Arbitrary-Arity Tree Automata for QCTL

Francois Laroussinie & &
IRIF, Université Paris Cité, France

Nicolas Markey &2 a
TIRISA — Inria, CNRS, Univ. Rennes 1, France

—— Abstract

We introduce a new class of automata (which we coin EU-automata) running on infinite trees of
arbitrary (finite) arity. We develop and study several algorithms to perform classical operations
(union, intersection, complement, projection, alternation removal) for those automata, and precisely
characterise their complexities. We also develop algorithms for solving membership and emptiness
for the languages of trees accepted by EU-automata. We then use EU-automata to obtain several
algorithmic and expressiveness results for the temporal logics QCTL and QCTL" (which extends CTL
and CTL" with quantification over atomic propositions) and for MSO.

2012 ACM Subject Classification Theory of computation — Logic and verification
Keywords and phrases Model-checking, Verification, Automata theory, Quantified CTL
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2025.28

Related Version Full Version: https://arxiv.org/abs/2410.18799 [17]

Acknowledgements We thank Igor Walukiewicz for answering our questions on MSO-automata, and

the reviewers for their careful reading and constructive comments.

1 Introduction

Logics and automata. The very tight links between logics and automata on infinite words
and trees date back to the early 1960’s with the seminal works of Biichi, Elgot, Trakhtenbrot,
McNaughton and Rabin [4, 8, 26, 21, 23]. These early results were mainly concerned with the
Monadic Second-Order Logic (MSO), and have been further extended to many other logical
formalisms such as modal, temporal and fixpoint logics [24, 28, 2, 13, 32]. Those tight links are
embodied as translations back and forth between various logical languages and corresponding
classes of automata; translations from logics to automata have allowed to derive efficient
algorithms for satisfiability or model checking on the one hand [27, 9, 2]; with additional
translations from automata to logics, we get effective ways for proving expressiveness or
succinctness results for some of those logics [29, 31, 19, 16, 33]. In this paper, we introduce
a new flavour of automata running over trees of arbitrary arity [29, 31, 16], develop and
analyse tools to manipulate them, and derive algorithmic and expressiveness results for MSO
and the temporal logic Quantified CTL (QCTL) [14, 15, 11, 7] and its fragments.

QCTL. QCTL extends the classical temporal logic CTL with quantification on atomic
propositions. For instance, formula dp.¢, where ¢ is a CTL formula, states that there exists
a labelling of the model under scrutiny with proposition p under which ¢ holds. QCTL is
(much) more expressive than CTL: as an example, formula Jp. (EF(¢ A p) A EF (¢ A —p))
expresses the fact that there are at least two reachable states where ¢ holds. The extension
of CTL with only existential quantification was first studied in [10, 14]: contrary to CTL,
the resulting logic is sensitive to unwinding and duplication of transitions; the semantics
thus depends on whether the extra labelling refers to the Kripke structure under scrutiny, or
on its computation tree. Our sample formula above expresses that there are at least two
? Frangois Laroussin.ie and Nicolas Markey;

37 icensed under Creative Commons License CC-BY 4.0
36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 28; pp. 28:1-28:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:francoisl@irif.fr
https://www.irif.fr/~francoisl/
https://orcid.org/0009-0002-1353-7942
mailto:nicolas.markey@cnrs.fr
https://people.irisa.fr/Nicolas.Markey/
https://orcid.org/0000-0003-1977-7525
https://doi.org/10.4230/LIPIcs.CONCUR.2025.28
https://arxiv.org/abs/2410.18799
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

28:2

Arbitrary-Arity Tree Automata for QCTL

different reachable control states satisfying ¢ in the former case (which we call the structure
semantics), while it only requires that two different paths lead to some ¢-states (possibly two
copies of the same control state) in the latter semantics (called the tree semantics hereafter).
In this paper, we will only consider QCTL with the tree semantics. In that setting, it turns
out that QCTL is as expressive as MSO over infinite trees [18].

Tree automata. We use (top-down'!) tree-automata techniques to study QCTL. Several
results already exist on this topic [10, 14, 18], but they all rely on fixed-arity tree automata.

The limitation has several drawbacks. When dealing with model checking, it implies
that the compilation of the formula being checked into a tree automaton depends on the
(size of the) structure under scrutiny. In particular, it cannot be used directly for evaluating
the program complexity of QCTL model checking, as it requires bounding the size of the
structures that the automaton can handle. An indirect solution to this problem is given
in [18], by replacing nodes of arbitrary (finite) arity with binary-tree gadgets. A similar
problem occurs when dealing with satisfiability: one has to use additional results to ensure
that looking for a structure with bounded size is sufficient. More importantly, when deriving
expressiveness results, using fixed-arity tree automata again restricts the results to trees or
structures with bounded branching.

In order to handle trees of arbitrary branching degree, tree automata must have a symbolic
way of expressing transitions, with a finite representation that can cope with any arity. Several
solutions have been proposed [1, 13, 29, 31, 16]; we highlight two of them:

Janin and Walukiewicz introduce MSO-automata [13, 29], in which transitions are defined

as first-order formulas: quantification is over the successors of the current node, and

predicates indicate in which states of the automaton those successors must be explored.

These automata are shown to be as expressive as MSO, and several expressiveness results

have been obtained from this construction [13, 30, 33]. However, to the best of our

knowledge, the exact complexity of the operations for manipulating those automata has
not been studied, and no bounds on the size and complexity of the translations can be
derived without a more careful study.

Wilke introduces {{J, ¢ }-automata [31], which are alternating tree automata with Og

and Qg as basic blocks for expressing transitions: the former requires that all successors

be explored in state ¢, while the latter asks that some successor be explored in state q.

Any CTL formula can be turned into an equivalent {{J, ¢ }-automaton of linear size; this

is used to prove that the extension CTLT of CTL is exponentially more succinct that CTL.

However, {{J, 0 }-automata are not expressive enough to capture MSO or QCTL.

Our contribution. In this paper, we define a new class of symmetric arbitrary-arity al-
ternating tree automata, develop effective operations for their manipulation, and study the
complexity of those operations and the size of the resulting automata. Instead of using
pairs (k,q) in the transition function to specify that the k-th successor of the current node
has to be accepted by the automaton in state g, transitions of our automata are defined
with pairs (F;U), where E is a multiset of states that have to occur among the set of states
involved in the exploration of the successors of the current node, while U is a set of states
indicating which states are allowed for exploring successor nodes that are not explored by

! There are several families of tree automata: top-down tree automata explore (finite or infinite) trees
starting from the root; bottom-up tree automata explore finite trees from the leaves up to the root;
tree-walking automata are a kind of two-way automata for trees. We refer to [6, 3] for more details.

F. Laroussinie and N. Markey

states of E. For example, (E = {q,q,¢'}; U = {¢"}) requires the presence of at least three
successors nodes; two successors will be explored in state g, one in state ¢/, and the remaining
ones (if any) in state ¢”. We name those automata EU-automata?.

It is not hard to prove that such automata are closed under conjunction and disjunction,
thanks to alternation. Closure under negation is harder to prove: while [J and ¢ are dual to
each other, which provides an easy complementation procedure for {{J, ¢ }-automata, there
is no obvious way of expressing the negation of EU-pairs in terms of EU-pairs. We develop

such a translation, and obtain an exponential complementation procedure for EU-automata.

We show that non-alternating EU-automata are also closed under projection, which is the
operation we need to encode quantification over atomic propositions of QCTL, and first- and
second-order quantification of MSO. Finally we prove that any alternating EU-automaton
can be turned into an equivalent non-alternating EU-automaton. For this, we adapt the
simulation procedure developed in [29, 33] for MSO-automata to our setting, and evaluate
its exact complexity. Note that we use a fine-tuned notion of size for our EU-automata,
with different components (number of states, size of Boolean formulas in the transition
function, size of EU-pairs, number of (parity) priorities); this allows us to precisely estimate
the complexity of these operations.

Putting all the pieces together, we prove that any QCTL formula ¢ can be turned into
an equivalent EU-automaton A,. The size of the automaton is k-exponential in the size
of ¢, where k is the number of nested quantifier blocks in ¢. This construction then yields
optimal algorithms for model-checking and satisfiability for QCTL. Conversely, we prove that
acceptance by any EU-automaton can be expressed as a simple QCTL formula. We obtain
similar results for QCTL" and MSO. Therefore EU-automata, QCTL, and MSO all characterise
exactly the same tree languages.

2 Definitions

2.1 Preliminary definitions

Sets and multisets. Let S be a finite set. A multiset over S is a mapping u: S — N. Sets
are seen as special cases of multisets taking values in {0, 1}. We use double-brace notation to
distinguish between sets and multisets: {a, a,a} is the same as the set {a} with one element,
while {a,a,a}} is the three-element multiset a — 3. The empty multiset is the multiset
mapping all elements of S to zero; we denote it with &.

The support of a multiset p is the set supp(p) = {s € S | u(s) > 0}. The size |u| of p
is the sum) s p(s). For two multisets p and p/, we write u C 4/, and say that p is a
submultiset of ', whenever u(s) < u/(s) for all s € S. This defines a partial ordering over
multisets. We write p C ¢/ when p C p/ and p # /. We define the following operations on
multisets: pWu': s €S u(s)+ p/(s) and p' \ p: s € S — max(0, ' (s) — p(s)).

Fix a second set 8. For any ¢ = (s,s') € S x &', we define proj; (¢) = s and proj,(c) = s’

Markings. Let S and S’ be two finite sets. A marking of 8’ by S is a mapping
v: 8 — 29\ {@} decorating each element of S’ with a (non-empty) subset of S. A marking v
is a submarking of a marking v/, denoted v C v/, whenever v(s') C /(s') for all ' € §'.

2 In [16], Kupferman and Vardi define another variant of arbitrary-arity alternating tree automata in
which transitions are based on pairs (U, E). Those automata are equivalent to Wilke’s {{J,) }-automata.

28:3

CONCUR 2025

28:4

Arbitrary-Arity Tree Automata for QCTL

A marking v is unitary when |v(s")| =1 for all &' € §’; unitary markings can be seen as
mappings from &’ to S. For a unitary marking v and a subset T of §’, we write v(T') for
the multiset u over S defined as u(s) = #{t € T | v(t) = s}, which we may also write as
{v(t) | t € T}. We write img(v) for the multiset v(S’).

Words and trees. Let ¥ be a finite set. A word over ¥ (or X-word) is a sequence
w = (w;)o<i<k of elements of ¥, with k& € NU {+o0o}. The length (or size) of w, denoted
with |w|, is k. We write £* for the set of finite words over X, and ¥°° for the set of infinite
words over X. We write ¢ for the empty word (the only word of size 0).

Let D be a finite set. A tree structure over D (or D-tree) is a subset t C D* that is
closed under prefix. The empty word ¢ is its root. The elements of a tree are called nodes.
A node m in ¢ is a successor of a node n if m = n - d for some d € D. In that case, n is the
(unique) predecessor of m. We write succ(n) for the set of successors of node n. Notice that
in a D-tree, any node may have at most |D| successors; this integer |D| is the arity of the
tree. A branch of a tree is a (finite of infinite) sequence b = (n;)o<;<k of nodes of the tree
such that ng = €, n;41 is a successor of n; for all 0 < i < k — 1, and if k is finite, ng_1 is
a leaf. The value of kK € NU {400} is the length of b, denoted with |b].

A X-labelled D-tree is a pair T = (t,1) where ¢ is a D-tree and [: t — ¥ labels each node
of ¢ with a letter in ¥. With any branch b = (n;)o<i<x of ¢ in a X-labelled D-tree T = (¢,1),
we associate its word w(b) over ¥ as the word (w;)o<i<k defined as w; = I(n;) forall 0 < i < k.

2.2 Automata over trees of arbitrary arity

In this section, we introduce our automata running over trees of arbitrary arity. The core
element of their transition functions are EU-pairs and EU-constraints.

EU-pairs and EU-constraints. Let S be a countable set. An EU-pair over S is a pair (E;
U) € NS x 29, where E is a multiset over S and U is a subset of S. A multiset p over S
satisfies the EU-pair (E;U), denoted p |= (E;U), whenever E C p and supp(p \ E) C U.
We write EU(S) = NS x 25 for the set of EU-pairs over S.

» Example 1. Consider a set S = {q1,92,93,q4}. The EU-pair (¢1 — 3,¢2 — 1;{q1,q3})
characterises all multisets containing at least three occurrences of q1, exactly one occurrence
of g2, an arbitrary number of occurrences of g3, and no occurrences of qq4. a

For a finite set B of variables, we write PBF(B) for the set of positive boolean combinations
over B: PBF(B)> ¢ =T | L|v|dpAd | ¢V where v ranges over B. The set of disjunctions
over B, denoted DBF(B), is the subset of PBF(B) where conjunctions are not allowed.

An EU-constraint is a positive boolean formula over EU-pairs (that is an element of
PBF(EU(S))) whose semantics is defined as follows:

» Definition 2. Let S and 8’ be two countable sets. Let (F;U) be an EU-pair over S,
and v be a marking of 8’ by S. Then v satisfies (F;U), denoted v [E (E;U), if there exists
a unitary marking v' C v, such that img(v') | (E;U).

This definition extends to EU-constraints inductively as follows:

vIE 61V éo if, and only if, v E ¢ or v = do;

v E ¢1 Ao if, and only if, v E ¢1 and v E ¢s.
Notice that v E ¢ is not equivalent to having an unitary marking v/ C v satisfy ¢, since
different submarkings ¢/ may be needed for different EU-pairs. However, the equivalence
holds if ¢ is a disjunction of EU-pairs, since in that case a single EU-pair has to be fulfilled.

F. Laroussinie and N. Markey

EU tree automata. We can now define our class of automata:

» Definition 3. Let X be a finite alphabet. An alternating EU parity tree automaton (AEUPTA
for short) over ¥ is a 4-tuple A = (Q, Ginit, 0, w) with

Q is a finite set of states, and g € Q is the initial state;

0: Q x X — PBF(EU(Q)) is the set of transitions;

w: Q — N is a priority function defining the acceptance condition (as a parity condition).
An AEUPTA is non-alternating® (and is thus an EU parity tree automaton, EUPTA for short)
if 0 takes values in DBF(EU(Q)).

We can then define the notion of execution tree of an AEUPTA:

» Definition 4. Let A = (Q, ¢init, 6,w) be an AEUPTA over ¥ and T = (t,1) be a X-
labelled D-tree, for some finite set D. An execution tree of A over T is a (t x Q)-labelled
(D x Q)-tree U = (u, L) such that
the root €, of u is labelled with e, and qii (formally, €(ey) = (e¢, Ginit));
any non-root node ny, = (di, ¢i)o<i<|n,| of u is labelled with £(ny) = ((di)o<i<n.]> Anu]—1);
for any node n, of the form (di, qi)o<i<|n,| of u with £(n,) = (my,q), letting vy, be
the marking of succ(my) by Q such that v, (m-d) ={¢ € Q | ny - (d,q") € succ(ny,)},
we have v, E 0(q,1(m¢)). We name this marking v, the marking of succ(m;) induced
by U.
The tree T is accepted by A if there exists an execution tree U of A over T such that any
infinite branch b is accepting, i.e., the least priority wmin(b) appearing infinitely many times
along b is even. Such an execution tree is said to be accepting. The language of A, denoted
by L(A), is the set of all trees accepted by A.

Clearly, if a marking v satisfies an EU-constraint, then so does any marking v’ containing v.
that D is not constrained by the definition of AEUPTAs, so that AEUPTAs may accept trees
of arbitrary (finite) arity. However, the multisets in the “existential part” of EU-pairs can be
used to impose a lower bound on the number of successors for the EU-pair to be satisfied,
and an upper bound can be imposed by letting the universal part be empty.

» Example 5. Consider a node m of some input tree 7, with three successors m - djy,

m-dy and m - ds ; assume that this node m is labelled with some letter 0. Consider an

AEUPTA A visiting node m in state ¢, giving rise to a node n in an execution tree U with

£(n) = (m, q). The successors of n in the execution tree give rise to the marking v, such that

vp(m-di) ={q1,q3}, vn(m - d2) = {q2,q4}, and v,,(m - d3) = {q1,q4}, as depicted in Fig. 1.
Assume that §(g, o) is satisfied by the following set W of EU-pairs:

W ={(a = 2{eD), (@~ La Lo L{a)), - L)}
(Ev;Uy) (E2;U2) (E3;Us)

Figure 1 displays a possible set of successors succ(n) of n in the execution tree U. Using
the following three submarkings v; of v, we are able to fulfill all three EU-pairs of W:
vi:n-dy — q,n-dg — q,n-d3 — q, Va:n-dy — q3,n-dy — qo,n-ds — q1, and
vs:n-dy — gs,n-do — qq,n-ds — qq. J

3 Such automata are usually said to be non-deterministic in the litterature. We prefer to name them
non-alternating since they are the class of automata we get with our alternation-removal procedure, and
also because we do not have a notion of being deterministic for our tree automata (an EUPTA has in
general more than one execution trees on an input tree).

28:5

CONCUR 2025

28:6

Arbitrary-Arity Tree Automata for QCTL

input tree execution tree

/ <(f) \ n-(di,q1) AA/// \\A n~)(d3,q4)

m-dp m - d m-ds n-(di,qs)
{q1, a3} (42,41} {q1,q4} n-(d2,q2) n-(d2,qa)

Figure 1 Example of a transition of the automaton when exploring node m in some state q.

» Example 6. To illustrate the use of AEUPTA, we display an example of an automaton
accepting all trees satisfying the following two conditions: exactly two infinite branches
contain infinitely many occurrences of a, and at least one branch is fully labelled with b.

Let X = {a,b,c}. Welet A= (Q, ¢init, J,w), where the set Q of states is {qinit, ¢2°, ¢L%, 7%,
@°,ql,], qr}: the automaton uses state ¢2* to visit a prefix of a branch having exactly two
infinite sub-branches where a occurs infinitely many times; it uses states ¢l* and 7 to visit
subtrees in which exactly one branch has infinitely many occurrences of a: state r¢ is used
when letter a is read, and the acceptance condition requires that it be visited infinitely many
times along some branch; similarly, states ¢/ and 7/ are used to explore subtrees in which all
branches have finitely many occurrences of a. Finally, we use ¢;° to explore branches fully
labelled with b. Following this intuition, the transition function is defined as:

oo {(<qu' = L{al) V(a2 4al D)) A G = Lidar)) ifo=b
(Ginit; o)

1 otherwise
2i o 2i o f 14 . f
8(ga’,0) ={ga = Li{a}) V(' = 25{qa}) foranyoceX

) _ i1 Lo oo
5(g,0) = o(ri, o) = § (Ta P Lilwh) ifo=a
(@ — 1;{¢l}) otherwise
<®?{7"£}> ifo=a
(2; {Q,{ 1) otherwise

5(q£,0)—5(r¢f,0)—{

5(g°,0) = {<q5° = 1 {gr}) ifo=b

1 otherwise

Finally, 6(¢1,0) = T for any o € %, so that any subtree is accepted when explored in gT.
Notice that 6(g;nit, o) contains a conjunction, so that the automaton is alternating. Notice
also how the disjunctive EU-constraint in 6(ginit, o) and 6(¢2¢, o) will either look for a single
successor from which two branches will have infinitely many occurrences of a, or for two
successors from each of which there will be such a branch. All other branches will be checked
to have finitely many occurrences of a by exploring them in state ¢f. The priority function
is defined so as to check that a occurs infinitely many times along branches where it has to:

w(ry) = w(g®) =0 w(gs') = w(@a) =w(r]) =1 w(gl) =2

Figures 2 and 3 display (part of) an input tree and a corresponding execution tree for
the automaton built above The root of the execution tree is labelled with (g, ¢ins:) and the
marking v induced by the execution tree for the successors of the root of the input tree
is {d1 — {q7,q}"}, d2 = {@}',°}, ds — {qT,q!}}, which satisfies 0(gini,b): indeed, the
unitary marking {dq — {q}'}, d2 — {qt'}, d3 — {q/}} fulfills {¢}? — 2;{q/}), and the unitary
marking {dqy — {g7},d2 — {¢;°},ds — {q7}} fulfills (g;° — 1;{qT}). J

F. Laroussinie and N. Markey

C a
dadydrdy) (adadidy) (dzdidydy)
c c

,a

Figure 2 An input tree with exactly two branches (light grey) having infinitely many occurrecnes
of a and at least one branch (dark grey) fully labelled with b.

Qinit

a5 qf af ql qr. o
hdrd) (adid) (adrd) sdidy) (adad) (adhd)
a c b a c b

o' al A7 al @ 15
@d1dydydy) (dady dydy) ladydody) adady dy) (adady dy) @sd dydy) dad dady)
a a b a c c b

Figure 3 An execution tree for our automaton A of Example 6 on the input tree of Fig. 2 (notice
that, for the sake of readability, we keep the names of the nodes as in the input tree, using words
over D instead of words over D X Q). Because of the conjunction in §(gmn, b), the automaton explores
the input tree twice, so that the execution tree contains two copies of the input tree: the subtree to
the left of the root corresponds to the part looking for two branches with infinitely many occurrences
of a, while the subtree to the right looks for a branch fully labelled with b.

Size of an AEUPTA. The size of an AEUPTA, denoted with |Al, is a 5-tuple (|Q], |d|gool,

0], [0|u, |w]), where |d|gool is the maximum size of the boolean formulas in ¢, |d|g (resp.

|0]u) is the size of the largest existential part E (resp. universal part U) in some EU-pair
in d, and |w| = [{w(q) | ¢ € Q}| is the number of priorities used in the automaton. Note that
contrary to classical, fixed-arity tree automata, we explicitly consider the size of the transition
function § in the size of an AEUPTA; this is motivated by the fact that EU-constraints may
succinctly encode very complex transitions, regardless of the size of Q.

In the sequel, we say that the size of an AEUPTA is at most (sq, $B, Sk, Su, S») when
Q] < 50, 0lBoal < sB, |0l < sg, |0lu < sy and |w| < s,. The fact that we use five
different parameters in the size of AEUPTAs will allow us to have more precise bounds on
the complexities of our operations for manipulating them.

28:7

CONCUR 2025

28:8

Arbitrary-Arity Tree Automata for QCTL

» Remark 7. It is possible to modify any EU-automaton in such a way that every EU-pair
it involves uses only a singleton or the empty set as its universal part (i.e., with |§]y < 1).
This can be performed by replacing any general EU-pair (E;U) with (F; {qu}), where ¢y is a
fresh state s.t. 6(qu, o) =V e 6(¢; o), and keeping track of the state being chosen in order
to encode the acceptance condition.

This transformation produces an automaton whose size remains polynomial in the size
of the original automaton. Moreover, as we will see in the sequel, all the constructions we
develop for manipulating AEUPTAs preserve this property of having only singletons or empty
sets as the universal part of EU-pairs. |

Game-based semantics. Some of our results rely on the tight links between automata and
games, which we can extend to our class of AEUPTA. More precisely, given a Y-labelled
D-tree T and an AEUPTA A, we can build a two-player turn-based parity game G4 7 enjoying
the following property:

» Proposition 8. The X-labelled D-tree T is accepted by the AEUPTA A if, and only if,
Player 0 has a winning strategy from the initial state (¢, @init) in the parity game Ga 7.

When 7T is regular and corresponds to the execution tree of some finite Kripke struc-
ture IC = (V, E, £), the construction above can be adapted to give rise to a finite game G4 x
with the same property. The sizes of the state space of G4 x and of its transition relation
both are in O([V] - (|Q] - [6]gool + |Q|'Y)). The term |Q|!"! comes from the fact we have to
consider all possible unitary markings of the successors of the nodes in K by Q. It is worth
noticing that for AEUPTA involving only simple constraints of the form (¢ — 1; {g1}) (where
from gt any tree is accepted) or (&; {q}) those sizes are in O(|V|- Q| - (|0|goot + |V|)). Such
automata actually correspond to {0, ¢ }-automata.

3 Operations on AEUTAs

This section is the main technical part of our paper: we develop algorithms for performing
various operations on AEUPTAs (namely union and intersection, projection, complementation
and alternation removal), and carefully study the size of the AEUPTAs we obtain. We will
see that there is no surprise with union, intersection and projection: the size of the resulting
automata is linear in the sizes of the inputs.

However, projection assumes that the input automaton is non-alternating; hence projection
will be used in combination with alternation removal, and this combination involves an
exponential blow-up. Thanks to our careful computation of the various parameters of the size
of automata (see Table 1), we notice that while complement and alternation removal both
involve an exponential blow-up, their combination only yields a single-exponential blow-up.
This will allow us to obtain optimal complexity in our applications to QCTL and MSO.

3.1 Union, intersection

Union and intersection are straightforward for AEUPTASs, thanks to alternation.

» Theorem 9. Let A = (Q, ¢init, 6, w) and A" = (Q', @it 0’ W) be two AEUPTAs. There
exist AEUPTAs Ay and Apn, respectively accepting the union and the intersection of the
language of A and A’, and having size at most (|Q| + |Q’| + 1, 8| goor + |6'| Boor + 1, max(|d] g,
|6’), max(|d|y, |6'|v), max(|w], |w’|) + 1). If the minimum priorities of w and w’ are equal,
then the number of priorities in Ay and An can be bounded by max(|w|, |w'|).

F. Laroussinie and N. Markey

Table 1 Summary of the size of the automata produced by our algorithms.

projection complement alternation removal
Qo <1Ql | € 0@~ 13lseor - [5] - 13]e - 27T€) € 200Q 1(1QN)
Ores|Bool | < || - [0]Bool € 0(|Q] - |8]pool - |8]€* - 4°l€) € (2|de - |5|U)O(‘Q|2'|5‘B°°'2"5|E)
|Gres|E <dle <[ole +1 <1Q| - |6]Bool - |6]e
[8res|u <18lu < max(|d]y, 1) < ‘6‘U|QH5‘BOO\
|wres| < |l < lwl+1 <2(Q| - |w| + 1)

3.2 Projection

Given an AEUPTA A over alphabet ¥ x 3s, projection consists in building another
AEUPTA A;, over alphabet X;, accepting all 3;-labelled trees whose labelling can be
extended on ¥ X Yo to make the tree accepted by A. This is a classical construction, and it
can be performed easily on non-alternating automata [22].

Formally, two 3 x ¥a-labelled trees 7 = (t,1) and T’ = (¥,1’) are said X, -equivalent,
denoted T =5, 7', whenever t = ¢’ and for any node n of these trees, it holds proji(I(n)) =
proji(I’'(n)). Ya-equivalence is defined analogously.

» Theorem 10. Let A = (Q, Ginst, 0,w) be an EUPTA over ¥ = ¥1 x Y. For each i € {1,2},
we can build an EUPTA A; over X such that, for any X-labelled tree T, it holds: T € L(A;)
if, and only if, there is a X-labelled tree T' in L(A) such that T =x, T'. The size of A; is at
most (|Ql, 23] - [8|goor; [6]£, [0]u, [w]).-

3.3 Complementation

Complementation is usually easy for alternating parity automata: it suffices to dualise the

transition function (swapping disjunctions and conjunctions) and shifting the priorities.

For our AEUTA however, we have to express the negation of any EU-pair (F;U) as an
EU-constraint.

The question then is to characterise those nodes that fail to satisfy an EU-pair (E;U).

There can be two reasons for this:

1. either we cannot find |E| successors of the current node n to associate with the |E| states
of the existential part,

2. or for every way to satisfy E with nodes in succ(n), there remain successors that are
accepted by no states in U. Equivalently, there is no way to satisfy the existential part £
with (at least) all nodes that are accepted by no states in the universal part U. This
includes as a special case the situations where we have more than | F| successors that are
accepted by no states in U.

Failing to satisfy the existential part of (E;U). We first address the case (E;{qT}).

When such an EU-pair cannot be satisfied from a tree node z, there exists some pair (F, g)
(called a blocking pair hereafter) where F' C E is a submultiset and g € E \ F', such that the
constraint (F; {¢T}) is satisfied from z and the constraint (F & {g}; {¢T}) is not satisfied
from z. More precisely, one can prove (see Prop. 11, 13 and 14 in [17]) that there exists
a blocking pair (F),g) s.t. for any node y € succ(z) that is not involved in the satisfaction
of F, the subtree rooted at y does not belong to L(Ag) for any ¢’ € supp(F) U {g}, where
Ag denotes the automaton obtained from A by taking ¢’ as the initial state. Applying this
result, the negation of (E;{¢T}) can then be expressed as follows:

a5=\/ \/ (F: (e U (@A) M

FCE geE\F

28:9

CONCUR 2025

28:10

Arbitrary-Arity Tree Automata for QCTL

where (supp(F)U{g}, A) is a (single) new state of our automaton from which a subtree will
be accepted if, and only if, it does not belong to any £(Ay) with ¢’ € supp(F) U {g}. Notice
that for the special case where F is empty, we end up with an empty disjunction, which is
equivalent to false (indeed (&;{qT}) is satisfied by any tree).

Failing to satisfy (E;U). We can now address the general case. If an EU-pair (F;U) is
not satisfied by a node x, then either it has at least |E| + 1 successors y that are recognized
by no automata states u € U, or for some 0 < k < |E|, it has at least k successors recognized
by no states u € U and it does not have |E| successors witnessing the satisfaction of (E;
{g7}) and of which k successors are accepted by no states u € U (see Prop. 15 in [17]). This
explains the definition of (E;U) below.

Construction of the complement automaton. We now define the complement auto-
maton A° of A = (Q, ginit, 0,w); we let A° = (Q°, g5, 0, w) be such that:
Q° is a subset of DU(2P x {A})U(22"*IVD x {A}), where D = QUQ, and Q = {g | ¢ € Q}
is a set of fresh states. This defines an operator : ¢ — q over), which we extend to
states g of @ by letting § = ¢, to subsets X of D by letting X = {z | » € X},
to states (P,A) of 2 x {A} by letting (P, A) = (P, V). We finally extend it to PBF(Q°)
by letting T=1, L=T,YvA¢=9yVoand)V ¢ =1 A ¢.
Intuitively, from a state ¢ € @, automaton A¢ will accept the same language as from the
same state in A, while from a state g € Q, it will accept its complement. The language
accepted by A from a state (P,A) € 2P x {A} will be the intersection of all languages
accepted by A from all states in P, whereas the language accepted from states of the
form ({(P;,V) |1<i<k},A)€2@”xIVD x {A} will be the intersection (over) of the
unions of the languages accepted from all states in P;. Notice that the indications of A
and V are mainly used for the sake of clarity.
accordingly, q5,;; = Qinit;
8¢ is defined as follows, for g € Q, P € 2P U 22D, and o € X: we let

5°(q,0) = é(q,0) 5°((P,N),0) =)\ 6°(r,0)
repP

6°(q,0) = 4(q, 0) 5°((P,Vv),0) = \/ 6°(r,0)
repP

and, following the developments above:

B0} = (@A) = B+ 1 {arhy) (@ o kdarh A N @)

0<k<|E| mCE
|m|=Fk

where mY is the multiset defined by {({z} UU,A) = m(x)}sesupp(m)» and P (defined
as above in equation 1) characterises the failure to satisfy (G;{qt}). Notice also that
O contains EU-pair (F; {(supp(F) U{g}, A)}) where F' may contain states of the form
(P,A) with P C D, and then F may contain states of the form (P, A), which we rewrite
as (P, V). This way, §¢ is defined for any state of Q¢ and only involves states of Q°.

Finally, observe that, as claimed in Remark 7, this construction only introduces new
EU-pairs of the form (F;{u}).

priorities are defined as follows: w®(q) = w(q), w(q) = w(q) + 1, and w°(P, op) =
max{w(q) + 1| q € Q} for all (P, op) € Q°.

F. Laroussinie and N. Markey

Size of A°. We now evaluate the size of the complement automaton:

(over)approzimating the number of states: all states of A¢ are in D U (2P x {A}) U
(227X x {A}), but not all states of this set are reachable. The reachable states are
either in D, or they appear in (F;U) for some EU-pair (E;U) in 0.
Take an EU-pair (E;U) in 6. Besides (U, A) and g1, (E;U) contains, for each sub-
multiset m of E, a formula of the form ®¢, where G = (E \ m) & mY. Formula ®¢
involves states of G, which are either in E (hence already in @) or of the form ({x}UU, A)
for x € E, and states of the form (supp(F) U {g}, A) where F is a submultiset of G and
g € G\ F. In the end, using |Q|-|X|-|d|gool as an upper bound on the number of EU-pairs,
we have:

Q1 <2|Q[+ 1+ [Q| - 6]goor - 2] - (1 + |0]e + 2/l - |d]e)

Q////T\

number of state states states
EU-pairs (U,A) ({2} UU,A) (supp(F) U {g},A)

Hence Q7] < 1+ Q1 - (2 + || - 3lacor - [3le - (1 -+ 291)).
bounding the size of transition function: 1t is easy to see that [0%|e < max(|d]e,[d5[e)

Q

and [0%|u < max(|d]u, |65[y). The boolean size is more complex to overapproximate.
Intuitively, in the definition of (E;U), we can bound the number of the subformulas
Q(E\m)wmg by 2/°€ and each of them gives rise to a disjunction with at most |J|g - 2/°l¢
EU-pairs. From this we can see that the boolean size of 6¢ from states in @) is at most
16]Bool - (14]6] - (14 |0]g - 221%)). Those formulas also appear in the transitions from
states (U, A\) and (supp(F) U {g}, A) and states in multisets F' (in the definition of ®¢).

Finally we end up with [6°|gool < 4 - (14 [Q|) - |6|goot - [5]g> - 22I°l€.
To summarise our results:

» Theorem 11. Given an AEUPTA A = (Q, @i, 0,w), we can build an AEUPTA A°
recognising the complement of L(A), with size at most (1 + Q|- (2 + |2 - |0]Boor - (1 + 0]+
2‘6‘E : |6|E))a4 ' (1 + ‘Ql) : ‘6|BOO/ : |6|E3 : 4‘6“;7 |5‘E + 17ma'X(|6|U> 1)7 |W| + 1)

3.4 Alternation removal (a.k.a. simulation)

Building a non-alternating automaton equivalent to a given alternating automaton is an

important construction, e.g. in order to perform projection, or for algorithmic purposes.

In this section, we present an alternation-removal (a.k.a. simulation) algorithm, based on

ideas developed in [30, 33| for MSO-automata. For the rest of this section, we fix an AEUPTA

A = (Q, ¢init, 9, w). The procedure can be decomposed into four steps:

1. pair each state of the automaton with its immediate ancestor in order to keep enough
information in the infinite branches to decide whether they are accepting or not.
This provides us with an AEUPTA P using EU-constraints over @ x Q;

2. build an (alternating) powerset automaton involving a new satisfaction relation |= and
a new acceptance condition (which is not a parity condition). It gives an AEUTA Q using
EU-constraints over 29*% (and based on |=);

3. remove the conjunctions in the transition function of Q to get a non-alternating automaton.
It gives an EUTA R using EU-constraints over 2¢*@ and relation |=;

4. adapt the acceptance condition to obtain an EUPTA N, using EU-constraints over Q,, x
2@%Q (where Q,, is a new set of states introduced to encode the acceptance condition),
and relation E.

We briefly describe each step below, and refer to [17, Section 4.4] for more details.

28:11

CONCUR 2025

28:12

Arbitrary-Arity Tree Automata for QCTL

Keeping track of ancestor states. For any state ¢’ € Q, we define the mapping ¢, : Q — Q?
as ¢4 (q) = (¢, q), and extend it to (multi-)sets of states, EU-pairs and EU-constraints in the
natural way. We then define the AEUPTA P = (Q2, (qinit; ¢init), V> w') with v((¢,¢'),0) =
¢q(0(¢',0)), and w'(q,¢") = w(¢'). Intuitively, state (¢,¢’) in P corresponds to state ¢’ in A,
with the extra information that this state originates from state q. Notice that both v and w’
only depend only on the second state of the pair (¢, q¢"). We have:

» Proposition 12. The languages of A and P are equal. The size of P is (|Q|*, 8] soor |0,
10]us |w]).-

» Example 13. Let X = {a,b}. Consider an AEUPTA A with an initial state g, with
w(qinit) = 1, and a state ¢; with w(q1) = 0, and §(gini, b) = (g1 — 1; &) and

3(Ginits @) = (Ginie — 1;9) AN{q1 = 1;9) 6(q1,a) = 6(q1,b) = (qinit — 1; D).

Notice that this automaton only accepts trees with a single branch (i.e., words). It is
easily seen that the word a®-b“ is accepted, while a® is not. If we perform a simple
powerset construction, the sequence of sets of states along the (unique) computation for
both words is {qinit} - {@init, ¢1}¥. This does not keep enough information to decide if
a run is accepting. Now, if each state is paired with its ancestor (arbitrarily pairing
the initial state with itself), then the sequence of sets of pairs of states visited along
a - b is {(qinits Ginit)} - {(@inits Qinit)» (@init> 1)} - {(q1, Qinit)s (Qinie» 1) }*, while along a® it
is {(Qinits Qinit) } - {(Qinit Qinit)s (Qinits 1)} - {(@inits Qinit), (@init, 1), (q1,q1) }*. In the latter
sequence, we can detect the presence of an infinite branch looping in g;,;+; we will introduce
in the next section a new acceptance condition to capture this fact. J

Building the powerset automaton. In this step, we build an (still alternating) automaton

whose states are sets of states of P (i.e. elements of K = 2Q2) with the following changes:
The satisfaction relation for EU-pairs is modified: instead of considering markings by K,
we will consider markings by Q? (associating sets of Q-pairs with every successor of a
node) from which we will extract submarkings viewed as unitary markings by K in order
to satisfy some EU-pair. This is a natural change but it induces a new satisfaction relation
denoted |=. The notion of execution tree is then modified accordingly, in particular the
execution trees are then labeled by sets of pairs in Q2.
The acceptance condition 2, is not a parity condition any more but is defined explicitly.

Formally we define the powerset AEUTA Q = (K, {(qnit, ¢init) }, B, Qw) by letting:
K =22 contains all the sets of states of P, hence all the sets of pairs of states of A;
B{(g,a) | 1 <i<k},0) = Ni<ici v (05 4}), 0), where v°((¢i, ¢}), o) is obtained from
~v((gi,q}), o) by replacing each pair of states (g, ¢’) by the singleton {(g,¢’)}. For the time
being, this powerset automaton still is alternating.
the condition 2, works as follows: given a an infinite sequence a = (;);en of subsets
of pairs in Q* s.t. a; = {(¢s;,q; ;) | 0 < j < z} for each i € N, a sequence (r;)o<i<k of
states in @ is said to appear in « if for each i € N; there exists an index 0 < j < z; such
that (r;_1,7;) = (Ch,j,qé,j) The sequence « is accepting if all the sequences (r;)o<i<k
that appear in « satisfy the parity condition w of A (such a sequence « corresponds to
the labelling of an infinite branch in the execution trees associated with relation |E).

» Proposition 14. A X-labelled D-tree T is accepted by P if, and only if, it is accepted by
the A-powerset AEUTA Q. The size of Q is (219, |Q|* - |6|8oos; |6]&, |5]us —)-

F. Laroussinie and N. Markey 28:13

Removing conjunctions. We now remove conjunctions from the transition function g of Q.
As a first step, we turn each formula S(P,0) in disjunctive normal form. We can bound the
number of different EU-pairs appearing in any given S(P, o) by |Q] - |d|gooi: indeed, while
it is built as a conjunction of up to Q? transition formulas, any two pairs (¢’,¢) and (¢”, q)
give rise to the same EU-pairs. It follows that S(P, o) can be written as the disjunction of at
most 2/Ql1%leeel conjunctions of at most |Q| - [0]geol EU-pairs.

We now turn those conjunctions into disjunctions. We proceed inductively, by replacing
any conjunction (Ey; U;)A({Ey; Us) of two EU-pairs over 2¢9* @ with an “equivalent” disjunction
of EU-pairs over 29%€,

Write mq, ni, mo and ny for the sizes of Eq, Uy, F5 and U, respectively. The disjunction
we build ranges over the possible ways the “existential” and “universal” parts of the EU-pairs
overlap (see Fig. 4). For each combination, we write an EU-pair whose existential part
contains the “existential” overlaps and the two “mixed” overlaps, and whose universal part
handles the “universal” overlap.

The disjunction of EU-pairs can then be written as follows:

' | '

B) —r—
(U,]i[Eo ; W T)
existential universal
overlap overlap

Figure 4 Representation of the overlaps in an execution tree when satisfying a conjunction of
two EU-constraints (E1;Ur) and (Eg; Us).

C((E1;Ur), (E2; Us)) = \/ \/ \/

J1CE1,JoCEy 7 permutation gy: Eq\J;—Us
[J1]=]J2] of [1;]J1]] go: Eo\Joa— U

vz 1<k <|nL[}
EI:E'J {etugi(e}) | 1<k <ny— ||} ;U =U1@ U,
foa(et)Ue |1 <k <ny—|J}

where we use the notations

Ji={k [1<k <o} Jo={4k |1 <k <o}
El\J1:{€i|1§k§Tl1*O} EQ\J2:{€%|1§k§n27O}
Uy ®@Us = {’U,l U usg | up € Uy, ug € Ug}
Note that the sizes of existential and universal parts of any EU-pair in C'({(Ey;U;),
(E9; Us)) are bounded by ny + ng and my - mg, respectively. Note that when U; is empty,

the only possible overlaps are between E; and (Fs;Us) (and we have Jo = F5 and Uy @ U is
also empty). The correctness of the construction is stated as follows (for a proof, see [17]):

» Lemma 15. Let S and S’ be two finite sets, and (E1;Ur) A (Eq; Us) be a conjunction of
two EU-pairs on 25. For any unitary marking v of S' by 2%, it holds v |= (E1;Uy) A (Ey;
Us) if, and only if, v |E C((E1; Ur), (Fa; Us)).

CONCUR 2025

28:14

Arbitrary-Arity Tree Automata for QCTL

Let R = (29X {(qinit, Ginit) }> ¢, Q) be an A-powerset AEUTA obtained from Q by replacing
all conjunctions (E7;Uy) A (Ea; Us) (in no specific order). We can prove its equivalence with
Q and since R is non-alternating, it only has to visit each node of the input tree in one of
the states given by the transition function, so that both notions of execution trees (with £
and |E) coincide.

We now evaluate the size of R = (29X {(qinit, Ginit) }, ¢,). In order to evaluate the
size of the transition function ¢ of R, we first focus on the size of C'((E1;Ui), (E2;Us)).
For this, we define the size of an EU-pair (F;U) as the pair (|E|,|U]). In the following, a set
of EU-pairs is said to have a size at most (n, m) if all its EU-pairs have existential parts of
size at most n and universal parts of size at most m.

Consider a conjunction (E1;Up) A (E2; Us) of two EU-pairs of size (n1,m1) and (ng, ma),
respectively, and assume w.l.o.g. that n; < ny. Then the formula C((E1;Uy), (E2;Us)) is a
disjunction of N EU-pairs of size at most (n; + ng, my - msy), with:

ny
ni no ny— n2— ni n n
N < Z<l>'(l>.“'mzll'm12l < (np+1)™-myt-mp?

=0

Then we can prove that any conjunction of k¥ EU-pairs of sizes at most (n,m) can be
turned into disjunctions of at most ((k — 1)! - (n 4+ 1)*=1 - m¥")" EU-pairs, cach of size
at most (k- n,m¥) (by induction over k).

We now evaluate the size of the transition function (: as explained at the beginning
of the present section, (is obtained from the transition function 8 of Q by first putting
each formula (P, o) into disjunctive normal form, as the disjunction of at most 21Q119]gool
conjunctions of at most |Q| - |0|gool EU-pairs, with EU-pairs of size at most (|0|g,|d|u)-

Applying our formula above, we get a disjunctive expression for (P, o) involving at most
§
2/ (1] - [8lgoot — 1) - ([3le +1)/@Fews1 . ([g],)(@151w)*) °F

EU-pairs of size at most (|Q| - |6|ool - |0]g, (|6]u)!@!191ee0). In the end:

» Proposition 16. The languages of the original AEUPTA A and of the resulting EUTA R
are the same. The size of R is at most (21Q1° 2% . (& = 1)!- (|6]g + 1)%=1 - (|6])¥)lole, & -
161, (16]u)®, —) where & = |Q| - |6 goor (we omit the size of the acceptance condition of R as
it is not a parity condition).

Adapting the acceptance condition. It remains to turn the acceptance condition of R
into a parity condition. The transformation is the same as in [33]: we first build a non-
deterministic parity word automaton W accepting all words on the alphabet 29* that
contain an infinite sequence of states (r;);en of A (in the sense of the definition of Q)
not satisfying the parity condition of A; we then turn it into a deterministic parity word
automaton, take its complement, and run it in parallel with R. The detailed construction is
given in [17, Section 4.4.4]. Summarising our results:

» Theorem 17. Given an AEUPTA A = (Q, qins, 0,w), we can build an EUPTA N recognising

the same language. The size of N' can be bounded by (21+1QF+2(1Q1|w[+1)log(IQ|-|w[+1) 9% .
2

(R =D (10]e+1)%1 - (16]0)™)0le, &+ 18], [6]0%, 2(|Q) - [w] + 1)), where & = |Q| - 6] goor

F. Laroussinie and N. Markey

4 Algorithms for AEUTAs

Given some AEUTA A, we are interested in two decision procedures: deciding whether a
regular tree belongs to £(A) and deciding whether £(A) = &. Both consist in building a
parity game and deciding whether Player 0 has a winning strategy and this can be done 4 in
time O(n¢) where n is the number of states of the game, and d is the number of priorities [20].

Let K = (V, E,{) be a Kripke structure. Deciding whether Tx € £(A) is equivalent to
deciding whether Player 0 has a winning strategy in the parity game G4 x defined after
Prop. 8, where the number of states is in O(|V|] - (|Q| - |d|gool + |Q||V‘)) and the number of
priorities is the same as A. Then we have:

» Theorem 18. Given a finite Kripke structure K = (V, E,{) and an AEUPTA A = (Q, qo,
d,w), whether Ti belongs to L(A) can be decided in time O((|V] - (|Q] - |9|Booi + \Q|W|))|”|).

Emptiness checking is performed as for classical tree automata: we consider a non-
alternating automaton A, and transform it into a parity game G4 such that Player 0 has
winning strategy in G 4 if, and only if, L(A) # @. Tt follows:

» Theorem 19. Let A = (Q,qo,0,w) be an EUPTA. Checking emptiness of L(A) can be
performed in time O((|Q] - (1 + 6] goor - |Z]))1¥1).

Combining the previous result with the simulation theorem, we get:

» Corollary 20. Let A = (Q, qo,d,w) be an AEUPTA. Checking emptiness of L(A) can be
performed mn time 2O(|Q|3'|w|'(10g|Q|+‘5‘BDO/2'|6|E'10g‘5‘E)+|Q|'Iw"10g|2‘)'

5 Application to QCTL and MSO

QCTL extends the temporal logic CTL with quantifications over atomic propositions: subfor-
mulas of the form Jp. ¥, where p is an atomic proposition, are added to the syntax of CTL
(in addition to the usual EX, AX EU and AU modalities, and abbreviations like EF,
EG, AF and AG). QCTL formulas are interpreted over nodes of 2AP-labelled infinite trees.
Informally a node n satisfies dp. ¢ if, and only if, there exists a labelling of the subtree
rooted at n for which 1 holds true. This is the so-called tree semantics ®. Given a set
P=A{p1,...,pm} C AP, we write 3P. ¢ for Ip; ...3p,. ¢. Propositional quantification can
also be added on top of CTL", yielding the logic QCTL". We also introduce the sublogics
Q*CTL with k& > 0, such that Q°CTL is CTL and Q*TICTL contains formulas that can be
written as ¥[3Py. ¢1,...,3P,. ¢,] where ¢ is a CTL formula with placeholders, P; C AP,
and ¢; belongs to QCTL for any 1 < i < n. The model-checking and satisfiability problems
for QXCTL are known to be k-EXPTIME-complete (resp. (k + 1)-EXPTIME-complete) [18].
Regarding expressiveness, QCTL (and QCTL") is as expressive as MSO over infinite trees,
hence it is strictly more expressive than CTL (and CTL").

As we will now explain, our AEUPTA is a type of automata perfectly suited for QCTL
(and QCTL"): both formalisms have exactly the same expressiveness, and the automata can
be used to derive optimal decision procedures for satisfiability and model-checking.

4 Better complexity results have been obtained recently for parity games [5], but they would make
complexity results even harder to read, without significantly improving them.

5 1t is worth noticing that there exist several semantics for QCTL in the literature [14, 12, 18], with
different algorithmic and expressiveness properties.

28:15

CONCUR 2025

28:16

Arbitrary-Arity Tree Automata for QCTL

From QCTL or QCTL" to AEUPTA. We write k-exp(n) to denote the family of sets of
functions of one variable n defined inductively as follows: 0-exp(n) is the set of functions
bounded by a polynomial in n, and (k + 1)-exp(n) contains all functions f such that f € O(29)
with g € k-exp(n). We have:

» Theorem 21. Given a QCTL (resp. QkCTL*) formula ¢ over AP with k > 0, we can
construct an AEUPTA Ay over 24P accepting exactly the trees satisfying ¢. The automaton Ay
has size (k-exp(|¢|), k-exp(|9]), (k — 1)-exp(|¢]), 1, (k — 1)-exp(|@])) (resp. ((k+ 1)-exp(|¢]),
(k + 1)-exp(|9]), k-exp(|9]), 1, k-exp(|#])))-

We just sketch the main ingredients of the construction for QCTL. First note that any
CTL formula ¢ can be turned into an {{J, ¢ }-automata [31]; this construction can easily
be adapted to our EU-constraints: ¢g can be replaced with (g +— 1;{¢7}) and Og can be
replaced with (@; {q}). We then get an AEUPTA A, whose size is in (O(|¢]), O(|¢|),1,1,2).

Now consider a Q'CTL formula ¢; it can be seen as ¥[3Py. 11, ..., IPy. ty,] where 1
is a CTL formula and subformulas v; belong to CTL. We assume w.l.o.g. that negations
occur only in front of atomic propositions or F-quantifiers. From the remark above, we can
build an AEUPTA A; for each v; with 1 <7 < m. We handle quantification over P; in the
logic using the projection operation on the automata; this first requires to transform A4;
into an non-alternating automaton N; using alternation removal. The size of the resulting
automaton (after projection) is in (1-exp(|1:]), 1-exp(|s|), O(|¥:]?), 1, O(|1i])).

Negations in front of 3P;. ¢; in the logic are handled with the complementation operation
on AEUPTA. It must be noticed that while complementation induces an exponential blow-up
in general, this blow-up does not add up with the exponential blow-up for alternation removal.
The size of the resulting automaton still is in (1-exp(|¢;]), 1-exp(|1i]), O(|i]?), 1, O(J¢i])),
Now we can combine all these automata Asp, 4, (or A-35p, »,) with the automaton for
the CTL formula v, and get an alternating automaton A, whose size is the sum of
|Ay| and the sizes of automata |Asgp, ,| (or |A-3p,4,]). In the end, the size of Ay is
in (1-exp(|6]), 1-exp(16]), O(I6[2), 1, O(14])).

The same construction can be applied to any formula ¢ in Q*'CTL. By induc-
tion, we get automata of size (k-exp(|@|),k-exp(|®]), (k — 1)-exp(|9|), 1, (k — 1)-exp(|®]))
for subformulas ;, and end up with an automaton A4 for ¢ whose size is in

((k + 1)-exp(|9]), (k + 1)-exp(|¢]), k-exp(|¢]), 1, k-exp(|4]))-

And back. From an EUPTA A, we can build a QCTL formula ® 4 whose size is polynomial
in the size of A and ¥, and such that the models of ® 4 are precisely the trees accepted by A.
The formula ® 4 contains one alternation of quantifiers: it starts wit an existential one, which
we use to associate a state of A with each node of the input tree (as A is non-alternating,
the input tree can be used as accepting tree) and universal quantification is used to ensure
the parity condition (see Section 6.3 in [17]). This provides us with an effective translation of
any formula ¢ € QCTL in Q?CTL, with a (k + 1)-exp(|¢|) blow-up in the size of the formula.

Optimal decision procedures. Civen a QCTL (res. QCTL") formula ¢, one can use the auto-
maton Ay described above in order to decide satisfiability or model-checking. In both cases,
the algorithms presented in Section 4 based on the parity games provide optimal algorithms
for QCTL and QCTL". Thus we get the following results (the hardness part is proven in [18]):

» Proposition 22. Satisfiability for QCTL (resp. QCTL") can be solved in (k+1)-EXPTIME
(resp. (k + 2)-EXPTIME) by using the AEUPTA construction and the emptiness checking.
Model-checking for Q“CTL (resp. @CTL") can be done in k-EXPTIME (resp. (k-+1)-EXPTIME)
by using the AEUPTA construction and the membership checking.

F. Laroussinie and N. Markey

Application to MSO. We briefly review Monadic Second-Order Logic (MSO) over finite or
infinite 2AP-labelled trees [25]. MSO is built with first-order variables for vertices (denoted
with lowercase letters z,y, ...), and monadic second-order variables for sets of vertices (de-
noted with uppercase letters X,Y,...). Atomic formulas are of the form = = y, Edge(z, y)
(to represent the immediate successor relation), x < y (the transitive closure of Edge)
x € X, and P,(x) for a € AP. General MSO formulas are constructed from atomic for-
mulas using the boolean connectives and the first- and second-order quantifiers 3' and 32.
We write ¢(x1, ..., Tpn, X1, ..., Xi) to indicate that z1,...,z, and X, ..., X may appear free
in ¢. A closed formula contains no free variables. We use the standard semantics for MSO
and we write T, 81, ..., S, S1, ..o, Sk E @(21, ..., Ty X1, ..., Xi) to indicate that ¢ holds on T
when variables x; to x, in ¢ are replaced with s; to s,, and variables X7 to X} are replaced
with S to Sk.

In [18], it is proved that MSO and QCTL are equally expressive over trees. This could
be used to define translations between MSO and EU-automata, but we can get more ef-
ficient constructions as described below. Actually, for any (non-closed) MSO formula
é(z1, ey Tny X1, ...y X)), we build an automaton Ay such that, for any nodes s; to s, and
any sets Sy to Sk, it holds T, s1, ..., $p, S1, ..., Sk = o(x1, ..., Tp, X1, ..o, Xi) if, and only if|
the 2APU{1, - @n . X100 Xkt Jahelled tree T, obtained from 7 by labelling any node ¢ with x;
if t = s;, and with X if ¢ € S}, belongs to L(Ag). Given a closed formula & € MSO,
a 2AP_labelled tree T belongs to L(Asg) if, and only if, 7 = ®.

Counsider a non-closed formula ¢(x1, ..., x,, X1, ..., X3) where the negation can only be
followed by an existential quantifier or a atomic formula. The automaton A, is built
inductively on the structure of ¢. Boolean connectives A and V are handled with the
corresponding operations of AEUTA. For quantifications 3'z. ¢ or 32X. 1), we use projection
(after having removed alternation), and check that propositions involved in first-order
quantification labels exactly one node of the tree.

Consider a formula in negated normal form (where negations occur only before atomic
formula), the complexity of the automata construction depends on the number of (first-order
or second-order) quantifier alternations in the formula:

» Theorem 23. Given a closed MSO formula ¢ over AP with at most k quantifier alternations
(with k > 0), we can construct a AEUPTA Ay over 24P accepting exactly the trees satisfying ¢.
The automaton Ay has size ((k + 1)-exp(|¢|), (k + 1)-exp(|4|), k-exp(|¢|), 1, k-exp(|¢])).

This allows us to translate any MSO formula with & (first- and second-order) quantifier
alternations into a formula with at most four quantifier alternations (and at most one second-
order-quantifier alternation) and size in (k + 2)-exp(|¢|). Note also that Theorem 23 also
provides us with decision procedures in (k + 1)-EXPTIME for model-checking (and (k + 2)-
EXPTIME for satisfiability).

6 Conclusion

We have introduced a new class of tree automata (AEUPTA) for trees of arbitrary branching
degrees. We showed that these automata have exactly the same expressive power as the
temporal logics QCTL and QCTL", and as MSO.

In order to prove those results, we have developed algorithms for manipulating our
AEUPTA, and have carefully studied their complexities. This has allowed us to obtain decision
procedures for satisfiability and model checking for QCTL" with optimal complexities. It also
allowed us to obtain an effective translation from QCTL to Q>CTL, and similarly, from MSO
to its fragment with only one second-order-quantifier alternation.

28:17

CONCUR 2025

28:18

Arbitrary-Arity Tree Automata for QCTL

—— References

1

10

11

12

13

14

Orna Bernholtz and Orna Grumberg. Branching time temporal logic and AmorpPHO0us tree
automata. In Eike Best, editor, Proceedings of the 4th International Conference on Concurrency
Theory (CONCUR’93), volume 715 of Lecture Notes in Computer Science, pages 262-277.
Springer-Verlag, 1993.

Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking (extended abstract). In David L. Dill, editor, Proceedings
of the 6th International Conference on Computer Aided Verification (CAV’94), volume 818
of Lecture Notes in Computer Science, pages 142—155. Springer-Verlag, 1994. doi:10.1007/
3-540-58179-0_50.

Mikotaj Bojariczyk. Tree-walking automata. In Carlos Martin-Vide, Friedrich Otto, and
Henning Fernau, editors, Revised Papers of the 2nd International Conference on Language and
Automata Theory and Applications (LATA’08), volume 5196 of Lecture Notes in Computer
Science, pages 1-2. Springer-Verlag, 2008. doi:10.1007/978-3-540-88282-4_1.

Julius R. Biichi. On a decision method in restricted second order arithmetic. In Ernest Nagel,
Patrick Suppes, and Alfred Tarski, editors, Proceedings of the 1960 International Congress on
Logic, Methodology and Philosophy of Science (LMPS’60), pages 1-11. Stanford University
Press, 1962.

Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami and Pierre McKenzie, editors,
Proceedings of the 49th Annual ACM Symposium on the Theory of Computing (STOC’17),
pages 252—-263. ACM Press, 2017. doi:10.1145/3055399.305540.

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Loding, Sophie Tison, and Marc Tommasi. Tree automata techniques and applications.
Technical Report hal-03367725, H.A.L., 2008.

Arnaud Da Costa, Francois Laroussinie, and Nicolas Markey. Quantified CTL: Express-
iveness and model checking. In Maciej Koutny and Irek Ulidowski, editors, Proceed-
ings of the 23rd International Conference on Concurrency Theory (CONCUR’12), volume
7454 of Lecture Notes in Computer Science, pages 177—-192. Springer-Verlag, 2012. doi:
10.1007/978-3-642-32940-1_14.

Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 98(1):21-51, 1961. doi:10.2307/1993511.

E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy. In
Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (FOCS’91),
pages 368-377. IEEE Comp. Soc. Press, 1991. doi:10.1109/SFCS.1991.185392.

E. Allen Emerson and A. Prasad Sistla. Deciding full branching time logic. Information and
Control, 61(3):175-201, 1984. doi:10.1016/S0019-9958(84)80047-9.

Tim French. Decidability of quantified propositional branching time logics. In Markus
Stumptner, Dan Corbett, and Mike Brooks, editors, Proceedings of the 14th Australian Joint
Conference on Artificial Intelligence (AJCAI’01), volume 2256 of Lecture Notes in Computer
Science, pages 165—176. Springer-Verlag, 2001. doi:10.1007/3-540-45656-2_15.

Tim French. Bisimulation Quantifiers for Modal Logics. PhD thesis, School of Computer
Science & Software Engineering, University of Western Australia, 2006.

David Janin and Igor Walukiewicz. Automata for the modal p-calculus and related results. In
Jirif Wiedermann and Petr Héjek, editors, Proceedings of the 20th International Symposium on
Mathematical Foundations of Computer Science (MFCS’95), volume 969 of Lecture Notes in
Computer Science, pages 552-562. Springer-Verlag, 1995. doi:10.1007/3-540-60246-1_160.
Orna Kupferman. Augmenting branching temporal logics with existential quantification over
atomic propositions. In Pierre Wolper, editor, Proceedings of the 7th International Conference
on Computer Aided Verification (CAV’95), volume 939 of Lecture Notes in Computer Science,
pages 325-338. Springer-Verlag, 1995. doi:10.1007/3-540-60045-0_60.

https://doi.org/10.1007/3-540-58179-0_50
https://doi.org/10.1007/3-540-58179-0_50
https://doi.org/10.1007/978-3-540-88282-4_1
https://doi.org/10.1145/3055399.305540
https://doi.org/10.1007/978-3-642-32940-1_14
https://doi.org/10.1007/978-3-642-32940-1_14
https://doi.org/10.2307/1993511
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1016/S0019-9958(84)80047-9
https://doi.org/10.1007/3-540-45656-2_15
https://doi.org/10.1007/3-540-60246-1_160
https://doi.org/10.1007/3-540-60045-0_60

F. Laroussinie and N. Markey

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Orna Kupferman, Parthasarathy Madhusudan, P. S. Thiagarajan, and Moshe Y. Vardi. Open
systems in reactive environments: Control and synthesis. In Catuscia Palamidessi, editor,
Proceedings of the 11th International Conference on Concurrency Theory (CONCUR’00),
volume 1877 of Lecture Notes in Computer Science, pages 92—-107. Springer-Verlag, 2000.
d0i:10.1007/3-540-44618-4_9.

Orna Kupferman and Moshe Y. Vardi. Il N ¥y = AFMC. In Jos C. M. Baeten, Jan Karel
Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Proceedings of the 30th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’03), volume 2719 of
Lecture Notes in Computer Science, pages 697-713. Springer-Verlag, 2003.

Frangois Laroussinie and Nicolas Markey. Arbitrary-arity tree automata and QCTL, 2024.
doi:10.48550/arXiv.2410.18799.

Francois Laroussinie and Nicolas Markey. Quantified CTL: expressiveness and complexity.
Logical Methods in Computer Science, 10(4), 2014. doi:10.2168/LMCS-10(4:17)2014.
Francois Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Temporal logic with for-
gettable past. In Proceedings of the 17th Annual Symposium on Logic in Computer Science
(LICS’02), pages 383-392. IEEE Comp. Soc. Press, 2002. doi:10.1109/LICS.2002.1029846.
Christof Léding. Automata on infinite trees. In Jean-Eric Pin, editor, Handbook of automata
theory, volume 1, chapter 8, pages 265-302. EMS Press, 2021. doi:10.4171/AUTOMATA-1/8.
Robert McNaughton. Testing and generating infinite sequences by a finite automaton. In-
formation and Control, 9(6):521-530, 1966. doi:10.1016/S0019-9958(66)80013-X.

David E. Muller and Paul E. Schupp. Alternating automata on infinite objects, determinacy
and Rabin’s theorem. In Maurice Nivat and Dominique Perrin, editors, Automata on Infinite
Words — Ecole de Printemps d’Informatique Théorique (EPIT’84), volume 192 of Lecture Notes
in Computer Science, pages 99—107. Springer-Verlag, 1985. doi:10.1007/3-540-15641-0_27.
Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1-35, 1969.

A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for
Biichi automata, with applications to temporal logic. In Wilfried Brauer, editor, Proceedings
of the 12th International Colloguium on Automata, Languages and Programming (ICALP’85),
volume 194 of Lecture Notes in Computer Science, pages 465-474. Springer-Verlag, 1985.
Wolfgang Thomas. Languages, automata and logics. In Grzegorz Rozenberg and Arto Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 389-455. Springer-Verlag, 1997.
Boris A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Siberskii
Matematicheskii Zhurnal, 3(1):103-131, 1962.

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the 1st Annual Symposium on Logic in Computer Science
(LICS’86), pages 332-344. IEEE Comp. Soc. Press, 1986.

Moshe Y. Vardi and Pierre Wolper. Automata theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences, 32(2):183—-221, 1986. doi:10.1016/0022-0000(86)
90026-7.

Igor Walukiewicz. Monadic second order logic on tree-like structures. In Claude Puech and
Ridiger Reischuk, editors, Proceedings of the 13th Symposium on Theoretical Aspects of
Computer Science (STACS’96), volume 1046 of Lecture Notes in Computer Science, pages
401-413. Springer-Verlag, 1996. doi:10.1007/3-540-60922-9_33.

Igor Walukiewicz. Monadic second order logic on tree-like structures. Theoretical Computer
Science, 275(1-2):311-346, 2002. doi:10.1016/S0304-3975(01)00185-2.

Thomas Wilke. CTL™ is exponentially more succinct than CTL. In C. Pandu Rangan,
Venkatesh Raman, and R. Ramanujam, editors, Proceedings of the 19th Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS’99), volume
1738 of Lecture Notes in Computer Science, pages 110-121. Springer-Verlag, 1999. doi:
10.1007/3-540-46691-6_9.

28:19

CONCUR 2025

https://doi.org/10.1007/3-540-44618-4_9
https://doi.org/10.48550/arXiv.2410.18799
https://doi.org/10.2168/LMCS-10(4:17)2014
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.4171/AUTOMATA-1/8
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1007/3-540-15641-0_27
https://doi.org/10.1016/0022-0000(86)90026-7
https://doi.org/10.1016/0022-0000(86)90026-7
https://doi.org/10.1007/3-540-60922-9_33
https://doi.org/10.1016/S0304-3975(01)00185-2
https://doi.org/10.1007/3-540-46691-6_9
https://doi.org/10.1007/3-540-46691-6_9

28:20 Arbitrary-Arity Tree Automata for QCTL

32 Thomas Wilke. Alternating tree automata, parity games, and modal p-calculus. Bulletin of
the Belgian Mathematical Society — Simon Stevin, 8(2):359-391, 2001.

33 Fabio Zanasi. Expressiveness of monadic second-order logics on infinite trees of arbitrary
branching degrees. Master’s thesis, Amsterdam University, the Netherlands, 2012.

	1 Introduction
	2 Definitions
	2.1 Preliminary definitions
	2.2 Automata over trees of arbitrary arity

	3 Operations on EUTAs
	3.1 Union, intersection
	3.2 Projection
	3.3 Complementation
	3.4 Alternation removal (a.k.a. simulation)

	4 Algorithms for EUTAs
	5 Application to QCTL and MSO
	6 Conclusion

