Prop. 4.14

Prop. 4.11 Prop. 4.13

Figure 2 Dependencies between theorems and lemmas. A← B means proof of A uses B.

▶ Remark 3.2. Since MITPPL has no freeze variables, we compare it with closed UPTL
formulas, similar to how Kamp’s theorem compares LTL with FO[<] having one free variable.
Our equivalence between 1-UPTL and UPTL also holds for open formulas. A reduction from
open 1-UPTL formulas to an extension of Q2MLO with two free variables also holds, but it
would lengthen the proof unnecessarily.

3.1 Overview of the proof of Theorem 3.1
Theorem 3.1 is a direct consequence of Theorem 3.3, Theorem 3.4 and Theorem 3.5 below.
Theorem 3.3 below is a result of [16, 17].

▶ Theorem 3.3 ([16, 17]).
(1) UMITPPL ≡ MITPPL ≡ Q2MLO.
(2) MITL[Q] ≡ UMITPPL[Q] ≡ MITPPL[Q] ≡ Q2MLO[Q].
Thanks to the above theorem, we just need to show that UPTL ≡ 1-UPTL ≡ Q2MLO, and
UPTL[Q] ≡ 1-UPTL[Q] ≡ Q2MLO[Q]. The former is implied by two of our main results,
namely Theorems 3.4 and 3.5. The latter is implied by the fact that the proofs of Theorems
3.4 and 3.5 do not assume the constants to be integers.

▶ Theorem 3.4. UPTL ≡ 1-UPTL.

▶ Theorem 3.5. 1-UPTL ≡ Q2MLO.

Theorems 3.4 and 3.5 rely on the following main technical lemma, Lemma 3.6.

▶ Lemma 3.6 (Monadic Decomposition of UPTL). There is an effective translation from any
φ(x1, . . . , xk) ∈ UPTL to an equivalent UPTL formula ψ, where ψ is a Boolean combination
of UPTL formulas with at most one free variable.

We first discuss the proof of Theorem 3.4 assuming Lemma 3.6. The proof of Lemma 3.6
and Theorem 3.5 are deferred to sections 4, 5, respectively.

3.2 Proof of Theorem 3.4
1-UPTL ⪯ UPTL follows trivially from the fact that the former is a syntactic fragment of the
latter. Hence, it suffices to show that UPTL ⪯ 1-UPTL. Let φ be any closed UPTL formula
using variables x1, . . . , xk. We construct a closed 1-UPTL formula ψ which uses only a single
clock x using the following steps.
1. Start with the innermost freeze quantifier over a variable, xi. Consider a

subformula of the form xi.φ
′(x1, . . . , xk), such that φ′ does not contain any subformula

of the form xj .φ
′′, where xi, xj ∈ {x1, . . . , xk}.
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2. Monadically decompose the formula φ′. By Lemma 3.6, we can construct an
equivalent formula ψ′ which is a Boolean combination of formulas of the form ψm

j (xj).
3. Distribute the freeze quantifier xi. Freeze quantifiers distribute over ∧ and ∨. Hence,

xi.φ
′(x1, . . . , xk) can be equivalently written as the Boolean combination of formulas of

the form xi.ψ
m
j (xj). Moreover, xi.ψ

m
j (xj) is equivalent to (i) ψm

j (xj) when i̸=j, and (ii)
to x.ψm

j (x) when i = j. Hence, we either remove the freeze quantifier (xi.) in case i̸=j,
or rename the variable xi to x. This step strictly reduces the number of freeze quantifiers
over some variable xi ∈ {x1, . . . , xk}.

4. Repeat steps 1, 2, and 3 until we remove all the freeze quantifiers over variables
{x1, . . . , xk}. Hence, after performing the above steps at most n times, where n is
the number of freeze quantifiers in φ, we get an equivalent formula ψ containing only one
variable x. ◀

4 Proof of Lemma 3.6: Monadic Decomposition of UPTL

The main ingredient to achieve monadic decomposition is to come up with a novel syntactic
subclass of UPTL called Conjunctive Timed Clauses (CoT, defined later) which has the
following properties:
P1 CoT formulas are “easily” monadically decomposable;
P2 Any φ ∈ UPTL can be expressed as a Boolean combination of CoT formulas.
Notice that Lemma 3.6 follows trivially if we can prove P1 and P2.

▶ Definition 4.1. (Conjunctive Timed Clauses (CoT)) A UPTL formula is a conjunctive
timed clause (CoT) if it is generated by the following grammar:

ψ ::= ϕ | (T − x) ∼ c | ψ ∧ ψ | ϕU ψ | ϕ S ψ

where ϕ is any closed UPTL formula, x ∈ X is a freeze variable, and c ∈ Z.

Note that all open time constraints in CoT formulas appear on the right side of U and S
modalities and/or conjunctions. Intuitively, we make sure that all the open time constraints
are existentially quantified, and do not appear within the scope of a disjunction. Further,

(ψ),
←

(ψ), O(ψ), and
←
O (ψ) are valid production rules as they are restricted forms of U

and S. Moreover, □,∨ formulas appears in a CoT only in ϕ, and hence all instances of □,∨
in a CoT are within a closed subformula.
Example. x.□( ((T − x) < 2)) is a well-formed CoT formula but □( ((T − x) < 2)) is
not. ϕ = O((T − x) <1∧(T − y) <3) ∧ [{□(z. (b ∨ (T − z) < 3))}U {(T − x) <1}] is in
CoT. However, ψ = (b ∧ (T − y) <1) U [x.( (a ∧ (T − x) <2))] is not in CoT; even though
x.( (a ∧ (T − x) <2)) is in CoT, (b ∧ (T − y) <1) is not closed.

Untiming Property. To show that CoT satisfies properties P1 and P2, we rely on a semantic
property of CoT: they can be “untimed”. Intuitively, formulas in CoT of polarity {≤} (resp.
{≥}) enjoy a certain form of “downward closure” (resp. “upward closure”) w.r.t. their
satisfaction by removing the open constraints appearing in them. This is described by the
Untiming Lemma (Lemma 4.4), the name suggestive of the fact that they can be untimed
by removing the open constraints under certain conditions. Given a TPTL formula ψ, let
Untime(ψ) denote the set of all formulas obtained by substituting ⊤ for some/all/none of
the open time constraints occurring in ψ.
Example. For ψ=(T − x)<u1 ∧ ((T − y)<u2)∧ x. ((T − x)<u3), Untime(ψ)={ψ, ((T −
y)<u2) ∧ x. ((T − x)<u3), (T − x)<u1 ∧ x. ((T − x)<u3), x. ((T − x)<u3)}.
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▶ Definition 4.2 (The Untiming Property). Let ▷◁∈ {≤,≥}. A TPTL formula ψ(x1, . . . , xk)
satisfies the ▷◁ untiming property iff for any ψ′ ∈ Untime(ψ), a timed word ρ, a position
j ∈ N>0, and a valuation ν : {x1, . . . , xk} 7→ R≥0, we have ρ, j, ν |= ψ implies for all i ∈ N>0
with i ▷◁ j we have ρ, i, ν |= ψ′ iff ρ, i, ν |= ψ.

▶ Remark 4.3. A formula of the form CoT ∨ CoT may not satisfy the untiming property.
Consider ψex = a ∨ (b ∧ ((T − x) ≤ 2)), Pol(ψex) = {≤}, and a ∨ b is in Untime(ψex). Let ρ
be any timed word, and j be a point in ρ where a holds. Then, ρ, j, ν |= ψex for any clock
valuation ν. However, for any point i < j and any valuation ν over x, ρ, i, ν |= a ∨ b iff
ρ, i, ν |= ψex need not be true; for instance, consider b∧¬a is true at i, τi = 50 and ν(x) = 1.

▶ Lemma 4.4 (The Untiming Lemma). Let ▷◁∈ {≤,≥}. Any CoT formula ψ of polarity ▷◁
satisfies the ▷◁ untiming property.

Proof. Let ψ be a formula in CoT. We prove for the case ≤∈ Pol(ψ); a symmetric argument
follows when ≥∈ Pol(ψ). Fix a timed word ρ = (a1, τ1)(a2, τ2) . . ., a point j of ρ and a
valuation ν over the variables in ψ. Let ψ′ ∈ Untime(ψ). Assuming that (A) ρ, j, ν |= ψ, we
now show that (B) for any point i ≤ j, ρ, i, ν |= ψ iff ρ, i, ν |= ψ′. We apply induction on
the structure of the formula ψ. From now, we assume that (A) holds. Notice that (B-1)
implies (B-2) holds trivially. This is because all the negations in the formula ψ apply only to
propositional variables. Hence, all the timing constraints appear positively within ψ. Thus,
replacing some/all timing constraints by true should make satisfaction easier. Hence, it
suffices to show that for any point i ≤ j, (B-2) implies (B-1).
Base Case. Let ψ be either a closed formula or an atomic clock constraint of the form
(T − x) ∼ u where ∼∈ {<,≤}. If ψ is a closed formula then Untime(ψ) = {ψ}. Hence, the
lemma holds trivially. If ψ = (T−x) ∼ u, then Untime(ψ) = {ψ,⊤}. For any ψ′ ∈ Untime(ψ),
(B-1) implies (B-2) is a tautology as discussed above. To show that for all i ≤ j (B-2) implies
(B-1), we need to show that ρ, i, ν |= ⊤ implies ρ, i, ν |= (T − x) ∼ u for all i ≤ j. Note
that for any i ≤ j, τi ≤ τj . As (A) holds, we know τj − ν(x) ∼ u; hence for any i ≤ j,
τi − ν(x) ≤ τj − ν(x) ∼ u, giving ρ, i, ν |= (T − x) ∼ u.
Induction Hypothesis. Assume the lemma holds for all strict subformulas of ψ.
Induction. We now show that given (A) and induction hypothesis for any i ≤ j (B-2) implies
(B-1) given the induction hypothesis and (A).

There are three possible cases (1) ψ = ψ1 ∧ ψ2, (2) ψ = ψ1 U ψ2, and (3) ψ = ψ1 S ψ2. If
ψ is an open formula, then it cannot be of the form ψ1 ∨ ψ2 or □(ψ1) by definition of CoT.

We only discuss case (2), with case (3) being symmetric. Details of all cases are in
Appendix A.
Case (2). ψ = ψ1 U ψ2 (Argument Sketch). As ψ is in CoT, ψ1 is a closed formula.
Hence, Untime(ψ1) = {ψ1}, and ψ′ is of the form ψ1 U ψ′2 where ψ′2 ∈ Untime(ψ2). For
any ψ′2 ∈ Untime(ψ2), we now show that for any i ≤ j, (B-2) ρ, i, ν |= ψ1 U ψ′2 implies
(B-1)ρ, i, ν |= ψ1 U ψ2.

Intuitively, (A) implies that there is a point jmin > j such that ρ, jmin, ν |= ψ2, and all
the points between j and jmin satisfy ψ1. Notice, by induction hypothesis, ρ, jmin, ν |= ψ′2.
Moreover,(B-2) implies that there exists a point im > i such that ρ, im, ν |= ψ′2 and all
the points between i and im satisfy ψ1. Either im < jmin, in which case, by induction
hypothesis ρ, im, ν |= ψ′2 iff ρ, im, ν |= ψ2, and hence (B-1) holds. Or, im > jmin > i such
that ρ, jmin, ν |= ψ′2 (recall by induction hypothesis), and all the points between i and im
(thus between i and jmin) satisfy ψ1. Hence, ρ, i, ν|=ψ1 Uψ2 which is equivalent to (B-1). ◀

The following sections 4.1 and 4.2 show that the subclass CoT of UPTL satisfies the properties
P1 and P2, respectively.
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4.1 Monadic Decomposition of CoT formulas
In this section, we show that CoT admits monadic decomposition, i.e. satisfies property P1.
Let ψ be any TPTL formula. Let cj = (T − xij

) ∼ uij
, 1 ≤ j ≤ k be the open constraints

appearing in ψ. Let ψ↓cj
be the formula obtained from ψ(xi1 , . . . , xik

) by substituting “true”
for all open constraints except cj with ⊤. Hence, ψ↓cj

for any 1 ≤ j ≤ k can have at most
one open constraint, and thus one free variable xij

.

▶ Lemma 4.5. Any formula ψ in CoT is equivalent to ψ↓c1(xi1) ∧ . . . ∧ ψ↓ck
(xik

).

Proof. Let ψ(x1, . . . , xk) be a UPTL formula in CoT. We prove for ≤∈ Pol(φ), and the
argument is symmetric for ≥∈ Pol(φ). The proof follows by structural induction on ψ.

Base Case. If ψ is a closed formula or a conjunction of atomic time constraints, then
ψ↓c1(xi1) ∧ . . . ∧ ψ↓ck

(xik
) is the same as ψ. Hence, the lemma trivially holds.

Induction Hypothesis. Let the lemma hold for all the strict subformulas of ψ.

Induction. There are three possible cases.
ψ = α ∧ β. Notice that α↓cj

∧ β↓cj
= ψ↓cj

(xij
) for all 1 ≤ j ≤ k. By induction

hypothesis, α ≡ α↓c1 ∧ α↓c2 ∧ . . . ∧ α↓ck
, and β ≡ β↓c1 ∧ β↓c2 ∧ . . . ∧ β↓ck

. Hence,
ψ = ψ↓c1(xi1) ∧ . . . ∧ ψ↓ck

(xik
).

ψ = □(α) or ψ =
←

(α). Then ψ is closed as it is in CoT, and the lemma trivially holds
(implied by the base case).
ψ = αUβ. A symmetric argument holds for αSβ. For an overall idea, assume that ψ has
only two open constraints c1, c2 (this argument easily generalizes for more open constraints,
see Appendix B). By induction hypothesis, ψ ≡ ψ′, where ψ′ = α U (β↓c1 ∧ β↓c2). As
α is a closed formula, for any j ∈ {1, 2}, ψ↓cj

= α U β↓cj
. We need to show that

ψ′ ↔ ψ↓c1 ∧ ψ↓c2 is a tautology. ψ′ → ψ↓c1 ∧ ψ↓c2 is trivially implied by the “until”
semantics.
Let ρ be any timed word, i ∈ N and ν be any valuation over free variables of ψ.
ρ, i, ν |= ψ↓c1 ∧ ψ↓c2 , implies that for j ∈ {1, 2}, there exists point ij > i such that
ρ, ij , ν |= β↓cj

and all the points between i and ij satisfies α. It suffices to show that for
some j ∈ {1, 2}, ρ, ij , ν |= β↓c1 ∧ β↓c2 . Without loss of generality, assume i1 ≤ i2. Then,
by Lemma 4.4 and ρ, i2, ν|=β↓c2 , we have ρ, i1, ν|=β↓c2 , thus ρ, i1, ν|=β↓c1 ∧ β↓c2 . ◀

4.2 Reducing UPTL to finite disjunctions of CoT
Let

∨
CoT denote the class of UPTL formulas which are finite disjunctions of CoT formulas.

In this section, we show that for any UPTL formula φ we can construct an equivalent formula
ψ in

∨
CoT. Hence, CoT satisfies the property P2. This is the most technically involved

part of the paper; the rest of this section is devoted to the proof of Lemma 4.6.

▶ Lemma 4.6. Any UPTL formula φ(x1, . . . , xk) such that ∼∈ Pol(φ(x1, . . . , xk)) can be
expressed as a finite disjunction of CoT formulas ψ such that ∼∈ Pol(ψ).

Fix a UPTL formula φ. Let
∨

CoTφ be the class of UPTL formulas such that Pol(φ) = Pol(ψ)
for all ψ ∈

∨
CoT. By structural induction on φ, we construct an equivalent Θ in

∨
CoTφ.

Base Case. Assume φ is a UPTL formula which is either a closed formula or an atomic
time constraint of the form (T − x) ∼ u. The lemma trivially holds in this case.

Induction Hypothesis. Assume that the result holds for all the strict subformulas of φ.
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Induction. We show that φ can be reduced to an equivalent formula in
∨

CoTφ. There are
three possible cases. (Case 0) : φ = α ∧ β or φ = α ∨ β, (Case 1) : φ = αU β or α S β,
(Case 2) : φ = □α or

←
α. We discuss the more interesting cases 1 and 2. For a full formal

proof, see Appendix C. We observe a simplification for cases 1, 2. By induction hypothesis,
α and β can be reduced to α′ =

∨
m
αm and β′ =

∨
l

βl in
∨

CoTφ, respectively. Thus, without

loss of generality, we consider cases 1 and 2 to be of the forms φ = α′ U β′ (or α′ S β′) and
□α′ (or

←
α′) respectively.

For case 1, we argue about U formulas (case of S is symmetric). Notice that ϕU(ψ∨ψ′) ≡
(ϕ U ψ) ∨ (ϕ U ψ′). Hence, φ in case 1 can be further simplified by pulling the top-level
disjunctions of β′. Hence, φ ≡

∨
l

(α′ U βl), where each βl is in CoT having the same polarity

as φ. As
∨

CoTφ is closed under disjunctions, it suffices to show that each (α′ U βl) is in
CoT. This is shown by Lemma 4.7. Moreover φ in case 2 can be reduced to φ in case 1 by
Lemma 4.8. The following lemma handles the case 1.

▶ Lemma 4.7. Any UPTL formula φ of the form (
n∨

g=1
αg) U (β) or (

n∨
g=1

αg) S (β), where

αi, β ∈
∨

CoTφ, can be reduced to an equivalent
∨

CoTφ formula.

Proof. We argue for U, and S is symmetric. We induct on the number of open αgs in φ. If
there are no open αgs in φ, then φ is, by definition, in

∨
CoTφ.

Induction Hypothesis. Suppose the lemma holds for the case where k of the αgs are open.
We show the lemma holds for formulas having (k + 1) open αgs. Without loss of generality,
assume α1 is open. ρ, i, ν |= φ is equivalent to (A) ∃j > i s.t. ρ, j, ν |= β, and ∀i < j′ < j,
ρ, j′, ν |=

∨n
g=1 αg.

Case 1.1. ≤∈ Pol(φ):
Notice that (A) is equivalent to (B1) or (B2), where

(B1) ρ, i, ν |= (
n∨

g=2
αg) U β (this is when ρ, i, ν |= ¬α1 U β) or

(B2) ∃i′>i such that (B2,1)ρ, i′, ν|=α1, (B2,2)∀i<i′′<i′:ρ, i′′, ν|=
n∨

g=1
αg,

(B2,3) ∃j > i′ such that ρ, j, ν |= β, (B2,4) ∀i′<j′<j:ρ, j′, ν |=
∨n

g=2 αg. Intuitively,

after the point i′, α1 need not hold for
n∨

g=1
αg to hold at point i for a given valuation

ν. The last occurrence of α1 is a valid choice for i′. See Figure 4 in Appendix C.1 for
intuition.

Lemma 4.4 and (B2,1) imply that for all points i′′ strictly between i and i′, α1 can be
replaced by the closed formula α′1 where α′1 ∈ Untime(α1) is obtained by replacing all
open constraints of α1 with ⊤.
Hence, the given formula φ is equivalent to φ1 ∨ φ2 where:

φ1 = [(
n∨

g=2
αg) U β], φ2 = [(

n∨
g=2

αg ∨ α′1) U (α1 ∧ φ1)]

By induction hypothesis, φ1 can be reduced to a formula of the form
m∨

h=1
(Θ1,h) where

each Θ1,h is in
∨

CoTφ having the same polarity as φ. Substituting this for φ1 in φ2 and

pushing all the disjunctions at the top, we get Θ2 =
m∨

h=1
[(

n∨
g=2

αg ∨ α′1) U (α1 ∧Θ1,h)]

It suffices to show that each Θ2,h = [(
n∨

g=2
αg ∨ α′1) U (α1 ∧Θ1,h)] can be reduced to an

equivalent
∨

CoTφ as formulas in
∨

CoTφ are closed under disjunctions. Moreover, Θ2,h
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has k open αi formulas as one of the open formula α1 is replaced with a closed formula
α′1. Hence, by induction hypothesis, this could be reduced to an equivalent formula in∨

CoTφ, proving the result.

Case 1.2. ≥∈ Pol(φ): We discuss this case in Appendix C.1. ◀

Case 2 is handled by the following Lemma 4.8.

▶ Lemma 4.8. Let φ ∈ UPTL be of the form □(
n∨

g=1
αg) or

←
(

n∨
g=1

αg), where each αg ∈ CoT.

Then, we can construct a
∨

CoTφ formula equivalent to φ.

Notice that
←

(
n∨

g=1
αg) ≡ (

n∨
g=1

αg) S (start), where start =
←
⊥, is true only at the first point

of the timed word. Hence, now applying Lemma 4.7, we get the required result.

Let us now consider φ = □(
n∨

g=1
αg). There are two possible subcases:

Case 2.1 ≤∈ Pol(φ), and Case 2.2 ≥∈ Pol(φ). The latter can be reduced to a formula
in Case 1.2, and the proof appears in the Appendix D.
Case 2.1 ≤∈ Pol(φ). This is the most interesting of all the cases. The idea is to reduce
this to Case 1.1 of Lemma 4.7 wherever possible. Let α′ = α1 ∨ . . . ∨ αn, and φ = □(α′).
If we restrict to finite timed words then this problem is trivially reduced to Case 1.1 of
Lemma 4.7 as □(α′) ≡ α′ U Last, where Last = □(⊥) is the formula which evaluates to
true only at the last point. The infinite word case needs more machinery.

4.3 Machinery for Case 2.1, Lemma 4.8 for Infinite Words
We define some terminology which would be useful in the rest of the proof.
▶ Definition 4.9 (Finitely Occurring Formulas). Given ψ(x1, . . . , xk) ∈ TPTL, a timed word ρ,
and a valuation for free variables of ψ, we say that ψ is finitely occurring in ρ, ν iff there are
only finitely many points i of ρ such that ρ, i, ν |= ψ. That is, there are only finitely many
points in ρ where ψ is satisfied for a given valuation.

▶ Definition 4.10 (Maximal Finitely Occurring Open Subformula (MFOS)). Given any TPTL
formula φ(x1, . . . , xk), a timed word ρ, and a valuation ν for free variables of φ, we say that
a subformula ψ of φ is a “finitely occurring open subformula” (FOS) of φ in ρ, ν iff
1. ψ is not a subformula of any closed subformula ψ′ of φ. This implies ψ is open.
2. ψ is finitely occurring in ρ, ν.
ψ is said to be a “maximal finitely occurring open subformula” (MFOS) of φ in ρ, ν iff ψ is a
maximal formula that satisfies the above two conditions: that is, ψ is not a strict subformula
of an open, finitely occurring formula in ρ, ν, and ψ is not a subformula of a closed formula.

▶ Proposition 4.11. For any timed word ρ and a valuation ν, formulas of the form (T−x) ≤ u
(or (T − x) < u) are finitely occurring formulas in ρ, ν.

Proof. This is trivial, as otherwise this would imply that there are infinitely many points
within at most u distance apart, implying the Zeno condition. ◀

▶ Remark 4.12. Any formula of φ that has a FOS also has a MFOS. Hence, by Proposition
4.11, any TPTL formula φ that contains an open constraint of the form (T − x) ≤ u or
(T − x) < u has an MFOS.
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▶ Proposition 4.13. Given TPTL formulas φ, ψ, a timed word ρ and a valuation ν over the
free variables of φ and ψ, if ψ is finitely occurring in ρ, ν, then both φU ψ, and φ ∧ ψ are
finitely occurring.

Proof. If ψ holds at finitely many points of ρ for the given valuation, then there exists a
point j in ρ after which ψ ceases to hold for the given valuation ν. By semantics of U and
conjunction, any point after j can not satisfy φ U ψ and φ ∧ ψ for the given valuation ν.
Hence, these are also finitely occurring in ρ, ν. ◀

▶ Proposition 4.14. Given any CoT formulas φ, ψ, a timed word ρ, and a valuation ν over
the free variables of φ and ψ, if ψ is MFOS of φ in ρ, ν, then either φ = ψ or ψ appears in
a subformula β S ψ of φ. In other words, either ψ is the same as φ or ψ appears as the right
argument of a S modality. Moreover, this β S ψ is not finitely occurring.

Proof. Suppose this is not the case. If ψ is in the scope of ∨, □, or
←

then φ is not CoT as
ψ is an open subformula. Then ψ is in the scope of U, S or ∧ : φ has a subformula of the
form β U ψ, β ∧ ψ or β S ψ. For the first and second cases, as ψ is finitely occurring in ρ, ν,
by Proposition 4.13, both β U ψ and β ∧ ψ are finitely occurring in ρ, ν. This implies ψ is
not a MFOS of φ in ρ, ν, a contradiction. Thus, the only option is β S ψ. If β S ψ is finitely
occurring in ρ, ν, then ψ is not MFOS of φ in ρ, ν. Hence, β Sψ is not finitely occurring. ◀

▶ Proposition 4.15. Given TPTL formulas φ, ψ, a timed word ρ, and a valuation ν over
the free variables of φ and ψ, if ψ is finitely occurring for ρ, ν then for any point i of ρ,

I. ρ, i, ν |= □(φ S ψ) ⇐⇒ ρ, i, ν |= □ (φ S ψ), and
II. ρ, i, ν |= □(φ S ψ) ⇐⇒ ρ, i, ν |= χ where χ = χ+ ∨ χ− ∨ χ0 and

χ+ = (φ S ψ) U (ψ ∧□(φ)), χ− = (φ S ψ) S (ψ ∧□(φ)), χ0 = ψ ∧□(φ).

Proof. Let i be any point of ρ. As ψ is finitely occurring, there exists a point j such that
(a) ρ, j, ν |= ψ, and ρ, j′, ν ̸|= ψ for any j′ > j.
Proving I. The forward direction is trivially a tautology. For the reverse direction, suppose
j satisfies ρ, j, ν |= □ (φ S ψ). That is, there are infinitely many points after j satisfying
φSψ. Hence, for any point i > j, we can find a point j′′ > i > j such that (b) ρ, j′′, ν |= φSψ.
(see Figure 3 along with the proof for intuition).

j i j′′

ψ φ S ψ

Last occurrence of ψ

φ

Hence, φ S ψ

Figure 3 Figure depicting intuition behind Proposition 4.15 (I).

But, by (a), the closest point where ψ holds before j′′ is j. Hence, (a) and (b) imply
ρ, i, ν |= φ. Hence, every point after i necessarily satisfies φ and hence φ S ψ. Thus, every
point after j also satisfies φ S ψ. Hence, (c) : for any point i in ρ, there is a point k in the
future of i, such that all the points k′ ≥ k satisfy φ S ψ for the valuation ν. Notice that
k = i in case i > j and k = j + 1 in case i ≤ j. (c) shows the reverse direction of I.
Proving II. In case of II, the reverse direction is a tautology (by semantics). For the forward
direction: let (Assumption 1) ρ, i, ν |= □(φ S ψ) and (Assumption 2) ψ be finitely occurring
in ρ, ν. By I, (Assumption 1) and (Assumption 2), we know that there exists a point i′ such
that ρ, i′, ν |= χ0, where χ0 = ψ ∧□(φ). One such point is j, the last occurrence of ψ (see
(c) in the proof of I). If i < i′, then χ+ = (φ S ψ) U (ψ ∧ □(φ)) holds at i. For i > i′, we
encode the fact that i comes after i′, by asserting χ− =

←
((ψ ∧□(φ)) at i. For i = j, we

encode that j is same as i : χ0 = ψ ∧□(φ). ◀
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4.3.1 Case 2.1: Handling Infinite Words
Recall that ≤∈ Pol(φ) and φ = □α′ with α′ = α1 ∨ · · · ∨ αn. We apply induction on the
formula size of α′. If the size of α′ is 1, the construction is trivial. We either get a closed
formula of the form □((T − x) ≤ c) or □((T − x) < c). Both these evaluate to ⊥ (which is a
closed formula) as they imply zenoness (see Proposition 4.11), hence getting a formula in
CoT.

If all αi are closed then φ is closed, and hence trivially in CoT. Hence, we consider
the case where at least one of the αi is open. Wlg, assume α1 is open. We now show
that we can construct an equivalent formula for φ = □(α′) in

∨
CoTφ, assuming such a

construction exists for all formulas smaller than φ.
Let ρ be any timed word, i any point in ρ, and ν any valuation over free variables of φ.
When we mention about the satisfaction of a TPTL formula at any point in ρ, we assume
it is for the given valuation ν. There are three possible cases. We only discuss the case
(called Case C below) when α1 is not finitely occurring in ρ, ν, which mandates the use
of MFOS. Appendix D.1 has the other two (called cases A and B) and are similar to the
finite word case.
Case C : α1 is not finitely occurring in ρ, ν. Let i be any point of ρ. Let δ be any
subformula of α1 such that [I] ρ, i, ν |= □(δ). That is, ∃j > i such that ρ, j, ν |= □(δ).
Hence, after point j we can replace the check of α1 with α1δ

where α1δ
is obtained from

α1 by replacing δ to ⊤. Thus, ρ, i, ν |= φ iff ρ, i, ν |= φ3,δ where
φ3,δ = α′ U [α′ ∧□(δ) ∧ φδ], and φδ = □(α1δ

∨ α2 ∨ . . . ∨ αn).
Moreover, by TPTL/LTL semantics, we get [II] if ρ, i, ν ̸|= □(δ), then φ3,δ is equivalent
to false. That is, ρ, i, ν ̸|= φ3,δ. This is because φ3,δ implies ρ, i, ν |= □(δ). Let
SFS(α1) be all the open subformulas of α1 with S being the top level modality, i.e.
formulas of the form δ = β S γ. We now show that : φ ≡

∨
δ∈SF S(α1)

φ3,δ.

For that, it suffices to show [III] Case C implies there is at least one δ ∈ SFS(α1) such
that ρ, i, ν |= (□(δ)) for any i ∈ dom(ρ). [II] and [III] imply for any i ∈ dom(ρ) there
is at least one disjunct equivalent to φ, and every disjunct is either equivalent to ⊥ or φ.
We now prove [III]. As α1 is not a closed formula, it has at least one MFOS with respect
to ρ, ν (Remark 4.12). By Proposition 4.14, any MFOS of α1 with respect to ρ, ν should
occur within the scope of temporal operator S; hence, α1 has a subformula of the form
δ = β S γ where γ is an MFOS with respect to ρ, ν. In other words, there is at least one
formula β S γ ∈ SFS(α1). Moreover, as γ is “maximal” finitely occurring subformulas,
δ = βSγ is not finitely occurring. This along with Proposition 4.15 imply ρ, i, ν |= □(δ),
hence proving [III]. Thus φ ≡

∨
δ∈SF S(α1)

φ3,δ. As
∨

CoTφis closed under disjunctions

among the same polarity formulas, we just need to show that φ3,δ for any δ is in
∨

CoTφ,
which is what we show now. Since φ′ is strictly smaller than φ, by induction hypothesis,
there is a formula ψ′δ in

∨
CoTφequivalent to φ′. Moreover, by Proposition 4.15(II), there

is χ = χ+ ∨ χ− ∨ χ0 equivalent to □(β S γ). χ0 is already in CoT with the same polarity
as φ. χ+ and χ− are U and S formulas not necessarily in

∨
CoTφ. But, it reduces to the

Case 1.1. Thus, using the construction in Case 1.1, we can construct an equivalent
formula χ′ in

∨
CoTφ which is equivalent to χ. Hence, we get the following formula

equivalent to φ3,δ, namely, φ′3,δ = α′ U [α′ ∧ χ′ ∧ ψ′δ]. This again falls under Case 1.1 of
Lemma 4.7. Hence, we can construct a ψδ, for a given δ which is in

∨
CoTφ.

The formula we are looking for is obtained by disjuncting the formulas constructed in all
three cases A, B, C (of which we have Case C here, and Cases A,B in Appendix D.1).
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Lemmas 4.5 and 4.6 imply Lemma 3.6. For any UPTL formula ψ(x1, . . . , xk), construct
an equivalent ψ′(x1, . . . , xk) =

∨m
i=1 ψi(x1, . . . , xk), where each ψi is in CoT with the same

polarity as that of ψ. Then apply Lemma 4.5 and reduce each ψi(x1, . . . , xk) to
n∧

j=1
ψij

(xi,j),

where each xi,j is some variable in {x1, . . . , xk}, and ψij contains at most one open time
constraint. Then ψ is equivalent to φ =

∨m
i=1

∧n
j=1 ψij

(xi), obtaining the result. ◀

▶ Remark 4.16. Each ψij
is a CoT containing at most one open constraint. Thus, our

construction gives a stronger result than Lemma 3.6, which is used in proving Theorem 3.5.

▶ Lemma 4.17 (Monadic Decomposition of UPTL (Stronger Form)). There is an effective
translation from any UPTL φ(x1, . . . , xk) to an equivalent UPTL ψ = (Ψ1)∨ (Ψ2)∨ . . .∨ (Ψn)
where each Ψi is a conjunction of CoT formulas containing at most one open time constraint.

5 1-UPTL to Q2MLO: Proof of Theorem 3.5

By Theorem 3.3, Q2MLO is equivalent to UMITPPL. Moreover, by Remark 2.1, 1-UPTL can
efficiently express formulas in UMITPPL. Hence, to prove Theorem 3.5, it suffices to show
that we can convert a closed 1-UPTL formula φ to an equivalent Q2MLO formula ψ(y). We
give a proof sketch along with a running example.
1. Let φ=x.φ′(x) be a closed 1-UPTL formula. Using Lemma 4.17 on φ′, and distributing (x.)

over disjunctions, we get an equivalent 1-UPTL formula φDT F = [(φ1)∨ (φ2)∨ . . .∨ (φk)],
where each φi has the form x.φ1,i∧. . .∧x.φk,i and each φj,i is a formula in CoT containing
at most one open time constraint. As Q2MLO is closed under ∨s and ∧s, it suffices to
show that each x.φj,i is reducible to a Q2MLO formula ψ′(y).
Let φ′(x) = aU [{((T−x) <u1) ∧ (a S (b ∧ ((T−x) <u2)))} ∨ {(T−x)<u3}]. The above
reduction on φ′ gives φDT F = [φ1,1 ∧ φ1,2] ∨ [φ2,1] where, φ2,1 = a U {(T−x)<u3},
φ1,1 = aU {((T−x) <u1) ∧ (a S b))}, φ1,2 = aU {(a S (b ∧ ((T−x) <u2)))}.

2. Encode the semantics of φj,i in first order logic. Notice that the single open constraint
in a CoT formula φj,i never appears on a left subtree of any U or S modality in the
parse tree of φj,i. Thanks to this syntactic restriction of CoT, the variable guarded by
metric predicates always appears within the scope of ∃∗ in the corresponding first-order
formula. After encoding the semantics in first-order logic and pulling up the “metric
guarded quantifiers”, i.e. the quantifier ∃y quantifying a variable appearing in the open
timing constraint y ⊖ x ∼ c, to the top gives us an equivalent Q2MLO formula.
To illustrate, we show the reduction on x.φ1,2, where the open time constraint appears
at modal depth two. Similar reductions can be applied for x.φ1,1 and x.φ2,1. By TPTL
semantics, ρ, j |= x.φ1,2 iff ρ, ν |= ψ1,2(x) where ψ1,2(x) is the required Q2MLO defined
by ν(x) = j and
ψ1,2(x)=∃z.[(z ⊖ x < u2) ∧ φ(x, z)] where φ(x, z) is defined as follows.
φ(x, z) = ∃y.[{z<y ∧ x < y ∧ b(z)} ∧ {(∀y′.(x<y′<y→a(y′)))∧{∀z′(z<z′<y→a(z′))}].

6 Applications

Theoretical Applications. We first discuss the theoretical implications of our results. First,
our results resolve the open questions of [24] : (1) Does the expressiveness of UPTL[Fut]
increase with more variables? We resolve this question negatively. Notice that the variable
reduction in the proof of Theorem 3.4 also works for the future fragment of UPTL. Thus,

▶ Corollary 6.1. UPTL[Fut] ≡ 1-UPTL[Fut]

CONCUR 2025
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(2) Is full UPTL decidable? We resolve this question positively. Theorem 3.1 and the
decidability of the satisfiability checking problem of Q2MLO [11] implies:

▶ Corollary 6.2. Satisfiability checking for UPTL is decidable.

Practical Applications: Compositional Verification of UPTL. A fundamental challenge
in verifying freeze logics like UPTL is the lack of compositional techniques due to the
dependency of subformulas on multiple free variable valuations. Our reduction addresses this
by transforming UPTL formulas into equivalent MITPPL formulas, enabling compositional
verification via model checkers such as MightyL [7], Tchecker [10] (both accept MITL[Fut]
formulas) and MightyPPL [27] (accepts MITPPL formulas). Our reduction allows us to
leverage small, modular timed automata representations, significantly improving scalability.
Consider a food delivery service specification as follows. The food delivery should be quick
(within 30 mins since the order) and fresh (within 15 mins since food is cooked/pick-up).
The UPTL formula ψ = □(order ⇒ ϕ) over propositions AP = {order, pickup, deliver}
where ϕ = x. (pickup ∧y. (deliver ∧x < 30 ∧ y < 15)) captures this. Our technique
translates ϕ to the equivalent MITPPL formula ϕ′ = Pn[0,30](pickup,deliver) ∧ (pickup
∧ [0,15](deliver)). MightyPPL took 10ms to construct the timed automaton corresponding
to ϕ′ and 1ms to verify that it is satisfiable.

7 Conclusion and Discussion

One of our key contributions is a first equivalence result between a freeze logic and a metric
logic under pointwise semantics. Our results extend naturally to the continuous semantics.
This equivalence serves as an analogue to known results in continuous semantics, such
as the equivalence between MTL with counting and TPTL [18], and between MTL[Q] and
TPTL[Q] [19]. These prior equivalences break down in pointwise semantics. An interesting
consequence of our results is that adding variables does not increase the expressiveness of
UPTL, while introducing past operators does (See Appendix E).

(1) Precise Complexities, Translation Sizes. We conjecture that the satisfiability and
model checking of UPTL to be in EXPSPACE, based on the observation that many subformulas
in the reduced 1-UPTL formula are repeated. Hence, one could hope that the upper bound
on the formula DAG of the equivalent 1-UPTL could be only exponential in the size of the
input UPTL formula. Additionally, if the given UPTL is already in the

∨
CoT form, then the

UPTL to 1-UPTL reduction is worst case quadratic (Lemma 4.5). Translating 1-UPTL to
UMITPPL can get non-elementary (as Q2MLO generalizes FO[<] over words, and has a non-
elementary satisfiability). While our focus is expressive equivalence, for efficient satisfiability
checking, 1-UPTL can be reduced to equisatisfiable UMITPPL with only exponential blowup
using ideas from [21]. Translating UPTL to

∨
CoT causes a non-elementary blowup on

formula trees, but using DAGs and a Tseitin-like encoding, we conjecture an exponential
equisatisfiability reduction. Our translations, along with tools like MightyPPL [27] can
verify UPTL specifications.

Succinctness of UPTL vs. 1-UPTL. While we establish that increasing the number of
variables does not improve expressiveness, we believe it may lead to an exponential increase
in succinctness. We leave a formal proof of UPTL (or UPTL[Fut]) being more succinct than
1-UPTL (resp. 1-UPTL[Fut]) as future work.
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A Proof of Lemma 4.4

Proof. Let ψ be a formula in CoT. We prove for the case ≤∈ Pol(ψ); a symmetric argument
follows when ≥∈ Pol(ψ). Fix a timed word ρ = (a1, τ1)(a2, τ2) . . ., a point j of ρ and a
valuation ν over the variables appearing in ψ. Let ψ′ ∈ Untime(ψ). Assuming that (A)
ρ, j, ν |= ψ, we now show that (B) for any point i ≤ j, ρ, i, ν |= ψ iff ρ, i, ν |= ψ′. We apply
induction on the structure of the formula ψ. From now, we assume that (A) holds.

Base Case. Let ψ be either a closed formula or an atomic clock constraint of the form
T − x ∼ u where ∼∈ {<,≤}. If ψ is a closed formula then Untime(ψ) = {ψ}. Hence, the
lemma holds trivially. If ψ = (T − x) ∼ u, then Untime(ψ) = {ψ,⊤}. It suffices to show
that (I) ρ, i, ν |= ⊤ iff (II) ρ, i, ν |= (T − x) ∼ u for all i ≤ j. (II) implies (I) is a tautology.
Conversely, for any i ≤ j, τi ≤ τj . As (A) holds, we know τj − ν(x) ≤ u; hence for any i ≤ j,
τi − ν(x) ≤ u, giving ρ, i, ν |= (T − x) ≤ u.

Induction Hypothesis. Assume the lemma holds for all subformulas of ψ.

Induction. We now show that (B) holds given the induction hypothesis and (A). There are
three possible cases.
1. ψ = ψ1 ∧ ψ2. By definition of Untime, ψ′ = ψ′1 ∧ ψ′2 such that ψ′1 ∈ Untime(ψ1) and

ψ′2 ∈ Untime(ψ2). Now, (A) iff (A1.1) ρ, j, ν |= ψ1 and (A1.2) ρ, j, ν |= ψ2. As ψ is a
formula in CoT, both ψ1 and ψ2 are in CoT. Hence, by induction hypothesis, (A1.1) and
(A1.2) implies that for all i ≤ j, (B1.1) ρ, i, ν |= ψ1 iff ρ, i, ν |= ψ′1 and (B1.2) ρ, i, ν |= ψ2
iff ρ, i, ν |= ψ′2, respectively. Thus, (A) implies (B). Notice that this argument may not
hold when ψ = ψ1 ∨ ψ2. But in this case, ψ is not a CoT formula as disjunction in CoT
are allowed only amongst closed formulas.

2. ψ = ψ1 U ψ2. As ψ is in CoT, ψ1 is a closed formula. Hence, Untime(ψ1) = {ψ1}, and
ψ′ = ψ1 U ψ′2 where ψ′2 ∈ Untime(ψ2). We show that assuming (A), for any i ≤ j, (B2.1)
ρ, i, ν |= ψ iff (B2.2) ρ, i, ν |= ψ′. By semantics of U,
A holds iff there exists a point j′ such that (I) j′ > j, ρ, j′, ν |= ψ2, and for any point j′′

between j and j′, ρ, j′′, ν |= ψ1.
B2.1 holds iff there exists a point i′ such that (II) i′ > i, ρ, i′, ν |= ψ2, and for any point
i′′ between i and i′, ρ, i′′, ν |= ψ1.

B2.2 holds iff there exists a point i′ such that (III) i′ > i, ρ, i′, ν |= ψ′2 and for any point
i′′ between i and i′, ρ, i′′, ν |= ψ1.

Let i ≤ j be any arbitrary point. Let jmin > j be the point closest to j satisfying (I).
Similarly, let im be any point satisfying (II). Either im ≤ jmin or im > jmin. In the
former case, ρ, i′, ν |= ψ2 iff ρ, i′, ν |= ψ′2, by induction hypothesis. Hence, in the former
case, (B2.1) iff (B2.2). Now, suppose im > jmin. Then notice that (as i ≤ j, and jmin

satisfies II), jmin > i, (IV-a) ρ, jmin, ν |= ψ2. Moreover, as im satisfies (II), all the points
between i and im of ρ satisfies ψ1 for the given valuation ν. As jmin < im, all the points
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between i and jmin also lies between i and im. Hence, (V) for all points j′′ between i

and jmin ρ, j′′, ν |= ψ1. By induction hypothesis, (IV-a) iff (IV-b), where (IV(b)) states
ρ, jmin, ν |= ψ′2. Hence, (IV-a) and (V) iff (IV-b) and (V). Notice that (IV-b) and (V)
is equivalent to jmin satisfying (III). Moreover, (IV-a) and (V) is equivalent to jmin

satisfying (II). Hence, if jmin < im, then (B2.1) iff B2.2). Hence, (A) implies (B2.1) iff
(B2.2), in both cases. Thus, (A) implies that for all i ≤ j (B) holds.

3. ψ = ψ1 S ψ2. This case is symmetrical to the previous case (i.e., ψ = ψ1 U ψ2). ◀

B Proof of Lemma 4.5

Proof. Let ψ(x1, . . . , xk) be a UPTL formula in CoT. We prove the lemma for ≤∈ Pol(φ),
and the argument is symmetric for ≥∈ Pol(φ). The proof follows by structural induction
on ψ.

Base Case. If ψ is a closed formula or a conjunction of atomic time constraints, then
ψ1(xi1) ∧ . . . ∧ ψk(xik

) is the same as ψ. Hence, the lemma trivially holds.

Induction Hypothesis. Let the lemma hold for all the subformulas of ψ.

Induction. There are three possible cases.
ψ = α∧β- Notice that α↓cj

∧β↓cj
= ψ↓cj

(xij ) for all 1 ≤ j ≤ k. By induction hypothesis,
α ≡ α1 ∧ α2 . . . αk, and β ≡ β1 ∧ β2 ∧ . . . ∧ βk. Hence, ψ = ψ↓c1(xi1) ∧ . . . ∧ ψ↓ck

(xik
).

ψ = □(α) or ψ =
←

(α). In this case, ψ is a closed formula as it is in CoT. Hence, the
lemma trivially holds.
ψ = αU β. Symmetric argument holds for ψ = α S β. Notice that as ψ is in CoT, α is a
closed formula and β is in CoT. Hence, For any 1 ≤ j ≤ k, ψ↓cj

= αUβ↓cj
. By induction

hypothesis β = β↓c1∧. . .∧β↓ck
. Hence, it suffices to show that for any timed word ρ, point

g of ρ, and any valuation ν over variables of ψ, (A) ρ, g, ν |= αU(β↓c1∧ . . .∧β↓ck
) iff (B-1)

∧ (B-2) ∧ . . .∧ (B-k), where for all 1 ≤ j ≤ k, (B-j) ρ, g, ν |= αU β↓cj
. Notice that by

semantics of U, ϕ1 U(ϕ2∧ϕ3) implies ϕ1 U(ϕ3) and ϕ1 U(ϕ2). Hence, (A) implies (B-1) ∧
(B-2) ∧ . . .∧ (B-k) holds trivially. The other direction is more interesting and relies on the
untiming property of CoT. Hence, assume that (B-j) holds for all 1 ≤ j ≤ k (Assumption
B). Thus for all 1 ≤ j ≤ k, there exists a point g′ such that (I-j) g′ > g, ρ, g′, ν |= β↓cj

,
and for all g′′ between g and g′, ρ, g′′, ν |= α. For all 1 ≤ j ≤ k, let gj be any point in ρ

satisfying (I-j). Let gmin be the point minimum among g1, . . . , gk. Let βu = Untime(β).
Hence, βu is a closed formula. Notice that for any 1 ≤ j ≤ k, β↓cj

∈ Untime(β) and
βu ∈ Untime(β↓cj

). By Lemma 4.4 and Assumption B, ρ, gmin, ν |= βu. Again by By
Lemma 4.4, Assumption B and ρ, gmin, ν |= βu, ρ, gmin, ν |= β↓cj

for all 1 ≤ j ≤ k.
Hence, there exists a point gmin > g such that ρ, gmin, ν |= β↓c1 ∧ β↓c2 . . . ∧ β↓ck

, and
for all points g′′ between g and gmin, ρ, g′′, ν |= α. Hence, (A) holds. ◀

C Proof of Lemma 4.6

This section is dedicated to the proof of the above lemma 4.6. We fix a UPTL formula φ and
let

∨
CoTφdenote the set of UPTL formulas such that Pol(φ) = Pol(ψ) for all ψ ∈

∨
CoTφ.

We now show how to construct a formula Θ in
∨

CoTφ. Let ϕ be any UPTL formula. We
apply induction on the structure of ϕ.

For the base case, assume ϕ is a UPTL formula which is either a closed formula or an
atomic timing constraint of the form x ∼ u. Then ϕ ∈ B(F ) where F is a finite set consisting
of UPTL formulas whose subformulas are (i) either closed, or (ii) are open constraints of the
form xi ∼ ui such that all of them have the same polarity. Hence, the lemma trivially holds.
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Induction Hypothesis. Assume that the result holds for all subformulas of φ.
(Case 0). φ = α ∧ β or φ = α ∨ β. Notice that α and β has the same polarity as φ.
Hence, by induction hypothesis, α and β can be reduced to an equivalent

∨
i

αi and
∨
j

βj ,

respectively, where each αi and βj are in
∨

CoTφ. Hence, if φ = α ∨ β, then the required
formula in

∨
CoTφ is

∨
i

αi ∨
∨
j

βj . Similarly, if φ = α ∧ β, then φ =
∨
i

∨
j

(αi ∧ βj) is the

required formula in CoT, as each αi and βj are in CoT having the same polarity as φ.
(Case 1). φ = αU β or α S β.
(Case 2). φ = □α or

←
α.

We observe a simplification which can be applied to cases 1, 2 using the induction hypothesis.
By induction hypothesis, α and β can be reduced to α′ =

∨
m
αm and β′ =

∨
l

βl in
∨

CoTφ,

respectively. Thus, without loss of generality, we consider cases 1 and 2 to be of the forms
φ = α′ U β′ (α′ S β′) and □α′ (

←
α′) respectively.

For case 1, we just argue about U formulas. The argument for S is symmetrical. Notice
that ϕ U (ψ ∨ ψ′) ≡ (ϕ U ψ) ∨ (ϕ U ψ)′. Hence, φ in case 1 can be further simplified by
pulling the top-level disjunctions of β′. Hence, φ ≡

∨
l

(α′ U βl), where each βl is in CoT

having the same polarity as φ. As
∨

CoTφ is closed under disjunctions, it suffices to show
that each (α′ U βl) is in CoT. This is shown by proof of Lemma 4.7. Moreover, φ in case 2
can be reduced to φ in case 1 by the construction in the proof of Lemma 4.8.

C.1 Proof of Lemma 4.7: Case 1.2
This section is dedicated to the proof of 4.7.

Proof. We will argue about U. The case for S is symmetrical. We apply induction on the
number of αis in φ that are open.
Base case. If there are no αis open in φ then φ is, by definition, in

∨
CoTφ.

Induction hypothesis. Suppose the lemma holds for the case where k of the αi’s are open
formulas.
Induction. We show the lemma holds for formulas having k + 1 open αi formulas. Without
loss of generality assume that α1 is an open formula. Then, ρ, i, ν |= φ is equivalent to
(A) ∃j > i such that ρ, j, ν |= β, and ∀i < j′ < j, ρ, j′, ν |=

∨n
g=1 αg.

Case 1.1 This case has been discussed in the main paper (see Section 4.2). Please see
the Figure 4 for intuition.
Case 1.2 ≥∈ Pol(φ).

Without loss of generality, we assume the α1, . . . , αk+1 are open formulas, and rest all
the formulas are closed.
(A) is equivalent to (C0) ρ, i, ν |= (

n∨
g=k+2

)αg U β,

or for some 1 ≤ h ≤ k + 1, (C1) there exists a point i′ such that ρ, i′, ν |= αh, and
(C2)for all i < i′′ < i′, ρ, i′′, ν |=

n∨
l=k+2

αl, and (C3) ρ, j, ν |= β.

By Untiming Lemma 4.4, (C1) implies that for all j′ ≥ i′, αh is equivalent to α′h,
where α′h = Untime(αh).

Hence, φ ≡ φ1 ∨ φ2 where, φ1 = [(
n∨

g=k+2
)αg) U β], φ2 =

k+1∨
h=1

[(
n∨

g=k+2
αg) U (αh ∧ φ′h],

φ′h = ((
∨

1≤g≤n∧g ̸=h αg) ∨ α′h) U β, and α′h = Untime(αh). Hence, α′h is a closed
formula.
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i i’ j

α1

α′
1 ↔ α1

By untiming lemma

β

Hence,

α1 ∨ . . . ∨ αn

≡

α′
1 ∨ α2 ∨ . . . ∨ αn

α2 ∨ . . . ∨ αn

Let i′is the last occurrence of α1 before j

Figure 4 Figure Corresponding to the (B2) in Case 1.1 of Lemma 4.7.

The left argument in U for φ1 is closed (recall that α1, . . . , αk+1 are the only open
formulas) and the right argument (i.e. β) can be reduced to en equivalent formulas∨

g βg, where each βg is in CoT. Hence, φ1 is equivalent to Θ1, where Θ1 is Θ1 =∨
g[(

n∨
g=k+2

)αg) U βg].

Moreover φ′h has one less open αi subformula, as α′h is closed. Hence, by induction
hypothesis we can reduce φ′h to an equivalent formula in

∨
CoTφ,

∨
l ψl, where each

ψl is in CoT and having the same polarity as φ. Pushing these disjunctions at the top,

we get φ2 ≡ Θ2 where Θ2 =
k+1∨
h=1

∨
l[(

n∨
g=k+2

αg) U (α′h ∧ ψl].

As
∨

CoTφ is closed under disjunction we just need to show that each
[(

n∨
g=k+2

)αg) U βg] and [(
n∨

g=k+2
αg) U (α′h ∧ψl] can be reduced to an equivalent formula

in
∨

CoTφ, which is implied by the induction hypothesis. ◀

D Proof of Lemma 4.8: Missing Cases

Notice that
←

(
n∨

g=1
αg) ≡ (

n∨
g=1

αg) S (start), where start =
←
⊥, is true only at the first point

of the timed word. Hence, now applying Lemma 4.7, we get the required result.

Let us now consider φ = □(
n∨

g=1
αi). We first discuss the Case 2.2, i.e. ≥∈ Pol(φ), as it is

not as involved as the Case 2.1 (≤∈ Pol(φ)).

Case 2.2. Assume that ≥∈ Pol(φ). We apply induction on the number of open αis. If there
are no open αis we get a closed formula, and hence a

∨
CoTφ formula. Assume that for k

open αis, the lemma holds. We prove that the lemma holds for k + 1 open αis too.
Without loss of generality we assume the α1, . . . , αk+1 are open formulas, and the rest
αk+2, . . . , αn are all closed.

Then ρ, i, ν |= φ is equivalent to (C0) ρ, i, ν |= □[
n∨

g=k+2
αg], or,
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(C1) for some 1 ≤ h ≤ k + 1, there exists i′ such that ρ, i′, ν |= αh, and (C2) for all
i < i′′ < i′, ρ, i′′, ν |=

n∨
l=k+2

αl, and (C3) ρ, i′, ν |= φ = □(
n∨

g=1
αg).

By untiming Lemma 4.4, (C1) implies that for all j′ ≥ i′, αh is equivalent to α′h, where
α′h = Untime(αh).

Hence, φ ≡ φ1 ∨ φ2 where φ1 = [□(
n∨

g=k+2
)αg)], φ2 =

k+1∨
h=1

[(
n∨

g=k+2
αg) U (αh ∧ φ′h], φ′h =

□(
∨

1≤g≤n∧g ̸=h(αg) ∨ α′h), and α′h = Untime(αh). Notice that α′h is a closed formula.
Hence, φ′h has at most k open αis in its argument. Thus, by induction hypothesis, each
φ′h can be reduced into equivalent

∨
l ψh,l where each ψh,l is in CoT having same polarity

as φ. Thus, φ2 is equivalent to Θ3 =
k+1∨
h=1

∨
l[(

n∨
g=k+2

αg)U (αh∧ψh,l]. As
∨

CoTφ is closed

under finite disjunctions, we just need to show that each [(
n∨

g=k+2
αg) U (αh ∧ ψh,l] can be

reduced to an equivalent
∨

CoTφ formula. This is implied by Lemma 4.7.

Case 2.1. ≤∈ Pol(φ). This case has already been discussed in the main paper. There are
only couple of cases (Case A and Case B) left while arguing about the general case of infinite
words in Section 4.3.1. We just discuss those cases here.

D.1 Handling the infinite word case: Missing Cases

Case A - α1 is not satisfied by any point j > i of ρ for the given valuation ν. In this case,
φ is equivalent to α2 ∨ . . . ∨ αn holds globally after i. Hence,
φ1 = □(α2 ∨ . . . ∨ αn)

As φ1 is smaller than φ, by induction hypothesis we can construct a formula δ =
∨

k δk,
where each δk is in CoT.
Case B - α1 is finitely occurring in ρ, ν and is satisfied by some point j > i for a given
valuation ν. Then, φ implies α′ holds until there exists a point in the future, where α1
holds (possibly the last time) after which α2 ∨ . . . ∨ αn holds globally. Hence, we get
φ′ = α′ U {α1 ∧ (φ1)}. Substituting for φ1 in φ′ we get:
φ2 =

∨
k[α′ U {α1 ∧ δk}]

φ2 falls in the category of case 1.1 of Lemma 4.7. Hence, we can construct an equivalent
formula ζ in

∨
CoTφ equivalent to it.

E Past Modalities Add Expressiveness

▶ Corollary E.1. UMITPPL is strictly more expressive than UPTL[Fut].

Proof. By Lemma 3.4, UPTL is as expressive as 1-UPTL. It is known that 1-TPTL (and
hence the subclass 1-UPTL) are less expressive than 1-clock Alternating Timed Automata
(1-ATA) [19, 23, 24]. There exists a timed language L over a set of propositions {st, a, b}
that is not expressible in 1-ATA [25]. We write a UMITL formula expressing this language L,
proving the result.

L consists of all timed words ρ for which (1) ρ begins with (st, τ1), that is, proposition st
is true at the first point of ρ with timestamp τ1, (2) there are exactly two points in the next
unit interval (0, 1) from τ1 with timestamps τ2, τ3 and a is true at both these points, and (3)
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there is a point in ρ with timestamp τj ∈ [τ2 + 1, τ3 + 1] where b holds. This is captured in
MITL by the formula:

φ = ¬ (0,1){
←

(
←

(
←

(⊤)))} ∧ (0,1){
←

(
←

(⊤))} ∧ [b ∧
←

[0,1]{a ∧ (
←
O (
←
O (st)))}]

∧ [b ∧
←

[1,2]{a ∧ (
←
O (st))}]

It can be seen that JφK = L. ◀
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