
On-The-Fly Symbolic Algorithm for Timed ATL
with Abstractions
Nicolaj Ø. Jensen #

Department of Computer Science, Aalborg University, Denmark

Kim G. Larsen #

Department of Computer Science, Aalborg University, Denmark

Didier Lime #

Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Jiří Srba #

Department of Computer Science, Aalborg University, Denmark

Abstract
Verification of real-time systems with multiple components controlled by multiple parties is a
challenging task due to its computational complexity. We present an on-the-fly algorithm for
verifying timed alternating-time temporal logic (TATL), a branching-time logic with quantifiers
over outcomes that results from coalitions of players in such systems. We combine existing work
on games and timed CTL verification in the abstract dependency graph (ADG) framework, which
allows for easy creation of on-the-fly algorithms that only explore the state space as needed. In
addition, we generalize the conventional inclusion check to the ADG framework which enables
dynamic reductions of the dependency graph. Using the insights from the generalization, we present
a novel abstraction that eliminates the need for inclusion checking altogether in our domain. We
implement our algorithms in Uppaal and our experiments show that while inclusion checking
considerably enhances performance, our abstraction provides even more significant improvements,
almost two orders of magnitude faster than the naive method. In addition, we outperform Uppaal
Tiga, which can verify only a strict subset of TATL. After implementing our new abstraction in
Uppaal Tiga, we also improve its performance by almost an order of magnitude.

2012 ACM Subject Classification Software and its engineering → Model checking; Theory of
computation → Dynamic programming

Keywords and phrases Timed ATL, Symbolic Algorithms, Dependency Graphs, Timed Games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.25

Related Version Full Version: https://arxiv.org/abs/2506.07802

Supplementary Material
Software (Reprod. Package): https://doi.org/10.5281/zenodo.15195408

Funding VILLUM INVESTIGATOR project S4OS and ANR project BisoUS ANR-22-CE48-0012.

1 Introduction

Correctness is essential for many real-time systems, including distributed communication
networks, energy grid management, and air traffic control. Ensuring the correctness of such
systems is challenging due to the number of concurrent internal and external components.
The interleaved behavior of all these components leads to an exponential growth in the
number of states, a phenomenon known as the state-space explosion problem [14]. Addressing
this challenge is a core focus of the field of model checking. In this paper, we consider
real-time systems with components controlled by more than two parties, some cooperative,
others adversarial. Real examples of such systems include electronic circuits with multiple
components, perhaps some counterfeit [27], and networks of routers located in different

© Nicolaj Ø. Jensen, Kim G. Larsen, Didier Lime, and Jiří Srba;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noje@cs.aau.dk
https://orcid.org/0009-0005-2359-204X
mailto:kgl@cs.aau.dk
https://orcid.org/0000-0002-5953-3384
mailto:Didier.Lime@ec-nantes.fr
https://orcid.org/0000-0001-9429-7586
mailto:srba@cs.aau.dk
https://orcid.org/0000-0001-5551-6547
https://doi.org/10.4230/LIPIcs.CONCUR.2025.25
https://arxiv.org/abs/2506.07802
https://doi.org/10.5281/zenodo.15195408
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

25:2 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

A, x ≤ 4 B, x ≤ 5

C

D, x ≤ 3

Goal
I

a1

I
a2

III
a3, x ≤ 2

II
a4, x ≤ 3

II
a5

III
a6

A ⊭ ⟨⟨I⟩⟩♢Goal
A ⊨ ⟨⟨II⟩⟩♢Goal
A ⊭ ⟨⟨III⟩⟩♢Goal
A ⊨ ⟨⟨I, III⟩⟩♢Goal
A ⊨ JIIK♢Goal
A ⊭ ⟨⟨II⟩⟩(¬C U Goal)
A ⊨ ⟨⟨I, III⟩⟩(¬C U Goal)
A ⊨ ⟨⟨I⟩⟩□¬⟨⟨III⟩⟩♢Goal
A ⊭ ⟨⟨II⟩⟩□¬⟨⟨III⟩⟩♢Goal
A ⊭ ⟨⟨II⟩⟩♢<5Goal

(a) An example timed game A with three players: I, II, and III and a single clock x that increases as time
passes. Multiple TATL properties of the system are shown on the right.

I : ⟨ℓ, ν⟩ 7→


a1 if ℓ = A
a2 if ℓ = B ∧ ν(x) = 5
λ otherwise

III : ⟨ℓ, ν⟩ 7→


a3 if ℓ = B ∧ ν(x) ≤ 2
a6 if ℓ = D
λ otherwise

(b) An example strategy profile for player I and III that witnesses A ⊨ ⟨⟨I, III⟩⟩(¬C U Goal).

Figure 1

countries [16, 6]. We model these systems as timed multiplayer games (TMG) and consider
properties described in timed alternating-time temporal logic (TATL) [14, 4]. TMGs are
generalized timed game automata [26, 7] and can have more than two players. Like in timed
games, each discrete action belongs to a specific player and can be executed only at the
discretion of that player. Consider the example TMG in Figure 1a with three players, I,
II, and III, and a single real-valued clock x, initially at 0, that increases as time passes.
From the starting location, A, player III has no strategy to ensure that the system reaches
the Goal location, expressed as A ⊭ ⟨⟨III⟩⟩♢Goal in TATL. This is because player I can
wait in location A until x > 3 and then direct the system to location C without giving III
any influence. Here, the system can remain indefinitely. On the other hand, II can ensure
Goal is reached as I and III cannot leave the system in a location where II cannot make
progress. TATL also allows us to consider coalitions of collaborating players. If players
I and III work together, then they can ensure Goal is reached without visiting location
C, expressed as A ⊨ ⟨⟨I, III⟩⟩(¬C U Goal). We also consider nested properties, such as
A ⊨ ⟨⟨I⟩⟩□¬⟨⟨III⟩⟩♢Goal which states that I can ensure that in all reached states, III does not
have a strategy to ensure Goal is reached. Furthermore, timed properties add conditions on
the time passed. For example, A ⊭ ⟨⟨II⟩⟩♢<5Goal states that II cannot guarantee Goal is
reached strictly within 5 time units.

For verification, it is often unnecessary to explore the entire state space to determine
the correctness of a property. One approach that reduces unnecessary work is to decompose
the problem into sub-problems and lazily structure them in a dependency graph [25, 17, 18].
As the process unfolds, sub-problems eventually become trivial, and their solutions are
used to resolve the more complex dependent problems. In many cases, the root problem
can be answered without first constructing the entire dependency graph and the process
can terminate early. This framework was formalized in [17, 18] using extended abstract
dependency graphs (EADGs) and has been used to create on-the-fly algorithms for other
model checking domains [12, 13, 20].

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:3

Our contributions

We develop an on-the-fly TATL algorithm within the EADG framework by providing a sound
encoding of the problem. Our approach builds upon previous work involving encodings
for timed systems and alternating-time temporal logic, showing their orthogonality, and
we provide many semantic details that were left out in previous work. Since TATL is
a superset of TCTL [1, 2, 4], our algorithm is also the first on-the-fly algorithm for TCTL
with the generic freeze operator. Moreover, we formalize vertex merging in EADGs as
a generalization of inclusion checking from prior work [13] and incorporate it into our
encoding. In addition, this generalization also leads to an expansion abstraction that removes
the need for conventional inclusion checking in our encoding altogether. Finally, we implement
and evaluate various configurations of our algorithm and compare their performance to the
state-of-the-art model checker for real-time games Uppaal Tiga [13, 9]. Our configuration
with inclusion checking is, as expected, on par with Tiga on the subset of formulae that
Tiga can handle, however, incorporating our expansion abstraction improves performance
by nearly an order of magnitude.

Related work

The tool Uppaal Tiga [13, 9], which has since been integrated in Uppaal [19], uses a similar
method to solve a simpler version of the problem: strategy synthesis in two-player timed
games. In fact, [13] was published 20 years ago at CONCUR’05, and our paper brings the
foundational work of that paper into the modern framework and expands it to the broader
TATL logic. Tiga was the first to adapt the dependency graph-based on-the-fly algorithm
by Liu and Smolka [25] to model checking, and the idea was eventually generalized into the
EADG framework [17, 18]. Tiga relies on inclusion checking to merge vertices and improve
performance, a detail that has not been generalized to the EADG framework until this
paper. This paper also includes many semantic details that were left out in [13]. Alternating-
time temporal logic (ATL), defined by T. Henzinger and R. Alur in [4] as an extension to
branching-time logic [14], introduces ways to quantify over possible outcomes resulting from
coalitions of players working together. ATL properties with a single coalition can be reduced
to a synthesis problem in a two-player game, a problem that has already been intensively
studied [26, 7, 15, 13]. However, it is also possible to nest the coalition quantifiers to express
more intriguing properties. Recently, Carlsen et al. [12] used the EADG framework for
on-the-fly verification of (untimed) ATL properties in concurrent games with multiple players.
We extend this work to the setting of timed games and timed logics [1, 2]. An alternative
approach to checking branching-time logic properties is the bottom-up algorithm [1, 14, 7].
This method begins by identifying all states that satisfy the relevant atomic propositions. It
then iteratively propagates these results to compute states satisfying larger sub-properties
until the original property is fully evaluated. While efficient when processing all reachable
states is unavoidable, this approach may also waste time on unreachable states or irrelevant
state-property combinations. Our on-the-fly algorithm mitigates these issues by computing
only the necessary states and sub-properties on demand. Our new expansion abstraction
relaxes the relevance criteria, bringing it closer to the bottom-up algorithm in this regard.

Paper structure

In Section 2, we present the TMG formalism and TATL logic followed by the general EADG
framework. Then we present our encoding of the TATL problem in EADGs in Section 3. In
Section 4, we introduce vertex merging to EADGs and an updated algorithm, allowing us

CONCUR 2025

25:4 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

to perform inclusion checking in our encoding, and we introduce our expansion abstraction.
Finally, in Section 5, we evaluate our algorithm and compare it against Uppaal Tiga on
the problem instances where it is possible.

2 Preliminaries

We shall first introduce the model of timed games with multiple players as well as a timed
logics for describing properties of such systems. Afterwards, we present the extended abstract
dependency graph framework.

2.1 Timed Multiplayer Games
Let X be a finite set of real-valued variables called clocks. Let C(X) be the set of clock
constraints over the clocks X generated by the following abstract syntax:

g ::= x ▷◁ k | x − y ▷◁ k | g1 ∧ g2

where k ∈ Z and x, y ∈ X and ▷◁ ∈ {<, ≤ , =, ≥ , >}. Let B(X) ⊆ C(X) be the subset
that does not use any diagonal constraints of the form x − y ▷◁ k. Let B̂(X) ⊆ B(X) be
the subset that also does not use any constraints of the form x < k. A clock valuation
ν : X → R≥0 assigns each clock a real value. The valuation denoted −→0 assigns 0 to each
clock. We write ν[Y] for a valuation that assigns 0 to any clock x ∈ Y and assigns ν(x) to any
clock x ∈ X \ Y . If δ ∈ R≥0 then ν + δ denotes the valuation such that (ν + δ)(x) = ν(v) + δ

for all x ∈ X. If g ∈ C(X), we write ν ⊨ g and say that ν satisfies g if replacing all clocks in
g with their respective value in ν makes the expression evaluate to true.

▶ Definition 1 (Timed Automaton). A timed automaton (TA) is a 6-tuple ⟨L, ℓinit, X, A, T, I⟩
where L is a finite set of locations, ℓinit ∈ L is the initial location, A is a set of actions, X is
a finite set of real-valued clocks, T ⊆ L × B(X) × A × 2X × L is a finite set of edges each
with a unique action from A, and I : L → B̂(X) assigns an invariant to each location.

The semantics of a TA A = ⟨L, ℓ0, X, A, T, I⟩ can be described with a labeled transition
system. The states are pairs ⟨ℓ, ν⟩ where ℓ ∈ L is a location and ν : X → R≥0 is a valuation
such that ν ⊨ I(ℓ) and Q is the set of all states. Transition labels are discrete actions
or real-valued delays, i.e. A ∪ R≥0, and the transition relation → is a union of the binary
relations a−→ and δ−→ defined over states as follows:

⟨ℓ, ν⟩ a−→ ⟨ℓ′, ν′⟩ if there exists an edge ⟨ℓ, g, a, Y, ℓ′⟩ ∈ T such that v ⊨ I(ℓ) ∧ g, v′ = v[Y],
and v′ ⊨ I(ℓ′), and
⟨ℓ, ν⟩ δ−→ ⟨ℓ, ν′⟩ if δ > 0, v ⊨ I(ℓ), v′ = v + δ, and v′ ⊨ I(ℓ).

A run in a TA is a sequence ⟨ℓ0, ν0⟩ t0−→ ⟨ℓ1, ν1⟩ t1−→ ⟨ℓ2, ν2⟩ · · · such that ti ∈ A ∪ R≥0. A
run is maximal if it contains an infinite number of discrete action transitions, ends with an
infinite number of delay transitions that sum to ∞ (divergence), or no transition is possible
in the final state (a deadlock). For the latter case, there is always a well-defined final state
since invariants of the form x < k are disallowed. The set RunsA(⟨ℓ, ν⟩) contains all maximal
runs starting from ⟨ℓ, ν⟩. Given a run σ we write σ[i] for the ith state ⟨ℓi, νi⟩.

▶ Definition 2 (Timed Multiplayer Game). A timed multiplayer game (TMG) with N

players is a timed automaton where the actions A have been partitioned into N disjoint sets,
A = A1 ⊎ · · · ⊎ AN . We denote by Σ = {1, . . . , N} the set of players.

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:5

Strategies and outcomes

A (memoryless) strategy for a player p ∈ Σ is a function fp : Q → Ap ∪ {λ} that maps each
state to λ or a discrete action that is enabled in the state and belongs to p. The strategy
informs p what to do in the given state and λ is a special symbol indicating that player p

should do nothing and wait. For states where a delay transition is not possible, a strategy
can only output λ if the player has no enabled actions available. Let Fp be the set of all
strategies for the player p. By ξS we denote a strategy profile that assigns to each player
p ∈ S ⊆ Σ a strategy fp ∈ Fp, and Ξ(S) is the set of all such strategy profiles over S. When
players pick actions according to their strategies, it restricts the possible runs. We write
OutA(ξS , ⟨ℓ, ν⟩) ⊆ RunsA(⟨ℓ, ν⟩) for the subset of outcomes (runs) induced when the players
of S adhere to the strategies of ξS .

▶ Definition 3 (Outcomes). Let A = ⟨L, ℓinit, X, A, T, I⟩ be a TMG with players Σ =
{1, . . . , N}, let ⟨ℓ0, ν0⟩ be a state where ν0 ⊨ I(ℓ0), and let ξS ∈ Ξ(S) be a strategy profile
for S ⊆ Σ. A maximal run σ = ⟨ℓ0, ν0⟩ t0−→ ⟨ℓ1, ν1⟩ t1−→ ⟨ℓ2, ν2⟩ · · · ∈ RunsA(⟨ℓ0, ν0⟩) is in
OutA(ξS , ⟨ℓ0, ν0⟩) iff the following conditions hold:

for all i ≥ 0 such that ti = δ ∈ R≥0 we have that ξS(p)(⟨ℓi, νi + δ′⟩) = λ for all 0 ≤ δ′ < δ

and all p ∈ S,
for all i ≥ 0 such that ti = a ∈ A we have either a /∈

⋃
p∈S Ap or ξS(p)(⟨ℓi, νi⟩) = a with

a ∈ Ap for some p ∈ S.

Note that we allow Zeno behavior (an infinite subsequence consisting of no delays) from
both the coalition S and the opposition S.

2.2 Timed Alternating-Time Temporal Logic
The alternating-time temporal logic [4] is a logic that offers quantification over possible
outcomes resulting from a coalition of players in a multiplayer game.

▶ Definition 4 (Alternating-Time Temporal Logic). Given a set of atomic propositions Π,
a set of clocks X, and a set of players Σ, an alternating-time temporal logic (ATL) property
conforms to the abstract syntax:

ϕ ::= π | g | ¬ϕ1 | ϕ1 ∨ ϕ2 | ⟨⟨S⟩⟩ ⃝ ϕ1 | ⟨⟨S⟩⟩(ϕ1Uϕ2) | JSK(ϕ1Uϕ2)

where π ∈ Π, g ∈ C(X), and S ⊆ Σ is a coalition of players.

Given a TMG A with players Σ = {1, . . . , N} and a function Lab : L → 2Π labeling
locations with atomic propositions, the satisfaction relation ⊨ over states and ATL properties
is defined inductively as follows:

⟨ℓ, ν⟩ ⊨ π iff π ∈ Lab(ℓ),
⟨ℓ, ν⟩ ⊨ g iff ν ⊨ g,
⟨ℓ, ν⟩ ⊨ ¬ϕ iff ⟨ℓ, ν⟩ ⊭ ϕ,
⟨ℓ, ν⟩ ⊨ ϕ1 ∨ ϕ2 iff ⟨ℓ, ν⟩ ⊨ ϕ1 or ⟨ℓ, ν⟩ ⊨ ϕ2,
⟨ℓ, ν⟩ ⊨ ⟨⟨S⟩⟩ ⃝ ϕ1 iff there exists a strategy profile ξS ∈ Ξ(S) such that for all maximal
runs σ = ⟨ℓ0, ν0⟩ t0−→ ⟨ℓ1, ν1⟩ t1−→ ⟨ℓ2, ν2⟩ · · · ∈ OutA(ξS , ⟨ℓ, ν⟩) we have σ[i + 1] ⊨ ϕ1 where
i ≥ 0 is the smallest i such that ti ∈ A and such an i must exist,1

1 The next operator is usually left out of timed systems, but it is well-defined with action-based semantics
like here.

CONCUR 2025

25:6 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

⟨ℓ, ν⟩ ⊨ ⟨⟨S⟩⟩(ϕ1Uϕ2) iff there exists a strategy profile ξS ∈ Ξ(S) such that for all maximal
runs σ ∈ OutA(ξS , ⟨ℓ, ν⟩) we have σ ⊨r ϕ1Uϕ2 (defined below),
⟨ℓ, ν⟩ ⊨ JSK(ϕ1Uϕ2) iff for all strategy profiles ξS ∈ Ξ(S) there exists a maximal run
σ ∈ OutA(ξS , ⟨ℓ, ν⟩) such that σ ⊨r ϕ1Uϕ2,

and for a maximal run σ = ⟨ℓ0, ν0⟩ t0−→ ⟨ℓ1, ν1⟩ t1−→ ⟨ℓ2, ν2⟩ · · · we have σ ⊨r ϕ1Uϕ2 iff there
exists an i ≥ 0 such that:

for all j < i:
if tj ∈ R≥0 then for all δ ∈ [0, tj) we have ⟨ℓj , νj + δ⟩ ⊨ ϕ1, or
if tj ∈ A instead then ⟨ℓj , νj⟩ ⊨ ϕ1, and

either ⟨ℓi, νi⟩ ⊨ ϕ2 or ti ∈ R≥0 and there exists a δ ∈ [0, ti) such that ⟨ℓi, νi + δ⟩ ⊨ ϕ2,
and for all δ′ ∈ [0, δ) we have ⟨ℓi, νi + δ′⟩ ⊨ ϕ1 ∨ ϕ2. We note that the disjunction ϕ1 ∨ ϕ2
is necessary for timed big-step runs (instead of simply ϕ1). See [5] for details.

We note that J∅K ≡ ∃ and ⟨⟨∅⟩⟩ ≡ ∀ and thus ATL is a superset of CTL [4]. Other
notable abbreviations and equivalences are π ∨ ¬π ≡ true and ⟨⟨S⟩⟩(true Uϕ) ≡ ⟨⟨S⟩⟩♢ϕ and
¬⟨⟨S⟩⟩♢ϕ ≡ JSK□¬ϕ and ¬⟨⟨S⟩⟩ ⃝ ϕ ≡ JSK ⃝ ¬ϕ.

▶ Definition 5 (Timed ATL). Timed alternating-time temporal logic (TATL) is the timed
extension of ATL and is defined as ATL but with a new freeze operator: z.ϕ, where z ∈ X is
a formula clock and ϕ is another TATL property. Note that a formula clock z may not be
used in the guards and invariants of the TMG. Given a state ⟨ℓ, ν⟩ ∈ Q we have ⟨ℓ, ν⟩ ⊨ z.ϕ

iff ⟨ℓ, ν[z]⟩ ⊨ ϕ.

The TATL freeze operator is commonly used indirectly through the more intuitive
temporal operator U◁k (where ◁ ∈ {<, ≤}). For example, if z is a new clock that does not
appear elsewhere in the model or the formula then:

⟨⟨S⟩⟩(ϕ1U◁kϕ2) ≡ z.⟨⟨S⟩⟩((ϕ1 ∧ z ◁ k) Uϕ2)

meaning that coalition S ⊆ Σ has a strategy profile such that when adhered to, the system
always reaches a state satisfying ϕ2 (strictly) within k time units by a path where ϕ1
invariantly holds.

An example strategy profile that witnesses A ⊨ ⟨⟨I, III⟩⟩(¬C U Goal) for the TMG A in
Figure 1a is given in Figure 1b. Since some states are never visited under this strategy, a
partial strategy profile would also suffice as a witness. Such partial strategy witnesses enable
our algorithm to terminate early for positive cases.

2.3 Extended Abstract Dependency Graphs
A partially ordered set ⟨D, ⊑⟩ is a set D together with a binary relation ⊑ ⊆ D × D that is
reflexive, transitive and anti-symmetric. Given partially ordered sets ⟨D1, ⊑1⟩ and ⟨D2, ⊑2⟩,
a function f : D1 → D2 is monotonically increasing if d ⊑1 d′ implies f(d) ⊑2 f(d′) and
monotonically decreasing if d ⊑1 d′ implies f(d) ⊒2 f(d′). When we just say monotonic we
refer to increasing monotonicity. When a function has multiple inputs, monotonicity is with
respect to a specific input. Unless we specify further, our monotonic multi-input functions
are monotonic with respect to all inputs.

▶ Definition 6 (Noetherian Ordering Relation). A Noetherian ordering relation with a least
element (NOR) is a triple ⟨D, ⊑, ⊥⟩ such that ⟨D, ⊑⟩ is a partially ordered set, ⊥ ∈ D is the
least element such that ⊥ ⊑ d for all d ∈ D, and ⊑ satisfies the stabilizing ascending chain
condition: for any chain d1 ⊑ d2 ⊑ d3 ⊑ · · · there exists a point i such that di = dj for all
j > i.

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:7

A
max(,)

B
−

C
min(,)

D
4+

E
max(, +3)

F
3

G
10

H
2 C0

C1

(a) Example EADG.

v αC0
min αC1

min

A - 8
B - 8
C - 3
D 14 14
E 6 6
F 3 3
G 10 10
H 2 2

(b) Fixed points of compon-
ents C0 and C1.

A
max(,)

B
−f()

C
min(,)

D
4+

F
3

where
f(x) = x + 3

G
10

H
2

(c) The EADG after merge by E ⪯f F
where f(x) = x + 3.

Figure 2 (a) An example EADG G over D = ⟨N0 ∪ {∞}, ≥, ∞⟩. For each vertex v, the value
function E(v) is displayed below the vertex, and the edges E(v) are displayed using small circles inside
the value functions, indicating the arity of the value function as well as which vertex assignment
is used as input. Leaf nodes F , G, and H have no dependencies and their value function is a
constant function. Since E(B) is non-monotonic, the graph has two components C0 and C1 which
are highlighted with dashed boxes. (b) The fixed-point assignments of component C0 and C1 found
by a fixed-point computation. (c) The EADG G[E 7→f F] where vertex E has been removed through
derivation E ⪯f F . The value function of vertex B is pointwise composed with the derive function
f on the second input which now points to the assignment of F instead. Vertex H now has no
dependents and can be pruned.

▶ Definition 7 (Abstract Dependency Graph). An abstract dependency graph (ADG) is tuple
⟨V, E, D, E⟩ where V is a finite set of vertices, E : V → V ∗ is an edge function from vertices
to strings of vertices, D is a NOR, and E(v) : Dn → D is a monotonic value function at
vertex v ∈ V that takes n arguments where n = |E(v)|.

We write v → v′ if v, v′ ∈ V and v′ ∈ E(v), and →+ denotes the transitive closure of →.
The empty string of vertices is denoted ε. Vertices v where E(v) = ε have constant value
functions by definition.

▶ Definition 8 (Extended Abstract Dependency Graph). An extended abstract dependency
graph (EADG) is a tuple ⟨V, E, D, E⟩ where V , E, and D are defined as for ADGs, but now
E(v) : Dn → D is a (possibly non-monotonic) value function at vertex v ∈ V that takes n

arguments with n = |E(v)|. Furthermore, if E(v) is non-monotonic, then v is not in a cycle,
i.e. it is not the case that v →+ v.

EADGs can be used to encode and solve various problems. Each vertex in the graph
represents a problem and the NOR values D represent possible answers to problems with
increasing accuracy. The value function at each vertex describes how the answer to the
problem represented by the vertex can be derived from the answers to other (sub)problems.
To describe this formally, we must partition the graph into components. Consider the
function:

dist(v) = max{m ∈ N | ∃v0v1 · · · vn ∈ V ∗, v = v0, ∀i ∈ {1, . . . , n}, vi−1 → vi, (1)
m = |{vi | E(vi) is non-monotonic}|}

describing how many non-monotonic value functions a vertex depends on. Since an EADG
has no cycles with non-monotonic functions, dist(v) is well-defined. The subgraphs induced
by dist are called components and Ci ⊆ V is the ith component where dist(v) ≤ i for all
v ∈ Ci. Component C0 depends only on monotonic value functions.

CONCUR 2025

25:8 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

Let α : V → D be an assignment from vertices to NOR values with α⊥ being the
assignment such that α⊥(v) = ⊥ for all vertices v ∈ V . Let F0 be an update function such
that:

F0(α)(v) = E(v)(α(v1), α(v2), . . . , α(vn)) (2)

where v ∈ C0 and E(v) = v1v2 . . . vn. Since all value functions in C0 are monotonic and D is
a NOR, repeated application of F0 on α⊥ eventually reaches a least fixed point, i.e. there
exists an m > 0 such that F m

0 (α⊥) = F m+1
0 (α⊥). We denote this fixed point αC0

min. For each
component Ci where i > 0 the update function Fi is defined as follows:

Fi(α)(v) =
{

E(v)(α(v1), α(v2), . . . , α(vn)) if E(v) is monotonic
E(v)(αCi−1

min (v1), α
Ci−1
min (v2), . . . , α

Ci−1
min (vn)) otherwise

(3)

where E(v) = v1v2 . . . vn and the assignment α
Ci−1
min is the minimal fixed point on component

Ci−1, i.e. the fixed points are defined inductively [18]. Finally, let Cmax be the component
associated with the greatest dist in EADG G, and let αG

min denote αCmax
min . Given a vertex

v0 ∈ V , the value αG
min(v0) can be efficiently found using the sound and complete on-the-fly

algorithm introduced in [18].
A small example EADG can be seen in Figure 2a with the NOR D = ⟨N0 ∪ {∞}, ≥, ∞⟩.

In this domain, chains are descending, stabilizing before or at 0. In Figure 2b we show the
minimum fixed-point assignment of the components in the example EADG.

3 Encoding TATL to EADGs

In this section we will introduce our symbolic encoding of the TATL problem to EADGs.

Symbolic Operations on Zones and Federations

Due to the uncountable size of the state space, automated verification of timed automata
groups the concrete states into effectively representable sets of states and valuations [1, 10].
We shall now define some useful operators on such sets. Let JgK = {ν ∈ RX

≥0 | ν ⊨ g} be the
set of all valuations satisfying g ∈ C(X). A zone is a set Z ⊆ RX

≥0 of valuations where for
some g ∈ C(X) we have JgK = Z. A finite union of zones is called a federation. If W ⊆ RX

≥0
is a set of valuations, then:

W ↗ = {ν + δ | ν ∈ W, δ ∈ R≥0} are the timed successors of W ,
W ↙ = {ν′ ∈ RX

≥0 | ∃ν ∈ W, ∃δ ∈ R≥0, ν′ + δ = ν} are the timed predecessors of W ,
W [Y] = {ν[Y] | ν ∈ W} is a reset of the clocks Y ⊆ X in W ,
W#x = {ν′ ∈ RX

≥0 | ∃ν ∈ W, ∀y ∈ X, y ̸= x =⇒ ν(y) = ν′(y)} frees clock x ∈ X in W .
Zones are closed under all the above operations [10]. Now consider a set of states Q′ ⊆ Q

of a timed automaton ⟨L, ℓinit, X, A, T, I⟩. We extend these operations on clock valuations
to the sets of states such that if F ∈ {·↗, ·↙, ·[Y], ·#x} then F (Q′) = {⟨ℓ, ν′⟩ | ∃⟨ℓ, ν⟩ ∈
Q′, ν′ ∈ F ({ν}) ∩ JI(ℓ)K}. Given an action a ∈ A, we define the discrete a-predecessors
and a-successors as Preda(Q′) = {⟨ℓ, ν⟩ | ∃⟨ℓ′, ν′⟩ ∈ Q′, ⟨ℓ, ν⟩ a−→ ⟨ℓ′, ν′⟩} and Posta(Q′) =
{⟨ℓ, ν⟩ | ∃⟨ℓ′, ν′⟩ ∈ Q′, ⟨ℓ′, ν′⟩ a−→ ⟨ℓ, ν⟩}, respectively. Both Preda and Posta preserve zones
and federations [10]. When the automata is a TMG with players Σ = {1, . . . , N} and S ⊆ Σ
is a coalition, then we let AS denote

⋃
p∈S Ap. The S-controllable discrete predecessors of

the coalition is defined by PredS(Q′) =
⋃

a∈AS
Preda(Q′). Similarly, the S-uncontrolled

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:9

discrete predecessors is PredS(Q′) where S = Σ \ S. Safe timed predecessors are those that
avoid a set of states Q′′ ⊆ Q even as time elapses. As defined in [13]:

Predλ(Q′, Q′′) = {⟨ℓ, ν − δ⟩ | ⟨ℓ, ν⟩ ∈ Q′, δ ≥ 0, ∀δ′ ∈ [0, δ], ⟨ℓ, ν − δ′⟩ /∈ Q′′} .

The states of Q′ where time cannot pass are defined as Q′∖↗ = {⟨ℓ, ν⟩ ∈ Q′ | ∃”x ≤ k” ∈
I(ℓ), ν(x) = k}. These states are also called time-locked. We note that the ·∖↗ operator
preserves federations. Finally, let Zone(Q) ⊆ 2Q be all subsets of Q that can be represented
with a location-zone pair ⟨ℓ, Z⟩ (also called a symbolic state), and let Fed(Q) ⊆ 2Q be all
subsets of Q that can be represented with a location-federation pair ⟨ℓ,

⋃
i Zi⟩.

The Encoding

We shall now encode the TATL problem on TMGs as an EADG G in order to answer the
question: given a TMG A = ⟨L, ℓinit, X, A, T, I⟩ with players Σ = {1, . . . , N} and a TATL
formula ϕ0, is it the case that ⟨ℓinit,

−→0 ⟩ ⊨ ϕ0? The vertices in EADG will have the form
⟨R, ϕ⟩ where R ∈ Zone(Q) is a symbolic state and ϕ is a TATL formula (a sub-formula of ϕ0).
We shall sometimes specify the location and zone of R and write ⟨ℓ, Z, ϕ⟩ for vertices instead,
but the notation is often simpler for sets of states so we use R in those cases. Our root
vertex is ⟨ℓinit, {−→0 }↗ ∩ JI(ℓinit)K, ϕ0⟩ and all dependencies of all vertices are generated using
operators that preserve symbolic states. Without loss of generality, we assume all clocks are
bounded2 [13, 10] and hence there are only finitely many symbolic states in practice, and
therefore the dependency graph is finite. Our assignment domain is the NOR ⟨Fed(Q), ⊆, ∅⟩
and we typically denote elements from our NOR using W . We restrict ourselves such that
αG

min(⟨R, ϕ⟩) ⊆ R by construction and our goal is that ⟨ℓ, ν⟩ ∈ αG
min(⟨R, ϕ⟩) iff ⟨ℓ, ν⟩ ⊨ ϕ.

The value functions of our EADG rely on the helper function ForceableS(Wϕ1 , Wϕ2 , W) and
its counterpart UnavoidableS(Wϕ1 , Wϕ2 , W) where S is a coalition of players, Wϕ1 and Wϕ2

are sets of states (typically associated with two TATL formulae), and W is a set of states.
We have ⟨ℓ, ν⟩ ∈ ForceableS(Wϕ1 , Wϕ2 , W) if and only if there exists a δ ≥ 0 such that
⟨ℓ, ν⟩ δ−→ ⟨ℓ, ν + δ⟩ and

for all δ′ ∈ [0, δ] either ⟨ℓ, ν + δ′⟩ ∈ Wϕ2 , or ⟨ℓ, ν + δ′⟩ ∈ Wϕ1 and for all ai ∈ AS if
⟨ℓ, ν + δ′⟩ ai−→ ⟨ℓ′, ν′⟩ then ⟨ℓ′, ν′⟩ ∈ W,
and additionally

⟨ℓ, ν + δ⟩ ∈ Wϕ2 , or
⟨ℓ, ν + δ⟩ aj−→ ⟨ℓ′, ν′⟩ ∈ W for some aj ∈ AS , or
⟨ℓ, ν + δ⟩ ̸ δ

′′

−→ for any δ′′ > 0 and ⟨ℓ, ν + δ⟩ aj−→ ⟨ℓ′, ν′⟩ ∈ W for some aj ∈ AS .
That is, the set is the subset of Wϕ1 ∪ Wϕ2 where coalition S can controllably get to Wϕ2

with delays or to W with delays and a discrete action all while staying in Wϕ1 until then.
The set can be described symbolically as follows:

ForceableS(Wϕ1 , Wϕ2 , W) =
Predλ

(
Wϕ2 ∪ PredS(W) ∪ H,

[
Wϕ1 ∪ PredS(W)

]
\ Wϕ2

)
(4)

where H = Q∖↗ ∩ PredS(W) \ PredΣ(W). (5)

Similarly, we have ⟨ℓ, ν⟩ ∈ Unavoidable(Wϕ1 , Wϕ2 , W) if and only if there exists a δ ≥ 0 such
that ⟨ℓ, ν⟩ δ−→ ⟨ℓ, ν + δ⟩ and

2 It is also possible to use extrapolation techniques instead [8].

CONCUR 2025

25:10 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

for all δ′ ∈ [0, δ) we have ⟨ℓ, ν + δ′⟩ ∈ Wϕ1 and for all ai ∈ AS if ⟨ℓ, ν + δ′⟩ ai−→ ⟨ℓ′, ν′⟩
then ⟨ℓ′, ν′⟩ ∈ W,
and additionally

⟨ℓ, ν + δ⟩ ∈ Wϕ2 , or
⟨ℓ, ν + δ⟩ ∈ Wϕ1 and ⟨ℓ, ν + δ⟩ aj−→ ⟨ℓ′, ν′⟩ ∈ W for some aj ∈ AS , or
⟨ℓ, ν + δ⟩ ∈ Wϕ1 and ⟨ℓ, ν + δ⟩ ̸ δ

′′

−→ for any δ′′ > 0 and for all ai ∈ AS if ⟨ℓ, ν + δ′⟩ ai−→
⟨ℓ′, ν′⟩ then ⟨ℓ′, ν′⟩ ∈ W and there exists at least one ai ∈ AS such that ⟨ℓ, ν + δ⟩ ai−→.

That is, the set contains the subset of Wϕ1 ∪ Wϕ2 where coalition S cannot avoid that the
system stays in Wϕ1 and eventually reaches Wϕ2 through delays, or reaches W through
a delay followed by a discrete action. The set can be described symbolically as follows:

UnavoidableS(Wϕ1 , Wϕ2 , W) =
Predλ

(
Wϕ2 ∪ PredS(W) ∪ H,

[
Wϕ1 ∪ (PredS(W) \ PredS(W))

]
\ Wϕ2

)
(6)

where H = Q∖↗ ∩ PredS(W). (7)

Assuming a fixed ordering of actions A = {a1, . . . , an}, we now define E(v) and E(v) of the
EADG as follows based on the form of vertex v:

Case v = ⟨R, π⟩: E(v) = ε and E(v)(ε) = {⟨ℓ, ν⟩ ∈ R | π ∈ Lab(ℓ)}.
Case v = ⟨R, g⟩: E(v) = ε and E(v)(ε) = {⟨ℓ, ν⟩ ∈ R | ν ∈ JgK}.
Case v = ⟨R, ¬ϕ⟩: E(v) = ⟨R, ϕ⟩ and E(v)(W) = R \ W .
Case v = ⟨R, ϕ1 ∨ ϕ2⟩: E(v) = ⟨R, ϕ1⟩⟨R, ϕ2⟩ and E(v)(W1, W2) = W1 ∪ W2.
Case v = ⟨R, ϕ1 ∧ ϕ2⟩: E(v) = ⟨R, ϕ1⟩⟨R, ϕ2⟩ and E(v)(W1, W2) = W1 ∩ W2.
Case v = ⟨R, z.ϕ⟩: E(v) = ⟨R[z]↗, ϕ⟩ and E(v)(W) = (W ∩ Q[z])#z ∩ R.
Case v = ⟨R, ⟨⟨S⟩⟩ ⃝ ϕ⟩:

E(v) = va1 . . . van
where vai

= ⟨Postai
(R)↗, ϕ⟩

E(v)(Wa1 , . . . , Wan
) = ForceableS(R, ∅,

⋃
i

Wai
)

Case v = ⟨R, ⟨⟨S⟩⟩(ϕ1Uϕ2)⟩:

E(v) = ⟨R, ϕ1⟩⟨R, ϕ2⟩va1 . . . van
where vai

= ⟨Postai
(R)↗, ⟨⟨S⟩⟩(ϕ1Uϕ2)⟩

E(v)(Wϕ1 , Wϕ2 , Wa1 , . . . , Wan
) = ForceableS(Wϕ1 , Wϕ2 ,

⋃
i

Wai
)

Case v = ⟨R, JSK(ϕ1Uϕ2)⟩:

E(v) = ⟨R, ϕ1⟩⟨R, ϕ2⟩va1 . . . van where vai = ⟨Postai(R)↗, JSK(ϕ1Uϕ2)⟩

E(v)(Wϕ1 , Wϕ2 , Wa1 , . . . , Wan
) = UnavoidableS(Wϕ1 , Wϕ2 ,

⋃
i

Wai
)

We remark that the elements of the NOR ⟨Fed(Q), ⊆, ∅⟩ have finite representations using
the data structure known as a difference bound matrix [10, 14]. All value functions are
effectively computable since all constituent operations have known algorithms on difference
bound matrices [10, 13].

In Figure 3, we show a fragment of the dependency graph generated when checking if
ϕ = ⟨⟨I, III⟩⟩(¬C U Goal) holds in the initial state of A from Figure 1a. Eventually, the
algorithm assigns Jx ≤ 3K to the vertex ⟨A, x ≤ 4, ϕ⟩ and then we can terminate as we now
know that the ϕ holds for the initial state ⟨A,

−→0 ⟩.
We will now state the correctness of the encoding and its supporting lemma.

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:11

A, x ≤ 4, ϕ
Forceable{I,III}(, ,)⋃A, x ≤ 4, ¬C

Jx ≤ 4K

A, x ≤ 4, Goal
∅

B, x ≤ 5, ϕ
Forceable{I,III}(, ,)⋃B, x ≤ 5, ¬C

Jx ≤ 5K

B, x ≤ 5, Goal
∅

· · ·

· · ·

· · ·

a1 a2

a3

a4

Figure 3 A fragment of the EADG for ϕ = ⟨⟨I, III⟩⟩(¬C U Goal) in A from Figure 1a.

▶ Lemma 9 (Monotonically Safe). The EADG encoding of TATL has no cycles of non-
monotonic value functions and dist(⟨R, ϕ⟩) is the greatest number of nested negations in
ϕ.

▶ Theorem 10 (Encoding Correctness). Given a TMG A = ⟨L, ℓinit, X, A, T, I⟩, a set of
states R ∈ Zone(Q) such that R = R↗, a state ⟨ℓ, ν⟩ ∈ R, and a TATL formula ϕ, then
⟨ℓ, ν⟩ ⊨ ϕ iff ⟨ℓ, ν⟩ ∈ αG

min(⟨R, ϕ⟩) using the presented EADG encoding of TATL.

3.1 Unsatisfied states
We now detail an improvement also investigated in [13]. In the encoding presented above,
the NOR domain represents the states for which the formula is definitely satisfied. It is also
possible to define an encoding in which the NOR domain represents the states in which the
formula is definitely not satisfied. It is easy to see that the composition of two NORs is also
a NOR [17], so we can do both simultaneously. If the initial state is ever included in the
set of unsatisfied valuations then we know that the property does not hold. Hence, with
this extension, we can terminate early for many negative cases as well. The encoding using
the unsat NOR is trivial for clock constraints g ∈ C(X), and operators ∧, ∨, and ¬, but for
completeness, we state the encoding of formulae containing the ⃝ and U operator below.
For all v ∈ V , we use the same edges E(v), but different value functions, denoted Ec, for
updating the unsatisfied part of the composed NOR. Here M is used to denote elements in
the unsat NOR and we assume the same ordering of actions A = {a1, . . . , an} from earlier:

Case v = ⟨R, ⟨⟨S⟩⟩ ⃝ ϕ: Ec(v)(Ma1 , . . . , Man
) = UnavoidableS(R, ∅,

⋃
i Mai

)
Case v = ⟨R, ⟨⟨S⟩⟩(ϕ1Uϕ2):

Ec(v)(Mϕ1 , Mϕ2 , Ma1 , . . . , Man
) = UnavoidableS(Mϕ2 , Mϕ1 ,

⋃
i

Mai
)

Case v = ⟨R, JSK(ϕ1Uϕ2):

Ec(v)(Mϕ1 , Mϕ2 , Ma1 , . . . , Man) = ForceableS(Mϕ2 , Mϕ1 ,
⋃

i

Mai)

As seen, the difference between E and Ec, is that every use of Forceable has been replaced
by Unavoidable, and vice versa, and the terms involving ϕ1 and ϕ2 have been swapped in U
formulae.

4 Dynamical Vertex Merge in EADGs

Usually, automated verification of timed systems takes advantage of inclusion checking, i.e. if
one discovered symbolic state is included within another, then there is no reason to investigate
the smaller one. To do this in the EADG framework, we must first introduce the general
concept of vertex merging, which can be used to dynamically reduce the size of the graph.

CONCUR 2025

25:12 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

Consider the NOR ⟨D, ⊑, ⊥⟩ and an EADG G = ⟨V, E, D, E⟩. If u ∈ V ∗ is a string of
vertices, then u[i] denotes the ith vertex in the string and u[v1 7→ v2] denotes the string u

where all occurrences of v1 are replaced with v2. Given an n-ary function h : Dn → D, a
unary function f : D → D and an index i, 1 ≤ i ≤ n, we use ◦i to denote pointwise function
composition on the ith input, defined as (h ◦i f)(x1, . . . , xn) = h(x1, . . . , f(xi), . . . , xn), and
its extension to multiple points ◦{i1,...,ik} given by (h ◦{i1,...,ik} f) = ((h ◦i1 f) ◦i2 · · ·) ◦ik

f

where notably h ◦∅ f = h.

▶ Definition 11 (Derivation). Let v1, v2 ∈ V be vertices in EADG G = ⟨V, E, D, E⟩ with
dist(v1) ≤ dist(v2) and let f : D → D be a monotonic function such that f(αG

min(v2)) =
αG

min(v1). We call f a derive function and say that v1 is derivable from v2 through f , denoted
by v1 ⪯f v2.

Derivable vertices can be removed by merging without loss of precision.

▶ Definition 12 (Vertex Merge). Let v1, v2 ∈ V be vertices in EADG G = ⟨V, E, D, E⟩
with dist(v1) ≤ dist(v2) and let f : D → D be a monotonic function such that v1 ⪯f v2.
A vertex merge of v1 into v2 by f is an operation that results in a new EADG denoted
G[v1 7→f v2] = ⟨V ′, E′, D, E ′⟩ where

V ′ = V \ {v1},
E′(v) = E(v)[v1 7→ v2] for all v ∈ V ′, and
E ′(v) = E(v) ◦I f for all v ∈ V ′ where I = {i | E(v)[i] = v1}.

We can now present a theorem that shows that a vertex merge does not change the
minimum fixed-point value of any vertex in the dependency graph.

▶ Theorem 13 (Merge Preserves αG
min). Let G = ⟨V, E, D, E⟩ be an EADG. If v1, v2 ∈ V and

f : D → D such that v1 ⪯f v2 then αG
min(v) = α

G[v1 7→f v2]
min (v) for all v ∈ V \ {v1}.

There are two main reasons why merging vertices can be beneficial when v1 ⪯f v2. First,
f may be computationally cheaper than computing E(v1). Second, it reduces the size of the
graph, making other operations such as back-propagation of updates and pruning cheaper.
However, if f is expensive, it may be better to keep v1 for the memoization it provides.

On Figure 2c, we show how the EADG from Figure 2a looks after a merge by derivation
E ⪯f F where f(x) = x + 3. The existence of this derivation depends on the user’s domain
knowledge. In this case, the user might know that the first input to the max function of E

can never exceed 3, and hence its value can be derived from the second input F . As shown
in the figure, the resulting graph is smaller and it is also possible to prune the vertex H.

4.1 Algorithm with Vertex Merging
Here we present our modification to the fixed-point algorithm from [18], enabling it to take
advantage of vertex merging whenever v1 ⪯f v2. The updated algorithm uses the following
data structures:

v̂ is the current root vertex, initialized to v0,
f̂ is the root deriving function, initialized to id (the identity function),
α : V → D is the current assignment, initialized to α⊥,
W is a waiting set of vertices pending exploration or reevaluation,
Pass is a set of explored vertices,
Dep : V → 2V is a function that for each vertex v returns a set of dependent vertices
that should be reevaluated if the assignment of v changes,

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:13

Algorithm 1 Minimum fixed-point computation on an EADG. The lines highlighted in
gray are our additions to the algorithm from [18].

Input: An EADG ⟨V, E, D, E⟩ and v0 ∈ V
Output: d ∈ D s.t. d ⊒ αmin(v0)

1 Dep(v) = ∅, Edges(v) := E(v), and Eval(v) = E(v) for all v ∈ V ;
2 v̂ := v0; f̂ = id; α := α⊥;
3 W := {v0}; P ass := ∅; Active := {v0};
4 while W ̸= ∅ do
5 let v ∈ W where v is pickable;
6 W := W \ {v};
7 if v = v̂ or Dep(v) ̸= ∅ then
8 if v /∈ P ass then
9 v := Explore(v);

10 if v ∈ P ass or E(v) is non-monotonic then
11 let v1v2 . . . vk := Edges(v);
12 d := E(v)(α(v1), α(v2), . . . , α(vk));
13 if α(v) ⊏ d then
14 W := W ∪ {u ∈ Dep(v) | ∃i.Edges(u)[i] = v ∧ i /∈ Ignore(α, u)};
15 α(v) := d;
16 if v = v̂ and {1, 2, . . . , k} ⊆ Ignore(α, v̂) then
17 return f̂(α(v̂))
18 P ass := P ass ∪ {v};
19 return f̂(α(v̂))
20 proc Explore(v) :
21 v∗ = v;
22 for i = 1 to |Edges(v)| do
23 let vi = Edges(v)[i] (generate it if needed);
24 if vi /∈ Active then
25 Active := Active ∪ {vi};
26 forall v′ ∈ Active where v′ ̸= vi do
27 if vi ⪯f v′ for some f then
28 Active := Active \ {vi};
29 Eval(v) := Eval(v) ◦i f ;
30 Edges(v) := Edges(v)[vi 7→ v′];
31 continue outer loop;
32 if v′ ⪯f vi for some f then
33 Replace(v′, f, vi);
34 if v′ = v̂ then
35 v̂ := vi;
36 f̂ := f̂ ◦ f ;
37 if v′ = v∗ then

/* We replaced the vertex we were exploring. Record replacement. */
38 v∗ := vi;

39 if v∗ ̸= v then
40 return Explore(vi)
41 Dep(vi) := Dep(vi) ∪ {v};
42 if vi /∈ P ass then W := W ∪ {vi};
43 return v

44 proc Replace(v1, f, v2) :
45 Dep(v2) := Dep(v1);
46 forall v′ ∈ Active ∩ Dep(v1) do
47 Eval(v′) := Eval(v′) ◦I f where I = {i | Edges(v′)[i] = v1};
48 Edges(v′) := Edges(v′)[v1 7→ v2]
49 P ass := P ass \ {v1};
50 Active := Active \ {v1};
51 W := W \ {v1};

Edges : V → V ∗ is a function that for each vertex v returns the current edges of v,
initialized to E(v),

Eval(v) : Dn → D is the current value function for vertex v where n = |E(v)|, initialized
to E(v),

Active is a set of vertices that are (still) relevant for the root node v̂ and considered
during vertex merging.

CONCUR 2025

25:14 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

The variables v̂ and f̂ , and the data structures Edges, Eval(v), and Active are introduced
by us to keep track of the reduced graph. In Algorithm 1, we show the EADG minimum
fixed point computation algorithm from [18] updated with vertex merging.3 Incorporating
vertex merging is relatively straightforward, but there are some edge cases to discuss. Vertex
merging, highlighted in gray in Algorithm 1, occurs during the exploration of the vertex v

(line 20-43). Each dependency vi of v is checked against all other active vertices. If vi can
be merged into another active vertex v′, then we make v depend on v′ instead and make vi

inactive (lines 27-31). If an active vertex v′ can be merged into vi then we make v′ inactive
and replace v′ with vi in all our data structures (line 33). Additionally, if v′ is the root
vertex v̂ then we make vi the new root and update f̂ by composing it with f so that the root
assignment can be derived later (lines 34-36). In (presumably) rare cases, v′ is the explored
vertex v, and if so, exploration must be restarted (lines 37-40).

▶ Lemma 14. At the start and end of the Explore procedure, there exists no v1, v2 ∈ Active

such that v1 ̸= v2 and v1 ⪯f v2.

▶ Theorem 15. The algorithm terminates and returns αG
min(v0).

4.2 Inclusion Checking as Derivation
Finally, we can do vertex merging in our problem domain. If one symbolic state is included
within another and the associated query is the same, we merge the smaller one into the bigger
one, since it contains the same valuations and more (conventional inclusion checking).

▶ Theorem 16 (Derivation by Intersection). Let ⟨R, ϕ⟩, ⟨R′, ϕ⟩ ∈ V be vertices and let
fR : D → D be a function such that fR(W) = W ∩ R. If R ⊆ R′, then ⟨R, ϕ⟩ ⪯fR

⟨R′, ϕ⟩ is
a derivation.

4.3 Expansion Abstraction
It is known that EADGs can be refined using abstractions [18, 21, 22]. We now present a
simple abstraction for our domain that has superior performance compared to the inclusion
checking. As discussed, R is a symbolic state and ⟨ℓ, Z, ϕ⟩ is the actual form of vertices in
the dependency graph. For any vertex v = ⟨ℓ, Z, ϕ⟩ there exists a vertex v′ = ⟨ℓ, JI(ℓ)K, ϕ⟩
and v can be merged into v′ if it is generated. v′ will not be merged into another vertex
as it is the biggest w.r.t. our derivation function in Theorem 16. Assuming that v′ has a
high chance of being generated whenever v is, it makes sense to use an abstraction that
takes v directly to v′ immediately, as the merge is likely to happen later anyway, and their
value functions require a similar number of operations but v′ holds more information. Doing
so for all vertices induces a new smaller EADG where inclusion checking and merging are
unnecessary, as for every location there is a unique zone to be explored. In other words, our
abstracted vertices are defined only by the discrete part of the state. If the assumption is
wrong, i.e. v′ is not discovered although v was, we may end up exploring states and edges
that are not relevant in practice as more discrete transitions may be enabled in the the zone
JI(ℓ)K than in Z. However, we assess that timed automata with useless edges are rare in real
use cases, and most valuations are eventually reached. As a consequence, the downside of
this abstraction is insignificant, as also demonstrated by our experiments.

3 We also rearranged and renamed some procedures for clarity and omitted the pruning procedure.
Additionally, Ignore returns a set of indices instead of vertices in our version.

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:15

Formally, we apply the following expansion abstraction X : V → V to each vertex upon
generation:

X(⟨ℓ, Z, ϕ⟩) = ⟨ℓ, JI(ℓ)K, ϕ⟩ . (8)

▶ Theorem 17. Applying abstraction X from Equation (8) to all vertices preserves encoding
correctness, i.e. ⟨ℓ, ν⟩ ⊨ ϕ iff ⟨ℓ, ν⟩ ∈ α

X(G)
min (⟨R, ϕ⟩) for every ⟨ℓ, ν⟩ ∈ R.

If follows, that the vertex merging using the derivation we defined in Theorem 16 becomes
redundant when using X because there is only one vertex per location-formula pair. The
forward exploration done by the algorithm now only considers whether there exists a valuation
such that a location can transition another location. This is less strict than a traditional
reachability analysis, but it avoids expensive inclusion checks of zones while still restricting
the backward propagation to the location-formula pairs we care about.

5 Implementation and Experimental Evaluation

We implement our algorithm in Uppaal [19]. We use two stacks for the waiting list, one for
vertices waiting for exploration and one for vertices waiting for updates. We always prioritize
vertices from the update stack over vertices from the exploration stack, as this was found to
be favorable in [24]. To improve performance, the EADG framework also allows us to specify
a function Ignore(α, v) describing which vertices of E(v) can be skipped given the current
assignment α. We use the universally sound ignore function suggested in [18] by leveraging
that α(⟨R, ϕ⟩) ⊆ R. We can reduce the number of non-monotonic functions and thus graph
components by rewriting the TATL formulae and pushing negations downward to the atomic
propositions when possible.

The Benchmark

We benchmark various configurations:
Equal: The traditional EADG algorithm without vertex merging.
Incl: We use vertex merging through inclusion checking as by Theorem 16.
Expand: We use the expansion abstraction X described in Section 4.3 (and no vertex
merging).
+Unsat: We additionally compute unsatisfied states as described in Section 3.1.
Tiga(+Unsat): The verifyta engine distributed with Uppaal version 5.0.0 [9, 19] and
specifically the Tiga algorithm.4

The benchmark suite consists of 3 types of TMG models, each instantiated in various
sizes and with multiple associated TATL properties, totaling 236 model and query executions.
The models are:

Train Gate [3]: N trains share the same bridge and a controller signals the trains if the
bridge is occupied. Each train and the controller is a different player. Example queries
include:

⟨⟨T1, T2, T3⟩⟩♢num_crossing ≥ 1; Can train T1, T2, and T3 create a situation where
more than one train is crossing at the same time? (No)
⟨⟨T1⟩⟩♢crossed(T1); Can train T1 ensure that it eventually crosses the bridge? (No)

4 Tiga always keeps track of losing states without a strategy, i.e. the Unsat modification.

CONCUR 2025

25:16 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

� �

� �
 ��� ��
 �
� ��

� $�!��"���"%�!��

��
��

��
�

��
�

��
�

��
	

#��
��
���

�#�
�"
�

�����
�����������
��
�
��
�������
������
������������

(a) Time usage.

� �� ��
� ��� ��� ��� �
�
�#'�$��%��!%(�$��

��
�

��
	

��

��
�

�
"$
)�
��
�&�
��

�

�����
�����������
����
����������
������
������������

(b) Memory usage.

Figure 4 Cactus plots showing how many queries are answered within the indicated per-query
resource limit. A configuration performs better if it can answer more queries using fewer resources.

� ��
� �� ��
�"&�#��$��!$'�#��

��
��

��
�

��
�

��
�

��
	

%�
��
��
�%�
�$
�

���
�����
�
���
����
�
��������
�
���
����
������
�
���
������
�

(a) Time usage.

� �� ��
� ��
�%)�&��'��#'*�&��

��
	

��

��
�

"
�"

$&
+�
!�"

�(�
�
��

���
�����
�
���
����
�
��������
�
���
����
������
�
���
������
�

(b) Memory usage.

Figure 5 Cactus plots showing how many Tiga-compatible queries are answered within the
indicated per-query resource limit. A configuration performs better if it can answer more queries
using fewer resources.

Mexican Standoff [12] extended with reload time: N cowboys are shooting at each other
and must reload their gun between each shot. Each cowboy is a different player and the
gun reloading system is also a player. Example queries include:

⟨⟨C1⟩⟩(alive(C1) U t > 1); Can cowboy C1 guarantee staying alive for 1 second? (No)
⟨⟨Guns, C1, . . . , C⌈N/2⌉⟩⟩□¬

∨
c∈{C1,...,C⌈N/2⌉} alive(c); If half the cowboys cooperate

and the gun reloading is on their side, can they ensure one of them survives? (Yes)
Phase King [11]: A consensus algorithm for N nodes where time is divided into phases
and rounds, and the king of each phase decides the voting tiebreaker. Each node is
controlled by a unique player. Example queries include:

J K♢consensus(n1, n2, n3); Node n1, n2, n3 will reach consensus in some trace? (Yes)
⟨⟨⟩⟩♢consensus(n1, n2, n3); Node n1, n2, n3 will reach consensus in all traces? (No)
⟨⟨⟩⟩□(¬consensus(n1, n2, n3) ∨ ⟨⟨n1, n2, n3⟩⟩□consensus(n1, n2, n3)); If nodes n1, n2,
and n3 have consensus, can they can stay in consensus? (Yes, if N ≤ 5)

Evaluation

Performance comparison of the configurations can be seen in Figure 4. Here the query
executions are ordered (independently for each method) by their running time. Note that the
y-axis is logarithmic. The Incl configuration using vertex merging is more than one order of
magnitude faster than the Equal configuration using no merging, and Expand is almost

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:17

another order of magnitude faster for the most difficult instances. The Unsat modification
further improves the three configurations matching the conclusion in [13]. We find a similar
improvements for memory usage. As described in Section 4.3, Expand may explore edges
unnecessarily, since the abstraction enables all transitions in a location, assuming they will
be relevant eventually. In the plots, we see that the Expand configuration performs worse on
easy queries since these extra edges hinder early termination. However, after just 1 second
this downside is eliminated by the advantages of the method.

Of our 236 total queries, 150 have no nested coalitions and can be solved by Uppaal
Tiga as well. However, for a large portion of them, modifications to the TMG model
are required to get the edges’ controllability to correspond to the actions of the coalition.
In Figure 5, we compare the performance with Tiga on this subset of 150 queries. As
expected, Incl+Unsat and Tiga+Unsat have similar performance on challenging queries,
as these two configurations are very similar in practice. Our implementation seems slightly
faster on easy queries. When we add the Expand abstraction to Tiga and remove its
now redundant inclusion checking (configuration Tiga+Expand+Unsat), the runtime
performance matches that of our Expand+Unsat, almost an order of magnitude faster than
the previous state-of-the-art Tiga implementation.

A reproducibility package is available at [23].

6 Conclusion

We presented an encoding of the timed alternating-timed temporal logic problem in the
extended abstract dependency graph (EADG) framework. This involved combining previous
work on timed games, timed CTL, and alternating-time temporal logic. Our work is thus
an example of how various encodings of model-checking problems in the EADG framework
are orthogonal and can be combined to solve the combined logic extensions. We also took
this opportunity to provide many details left out in the previous paper on Uppaal Tiga
[13]. Furthermore, we formalized a generalization of conventional inclusion checking for the
EADG framework. The resulting vertex merging technique can be used to remove vertices
that can be derived from other vertices, which is especially useful when the derivation is
cheaper than the computation of the value function of the removed vertex. Other domains
where we foresee vertex merging being useful include model checking for Petri nets where
one marking can cover other markings with less behavior. The vertex merging also allowed
us to easily show that we can better exploit the symbolic representation of states using an
expansion abstraction. In essence, our abstraction simplifies our symbolic states to discrete
locations and their invariants. Hence, all valuations satisfying the given property in the
location are propagated backward through the dependency graph, instead of restricting it to
valuations that the exploration currently considers reachable. Thus, this abstraction makes
the algorithm slightly closer to a traditional backward algorithm.

Our implementation and experiments showed that inclusion checking improves the per-
formance of the naive encoding, while the expansion abstraction outperforms it by almost
an additional order of magnitude. We also found that our algorithm is comparable to state-
of-the-art Uppaal Tiga when both use inclusion checking. By integrating our expansion
abstraction in Tiga we also improved its performance by almost an order of magnitude.
The algorithms presented in this paper will be made available in an upcoming release of
Uppaal.

CONCUR 2025

25:18 On-The-Fly Symbolic Algorithm for Timed ATL with Abstractions

References
1 R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In Fifth Annual

IEEE Symposium on Logic in Computer Science, pages 414–425, 1990. doi:10.1109/LICS.
1990.113766.

2 R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information and
Computation, 104(1):2–34, 1993. doi:10.1006/inco.1993.1024.

3 Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors, Computer
Aided Verification, volume 1633 of LNCS, pages 8–22, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg. doi:10.1007/3-540-48683-6_3.

4 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672–713, September 2002. doi:10.1145/585265.585270.

5 Hugh Anderson and P.S. Thiagarajan. Verification of real-time systems. Course material for
CS5270 at NUS Computing, chapter 6, 2007.

6 Ruwaifa Anwar, Haseeb Niaz, David R. Choffnes, Ítalo F. S. Cunha, Phillipa Gill, and Ethan
Katz-Bassett. Investigating interdomain routing policies in the wild. Proceedings of the 2015
Internet Measurement Conference, 2015. doi:10.1145/2815675.2815712.

7 Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for
timed automata. IFAC Proceedings Volumes, 31(18):447–452, 1998. 5th IFAC Conference
on System Structure and Control 1998 (SSC’98), Nantes, France, 8-10 July. doi:10.1016/
S1474-6670(17)42032-5.

8 Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen. Static guard analysis
in timed automata verification. In Hubert Garavel and John Hatcliff, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 2619 of LNCS, pages 254–
270, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. doi:10.1007/3-540-36577-X_18.

9 Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and
Didier Lime. Uppaal-tiga: Time for playing games! In Werner Damm and Holger Hermanns,
editors, Computer Aided Verification, LNCS, pages 121–125, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg. doi:10.1007/978-3-540-7.

10 Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms and Tools,
pages 87–124. LNCS. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. doi:10.1007/
978-3-540-27755-2_3.

11 Piotr Berman and Juan A. Garay. Cloture votes:n/4-resilient distributed consensus int + 1
rounds. Mathematical systems theory, 26(1):3–19, January 1993. doi:10.1007/BF01187072.

12 Falke B. Ø. Carlsen, Lars Bo P. Frydenskov, Nicolaj Ø. Jensen, Jener Rasmussen, Mathias M.
Sørensen, Asger G. Weirsøe, Mathias C. Jensen, and Kim G. Larsen. Cgaal: Distributed
on-the-fly ATL model checker with heuristics. Electronic Proceedings in Theoretical Computer
Science, 390:99–114, September 2023. doi:10.4204/eptcs.390.7.

13 Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime. Efficient
on-the-fly algorithms for the analysis of timed games. In Martín Abadi and Luca de Alfaro,
editors, CONCUR 2005 – Concurrency Theory, volume 3653 of LNCS, pages 66–80, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. doi:10.1007/11539452_9.

14 Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Handbook
of Model Checking. Springer Publishing Company, Incorporated, 1st edition, 2018. doi:
10.1007/978-3-319-10575-8.

15 Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms for infinite-
state games. In Kim G. Larsen and Mogens Nielsen, editors, CONCUR 2001 — Concurrency
Theory, LNCS, pages 536–550, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. doi:
10.1007/3-540-44685-0_36.

16 Anne Edmundson, Roya Ensafi, Nick Feamster, and Jennifer Rexford. Nation-state hegemony
in internet routing. Proceedings of the 1st ACM SIGCAS Conference on Computing and
Sustainable Societies, 2018. doi:10.1145/3209811.3211887.

https://doi.org/10.1109/LICS.1990.113766
https://doi.org/10.1109/LICS.1990.113766
https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/2815675.2815712
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/978-3-540-7
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/BF01187072
https://doi.org/10.4204/eptcs.390.7
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/3-540-44685-0_36
https://doi.org/10.1007/3-540-44685-0_36
https://doi.org/10.1145/3209811.3211887

N. Ø. Jensen, K. G. Larsen, D. Lime, and J. Srba 25:19

17 S. Enevoldsen, K.G. Larsen, and J. Srba. Abstract dependency graphs and their application to
model checking. In Proceedings of the 25th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’19), volume 11427 of LNCS, pages
316–333. Springer-Verlag, 2019. doi:10.1007/978-3-030-17462-0_18.

18 Søren Enevoldsen, Kim Guldstrand Larsen, and Jiří Srba. Extended abstract dependency
graphs. International Journal on Software Tools for Technology Transfer, 24(1):49–65, February
2022. doi:10.1007/s10009-021-00638-8.

19 M. Hendriks, Wang Yi, P. Petterson, J. Hakansson, K.G. Larsen, A. David, G. Behrmann,
M. Hendriks, Wang Yi, P. Petterson, J. Hakansson, K.G. Larsen, A. David, and G. Behrmann.
Uppaal 4.0. In Third International Conference on the Quantitative Evaluation of Systems -
(QEST’06), pages 125–126, 2006. doi:10.1109/QEST.2006.59.

20 Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jiří Srba, and Lars Kaerlund Oestergaard.
Efficient model-checking of weighted CTL with upper-bound constraints. International
Journal on Software Tools for Technology Transfer, 18(4):409–426, August 2016. doi:10.1007/
s10009-014-0359-5.

21 Nicolaj Ø. Jensen, Peter G. Jensen, and Kim G. Larsen. Dynamic extrapolation in
extended timed automata. In Yi Li and Sofiène Tahar, editors, Formal Methods and
Software Engineering, LNCS, pages 83–99, Singapore, 2023. Springer Nature Singapore.
doi:10.1007/978-981-99-7584-6_6.

22 Nicolaj Ø. Jensen, Kim G. Larsen, and Jiří Srba. Token elimination in model checking of petri
nets. In Tools and Algorithms for the Construction and Analysis of Systems, LNCS, 2025.
doi:10.1007/978-3-031-90643-5_11.

23 Nicolaj Ø. Jensen, Kim G. Larsen, Didier Lime, and Jiri Srba. On-the-fly symbolic algorithm
for timed atl with abstractions reproducibility package, April 2025. doi:10.5281/zenodo.
15195408.

24 Peter Gjøl Jensen, Kim Guldstrand Larsen, Jiří Srba, and Nikolaj Jensen Ulrik. Elimination
of detached regions in dependency graph verification. In Georgiana Caltais and Christian
Schilling, editors, Model Checking Software, LNCS, pages 163–179, Cham, 2023. Springer
Nature Switzerland. doi:10.1007/978-3-031-32157-3_9.

25 Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed points.
In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors, Automata, Languages and
Programming, pages 53–66, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. doi:10.
1007/BFb0055040.

26 Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for timed
systems. In Ernst W. Mayr and Claude Puech, editors, STACS 95, LNCS, pages 229–242,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg. doi:10.1007/3-540-59042-0_76.

27 Mark (Mohammad) Tehranipoor, Ujjwal Guin, and Domenic Forte. Counterfeit Integ-
rated Circuits, pages 15–36. Springer International Publishing, Cham, 2015. doi:10.1007/
978-3-319-11824-6_2.

CONCUR 2025

https://doi.org/10.1007/978-3-030-17462-0_18
https://doi.org/10.1007/s10009-021-00638-8
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/s10009-014-0359-5
https://doi.org/10.1007/s10009-014-0359-5
https://doi.org/10.1007/978-981-99-7584-6_6
https://doi.org/10.1007/978-3-031-90643-5_11
https://doi.org/10.5281/zenodo.15195408
https://doi.org/10.5281/zenodo.15195408
https://doi.org/10.1007/978-3-031-32157-3_9
https://doi.org/10.1007/BFb0055040
https://doi.org/10.1007/BFb0055040
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/978-3-319-11824-6_2
https://doi.org/10.1007/978-3-319-11824-6_2

	1 Introduction
	2 Preliminaries
	2.1 Timed Multiplayer Games
	2.2 Timed Alternating-Time Temporal Logic
	2.3 Extended Abstract Dependency Graphs

	3 Encoding TATL to EADGs
	3.1 Unsatisfied states

	4 Dynamical Vertex Merge in EADGs
	4.1 Algorithm with Vertex Merging
	4.2 Inclusion Checking as Derivation
	4.3 Expansion Abstraction

	5 Implementation and Experimental Evaluation
	6 Conclusion

