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Abstract
We introduce and study coverage games – a novel framework for multi-agent planning in settings in
which a system operates several agents but do not have full control on them, or interacts with an
environment that consists of several agents.

The game is played between a coverer, who has a set of objectives, and a disruptor. The coverer
operates several agents that interact with the adversarial disruptor. The coverer wins if every
objective is satisfied by at least one agent. Otherwise, the disruptor wins.

Coverage games thus extend traditional two-player games with multiple objectives by allowing
a (possibly dynamic) decomposition of the objectives among the different agents. They have
many applications, both in settings where the system is the coverer (e.g., multi-robot surveillance,
coverage in multi-threaded systems) and settings where it is the disruptor (e.g., prevention of
resource exhaustion, ensuring non-congestion). We study the theoretical properties of coverage
games, including determinacy, and the ability to a priori decompose the objectives among the agents.
We solve the problems of deciding whether the coverer or the disruptor wins, analyze their tight
complexity, and consider useful special cases.
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1 Introduction

Synthesis is the automated construction of a system from its specification [23]. A reactive
system interacts with its environment and has to satisfy its specification in all environments
[15]. A useful way to approach synthesis of reactive systems is to consider the situation as
a two-player game between the system and the environment [3]. The game is played on a
graph whose vertices are partitioned between the players. Starting from an initial vertex,
the players jointly move a token and generate a play, namely a path in the graph, with each
player deciding the successor vertex when the token reaches a vertex she owns. The system
wins if it has a strategy to ensure that no matter how the environment moves the token, the
generated play satisfies an objective induced by the specification.

Reactive systems typically have to satisfy a conjunction of requirements, giving rise to
games with multiple objectives. For example, in games with generalized Büchi objectives
[6], the specification to the system induces a set {α1, . . . , αm} of subsets of vertices, and a
play satisfies the specification if it visits infinitely often each of the sets αl, for 1 ≤ l ≤ m.
Researchers have also considered generalized parity [7], generalized reachability [13], and
generalized reactivity (GR(1)) [22, 6] objectives. In addition to the deterministic turn-based
setting, games with multiple objectives have been studied in various richer settings, like
concurrent, stochastic, and energy games [4, 8, 5, 29], and also allow weighted multiple
objectives [19].
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27:2 Coverage Games

The need to satisfy multiple objectives is also at the heart of planning in multi-agent
systems [25]. In a typical setting there, the agents constitute a fleet of robots, drones, or
autonomous cars that needs to accomplish various tasks, such as exploring an unknown
terrain or accommodating requests from users at different locations [10, 25, 9, 24, 26]. For
example, in adversarial patrolling [20], a fleet of robots needs to detect penetrations into a
guarded area; in the offline-coverage problem [1], the robots are required to visit every point
in a work area, typically within the shortest possible time [8, 25, 9]; and in pursuit evasion
[17], a robot aims to perform some task while avoiding a collision with an adversarial robot.

While the problems studied in planning in multi-agent systems involve adversarial factors
such as physical limitations of the agents, bounded resources, or possible collisions, they
assume full control over the agents. That is, they do not include an adversarial behavior of
the agents themselves in the form studied in reactive synthesis.

We introduce and study coverage games – a framework for reasoning about planning
tasks in which the system does not have full control over the agents. Formally, a coverage
game is a two-player game with a set β = {α1, . . . , αm} of objectives, in which one player –
the covering player (named Coverer) operates a number k of agents that together aim to
cover all the objectives in β. In the beginning of the game, k tokens are placed on the initial
vertex. Each agent is responsible for one token, and as in standard two-player games, the
interaction of each agent with the second player – the disrupting player (named Disruptor)
generates a play in the graph. The outcome of the game is then a set of k plays – one for
each agent. The goal of Coverer is for these plays to cover all the objectives in β. That is,
for all 1 ≤ l ≤ m, there is an agent 1 ≤ i ≤ k such that αl is satisfied in the play generated
by the interaction of Agent i with Disruptor.

A covering strategy for Coverer is a vector of strategies, one for each agent, that ensures
that no matter how Disruptor behaves, each objective is satisfied in at least one play in the
outcome. In the coverage problem, we are given a game graph G, a set β of objectives, and a
number k ≥ 1 of agents, and we have to decide whether Coverer has a covering strategy.

Note that when k = 1, a coverage game coincides with a standard two-player game with
multiple objectives. Also, it is not hard to see that when k ≥ m, namely there are more
agents than objectives, then a dominant strategy (in the game-theoretic sense) for Coverer
allocates each objective to a different agent. The interesting cases are when 1 < k < m, in
which case the objectives need to be partitioned, possibly dynamically, among the agents.

Coverage games significantly extend the settings addressed in current studies of planning.
For example, with Büchi underlying objectives, one can reason about multi-robot surveillance,
where we need to ensure that each set of critical locations is visited infinitely often in at least
one robot’s patrol route. There, vertices owned by Disruptor correspond to locations in which
we cannot control the movement of the robots, as well as positions in which the robots may
encounter obstacles or experience a change in the landscape. Then, in cyber-security systems,
the agents represent defense mechanisms, and the goal is to ensure that each set of potential
attack vectors is mitigated infinitely often by at least one defense, countering an adversarial
hacker. As another example, in multi-threaded systems, the agents are the processes, and
we may want to ensure that each set of critical resources is accessed infinitely often, in all
environments. Likewise, in testing, we want to activate and cover a set of functionalities of a
software in all input sequences [11].

Unlike traditional two-player games, where the environment can be viewed as a system
that aims to realize the negation of the specification, in coverage games Disruptor’s objective
is not to cover the negation of the objectives in β, but rather to prevent Coverer from covering
all the objectives in β. Formally, a disrupting strategy for Disruptor is a strategy such that
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for all strategies of Coverer, there is at least one objective in β that is not satisfied in each
of the k generated plays. Note that while Coverer activates several agents, Disruptor follows
a single strategy. This corresponds to environments that model the physical conditions of a
landscape or servers whose response to users depends only on the interaction and not on
the identity of the user. Then, in the disruption problem, we are given G, β, and k, and we
have to decide whether Disruptor has a disrupting strategy. While two-player games are
determined, in the sense that in all games, one of the two players has a winning strategy, we
are going to see that coverage games need not be determined.

Viewing Disruptor as the system and the agents as operated by the environment further
motivates the study of coverage games. For example, in intrusion detection systems, the
agents of the environment are potential intruders, and the system must ensure that at least
one set of critical access points remains blocked. In cloud computing, the environment consists
of client processes competing for resources, and the system’s goal is to prevent resource
exhaustion. Finally, in traffic management, the environment agents are the vehicles, and
the system ensures that at least one route remains uncongested. Note that now, Disruptor
following a single strategy corresponds to systems like traffic controllers or vending machines,
where the same policy is applied to all cars or customers that exhibit identical behavior.

A model related to coverage games from the point of view of the disruptor is population
games [2]. These games focus on controlling a homogeneous population of agents that have
the same non-deterministic behavior (see also [12, 14]). The edges of a two-player population
game graph are labeled by actions. The game is nondeterministic, thus different edges that
leave the same vertex may be labeled by the same action. As in the disruption problem, each
agent moves a token along the graph. In each turn, a controller chooses the same action for
all agents, and each agent decides how to resolve nondeterminism and proceeds to a successor
vertex along an edge labeled with the action. The goal of the controller is to synchronize
all the agents to reach a target state. The technical details of population games are very
different from those of coverage games. Indeed, there, the controller takes the same action
in all of its interactions with the agents, and the type of objectives are different from the
coverage and disruption objectives in coverage games.

We study the coverage and disruption problems in coverage games with Büchi and co-
Büchi objectives. We first study the theoretical aspects of coverage games. We warm up
with games in which the number of agents enables an easy reduction to usual two-player
games, and continue to one-player coverage games, where all vertices are owned by one player.
In particular, when all vertices are owned by Coverer, the coverage problem boils down to
finding k paths that cover all the objectives in β, and our complexity results are aligned
with the NP-hardness of different variants of the coverage path planning problem for robot
swarms [1].

We then continue to the general setting, show that it is undetermined, and examine the
problem of an a-priori decomposition of the objectives in β among the agents. We show
that the objectives cannot be allocated in advance, and characterize covering strategies for
Coverer as ones in which all agents satisfy all objectives, as long as such decomposition is
impossible. The characterization is the key to our upper bounds for the complexity of the
coverage problem. We prove that the coverage problem is PSPACE-complete (Theorems 10
and 11), and that the disruption problem is ΣP

2 -complete (Theorems 15, 20, and 21), for
both Büchi and co-Büchi objectives.

From a technical point of view, for the upper bounds, the main challenging results are the
characterization of the decomposability of objectives and the recursive algorithm it entails
(Theorems 9 and 10), as well as the ability to work with a short symbolic representation of
strategies that are not memoryless (Lemma 19). For the lower bounds, the main technical
issue is utilizing the agents to model satisfying assignments in Boolean satisfaction problems.
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In Section 7 we discuss possible variants and extensions of coverage games. Beyond
classical extensions of the underlying two-player games (e.g., concurrency, stochastic settings,
partial visibility, etc.) and to the objectives (e.g., richer winning conditions, weighted
objectives, etc.), as well as classical extensions from planning (optimality of agents and
their resources), we focus on elements that have to do with the operation of several agents:
communication among the agents (in our setting, the strategies of the agents are independent
of each other), and the ability of Disruptor to also use different agents.

2 Preliminaries

2.1 Two-player games
A two-player game graph is a tuple G = ⟨V1, V2, v0, E⟩, where V1, V2 are disjoint sets of
vertices, owned by Player 1 and Player 2, respectively, and we let V = V1 ∪V2. Then, v0 ∈ V

is an initial vertex and E ⊆ V × V is a total edge relation, thus for every v ∈ V , there is
u ∈ V such that ⟨v, u⟩ ∈ E. The size of G, denoted |G|, is |E|, namely the number of edges
in it. When we draw game graphs, the vertices in V1 and V2 are drawn as circles and squares,
respectively.

In a beginning of a play in the game, a token is placed on v0. Then, in each turn, the
player that owns the vertex that hosts the token chooses a successor vertex and moves the
token to it. Together, the players generate a play ρ = v0, v1, . . . in G, namely an infinite path
that starts in v0 and respects E: for all i ≥ 0, we have that ⟨vi, vi+1⟩ ∈ E.

A strategy for Player i is a function fi : V ∗ · Vi → V that maps prefixes of plays that end
in a vertex owned by Player i to possible extensions of the play. That is, for every ρ ∈ V ∗

and v ∈ Vi, we have that ⟨v, fi(ρ · v)⟩ ∈ E. Intuitively, a strategy for Player i directs her
how to move the token, and the direction may depend on the history of the game so far. A
strategy is memoryless if its choices depend only on the current vertex and are independent
of the history of the play. Accordingly, we describe a memoryless strategy for Player i by a
function fi : Vi → V .

A profile is a tuple π = ⟨f1, f2⟩ of strategies, one for each player. The outcome of a profile
π = ⟨f1, f2⟩ is the play obtained when the players follow their strategies in π. Formally,
outcome(π) = v0, v1, . . . ∈ V ω is such that for all j ≥ 0, we have that vj+1 = fi(v0, v1, . . . , vj),
where i ∈ {1, 2} is such that vj ∈ Vi.

A two-player game is a pair G = ⟨G,ψ⟩, where G = ⟨V1, V2, v0, E⟩ is a two-player game
graph, and ψ is an objective for Player 1, specifying a subset of V ω, namely the set of plays
in which Player 1 wins. We discuss different types of objectives below. The game is zero-sum,
thus Player 2 wins when the play does not satisfy ψ. A strategy f1 is a winning strategy
for Player 1 if for every strategy f2 for Player 2, we have that Player 1 wins in ⟨f1, f2⟩, thus
outcome(⟨f1, f2⟩) satisfies ψ. Dually, a strategy f2 for Player 2 is a winning strategy for
Player 2 if for every strategy f1 for Player 1, we have that Player 2 wins in ⟨f1, f2⟩. We say
that Player i wins in G if she has a winning strategy. A game is determined if Player 1 or
Player 2 wins it.

For a play ρ = v0, v1, . . ., we denote by inf(ρ) the set of vertices that are visited infinitely
often along ρ. That is, inf(ρ) = {v ∈ V : there are infinitely many i ≥ 0 such that vi = v}.
For a set of vertices α ⊆ V , a play ρ satisfies the Büchi objective α iff inf(ρ) ∩ α ̸= ∅. The
objective dual to Büchi is co-Büchi. Formally, a play ρ satisfies a co-Büchi objective α iff
inf(ρ) ∩ α = ∅. We use γ ∈ {B,C} to denote the different objective types.

For a play ρ and a set of objectives β = {α1, . . . , αm}, we denote by sat(ρ, β) the set of
objectives αi ∈ β that are satisfied in ρ. An All objective is a set β of objectives, all of the
same type. A play ρ satisfies an All objective β iff ρ satisfies every objective in β. That is,
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if sat(ρ, β) = β. The objective dual to All is Exists.1 Formally, a play ρ satisfies an Exists
objective β iff ρ satisfies at least one objective in β. That is, if sat(ρ, β) ∩ β ̸= ∅. Note that
an All-co-Büchi objective β is equal to the co-Büchi objective ∪β.

2.2 Two-player multi-agent coverage games
In coverage games, Player 1 operates a number of agents. All agents play against Player 2,
and so the outcome of the game is a set of plays – one for each agent. Player 1 has multiple
objectives, and her goal is to cover all the objectives, in the sense that each objective is
satisfied in at least one of the plays in the outcome. Accordingly, we refer to Player 1 as
the covering player, named Coverer, and refer to Player 2 as the disrupting player, named
Disruptor.

Formally, for γ ∈ {B,C}, a two-player multi-agent γ-coverage game (γ-CG, for short) is
a tuple G = ⟨G, k, β⟩, where G is a two-player game graph, k ∈ N is the number of agents
Coverer operates, and β = {α1, . . . , αm} is a set of objectives of type γ. When γ is not
important or is clear from the context, we omit it and refer to G as a CG.

For k ≥ 1, let [k] = {1, . . . , k}. A strategy for Coverer is a tuple F1 = ⟨f1
1 , . . . , f

k
1 ⟩ of

k strategies for Coverer in the game graph G. We assume that Disruptor uses the same
strategy f2 against all the agents of Coverer. A profile is a tuple π = ⟨F1, f2⟩ of strategies
F1 = ⟨f1

1 , . . . , f
k
1 ⟩ for Coverer and f2 for Disruptor. The outcome of π is the tuple of the

k plays generated when Coverer’s agents and Disruptor follow their strategies. Formally,
outcome(π) = ⟨ρ1, . . . , ρk⟩, where ρi = outcome(⟨f i

1, f2⟩), for every i ∈ [k].
We say that a profile π covers β iff every objective in β is satisfied in at least one play in

outcome(π). That is, if ∪{sat(ρ, β) : ρ ∈ outcome(π)} = β. Equivalently, for every j ∈ [m],
there exists i ∈ [k] such that αj is satisfied in outcome(⟨f i

1, f2⟩). A strategy F1 for Coverer
is a covering strategy in G iff for every strategy f2 for Disruptor, the profile ⟨F1, f2⟩ covers
β. Then, we say that Coverer wins G iff she has a covering strategy in G. A strategy f2 for
Disruptor is a disrupting strategy in G iff for every strategy F1 for Coverer, the profile ⟨F1, f2⟩
does not cover β. Then, we say that Disruptor wins G iff she has a disrupting strategy in
G. Finally, we say that a γ-CG G is determined if Coverer has a covering strategy in G or
Disruptor has a disrupting strategy in G.

In the coverage problem for CGs, we have to decide whether Coverer has a covering
strategy in a given CG. In the disruption problem for CGs, we have to decide whether
Disruptor has a disrupting strategy in a given CG.

▶ Example 1. Consider the Büchi CG G = ⟨G, 2, β⟩, with β = {α1, α2, α3}, for the game
graph G appearing in Figure 1, and α1 = {u1, u2, u3} (red), α2 = {m1, u2, d3} (green), and
α3 = {d1, d2, d3} (yellow). Thus, Coverer should direct two agents in a way that ensures
that the three colors are visited infinitely often.

Coverer has a covering strategy in G: In v0, the tokens of both agents move together,
visiting the three colors in a round-robin fashion. If the play stays forever in the left sub-game,
β is covered. If Disruptor decides to leave the left sub-game and directs the tokens to v1 or
v2, the agents split β between them. One agent covers two colors (green and red in u2, in
case the tokens are in v1, or green and yellow in d3, in case the tokens are in v2), and the
second agent covers one color (yellow or red, respectively). Thus, β is covered in this case
too. ◀

1 All-Büchi objectives are traditionally referred to as generalized Büchi. Then, their dual Exists co-Büchi
objectives are referred to as generalized co-Büchi [18]. We opt to follow a terminology with All and
Exists, making the quantification within the satisfaction requirement clearer.
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Figure 1 The Büchi CG G.

3 Special Cases of Coverage Games

As a starter, in this section we examine two special cases of CGs: game graphs in which
there is only one player, and games in which the number of agents enables an easy reduction
to traditional two-player games.

3.1 One-player CGs
We start with one-player CGs, thus when one of the players owns all the vertices. Formally,
G = ⟨G, k, β⟩, with G = ⟨V1, V2, v0, E⟩ is such that V2 = ∅ (equivalently, V = V1) or V1 = ∅
(equivalently, V = V2). Note that one-player CGs are determined, in the sense that whenever
Coverer does not have a covering strategy, Disruptor has an (empty) disrupting strategy,
and vice versa.

Consider first the case Coverer has full control. Thus, G = ⟨V, ∅, v0, E⟩. It is easy to see
that there, covering β amounts to finding k paths in G such that each objective αi ∈ β is
satisfied in at least one path. A path in G is lasso-shaped if it is of the form p · qω, with
p ∈ V ∗ and q ∈ V +. The length of p · qω is defined as |p| + |q|.

▶ Theorem 2. The coverage problem for Büchi or co-Büchi CGs with V = V1 is NP-complete.

Proof. We start with the upper bounds. Consider a CG G = ⟨G, k, β⟩ with V = V1. An
NP algorithm guesses k lasso-shaped paths in G of length of at most |V | · |β|, and checks
that every objective αi ∈ β is satisfied in at least one of them. Clearly, if such k paths exist,
then Coverer has a covering strategy. Also, checking lasso-shaped paths of length |V | · |β|
is sufficient. Indeed, for both γ ∈ {B,C}, if there exists a path in G that satisfies a subset
β′ ⊆ β of γ objectives, then there also exists a cycle in G of length of at most |V | · |β′| that
visits or avoids all the sets in β′. Since |β′| ≤ |β|, the bound follows.

For the lower bound, we describe (easy) reductions from the vertex-cover problem.
Consider an undirected graph G = ⟨V,E⟩, and k ≤ |V |. Recall that a vertex cover for G
is a set U ⊆ V such that for all edges {u, v} ∈ E, we have that {u, v} ∩ U ̸= ∅. For both
γ ∈ {B,C}, we construct a γ-CG G = ⟨G′, k, β⟩ with V = V1 such that Coverer has a covering
strategy in G iff there exists a vertex cover of size at most k in G.

The game graph G′ is independent of E and consists of the vertices in V and a new initial
vertex v0. The only edges are self-loops in the vertices in V , and edges from v0 to all vertices
in V . Accordingly, the k agents of Coverer essentially choose k vertices in V . The objectives
in β then require these k vertices to be a vertex cover. For γ = B, we define β = E. That is,
for every edge e = {u, v} ∈ E, the objective e is to visit one of the vertices that correspond
to u or v infinitely often. Accordingly, a covering strategy for Coverer induces a vertex cover,
and vice versa. For γ = C, we define β = {V \ e : e ∈ E}. Since each play ρ is eventually
trapped in a self-loop in a vertex in V , the obtained game coincides with the one for γ = B.

A detailed description of the reduction and its proof can be found in Appendix A.1. ◀
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We continue to the case all the vertices in the game are owned by Disruptor. It is easy
to see that there, the fact Coverer has several agents plays no role, as all tokens are going
to traverse the same play, chosen by Disruptor. Consequently, searching for a disrupting
strategy for Disruptor is easy.

▶ Theorem 3. The disruption problem for Büchi or co-Büchi CGs with V = V2 is
NLOGSPACE-complete.

Proof. Consider a CG G = ⟨G, k, β⟩ with G = ⟨∅, V, v0, E⟩. Since Disruptor directs all the
tokens together, she has a disrupting strategy iff there is a path in G that satisfies the
Exists-γ̃ objective dual to β, namely a path that does not satisfy one of the objectives in
β. We argue that the latter can be done in NLOGSPACE, for all γ ∈ {B,C}. Indeed, an
NLOGSPACE algorithm can guess a set α ∈ β and then search for a lasso-shaped path that
does not satisfy α. In case γ = B, the vertices of the lasso loop should be disjoint from α. In
case γ = C, the algorithm guesses a vertex v ∈ α and checks that v appears in the lasso loop.
In both cases, it is possible to search for paths of length at most |V |. This can be done in
NLOGSPACE by guessing the vertices along the path one by one.

Hardness in NLOGSPACE follows from an easy reduction from the non-emptiness problem
for nondeterministic ExistsC and ExistsB word automata [28]. ◀

3.2 CGs with one or many agents
Consider a CG G = ⟨G, k, β⟩. When k = 1, the CG G is equivalent to the two-player game
with the All objective β. Indeed, the single play induced by the strategy of the single agent
has to cover all the objectives in β. Thus, the case k = 1 can be solved in PTIME, serving
as a lower bound for the general case, or more precisely, as a reference point to the study of
the complexity for the general case.

When k ≥ |β|, there is no need to assign more than one objective in β to each of the
agents. Formally, we have the following.

▶ Lemma 4. Consider a γ-CG G = ⟨G, k, β⟩ with γ ∈ {B,C} and k ≥ |β|, and the following
statements.
(C1) Coverer has a covering strategy in G.
(C2) For every αi ∈ β, Player 1 wins the two-player γ-game Gi = ⟨G,αi⟩.
(C3) There is αi ∈ β such that Player 2 wins the two-player γ-game Gi = ⟨G,αi⟩.
(C4) Disruptor has a disrupting strategy in G.
Then, (C1) iff (C2), (C3) iff (C4), and (C1) and (C4) complement each other.

Proof. First note that since two-player γ-games are determined, then (C2) and (C3) com-
plement each other. Also, as it is impossible for both Coverer to have covering strategy and
Disruptor to have a disrupting strategy, (C1) and (C4) contradicts each other. Hence, it is
sufficient to prove that (C2) implies (C1) and that (C3) implies (C4).

Assume that (C2) holds. For every αi ∈ β, let f i
1 be a winning strategy for Coverer in

Gi = ⟨G,αi⟩. It is easy to see that F1 = ⟨f1
1 , . . . , f

|β|
1 , f

|β|+1
1 , . . . , fk

1 ⟩ is a covering strategy
for Coverer, for arbitrary strategies f |β|+1

1 , . . . , fk
1 for agents |β| + 1, . . . , k. Thus, Coverer

has a covering strategy, and (C1) holds.
Assume now that (C3) holds. Thus, there is αi ∈ β such that Disruptor wins the two-

player γ-game Gi = ⟨G,αi⟩. Let f2 be the winning strategy for Disruptor in Gi. Then, it must
be that αi /∈ sat(ρ, β) for every strategy F1 for Coverer and every play ρ ∈ outcome(⟨F1, f2⟩).
Thus, Disruptor has a disrupting strategy and (C4) holds. ◀

By Lemma 4, deciding CGs with k ≥ |β| agents can be reduced to deciding |β| two-player
games, thus such CGs are determined and can be decided in PTIME [21, 27, 30].

CONCUR 2025
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When 1 < k < |β|, Coverer has to partition the objectives in β among the different agents.
As we study in Section 4, this makes the setting much more challenging and interesting.

4 Properties of Coverage Games

In this section we study theoretical properties of CGs. We start with determinacy and show
that CGs need not be determined. We then define and study the decomposability of objectives
in CGs, namely the ability to a-priori partition the objectives among the agents. We argue
that decomposability plays a key role in reasoning about CGs.

4.1 CGs need not be determined
Recall that a CG is determined if Coverer has a covering strategy or Disruptor has a disrupting
strategy. We show that unlike two-player games, CGs need not be determined. Moreover,
undeterminacy holds already for a CG with only two agents and three objectives. Note that
this is tight, as CGs with a single agent or only two objectives belong to the k = 1 or k ≥ |β|
cases studied in Section 3.2, and are thus determined. Intuitively, the undeterminacy of
CGs follows from the incomplete information of Coverer’s agents about all the plays in the
outcome, as well as the inability of Disruptor to make use of this incomplete information.
Formally, we have the following.

▶ Theorem 5. For all γ ∈ {B,C}, we have that γ-CGs need not be determined. Moreover,
undeterminacy holds already for a γ-CG with only two agents and three objectives.

Proof. For all γ ∈ {B,C}, we describe a γ-CG G = ⟨G, 2, {α1, α2, α3}⟩ such that neither
Coverer has a covering strategy, nor Disruptor has a disrupting strategy. The game graph G
appears in Figure 2.

v0v1

u1

d1

v2

u2

d2

Figure 2 An undetermined coverage game.

When γ = B, we define α1 = {u1, u2}, α2 = {d1, d2}, and α3 = {u2, d2}. Intuitively (see
detailed proof in Appendix A.2), Coverer has no covering strategy as α3 requires one agent
to move to v2, and no matter how Coverer directs the other agent, Disruptor can move the
tokens that reach v2 so that only one of α1 and α2 is satisfied. Also, Disruptor does not have
a disrupting strategy, as no matter how the strategy moves token that reach v2, Coverer can
direct the agents so that all objectives are covered.

When γ = C, we define α1 = {u1, u2}, α2 = {d1, d2}, and α3 = {u1, d1}. Since the only
edges from the vertices u1, d1, u2, and d2 are self-loops, the obtained co-Büchi game coincides
with the Büchi game analyzed above, and we are done. ◀

4.2 Decomposability of objectives
A key challenge for Coverer in winning a CG G = ⟨G, k, β⟩ with 2 ≤ k < |β| is the need to
partition the objectives in β among her k agents. In this section we show that in general,
Coverer cannot a-priori partition β among the k agents. Moreover, decompositions of β are
related to decompositions of G, which are the key to our algorithms for reasoning about CGs.
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Consider a game graph G = ⟨V1, V2, v0, E⟩. For a vertex v ∈ V1, let Gv = ⟨V1, V2, v, E⟩
be G with initial vertex v. Consider a CG G = ⟨G, k, β⟩, with β = {α1, . . . , αm}. Let
A = [k]. For 1 ≤ l ≤ k and a vertex v ∈ V1, we say that β is (k, l)-decomposable in v if
Coverer can decompose the task of covering β in Gv by the agents in A to l sub-tasks, each
assigned to a different subset of A. Formally, β is (k, l)-decomposable in v if there exists
a partition β1, . . . , βl of β and a partition A1, . . . , Al of A to nonempty sets, such that for
every i ∈ [l], Coverer wins the CG Gv

i = ⟨Gv, |Ai|, βi⟩, namely the game that starts in v and
in which the agents in Ai have to cover the objectives in βi. When v = v0, we say that β is
(k, l)-decomposable in G.

We start with some easy observations. First, note that, by definition, β is (k, 1)-
decomposable in G iff Coverer wins G. Indeed, when l = 1, we have that A1 = A and β1 = β,
thus we do not commit on a decomposition of β, and the definitions coincide. Then, β is
(k, k)-decomposable in G iff there exists a partition of β to k sets β1, . . . , βk such that for
every 1 ≤ i ≤ k, Coverer has a strategy that satisfies the All objective βi. Indeed, when l = k,
each of the sets Ai is a singleton, thus the single agent in Ai has to satisfy all the objectives
in βi. Finally, the bigger l is, the more refined is the partition of β to which Coverer commits,
making her task harder. Formally, we have the following (see Appendix A.3 for the proof
and Example 1 for a CG with no a-priori decomposition):

▶ Theorem 6. For all γ ∈ {B,C}, we have the following.
Consider a γ-CG G = ⟨G, k, β⟩. For every l ∈ [k] and vertex v of G, if β is (k, l)-
decomposable in v, then β is (k, l′)-decomposable in v, for all l′ ≤ l.
For every k ≥ 2, there exists a γ-CG G = ⟨G, k, β⟩ with |β| = k + 1 such that Coverer
wins G but β is not (k, l)-decomposable in G, for all l > 1.
For every k ≥ 2 and 1 ≤ l < k, there exists a γ-CG G = ⟨G, k, β⟩ such that β is
(k, l)-decomposable in G but is not (k, l + 1)-decomposable in G.

Consider a vertex v ∈ V1. For l ∈ [k], we say that v is a (k, l)-fork for β if Coverer has a
covering strategy F1 = ⟨f1

1 , . . . , f
k
1 ⟩ in Gv such that different agents are sent to l different

successors of v. Thus, there exist l successors v1, . . . , vl of v, and for all i ∈ [l], there is at
least one agent j ∈ [k] such that f j

1 (v) = vi. Note that we do not require f i
1 to be memoryless

and refer here to the strategy in the first round in Gv. The following lemma then follows
from the definitions.

▶ Lemma 7. Consider a CG G = ⟨G, k, β⟩. For every vertex v ∈ V1 of G and l ∈ [k], if v is
a (k, l)-fork for β, then β is (k, l)-decomposable in v.

Proof. Consider a vertex v ∈ V1 and 1 ≤ l ≤ k such that v is a (k, l)-fork for β. Let
F1 = ⟨f1

1 , . . . , f
k
1 ⟩ be a winning strategy for Coverer that sends the agents to l different

successors v1, . . . , vl of v. For every 1 ≤ i ≤ l, let Ai be the set of agents j ∈ [k] such that
f j

1 (v) = vi, and let F i
1 = {f j

1 }j∈Ai be the set of strategies of the agents sent to vi. Let
βi be the set objectives of β that F i

1 covers. That is, αj ∈ βi iff for all strategies f2 of
Disruptor, there is a play in outcome(F i

1, f2) that satisfies αj . Equivalently, βi ⊆ β is the
maximal subset of β such that F i

1 is a winning strategy for Coverer in ⟨Gvi
, |Ai|, βi⟩. It is

then sufficient to show that
⋃

i∈[l] βi = β. Assume by contradiction that there exists an
objective αj ∈ β such that αj /∈ βi, for every i ∈ [l], which implies there exists a strategy f i

2
for Disruptor in Gvi

such that αj is not covered in outcome(⟨F i
1, f

i
2⟩). Let f2 be the strategy

for Disruptor from v that follows f i
2 from vi, for every i ∈ [l]. It is easy to see that αj is not

covered in outcome(⟨F1, f2⟩), contradicting the fact F1 is a winning strategy. ◀

CONCUR 2025



27:10 Coverage Games

We say that a vertex v ∈ V1 is a fork if it is a (k, l)-fork for β, for some 2 ≤ l ≤ k. We
denote by F ⊆ V1 the set of vertices that are forks. Let Vavoid ⊆ V be the set of vertices
from which Disruptor can avoid reaching forks. That is, v ∈ Vavoid if there exists a strategy
f2 for Player 2 from v such that for every strategy f1 for Player 1, the play outcome(⟨f1, f2⟩)
does not reach F . Finally, let Gavoid = ⟨V ′

1 , V
′

2 , v0, E
′⟩ be the sub-graph of G with vertices

in Vavoid. That is, V ′
1 = V1 ∩ Vavoid, V ′

2 = V2 ∩ Vavoid, and E′ = E ∩ (Vavoid × Vavoid).

▶ Example 8. Consider the Büchi CG G from Example 1. Recall that Coverer has a covering
strategy in G. We claim that the only forks for β in G are v1 and v2. Thus, a winning
strategy for Coverer cannot a-priori decompose the objectives in β. Note that this is the case
also for the covering strategy described in Example 1.

Indeed, in v1, Coverer can assign both α1 and α2 to an agent that proceeds to u2 and
assign α3 to an agent that proceeds to d2. Similarly, in v2, Coverer can assign α1 to an agent
that proceeds to u3 and assign both α2 and α3 to an agent that proceeds to d3. Also, as
Disruptor may direct tokens to either v1 or v2, and the above decompositions are different
and are the only possible decompositions in v1 and v2, Coverer cannot a-priori decompose β.
Hence, v0 is not a fork. Finally, as β is not covered in each of u2, d2, u3, and d3, they are
not forks either.

Note also that since Disruptor can direct tokens from u1,m1, and d1 back to v0, the
graph Gavoid is the sub-graph of G whose vertices are v0, u1,m1 and d1.

▶ Theorem 9. Consider a CG G = ⟨G, k, β⟩, and a vertex v ∈ V . Then, Coverer has a
covering strategy in ⟨Gv, k, β⟩ iff v /∈ Vavoid, or v ∈ Vavoid and Coverer wins ⟨Gv

avoid, 1, β⟩.

Proof. We first prove that for all vertices v /∈ Vavoid, Coverer has a strategy to cover β from
v. Consider a vertex v /∈ Vavoid. By the definition of Vavoid, Coverer has a strategy to reach a
fork from v. Hence, Coverer can cover β from v by letting all agents follow the same strategy
until some (k, l)-fork u for β is reached. By Lemma 7, β is (k, l)-decomposable in u. Hence,
once the k tokens of the agents reach u, Coverer can cover β by decomposing it. Let F v

1
denote a covering strategy for Coverer from a vertex v /∈ Vavoid.

We argue that for every vertex v ∈ Vavoid, Coverer has a strategy to cover β from v

iff Coverer wins ⟨Gv
avoid, 1, β⟩. Consider a vertex v ∈ Vavoid, and assume first that Coverer

has a covering strategy from v. Since Disruptor can force the play to stay in Gavoid, every
covering strategy for Coverer from v in G is also a covering strategy from v in Gavoid. Also,
for every covering strategy F1 = ⟨f1

1 , . . . , f
k
1 ⟩ from v, the strategies for the different agents

agree with each other as long as the play stays in Gavoid. That is, f1
1 (h) = · · · = fk

1 (h), for
every h ∈ V ∗

avoid ·V ′
1 . Indeed, vertices from which there exists a covering strategy for Coverer

that sends different agents to different successors are forks, and by the definition of Vavoid,
the sub-graph Gavoid does not contain forks. Hence, the strategy f1 : V ∗

avoid · V ′
1 → Vavoid

with f1(h) = f1
1 (h) for every h ∈ V ∗

avoid · V ′
1 is a covering strategy for Coverer ⟨Gv

avoid, 1, β⟩.
For the second direction, assume that Coverer wins ⟨Gv

avoid, 1, β⟩. We show that Coverer
has a covering strategy from v. Let f1 be a covering strategy for Coverer in ⟨Gv

avoid, 1, β⟩.
Consider the strategy F1 = ⟨f1

1 , . . . , f
k
1 ⟩ in which, for all 1 ≤ i ≤ k, the strategy f i

1 agrees
with f1 as long as the play stays in Gavoid, and proceeds with Fu

1 once the play (that is, all
tokens together, as this may happen only in a transition taken by Disruptor), leaves Gavoid

and reaches a vertex u ̸∈ Vavoid. For every strategy f2 for Disruptor, either all the outcomes
of F1 and f2 stay in Gavoid, in which case β is covered by each of the agents, or all the
outcomes leave Gavoid, in which case they follow strategies that cover β by decomposing
it. ◀
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5 The Complexity of the Coverage Problem

In this section, we study the complexity of deciding the existence of covering strategies in
Büchi and co-Büchi CGs, and show that the problem is PSPACE-complete.

We start with upper bounds. Consider a CG G = ⟨G, k, β⟩. Recall the set F of forks for
β, and the game graph Gavoid, in which Disruptor can avoid reaching forks. By Theorem 9,
Coverer has a covering strategy in G iff Player 1 has a winning strategy in Gavoid for the
All objective β, and when the play leaves Gavoid (or if the initial vertex is not in Gavoid),
Coverer can cover β by reaching a fork, from which β can be decomposed.

The above characterization is the key to our algorithm for deciding whether Coverer
has a covering strategy. Essentially, the algorithm guesses the set U of forks, checks that
Player 1 wins the game with the All objective β in the sub-graph induced by U , and checks
(recursively) that the vertices in U are indeed forks. The checks and the maintenance of the
recursion require polynomial space. Since NPSPACE=PSPACE, we have the following. 2

▶ Theorem 10. The coverage problem for Büchi or co-Büchi CGs can be solved in PSPACE.

Proof. We describe a non-deterministic Turing machine (NTM) T that runs in polynomial
space, such that T accepts a CG G iff Coverer has a covering strategy in G.

Given a CG G = ⟨G, k, β⟩, the NTM T guesses a set of vertices U ⊆ V , and checks that
they are forks. To check that a vertex u ∈ U is a fork, the NTM guesses a partition β1, . . . , βl

of β and a partition A1, . . . , Al of [k] to nonempty sets, for some 2 ≤ l ≤ k, and checks
recursively whether Coverer has a covering strategy in ⟨Gu, |Ai|, βi⟩, for every i ∈ [l]. If one
of the recursive checks fails, the NTM rejects. Otherwise, T calculates the restriction G′ of G
to vertices from which Disruptor can force the play to avoid U . Then, T accepts if the initial
vertex v of G is not in G′ or Player 1 wins from v in the All-γ game ⟨G′, β⟩. Otherwise, T
rejects.

We prove the correctness of the construction. That is, we prove that T accepts a game G
iff Coverer has a covering strategy in G. By Theorem 9, Coverer has a covering strategy from
a vertex v iff v /∈ Vavoid, or v ∈ Vavoid and Coverer wins ⟨Gv

avoid, 1, β⟩. So, if Coverer has a
covering strategy, the NTM can guess the set F of forks for the current set β of objectives
and number k of agents. Then, G′ coincides with Gavoid, and by Theorem 9, the NTM
accepts. For the second direction, assume the NTM accepts. Then, the vertices in U are
forks by definition, and Coverer wins ⟨G′, 1, β⟩. By Theorem 9, it is enough to show that if
v ∈ Gavoid, then Coverer wins ⟨Gv

avoid, 1, β⟩. Since the vertices in U are forks, Gavoid is a
sub-graph of G′. So, since Disruptor can force the play to stay in Gavoid if v is in it, we also
have that Coverer wins ⟨Gv

avoid, 1, β⟩.
To complete the proof, we show that the NTM runs in polynomial space. Note that

only a polynomial number of recursive checks can be made before reaching an empty set of
objectives, and each check requires a polynomial space for guessing U and the appropriate
partitions. Also, calculating G′ and checking whether Player 1 wins an All-γ game can be
done in polynomial time, for both γ ∈ {B,C} [27]. ◀

Note that the algorithm can return a covering strategy (if one exists). Such a strategy can
be described by the set F of forks, the sub-game Gavoid, a covering strategy in ⟨Gavoid, 1, β⟩,
and the strategies for reaching forks. Then, for each fork, the strategy describes the partitions

2 It is not hard to see that the proof of Theorem 10 applies to all prefix-independent objective types γ
such that All-γ games can be decided in PSPACE.
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of β and [k], and the (recursive) description of the strategies in the decomposed game. Note
that the description may require more than polynomial space.

We continue to the lower bounds.

▶ Theorem 11. The coverage problem for Büchi or co-Büchi CGs is PSPACE-hard.

Proof. We describe reductions from QBF. We start with Büchi CGs. Consider a set
of variables X = {x1, . . . , xn} and a QBF formula Φ = Q1x1, . . . , Qnxnφ where φ =
C1 ∧ · · · ∧ Cm, with Ci = (l1i ∨ l2i ∨ l3i ), for every i ∈ [m]. We construct a Büchi CG
G = ⟨G, |X|, β⟩ such that Φ = true iff Coverer has a covering strategy in G.

The game graph G (see example in Figure 3) lets the players choose an assignment to
the variables in X, following the quantification order of Φ and starting from the outermost
variable. Starting from the initial vertex, when the play reaches a vertex that corresponds
to an existential variable xi, Coverer chooses between choosing an assignment to xi, which
involves proceeding to a self-looped sink that corresponds to the literal xi, or proceeding to a
self-looped sink that corresponds to the literal xi, and proceeding to the next variables. When
the play reaches a vertex that corresponds to a universal variable xi, Disruptor chooses an
assignment to xi, by proceeding to a vertex that corresponds to the literal xi, and proceeding
to a vertex that corresponds to the literal xi. In those vertices, Coverer chooses between
staying in the current vertex, and proceeding to the next variables.

v1

x1

x1

v2

x2

x2

v3

x3

x3

v4

x4

x4

Figure 3 The game graph G for Φ = ∃x1∀x2∃x3∀x4φ.

Since the vertices that correspond to existential variables are self-looped sinks, the choices
of Coverer are not reflected in the history of plays that reach the subsequent variables.
Hence, when Disruptor chooses an assignment to a universal variable, she is unaware of the
assignments Coverer chose for preceding existential variables. The vertices that correspond
to universal variables are not sinks, thus when choosing assignments to existential variables,
Coverer is aware of the assignments Disruptor chose for preceding universal variables.

Then, for every variable x ∈ X, we define an objective αx that forces Coverer to allocate
an agent to stay in the vertices that correspond to the assignment chosen for x. Also, for
every clause Ci, we define the objective αCi

that consists of vertices that correspond to Ci’s
literals. Thus, the joint assignment satisfies φ iff Coverer can cover all the objectives. See
Appendix A.4 for a formal description of G and the correctness proof.

For co-Büchi CGs, note that, as in previous reductions, a Büchi objective α ⊆ (X ∪X)
is satisfied in a play ρ iff the co-Büchi objective (X ∪X) \ α is satisfied in ρ, and thus the
same reduction with dual objectives applies. ◀

6 The Complexity of the Disruption Problem

In this section, we study the complexity of deciding the existence of disrupting strategies
in Büchi and co-Büchi CGs. Note that since CGs are undetermined, the coverage and
disruption problems are not dual, and so the results in Section 5 do not imply that the
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disruption problem is PSPACE-complete. In fact, we show here that the disruption problem
is ΣP

2 -complete. Thus, at least in terms of its theoretical complexity class, it is easier than
the coverage problem.

We start with upper bounds. Consider a CG G = ⟨G, k, β⟩, and consider a two-player
game played on G. For every strategy f2 for Player 2, let ∆f2 ⊆ 2β be the set of maximal
subsets δ ⊆ β such that Player 1 has a strategy that ensures the satisfaction of the All
objective δ when Player 2 uses f2. That is, ∆f2 is the set of maximal sets δ ⊆ β for which
there exists a strategy f1 for Player 1 such that sat(outcome(⟨f1, f2⟩), β) = δ.

▶ Lemma 12. Consider a strategy f2 for Player 2. For every strategy f1 for Player 1, there
exists δ ∈ ∆f2 such that outcome(⟨f1, f2⟩) satisfies the All-γ̃ objective (β \ δ).

Proof. Consider a strategy f2 for Disruptor, and a strategy f1 for Coverer, and let ρ =
outcome(⟨f1, f2⟩). By the definition of ∆f2 , there exists δ ∈ ∆f2 such that sat(ρ, β) ⊆ δ.
Accordingly, (β \ δ) ∩ sat(ρ, β) = ∅, and so ρ satisfies all the γ̃ objectives in β \ δ. ◀

Back to CGs, the intuition behind the definition of ∆f2 is that δ ∈ ∆f2 iff whenever
Disruptor follows f2, Coverer can allocate one agent that covers exactly all the objectives in
δ. Formally, we have the following, which follows directly from the definitions.

▶ Lemma 13. Consider a CG G = ⟨G, k, β⟩. A strategy f2 for Disruptor is a disrupting
strategy in G iff for every k sets δ1, . . . , δk ∈ ∆f2 , we have that

⋃
i∈[k] δi ̸= β.

We use the observations about ∆f2 in order to restrict the search for disrupting strategies.
We start with Büchi CGs.

▶ Theorem 14. Disruptor has a disrupting strategy in a Büchi CG G iff she has a memoryless
disrupting strategy in G.

Proof. Consider a Büchi CG G = ⟨G, k, β⟩. Assume Disruptor has a disrupting strategy f2
in G. By Lemma 12, for every strategy f1 for an agent of Coverer, there exists δ ∈ ∆f2 such
that outcome(⟨f1, f2⟩) satisfies the AllC objective β \ δ, which is equivalent to the co-Büchi
objective ∪(β \ δ). Accordingly, f2 is a winning strategy for Player 2 in a game played on
G in which her objective is the ExistsC objective {∪(β \ δ)}δ∈∆f2

. Let f ′
2 be a memoryless

winning strategy for Player 2 in this game. Since ExistsC objectives require memoryless
strategies, such a strategy exists. In Appendix A.5, we prove that f ′

2 is a disrupting strategy
in G. ◀

▶ Theorem 15. The disruption problem for Büchi CGs is in ΣP
2 .

Proof. Consider a Büchi CG G = ⟨G, k, β⟩. An NP algorithm that uses a co-NP oracle
guesses a memoryless strategy f2 for Disruptor, and then checks that Coverer does not have
a covering strategy in the one-player game defined over the sub-graph Gf2 induced by f2.
That is, the sub-graph of G in which the edges from vertices in V2 agree with f2. Since
Coverer essentially owns all the vertices in Gf2 , then by Theorem 2, deciding the existence
of covering strategies in Gf2 can be done in NP, implying the ΣP

2 -upper bound. ◀

We continue to co-Büchi CGs. Here, disrupting strategies need not be memoryless, and
in fact need not be polynomial. Accordingly, the proof is more complicated and is based on
a symbolic description of disrupting strategies.

A superset objective is a set F ⊆ 22V of AllB objectives, and it is satisfied in a play ρ

iff at least one AllB objective in F is satisfied in ρ [16]. By [16], every superset objective
has an equivalent AllB objective. Accordingly, in two-player superset games, Player 2 has
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an ExistsC objective, thus Player 2 wins iff she has a memoryless winning strategy. Since
a memoryless strategy for Player 2 can be checked in polynomial time and the game is
determined, the problem of deciding whether there exists a winning strategy for a superset
objective is co-NP-complete [16].

We start with an easy characterization of winning strategies for AllB objectives.

▶ Lemma 16. Consider an AllB game G = ⟨G, δ⟩, with δ = {α1, . . . , αm}. Player 1 wins G
iff there exist a set W ⊆ V of vertices and a set {gi

1 : i ∈ [m]} of memoryless strategies for
Player 1, such that Player 1 can force the play to reach W , and for every vertex v ∈ W and
i ∈ [m], the strategy gi

1 forces each play from v to reach αi ∩W , while staying in W .

We say that W is a winning cage for δ, and that {gi
1 : i ∈ [m]} are its witnesses.

Lemma 17 below suggests a way to describe winning strategies for AllB objectives by the
sets of successors a winning strategy chooses infinitely often from every vertex.

For a set of vertices U ⊆ V , a strategy f1 for Player 1 is a U -trap if it forces the play to
reach and stay in U . That is, if inf(outcome(⟨f1, f2⟩)) ⊆ U , for every strategy f2 for Player 2.

A fairness requirement for Player 1 is a function g : V1 → 2V that maps each vertex
v ∈ V1 to a subset of its successors. We say that a strategy f1 for Player 1 respects g if for
every vertex v ∈ V1, the strategy f1 only chooses successors for v from g(v), and when v is
visited infinitely often, then f1 proceeds to each of the successors of v in g(v) infinitely often.
That is, for every vertex v ∈ V1 and a prefix of a play h ∈ V ∗ we have that f1(h · v) ∈ g(v),
and for every strategy f2 for Player 2 and a vertex v ∈ V1, if v ∈ inf(outcome(⟨f1, f2⟩)), then
g(v) ⊆ inf(outcome(⟨f1, f2⟩)).

▶ Lemma 17. Consider an AllB game G = ⟨G, δ⟩, with δ = {α1, . . . , αm}. Player 1 wins G
iff there exists a set of vertices U ⊆ V and a fairness requirement g for Player 1 such that
every U-trap strategy for Player 1 that respects g is a winning strategy for Player 1 in G,
and such a strategy exists.

Proof. First, if there is a U -trap strategy for Player 1 that respects a fairness requirement
g such that every such strategy is a winning strategy in G, then Player 1 has a winning
strategy in G.

For the other direction, assume Player 1 wins G. Consider a minimal winning cage W ⊆ V

and witnesses {gi
1 : i ∈ [m]} for W . Note that by definition, Player 1 has a W -trap strategy

that respects a fairness requirement g with g(v) = {gi
1(v) : i ∈ [m]} for every v ∈ V1 ∩ W .

We show that every such strategy is a winning strategy for Player 1 in G.
Consider a strategy f∗

1 for Player 1 in G that forces the play to reach W , and, starting
with i = 1, follows gi

1 until the play reaches αi, where it switches to follow g
(i+1) mod m
1 . It

is easy to see that f∗
1 is a winning strategy for Player 1 in G.

Now, consider a strategy f1 for Player 1 that is a W -trap, and respects g. Note that such
a strategy exists, since W is a winning cage for δ and for every vertex v ∈ V1 ∩W , we have
that g(v) ⊆ W . We show that f1 is a winning strategy for Player 1 in G.

Assume by contradiction otherwise. Thus, there exists a strategy f2 for Player 2 such
that U = inf(outcome(⟨f1, f2⟩)) does not intersect with all the sets in δ. That is, there exists
i ∈ [m] such that U ∩ αi = ∅. We show that there exists a strategy f ′

2 for Player 2 with
U ′ = inf(outcome(⟨f∗

1 , f
′
2⟩)) such that U ′ ⊆ U , thus U ′ ∩ αi = ∅, which contradicts the fact

that f∗
1 is a winning strategy for Player 1 in G.

Let f ′
2 be a strategy for Player 2 with which outcome(⟨f∗

1 , f
′
2⟩) reaches U , and chooses

for every vertex v ∈ U ∩ V2 a successor in U . Note that Player 2 can make the play reach U
when Player 1 uses f∗

1 , as otherwise f∗
1 is a strategy that forces the play to avoid U , which
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contradicts the fact W is minimal. Note that U ′ ⊆ U , since both strategies choose successors
in U for vertices in U . Indeed, by the definition of f∗

1 , for every vertex v ∈ U ′ ∩ V1 the set
of successors f∗

1 chooses for v is a subset of g(v) = {gi
1(v) : i ∈ [m]}. To conclude, note

that by the definition of f1, we have that g(v) ⊆ U . Indeed, every vertex v ∈ U ∩ V1 is
visited infinitely often in outcome(⟨f1, f2⟩), thus all the vertices in g(v) are visited infinitely
often. ◀

By Lemma 17, we do not need to guess an explicit strategy for Player 1 in order to
determine whether she wins an AllB or a superset game. Instead, we can guess a set of
vertices that might appear infinitely often, and the set of successors we choose infinitely often
from each of those vertices.

Back to CGs, we show that disrupting strategies can be described symbolically using a
fairness requirement.

We say that a set of subsets of objectives ∆ ⊆ 2β is k-wise intersecting if the intersection
of every k sets in ∆ is not empty. That is,

⋂
i∈[k] δi ̸= ∅, for every δ1, . . . , δk ∈ ∆.

▶ Lemma 18. A strategy f2 for Disruptor is a disrupting strategy iff the set {(β\δ) : δ ∈ ∆f2}
is k-wise intersecting.

Proof. Assume first that f2 is a disrupting strategy, and consider k sets δ1, . . . , δk ∈ ∆f2 .
By the definition of ∆f2 , there exist strategies f1

1 , . . . , f
k
1 for the agents of Coverer with

sat(outcome(⟨f i
1, f2⟩), β) = δi, for every i ∈ [k]. Since f2 is a disrupting strategy, then, by

Lemma 13, we have that
⋃

i∈[k] δi ̸= β. Therefore,
⋂

i∈[k](β\δi) ̸= ∅, and so {(β\δ) : δ ∈ ∆f2}
is k-wise intersecting.

For the second direction, consider a strategy f2 for Disruptor such that {(β \δ) : δ ∈ ∆f2}
is k-wise intersecting. Then, for every strategy F1 = ⟨f1

1 , . . . , f
k
1 ⟩ for Coverer and δ1, . . . , δk ∈

∆f2 with sat(outcome(f i
1, f2)) ⊆ δi, for every i ∈ [k], there exists αj ∈

⋂
i∈[k](β \ δi). Thus,

αj is not covered in outcome(⟨F1, f2⟩). Accordingly, f2 is a disrupting strategy. ◀

▶ Lemma 19. If Disruptor has a disrupting strategy in a co-Büchi CG, then there exist a
set of vertices U and a fairness requirement g such that every U -trap strategy for Disruptor
that respects g is a disrupting strategy, and such a strategy exists.

Proof. Consider a co-Büchi CG G = ⟨G, k, β⟩, and assume there exists a disrupting strategy
f2 for Disruptor. Let δf2 be the AllB objective equivalent to the superset objective {(β \ δ) :
δ ∈ ∆f2}. Since f2 is a winning strategy for the superset objective {(β \ δ) : δ ∈ ∆f2}, and
thus for its equivalent AllB objective δf2 , then, by Lemma 17, there exist a set of vertices U
and a fairness requirement g such that every U -trap strategy f ′

2 for Disruptor that respects
g is a winning strategy for δf2 , and hence also a winning strategy for the superset objective
{(β \ δ) : δ ∈ ∆f2}. Also, such a strategy exists. By Lemma 18, in order to show that every
such strategy f ′

2 is a disrupting strategy, it is enough to show that {(β \ δ) : δ ∈ ∆f ′
2
} is

k-wise intersecting.
Consider a U -trap strategy f ′

2 that respects g. Note that since f ′
2 is a winning strategy

for the superset objective {(β \ δ) : δ ∈ ∆f2}, for every set δ ∈ ∆f ′
2
, there exists a set

δ′ ∈ ∆f2 such that (β \ δ′) ⊆ (β \ δ). Now, consider k sets δ1, . . . , δk ∈ ∆f ′
2

of objectives,
and for every i ∈ [k], let δ′

i ∈ ∆f2 be a set of objectives such that (β \ δ′
i) ⊆ (β \ δi). Since⋂

i∈[k](β \ δ′
i) ⊆

⋂
i∈[k](β \ δi) and {(β \ δ) : δ ∈ ∆f2} is k-wise intersecting, we have that⋂

i∈[k](β \ δi) ̸= ∅. Accordingly, {(β \ δ) : δ ∈ ∆f ′
2
} is k-wise intersecting. ◀

The fact we can restrict attention to disrupting strategies that are given by fairness
requirements leads to an upper bound for the disruption problem.
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▶ Theorem 20. The disruption problem for co-Büchi CGs is in ΣP
2 .

Proof. An NP algorithm that uses a co-NP oracle guesses a set of vertices U ⊆ V and a
fairness requirement g : (V2 ∩ U) → (2U \ {∅}), checks that there exists a U -trap strategy for
Disruptor that respects g, and then the co-NP oracle checks that every U -trap strategy for
Disruptor that respects g is a disrupting strategy. By Lemma 19, the search can be restricted
to trap strategies that respect a given fairness requirement. In Appendix A.6 we describe
how the above two steps can indeed be done in NP and co-NP. In particular, checking the
U -traps that respect g is based on the fact that for every strategy for an agent of Coverer,
the set of vertices visited infinitely often in the resulted play are strongly connected subsets
of U that contain all the successors of vertices in V2 according to g, and the rest of the
vertices are successors of vertices in V1. ◀

We continue to lower bounds. Note that the game in the reduction in the proof of
Theorem 11 is determined when Φ is of the form ∀X∃Y φ. Indeed, in this case the assignment
to the universal variables is independent of the assignment to the existential variables,
and thus if Φ = false, which holds iff the 2QBF formula ∃X∀Y φ is valid, Disruptor has
a disrupting strategy. Since 2QBF is ΣP

2 -hard, we have the following (see full proof in
Appendix A.7).

▶ Theorem 21. The disruption problem for Büchi or co-Büchi CGs is ΣP
2 -hard.

7 Discussion

We introduced and studied coverage games, extending multi-agent planning to adversarial
factors that go beyond those studied in existing frameworks.

Below we discuss variants of CGs. Clearly, all classical extensions to the underlying
two-player game (e.g., concurrency, probability, partial visibility, etc.) and to the objectives
(e.g., richer winning conditions, weighted objectives, mixing objectives of different types, etc.),
as well as classical extensions from planning (e.g., dynamic objectives, optimality of agents
and their resources, etc.) are interesting also in the setting of CGs. For example, handling
reachability objectives, it is interesting to search for strategies of Coverer that reach the
objectives via short paths, and one may optimize the longest or the average path. Although
the extension to richer objectives is an obvious direction for future work, we note that the
study of Büchi and co-Büchi better highlights the differences between CGs and standard
games, as the complexity is not dominated by challenges that have to do with the objective.
For example, by Footnote 2, the extension of the general Müller objective to CGs involves
no cost, whereas for the Büchi and co-Büchi objectives, we exhibit a variety of complexity
classes, obtained for the different variants of CGs. As our results show, the transition from
multiple objectives (a single agent) to CGs adds the challenge of decomposing the set β of
objectives among the agents. For example, while multiple co-Büchi objectives can be merged,
making them easier than multiple Büchi objectives, co-Büchi CGs are not easier than Büchi
CGs. It is interesting to study how the need to decompose the objectives affects the problem
in richer settings.

More interesting in our context are extensions that have to do with the operation of
several agents: communication among the agents and the ability of Disruptor to also use
different agents. Recall that in the CGs studied here, the strategy of each agent may depend
on the history of her interaction with Disruptor, but is independent of the interaction of the
other agents. Settings in which the agents communicate with each other corresponds to CGs
in which their strategies depend on the history of all interactions. Clearly, communication
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can help Coverer. For example, if two drones are tasked with patrolling an area and Drone 1
is drifting northward at a certain location, knowing this could prompt Drone 2 to avoid that
location or to fly southward. Also, beyond full information about the other agents, various
applications induce interesting special cases, such as visibility of a subset of the agents, of
agents in some radius, of their current location only, and so on.

As for a richer disruption, recall that in the CGs studied here, all the agents of Coverer
interact with the same strategy of Disruptor. It is interesting to consider settings in which
Disruptor also operates a number l of agents. Then, a strategy for Disruptor is a vector
F2 = ⟨f1

2 , . . . , f
l
2⟩ of strategies, and Coverer should cover all the objectives in β for every F2

and for every possible pairing of each of her agents with those of Disruptor. This extension
corresponds to settings in which different agents may face different responses, even after the
exact same interaction. Clearly, this can help Disruptor. For example, if a system aims to
ensure that some road remains uncongested, it may limit the number of cars in each zone by
directing different cars to different directions. From a technical point of view, the setting
involves additional challenges. In particular, decomposition now has an additional parameter.
For example, it can be shown that if l = k, then Coverer can cover β iff there is an a-priori
decomposition of β among the agents.
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A Missing proofs

A.1 Missing details in the proof of Theorem 2
We start with the case γ = B. There, G = ⟨G′, k, E⟩, where the game graph G′ =
⟨V ′, ∅, v0, E

′⟩ has the following components.
1. V ′ = V ∪ {v0}, where v0 /∈ V .
2. The set of edges E′ contains the following edges.

a. ⟨v0, v⟩, for every v ∈ V . That is, from the initial vertex, Coverer chooses a vertex
v ∈ V by proceeding to the vertex that correspond to v in V ′.

b. ⟨v, v⟩, for every v ∈ V .

We prove the correctness of the reduction. Assume first that there exists a vertex-cover
U ⊆ V of size k in G. Then, the strategy F1 for Coverer in G that sends a different agent to
every vertex v ∈ U is a covering strategy. Indeed, since U is a vertex cover, for every edge
e = {u, v} ∈ E we have that u ∈ U or v ∈ U , thus the Büchi objective e is satisfied in the
play in outcome(F1) that reaches the self-looped sink v or the self-looped sink u.

For the second direction, assume there exists a covering strategy F1 in G. Let U be the
set of k self-looped sinks that the plays in outcome(F1) reach. Then, U is a vertex-cover in
G of size k. Indeed, for every edge e = {u, v} ∈ E, if every play in outcome(F1) does not
reach u and does not reach v, then there does not exist a play in outcome(F1) that satisfies
the Büchi objective e, which is not possible since F1 is a covering strategy.

For γ = C, we define the same graph G, with β = {V \ e : e ∈ E}. Since each play ρ is
eventually trapped in a self-loop in a vertex in V , the co-Büchi objective V \ e is satisfied in
ρ iff the Büchi objective e is satisfied in ρ, thus the game coincides with the one for γ = B.

A.2 Missing details in the proof of Theorem 5
We first prove that every strategy F1 = ⟨f1

1 , f
2
1 ⟩ for Coverer is not a covering strategy in G. If

f1
1 (v0) = f2

1 (v0) = v1, then F1 satisfies at most α1 and α2; If f1
1 (v0) = f2

1 (v0) = v2, then F1
guarantees the satisfaction of the two objectives α1 and α3, when Disruptor proceeds from v2
to u2, and the two objectives α2 and α3, when Disruptor proceeds from v2 to d2; Otherwise,
without loss of generality, we have that f1

1 (v0) = v1 and f2
1 (v0) = v2. If f1

1 (v1) = u1, then
when Disruptor proceeds from v2 to u2, only α1 and α3 are satisfied, and in a similar way,
if f1

1 (v1) = d1, then when Disruptor proceeds from v2 to d2, only α2 and α3 are satisfied.
Therefore, F1 is not a covering strategy.

We now prove that every strategy f2 for Disruptor is not a disrupting strategy. If
f2(v2) = u2, then when Coverer uses the strategy in which one agent goes to d1 and one
agent goes to v2, all three objectives are satisfied; in a similar way, if f2(v2) = d2, then when
Coverer uses the strategy in which one agent goes to u1 and one agent goes to v2, all three
objectives are satisfied. Therefore, f2 is not a disrupting strategy.

A.3 Proof of Theorem 6
For the first claim, consider a CG G = ⟨G, k, β⟩, and consider 1 < l ≤ k and a vertex v of
G such that β is (k, l)-decomposable in v. We show that β is also (k, l − 1)-decomposable
in v. The claim for all l′ ≤ l then follows by repeated (possibly zero) applications of this
claim. Since β is (k, l)-decomposable in v, there exists a partition β1, . . . , βl of β and a
partition A1, . . . , Al of A to nonempty sets, such that for every 1 ≤ i ≤ l, Coverer wins the
game ⟨Gv, |Ai|, βi⟩. It follows that Coverer also wins the CG ⟨Gv, |Al−1 ∪ Al|, βl−1 ∪ βl⟩.

CONCUR 2025
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Indeed, the strategy in which the agents in Al−1 use their winning strategy for βl−1 and the
agents in Al use their winning strategy for βl covers βl−1 ∪ βl. Hence, β1, . . . , βl−2, βl−1 ∪ βl

and A1, . . . , Al−2, Al−1 ∪Al are partitions of β and A, respectively, to l − 1 nonempty sets,
witnessing that β is (k, l − 1)-decomposable from v.

For the second item, consider k ≥ 2. We prove the claim for l = 2. By the first item,
the result then follows for all l > 1. First, for γ = B, consider the γ-CG G = ⟨G, k, β⟩,
where G is as follows (see Figure 4 for an example for k = 2). Starting from the initial
vertex v0, Disruptor chooses between k + 1 vertices v1, . . . , vk+1. From vi, Coverer chooses
among k self-looped sinks s1

i , . . . , s
k
i , for every i ∈ [k + 1]. Then, for every i ∈ [k + 1] and

j ∈ [i− 1], the sink sj
i satisfies the objective αj , and for every j ∈ [k + 1] \ [i], the sink sj−1

i

satisfies the objective αj . The sink s1
i also satisfies αi. That is, every objective αj ∈ β \ {αi}

is satisfied in a separate sink reachable from vi. Formally, β = {αi : i ∈ [k + 1]}, with
αi = {si

j : i+ 1 ≤ j ≤ k + 1} ∪ {si−1
j : 1 ≤ j ≤ i− 1} ∪ {s1

i }, for every i ∈ [k + 1].

v1

v0

s11 s21

v2

s12 s22

v3

s13 s23

Figure 4 The game graph G for k = 2. Here, β = {α1, α2, α3}, with α1 = {s1
2, s1

3, s1
1}, α2 =

{s2
3, s1

1, s1
2}, and α3 = {s2

1, s2
2, s1

3}.

It is not hard to see that Coverer wins G. Indeed, β can be satisfied in Gvi , for every
successor vi of v0. We show that β is not (k, 2)-decomposable in G. Assume by contradiction
otherwise. Thus, there exist β′ ⊂ β and A′ ⊂ A such that Coverer wins ⟨G, |A′|, β′⟩ and
⟨G, |A \A′|, β \ β′⟩. Note that every winning strategy for Coverer in ⟨G, |A′|, β′⟩ requires |β′|
agents. Indeed, since |β′| ≤ k, Disruptor can choose from the initial vertex a successor vi such
that αi /∈ β′, thus β′ is covered from vi iff |β′| agents are sent to |β′| different successors of vi.
In a similar way, every winning strategy for Coverer in ⟨G, |A \A′|, β \ β′⟩ requires |β \ β′|
agents. Therefore, k = |A| = |A′| + |A \A′| ≥ |β′| + |β \ β′| = |β| = k + 1, contradiction.

Next, for γ = C, we define G′ = ⟨G, k, β′⟩ over the same game graph, now with β′ =
{α′

1, . . . , α
′
k+1}, where α′

i = ∪(β \ {αi}), for every i ∈ [k + 1]. Since the vertices sj
i are

sinks, every play in G satisfies the γ objective α′
i iff it satisfies the γ̃ objective αi, for every

i ∈ [k + 1], we have that Coverer wins G′ but β′ is not (k, 2)-decomposable in G.
We continue to the last claim. Consider k ≥ 2 and 1 ≤ l < k. First, for γ = B, we describe

a γ-CG G = ⟨G, k, β⟩ with β = {α1, . . . , αk+1} such that β is (k, l)-decomposable in G, but
β is not (k, l+ 1)-decomposable in G. The game is as follows. Let G′ = ⟨G′, k− (l− 1), β′⟩ be
a CG with β′ = {α′

1, . . . , α
′
k−(l−1)+1} such that Coverer wins G′, but β′ is not (k− (l− 1), 2)-

decomposable in G′. By item 2, such a CG exists. Starting from the initial vertex in G,
Disruptor chooses between l successors v1, . . . , vl. The vertices v1, . . . , vl−1 are self-looped
sinks, and from vl, Coverer proceeds to the sub-graph G′. Then, we define αi = {vi}, for
every i ∈ [l − 1], and αi = α′

i−(l−1), for every l ≤ i ≤ k + 1. It is not hard to see that
β is (k, l)-decomposable in G. Indeed, for every i ∈ [l − 1], Coverer wins ⟨G, 1, {αi}⟩, and
also Coverer wins ⟨G, k − (l − 1), β′⟩, since Coverer wins G′. We continue to show that β is
not (k, l + 1)-decomposable. Assume by contradiction otherwise, and let β1, . . . , βl+1 and
A1, . . . , Al+1 be partitions of β and A to l+ 1 nonempty sets, respectively, such that Coverer
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wins ⟨G, |Ai|, βi⟩, for every 1 ≤ i ≤ l + 1. Since there are only l − 1 objectives in β \ β′, we
have that β′ is divided among at least two different sets in the partition, implying an a-priori
partition of β′, contradicting the fact β′ is not (k− (l− 1), 2)-decomposable in G′. The same
results hold for γ = C and the γ-CG G′ = ⟨G, k, β′′⟩ with β′′ = {α′′

1 , . . . , α
′′
k+1} such that

α′′
i = ∪(β \ {αi}), for every i ∈ [k + 1].

A.4 Missing details in the proof of Theorem 11
Formally, G = ⟨G, |X|, β⟩, where the game graph G = ⟨V1, V2, v1, E⟩ has the following
components.
1. V1 = {vi : i ∈ [n] and Qi = ∃} ∪ {l : l ∈ X ∪X}. The vertices in {vi : i ∈ [n] and Qi = ∃}

are existential variable vertices, and the vertices in {l : l ∈ X ∪X} are literal vertices.
2. V2 = {vi : i ∈ [n] and Qi = ∀}. The vertices in {vi : i ∈ [n] and Qi = ∀} are universal

variable vertices.
3. The set E of edges includes the following edges.

a. ⟨vi, xi⟩ and ⟨vi, xi⟩, for every i ∈ [n]. That is, from the variable vertex vi, the owner of
the vertex chooses an assignment to the variable vi by proceeding to one of the literal
vertices xi and xi, which correspond to assigning true and false, respectively.

b. ⟨l, l⟩, for every l ∈ X ∪X. That is, Coverer can choose to stay in every literal vertex.
c. ⟨vi, vi+1⟩, for every i ∈ [n − 1] such that Qi = ∃. That is, from existential variable

vertices, Coverer can proceed to the next variable vertex.
d. ⟨l, vi+1⟩, for every i ∈ [n− 1] such that Qi = ∀ and l ∈ {xi, xi}. That is, from literal

vertices that correspond to universal variables, Coverer can choose between staying in
the literal vertex, and proceeding to the next variable vertex.

The set β contains the following objectives.
1. αx = {x, x}, for every x ∈ X.
2. αCi

= {l1i , l2i , l3i }, for every i ∈ [m].

We prove the correctness of the construction. That is, we prove that Φ = true iff Coverer
has a covering strategy in G. Note that the objective αx, for every x ∈ X, guarantees that
exactly one agent has to stay in a vertex that correspond to one of the literals x and x.

For the first direction, assume Φ = true. Consider the strategy F1 for Coverer that
chooses an assignment to the existential variables, depending on the assignments chosen
for preceding variables, in a way that ensures φ is satisfied. Then, for every literal vertex
that corresponds to universal variables the play encounters, F1 leaves one of the agents to
traverse its self-loop of indefinitely. Thus, the objective αx is satisfied in the play that stays
in the literal vertex x or x, for every x ∈ X. And, since the chosen assignment satisfies φ,
and literal vertices are visited infinitely often iff they are evaluated to true in the chosen
assignment, every objective αCi

is satisfied in at least one play. Therefore, F1 is a covering
strategy.

For the second direction, assume there exists a covering strategy F1 for Coverer in G.
Note that by the definition of the construction, F1 allocates a single agent to stay indefinitely
in every literal vertex the play reaches. Also note that for every strategy f2 for Disruptor,
the set of literal vertices that the plays visit infinitely often induce an assignment that satisfy
φ. Indeed, otherwise there exists a strategy f2 for Disruptor that induces an assignment for
which there exists a clause Ci all whose literals are evaluated to false, thus αCi

is not covered
in outcome(⟨F1, f2⟩), contradicting the fact that F1 is a covering strategy. Thus, there exists
an assignment to the existential variables, depending on assignments to preceding universal
variables, that guarantee the sanctification of φ. Accordingly, Φ = true.
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A.5 Missing details in the proof of Theorem 14
Consider a strategy F1 = ⟨f1

1 , . . . , f
k
1 ⟩ for Coverer. For every i ∈ [k], let ρi =

outcome(⟨f i
1, f

′
2⟩). Since f ′

2 is a winning strategy for the ExistsC objective {∪(β \ δ)}δ∈∆f2
,

for every i ∈ [k] there exist δi ∈ ∆f2 such that ρi satisfies the co-Büchi objective ∪(β \ δi),
and so the set of Büchi objectives that ρi satisfies is a subset of δi. Since δ1, . . . , δk ∈ ∆f2 and
f2 is a disrupting strategy in G, then by Lemma 13, we have that

⋃
i∈[k] δi ≠ β. Thus, there

exists an objective αj ∈ β such that for every i ∈ [k], αj is not satisfied in ρi. Accordingly,
we have that f ′

2 is a disrupting strategy for Disruptor in G.

A.6 Missing details in the proof of Theorem 20
First, for the NP part, the algorithm checks that there exists a U -trap strategy for Disruptor
that respects g. For that, the algorithm checks that Disruptor can force the play to reach
U , checks that Coverer cannot force the play to leave U by verifying that for every vertex
v ∈ V1 ∩ U , we have that succ(v) ⊆ U , and then checks that a U -trap strategy can respect g
by verifying that for every vertex v ∈ V2 ∩ U , we have that g(v) ⊆ succ(v).

Then, for the co-NP oracle, the algorithm checks that every U -trap strategy for Disruptor
that respects g is a disrupting strategy. For that, the algorithm checks that for every
U -trap strategy f2 for Disruptor that respects g and every strategy F1 = ⟨f1

1 , . . . , f
k
1 ⟩ for

Coverer, we have that β is not covered in outcome(⟨F1, f2⟩). That is,
⋂

i∈[k]{αj ∈ β :
inf(outcome(⟨f i

1, f2⟩)) ∩ αj ̸= ∅} ̸= ∅. For that, the algorithm checks that for every k sets
U1, . . . , Uk ⊆ U of vertices such that for every i ∈ [k] we have that Ui = inf(outcome(⟨f1, f2⟩))
for some strategy f1 for an agent of Coverer and a U -trap strategy f2 for Disruptor that
respects g, we have that

⋂
i∈[k]{αj ∈ β : Ui ∩ αj ̸= ∅} ̸= ∅. Note that for every set

of vertices U ⊆ V and a fairness requirement g for Disruptor, for every U -trap strategy
f2 for Disruptor that respects g and a strategy f1 for an agent of Coverer, we have that
U ′ = inf(outcome(⟨f1, f2⟩)) is a strongly connected subset of U such that for every vertex
v ∈ V2 ∩ U ′ we have that g(v) ⊆ U ′, and the vertices in U ′ \ {g(v) : v ∈ V2 ∩ U ′} are visited
infinitely often following choices made by f1, and thus for every vertex u ∈ U ′ \ {g(v) : v ∈
V2 ∩ U ′} we have that u ∈ {succ(v) : v ∈ V1 ∩ U ′}. Thus, the co-NP oracle checks that for a
guessed set of k sets U1, . . . , Uk ⊆ U of vertices, for every i ∈ [k], we have that Ui is strongly
connected, {g(v) : v ∈ V2 ∩ Ui} ⊆ Ui, and Ui \ {g(v) : v ∈ V2 ∩ Ui} ⊆ {succ(v) : v ∈ V1 ∩ Ui}.

A.7 Proof of Theorem 21
We describe reductions from 2QBF. Consider a 2QBF formula Φ = ∃X∀Y φ with φ =
C1 ∨ · · · ∨ Cm and Ci = (l1i ∧ l2i ∧ l3i ), for every i ∈ [m]. For both γ ∈ {B,C}, we construct
from Φ a γ-CG G such that Φ = true iff Disruptor has a disrupting strategy in G.

We define the γ-CG G as in the proof of Theorem 11, for the QBF formula Φ = ∀X∃Y φ.
Note that since φ is in 3DNF, the formula φ is in 3CNF. We prove the correctness of the
construction. That is, we prove that Φ = true iff Disruptor has a disrupting strategy in G.

For the first direction, assume Φ = true. Let ξ : X → {true, false} be an assignment
to the variables in X such that for every assignment ζ : Y → {true, false} to the variables
in Y , we have that ξ and ζ satisfy φ. Consider a strategy f2 for Disruptor that chooses
an assignment to the variables in X according to ξ. That is, for every variable x ∈ X,
the strategy f2 proceeds to the literal vertex x if ξ(x) = true, and otherwise proceeds to
the literal vertex x. It is not hard to see that f2 is a disrupting strategy for Disruptor in
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G. Indeed, for every strategy F1 for Coverer that allocates one agent to stay in the literal
vertices of each variable, there exists a clause Ci of φ all whose literals are evaluated to false
in the corresponding assignment, thus the objective αCi

is not covered in outcome(⟨F1, f2⟩).
For the second direction, assume Φ = false. Then, Φ = true, and so Coverer has a

covering strategy in G, as shown in the proof of Theorem 11. Consequentially, Disruptor
does not have a disrupting strategy in G.
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