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—— Abstract

We provide a generic decision procedure for energy games with energy-bounded attacker and

reachability objective, moving beyond vector-valued energies and vector-addition updates. All we
demand is that energies form well-founded bounded join-semilattices, and that energy updates
have an upward-closed domain and can be “undone” through a Galois-connected function. We
instantiate these Galois energy games to common energy games, declining energy games, multi-
weighted reachability games, coverability on vector addition systems with states, and shortest path
problems, supported by an Isabelle-formalization and two implementations. For the instantiations,
our simple algorithm is polynomial w.r.t. game graph size and exponential w.r.t. dimension.
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1 Introduction

Most problems of how to reach a goal at minimal cost can be expressed as energy games [10, 9].
In energy games, players try to achieve objectives, but fail if they run out of resources that
they can gain or lose on the way. But strangely, existing literature does not quite explain
how to solve the following kind of multi-weighted energy game:

» Example 1. The energy game of Figure la models the situation of a researcher, who hosts
a coauthor at his office and wants to energize her with ten shots of espresso. For this, he
leaves his Office for the CoffeeMaker and brews some Shots (bounded by the number of Cups
he carries). Upon returning to the Office, the shots can be transformed into energization E.
The return usually takes two units of time T. But there is a quicker way, passing by the office
of the DepartmentHead. Unfortunately, the department head will either cost our host some
time by chatting or help herself to one of the filled coffee cups. (Which of the two happens
is not under his control.) Depending on the number of cups, he has to take several rounds
until energization E reaches level 10 and the game can be won by moving to Energized.

Assuming that we start with no energization and shots (E = Shots = 0), but with
a budget of cups and time, how much of the two does the host need to reach his ob-
jective? There are several answers, summarized by the Pareto front of cups and time
{(1,20), (2,10), (3,6), (4,4), (5,2), (10,1)}, which is drawn in Figure 1b.
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(a) Game graph. (b) Minimal cost of time/cups.

Figure 1 Espresso energy game of Example 1.

The strategy of the host depends on the resources: If there is only one cup, then he
should never pass by the department head, where it might be lost. So, he will cycle through
Office = CoffeeMaker yros—mintShoe 1.0, ¢ htfeeMaker > Office »—*15 Office... until
the espressos have been served after at least 10 - 2T. If the host brings 10 or more cups, he
can fill them all and safely take the quicker route. There might be a delay at the head’s office
or it might take a second round, but 1T will suffice. For the scenarios in-between, things
become more involved ...would it not be nice to have an algorithm to find the minimal
budgets there?

Energy games are often studied in light of their closeness to mean-payoff games and (games
on) vector addition systems with states [2, 9, 10]. They can model how different resources
may interact with each other, for example, in a trade-off between one resource gained
(energization) and another lost (espresso shots). Energy updates are usually understood as
vector addition. But vector addition is too restricted to capture Example 1, where the Cups
component bounds the Shots component!

A recent article by Bisping on process equivalence games [3] introduces declining energy
games, which allow resources to constrain one-another. But these games prohibit increasing
updates! Another recent article by Brihaye and Goeminne [8] formally studies decision
procedures and complexity bounds for multi-weighted reachability games, which roughly are
the intersection of declining and standard energy games, that is, even more restricted.

With this work, we show that we can have all this cake and eat it: Positive as well
as negative updates (even multiplicative ones), components bounding each other, and a
formalized solution. All we need is that energy updates can be undone through Galois
connections, a weak form of inversion on monotonic functions. Other than that, we demand
little of the precise objects used as energies, which makes our results quite versatile.

Contributions.
Section 2 introduces Galois energy games as a generalization of existing energy game
models with an inductive characterization of winning budgets.
Section 3 provides a simple fized-point algorithm to compute winning budgets of Galois
energy games and proves its correctness — formalized in Isabelle/HOL.
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We examine how other energy game models and quantitative reachability problems
can be understood as instances of our result in Section 4 and discuss two prototype
implementations.

We give precise parametric upper bounds for the complexity of the algorithm and its

instantiations in Section 5: polynomial in game graph size, exponential in dimensionality.
In Section 6, we discuss how other scenarios and winning conditions could be addressed.

2 Energy Games

Energy games are zero-sum two-player games with perfect information. They are played on
directed graphs labeled by energy update functions. Energies represent resources such as time
or espresso shots, often modeled as vectors. In our quest for genericity, we model energies
as arbitrary partially ordered sets, where each non-empty subset has at least one minimal
element and suprema of finite subsets exist, i.e. well-founded bounded join-semilattices. The
energy updates describe how each move across an edge affects the current energy, altering
the resources as players navigate the game.

2.1 Generic Energy Games

We introduce energy games as generically as possible. For this, we first fix a set of energies £
and assume (€, <) to be a well-founded bounded join-semilattice. Further, we assume (&, <)
to be computable, more precisely we assume < to be a computable relation and mapping
two energies to their supremum to be a computable function. Then, we can define energy
games played on directed graphs labeled by updates.

» Definition 2 (Energy game). An energy game G = (G, G,, ) over (€,<) consists of

a set of positions G, partitioned into attacker positions G, € G and defender positions

Gq:=G\G,, and

a partial function > : (G x G) — (€ — &) mapping edges to partial energy functions.
For g,q' € G we write g »» ¢’ instead of > (g,9") = u and call u an update in G. The game
with initial position gg € G and initial energy e € € is denoted as G[go, eo].

» Example 3. Formally, Definition 2 does not permit the two edges between DepartmentHead
and Office in Example 1. However, this can be fixed by adding a node Chat such that
DepartmentHead >~ Chat »— Office. In the example, the researcher getting coffee is
the attacker, choosing at rectangular positions, while the environment is the defender at
elliptical positions. The resources (cups, time, shots, energization) can be represented as
four-dimensional natural vectors, making Example 1 an energy game over N* with the
component-wise order.

In an energy game, the players move one token from one position to the next according to
the edges, resulting in a play. At attacker positions, the attacker chooses (according to some
attacker strategy) and vice versa.

» Definition 4 (Play, strategy). Let G = (G, G,, ) be an energy game over (£,<). A play
in G is a possibly infinite walk p = gogi... € G* U G¥ in the underlying directed graph.

Let Gp € {Gq,Gq}. A strategy s: G*G, — G is a partial function mapping finite plays
to a next position such that s(go...gn) is some successor of g, if gn € Gy is not a deadlock. If
Gp = G, (resp. Gy = Gq) we call s an attacker (resp. defender) strategy. A play p = goga ...
is consistent with s if g; € Gp implies gi+1 = s(go...g;) for each i € N with i +1 < |p|.
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During a play, an initial energy is repeatedly updated according to the edges in the play.
This is defined as the energy level, which keeps track of the resources. The attacker wins a
play if and only if it ends in a deadlocked defender position before running out of energy, i.e.
without the energy level becoming undefined.

» Definition 5 (Energy level, winning a play). Let G = (G, G,,>>) be an energy game over
(£,<). The energy level of a play p = gog1 ... w.r.t. initial energy ey € £ is inductively
defined as EL(p,e,0) := eq and EL(p,eq,i + 1) := w(EL(p,eq,1)) where g; ¥ g;11 and
i+1<]p|

If the energy level becomes undefined or the play is infinite, the defender wins the play. If
the final energy level EL(p, eq, |p| — 1) of a finite play is defined and its last position g; is a
deadlock, then the defender wins the play if g; € G, and the attacker wins if g; € Gg4.

In other settings, infinite plays (where the energy level is always defined) are won by the
energy-bound player, i.e. our attacker [10, 15]. We will revisit this distinction in Section 6
as safety winning conditions. Now we define what it means to win a game w.r.t. a starting
position and an initial energy.

» Definition 6 (Winning strategy, winning a game). Let G = (G, G, ) be an energy game
over (€,<). For go € G and eg € £, an attacker winning strategy for G[go,eo] is an attacker
strategy ensuring the attacker to eventually win all consistent plays.

The attacker wins the game G[go, eo] if and only if such an attacker winning strategy exists.
The attacker winning budget of a position g € G is the set of energies sufficient for the attacker
to enforce a win, i.e. Win,(g9) = {e € £ | Is. s is an attacker winning strategy for G[g, e]}.

Defender winning strategies and budgets can be defined symmetrically to Definition 6.
However, it is sufficient to focus on the attacker’s objective, since energy games are determined
w.r.t. a starting position and initial energy.

» Lemma 7. Let G be an energy game over (£,<). For all positions g € G and energies e € £
either the defender or the attacker wins G[g,e]. Further, there exists an energy-positional
winning strategy, i.e. a winning strategy that depends only on the current position and energy
level.

Lemma 7 follows from the construction of a parity game, which is positionally determined.
For more details we refer to the appendix.

» Remark 8. The winning conditions in Definition 5 and 6 encode quantitative reachability
problems: In reachability games [9], the attacker aims to reach a fixed target set in a
(weighted) game graph. By treating defender deadlock positions as the target set, we
formulate (quantitative) reachability winning conditions.

When starting with a multi-weighted reachability game [8], i.e. a game (G,Gg,>)
weighted by vectors of naturals with a target set F' € G, this can easily be transformed to
an energy game: Remove outgoing edges of positions in G4 n F and add a loop to every
deadlock in G4\F. Further, add a deadlocked defender position with an ingoing edge labeled
by the zero-vector from each position in G, n F. By this construction, a defender position is
a deadlock if and only if it corresponds to a position in the target set F' in the original game.
In the reachability game, one is interested in the minimal ensured cost for a position g, i.e.
a minimal upper bound that the attacker can enforce while winning for the sum of edge
weights of plays starting in ¢g. By switching from addition to subtraction, this corresponds to
asking for the minimal attacker winning budget of g in the constructed energy game.
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2.2 Inductive Characterization of Attacker Winning Budgets

We want to decide energy games by calculating the attacker winning budgets. For this, we
study attacker winning budgets and observe that they are upward-closed in monotonic energy
games, i.e. where all updates are monotonic and have an upward-closed domain.

» Definition 9 (Monotonic energy game). Let G be an energy game over (£,<). Then, G is a
monotonic energy game if, for all updates u in G and all e, e’ € €& with e < €', the following
implication holds: If u(e) is defined, then so is u(e’) and u(e) < u(e’).

» Lemma 10. Let G be a monotonic energy game over (£,<). Then, the attacker winning
budgets are upward-closed, i.e. Wing(g) = 1T Winy(g) := {e € £ | 3¢’ € Win,(g). € < e} for
all positions g € G.

Lemma 10 follows directly from the definition of winning budgets and monotonic games since
the same strategy serves as a witness when starting with more energy.

In monotonic energy games, each attacker winning budget of a position g can be
characterized by a finite Pareto front, i.e. by the minimal attacker winning budget
WinZ*(g) := Min Win,(g). (For a set M we distinguish between the set of all minimal
elements, i.e. Min M := {me M | Ym’ € M. m’ £ m}, and the minimum. We write min M
to denote the minimum if it exists.) Since the energies are well-founded, antichains in (£, <)
are finite and thereby so are the sets WinZ**(g) for all positions g.

Attacker winning budgets have more structure. In particular, they can be characterized
inductively.

» Lemma 11. Let G be an energy game over (€,<). The attacker winning budgets can be
characterized inductively by the rules:

geqG, g g u(e) € Wing(g') ge Gy Vg'. g» g —> u(e) € Wing(g)
e € Win,(g) e € Win,(g)

Proof. An attacker winning strategy can be constructed from attacker winning strategies at
successors w.r.t. the accordingly updated energies. This implies soundness.

To argue completeness we utilize Lemma 7. Assuming e € Win,(g), there exists an energy-
positional attacker winning strategy s for G[g, e]. We then fix an order induced by s by setting
(g",€¢") <5 (¢',€') if (¢",€") = (g',€') or there is an edge in the configuration graph from
(¢',€') to (¢",€") consistent with s, i.e. if ¢/ % ¢”, ¢’ = u(e’) and ¢’ € G, —> s(¢',¢') = ¢".
Then, a derivation of e € Win,(g) can be found by well-founded induction. <

2.3 Galois Energy Games

In order to convert the inductive characterization of Lemma 11 into a fixed-point algorithm,
it seems that we need to invert energy updates in the game. However, it turns out that what
is sufficient is a weaker form of invertibility given by Galois connections.

» Definition 12 (Galois energy game). A Galois energy game is a monotonic energy game
G over (€,<) such that uO(e’') := min{e € £ | ¢’ < u(e)} ewists and is computable for all
updates u in G and e’ € €.

Galois connections can be characterized by one of the following four equivalent properties.
We refer to Erné et al. [14] for more detail.
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» Lemma 13. Let P = (P,<p) and Q = (Q, <) be partially ordered sets with functions
f:P—>Q and g:Q — P. Then, the following are equivalent:

1. f(p) <@ ¢ < p <p g(q) holds for allpe P and q € Q.

2. f and g are monotonic, go f is increasing, and f o g is decreasing.

3. f is monotonic and g(q) = maxp{pe P | f(p) <q ¢} for each q € Q.

4. g is monotonic and f(p) = ming{ge Q | p <p g(q)} for each pe P.

If any of the (and thereby all) properties hold, then f and g form a Galois connection between
P and Q. By Lemma 13 an energy game G over (£, <) is a Galois energy game if and only if
each update v in G has an upward-closed domain and there exists a computable function
uO : & — dom(u) such that u© and u form a Galois connection between £ and dom(u).
Then, the minima used to define u© in Definition 12 always exist.

» Example 14. The energy game from Example 1 is a Galois energy game. In particular,
(Shots < min{Shots + 1, Cups})® (ec, e, s, eg) = (max{ec, es}, e, max{es — 1,0}, eg).

3 Deciding Galois Energy Games

For a fixed position g, the known initial credit problem asks whether energy e is sufficient for
the attacker to always win when starting from g, i.e. whether e € Win,(g). The unknown
initial credit problem asks, whether there exists an energy sufficient for the attacker to win
from g, i.e. whether Win,(g) # @. Subsuming both these problems, we provide an algorithm
calculating the minimal attacker winning budgets of each position.

The core idea of the algorithm is that of a shortest path algorithm: We start at deadlocks
and move backwards through the graph using the inductive characterization of attacker
winning budgets (Lemma 11). To calculate energies backwards, we use Galois connections,
allowing us to prove:

» Theorem 15 (Decidability of Galois energy games). Let G be a Galois energy game over
(€, <) with a finite set of positions. Then, the (un)known initial credit problem is decidable.

3.1 The Algorithm

To prove Theorem 15, we first discuss Algorithm 1. This is a simplified and generalized
version of an algorithm proposed by Bisping [3].

Algorithm 1 Computing minimal attacker winning budgets of Galois energy game G.

1 def compute_winning_budgets(G = (G, G4, )):

2 | win:=[g—{}|geG]

3 do

4 old win := win

5 forge G :

6 ifgeG,:

7 ‘ win[g] := Min{uC(e') | g»= ¢’ A € € old_win[g']}
8 else:

9

‘ win[g] := Min{sup{u©(ey)|g > ¢’} | V¢'. g »> ¢ —> ey € old_win[¢']}
10 while win # old__win
11 return old _win
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Starting by assigning the empty set to each position in line 2, we then apply lines 3 to 10
adding sufficient energies to winning budgets and taking the minimal elements (which exist
by well-foundedness) until we reach a fixed point to return.

For a play to be won by the attacker, it has to end in a defender deadlock position. At such

a defender position g4 all energies are in the attacker winning budget and Win*(g4) = Min €.

a
If a defender position has successors, then an energy is in the attacker winning budgets if

it is sufficient to win moving to any successor the defender might choose. In Galois energy
games, that is e € Win,(gq) for gq € Gq if uO(ey) < e for some e, € Win,(g') for each ¢’
with g4 » ¢’. This is ensured by line 9. Note that the supremum always exists because the
energies form a bounded join-semilattice and the sets in question are finite.

Similarly, sufficient energies for attacker positions can be calculated from energies in the
winning budget of successors, as done in line 7. In particular, g, € G, and ¢’ € Win,(g’) for
some ¢’ with g, »% ¢’ implies u©O(e’) € Win,(ga)-

Table 1 Application of Algorithm 1 to Example 1.

Iteration ‘ 0 1 2 3
Energized @ {(0,0,0,0)} {(0,0,0,0)}  {(0,0,0,0)}
Office g o {(0,0,0,10)}  {(0,0,0,10),(0,0,1,9)}
CoffeeMaker | @ @ %) {(0,2,0,10)}

Table 1 illustrates how the information, which positions are winnable, travels through
the graph when applying Algorithm 1 to Example 1. The vectors represent cups, time, shots
and energization in that order.

3.2 Correctness

Since we are considering a fixed point algorithm, we use Kleene’s fixed point theorem [25, 28]
to prove correctness of our algorithm and thereby our decidability result, Theorem 15. The
following version of Kleene’s fixed point theorem relies on the notion of directed sets, i.e.
a subset of a partially ordered set where all pairs of elements have an upper bound in the
subset. In a directed-complete partial order all directed sets have a (directed) supremum. A
Scott-continuous function preserves directed suprema.

» Lemma 16 (Kleene's fixed point theorem). Let (Q), <q) be a directed-complete partial order
with least element q € QQ and a Scott-continuous function f: Q — Q. Then, the set of fized
points of f in Q forms a complete lattice with least fized point supg{f*(q) | i € N}, where f*
refers to the i-th iterate of f.

Proof of Theorem 15. To utilize Kleene’s fixed point theorem, we define a partial order on
mappings from positions to possible Pareto fronts, i.e. antichains in £. We call the set of
such mappings Paretog < (G — 2¢) and define

F<F «>VgeG. F(g)= 1t F'(g) and (sup.P)(g):=Min U 1 F(g)
FeP
for F, F' € Paretog and P < Paretog. These definitions yield that (Paretog, <) is a directed-

complete partial order with minimal element 0 := \g. @.

We then consider the function lterationg : Paretog — Paretog corresponding to one
iteration of the while-loop in Algorithm 1 when applied to G and show that it is Scott-
continuous w.r.t. the <-order, i.e. lterationg(sup. P) = sup_{lterationg(F) | F' € P} for all
directed sets P < Paretog.
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Let P < Paretog be such a directed set. The definition of Iterationg and mono-
tonicity of all u© together imply monotonicity of Iterationg and thereby Iterationg(F) <
Iterationg (sup P) for all F' € P. Therefore, what remains to show is lterationg(sup- P) <
sup_ {Iterationg(F) | F € P}. Let g € G and e € lterationg(sup~ P)(g). We now show
e € 1 (sup.{lterationg(F) | F' € P})(g). We focus on the more intricate case and assume
g € G4. By definition of Iterationg, there exist e, € (sup< P)(¢') for each ¢’ € G with
g * ¢ such that e = sup{uC(ey) | g ¥ ¢'}. By definition of sup_, there exist F € P
with ey € 1 Fy(g'). Since the set of positions is finite, so is {F, | g »» ¢’} € P and there
exists an upper bound F’ € P such that e, € 1 F'(¢’) for each successor ¢’ of g. Thus,
e € 1 lteration(F")(g) < 1 (sup{lteration(F) | F € P})(g).

With this, we can apply Lemma 16 and conclude that a least fixed point, namely
sups{lterationig(O) | i € N}, exists. We now show, that the least fixed point is Wini™ by first
arguing that WinZ™ is a fixed point. For this, we introduce inductively-defined sets S(g) for
g € G mimicking the process of the iteration of the while-loop without taking the minimum:

geGa  g¥»g ¢ eS(d) geGa Vg . g»sg — ey e S(d)
uO(e’) € S(g) (sup{u®(ey) | g+ ¢'}) € S(g)

Then, S(g) € Win,(g) for all g € G follows from a simple induction over the structure of S,
utilizing the inductive characterization of attacker winning budgets as well as Lemma 10
and 13. Further, Win,(g) < 1 S(g) can be shown by a well-founded induction over the
strategy-induced order introduced in the proof of Lemma 11 using Lemma 13. With Lemma 10,
we can conclude Win,(g) = 1 S(g) and thereby Wini* = Mino S. Further, the definition
of S directly implies that Mino S (and therefore Win}™) is a fixed point of Iterationg. For
any fixed point F of Iterationg, we have S(g) € 1 F(g) for all g € G by induction over the
structure of S. Thus, Mino S (and therefore Win ™) is the least fixed point of Iterationg.

Finally, we argue for termination by noting that, for each g € G and e € Win™*(g), there

exists g € N such that e is added in the ij-th iteration at the latest, i.e. e € Iteration;" (0)(g).
This holds true since Win};™ = sup_({lterationg(0) | < € N}. Thus, a fixed point is reached

¢ iterations of the while-loop. <

after at most max max ¢ g

9geG eeWin™in(g)
The proof of Theorem 15 also proves that without any computability assumptions

min
a -

Algorithm 1 is still correct, i.e. the least fixed point of Iterationg exists and is Win

3.3 Isabelle/HOL Formalization

The proof of decidability of Galois energy games (Theorem 15) is formalized in Isabelle/HOL.
Isabelle [23] is a generic interactive proof assistant supporting the formalization of mathe-
matical theories. Theorems formalized in Isabelle undergo automated verification, ensuring
that edge cases are not overlooked. While Isabelle supports multiple logical frameworks,
we use the instantiation Isabelle/HOL based on Higher Order Logic (HOL). The Isabelle
theories are available at https://github.com/crmrtz/galois-energy-games.

Our Isabelle formalization starts by providing the first formalization of this kind for any
type of energy game. This includes the inductive characterization of attacker winning budgets
(Lemma 11) assuming energy-positional determinacy (Lemma 7). Fixing an arbitrary Galois
energy game over a well-founded bounded join-semilattice, we then formalize the function
Iterationg introduced in the proof of Theorem 15. We formalize the correctness of Algorithm 1
by showing that the minimal attacker winning budgets are the least fixed point of Iterationg
(correctness) and show termination. Thus, we have formalized the decidability of such Galois
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energy games. Finally, we formalize Galois energy games over vectors of (extended) naturals
with the component-wise order and conclude decidability, particularly for energy games with
vector addition and taking minima of components only.

Table 2 Overview of the Isabelle/HOL formalization.

Result Formalization link Proof adjustments
Lemma 7 Energy-positional determinancy -
Lemma 10 Upwards-closure of Win,, upward_closure_wb_nonpos
Lemma 11 | Inductive characterization of Win, inductive_winning_budget assuming Lemma 7
Lemma 13 Galois connection equivalences galois_properties only 1. — 2.
Lemma 16 Kleene’s fixed point theorem by Yamada and Dubut [28]
Theorem 15 Decidability Corr?Ctn.eSS: a_vin_min_is_lfp assuming Lemma 7
Termination: finite_iterations

Table 2 provides an overview of all previously discussed lemmas and theorems, along with
information on which ones have been formalized and links to their formalization. For the
instances discussed in Section 4 the formalization links are given in footnotes.

4 Instances of Galois Energy Games

Let us discuss how Galois energy games and the algorithm can be used to solve quantitative
problems by instantiating energy orders and updates over vectors of naturals.

For the illustration, we will take an extremely classical problem and two recent ones. In
Subsection 4.1, we show how shortest paths problems on graphs are encoded as single-player
energy games and relate the latter to vector addition systems with states (VASS). As more
recent problems, Subsection 4.2 will discuss the declining energy games of Bisping [3] and

the multi-weighted reachability games of Brihaye and Goeminne [8], in a generalized version.

monotonic

Figure 2 Energy games over vectors of naturals with the component-wise order.

Figure 2 lays out the kinds of energy games to be discussed: The yellow circle includes all
energy games with updates that mix positive, negative, and min-updates, in particular, our
example energy game of the researcher getting coffee placed as yellow C. The crosshatched
area includes the “declining energy games” discussed by Bisping [3], where the subclass with
vector addition only corresponds to the games discussed by Brihaye and Goeminne [8]. The
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https://github.com/crmrtz/galois-energy-games/blob/0b267ff9fda4539a4d709073689d166d9694621f/isabelle-theories/Decidability.thy#L3675
https://github.com/crmrtz/galois-energy-games/blob/0b267ff9fda4539a4d709073689d166d9694621f/isabelle-theories/Decidability.thy#L3456
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bottom half-circle of vector addition contains energy games solving the coverability problem
on VASS. SP in that set refers to the single-player energy games corresponding to shortest
path problems for the one-dimensional case as will be discussed in Subsection 4.1.

The class of monotonic energy games is decidable too. For this, Lemke [19] generalizes
Algorithm 1 by calculating sets of the form Min{e € £ | ¢’ < u(e)} if a unique minimum does
not exist, which adds another level of combinatorial explosion. For details on the boundaries
of decidability for monotonic games, we refer to Abdulla et al. [1]. We focus our attention
on Galois energy games, which generalize previous results in a simple yet concrete manner.

4.1 Singe-Player Instances

Single-player energy games are energy games, where all defender positions are deadlocks and,
therefore, only the attacker makes choices.

Shortest Paths and Distances

Shortest path and shortest distance problems [22] are classical quantitative problems. These
can be seen as instances of single-player energy games, where the minimal attacker winning
budgets correspond to a kind of shortest distances from a position to any defender position.
Let us illustrate this for the one-dimensional case:

» Proposition 17. Assume we have a graph (V,E) with E €V x N x V| and ask for the
length of shortest paths from some source node s € V' to target node t € V. Consider the
energy game (V U {L}, V=) over (N, <) with v == v if (v,w,v') € E and t =~ L. Then,
e € Win™(s) on the derived game precisely if e is the shortest distance from s to t in the
original graph.

On this instance, our Algorithm 1 boils down to a single-destination variant of the Bellman—
Ford algorithm for shortest paths.

» Remark 18. Mixing positive and negative weights, the construction of Proposition 17
encounters differences to classical shortest-path solutions, which assume commutativity of
edge costs. For example, in the graphs s 2,0 L tand s 5o 2 t, Bellman—Ford will
consider both s-t-paths to have length 1. However, the energy game interpretation leads
to a different result: Moving >3 requires an attacker budget of 2, while =232 only
needs 1. In some cases the energy interpretation is more accurate in reality: If one has an
empty tank, it makes a difference whether one can refuel now or only later.

Also, conventional shortest-path algorithms struggle with negative cycles, which corre-
spond to positive cycles in our games. In the energy interpretation, we easily determine the
cost to reach a target even with an infinite charging cycle: The cost of getting to the cycle.

Vector Addition Systems with States

The single-player version of a multi-dimensional energy game over N with the component-
wise order <. where edges are labeled by functions adding a vector in Z" can be used to
answer the coverability problem [17] on VASS. In VASS, this problem asks whether a target
position can be reached from a given initial configuration (a pair of a position and an energy)
with at least a fixed energy remaining.

» Proposition 19. Let n € N. Assume we have a VASS (Q,T) with T < Q x Z™ x Q with
a fized initial configuration (s,es) € Q x N™ and a target configuration (t,e;) € Q x N™.
Consider the energy game (Q U {L},Q,) over (N <.) with v v if (v,w,v') €T and
t —*5 L. Then, es € Win,(s) on the derived game precisely if coverability holds in the
original VASS.
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The reachability problem [6] on VASS aks whether a configuration is reachable from another.
Since the target energy has to be reached exactly, this is a stricter version of coverability.

As in Proposition 19, this can be modeled as an energy game by labeling the edge ¢ > |

with a function to check if the current energy matches the target (that is undefined if not).

However, since such a function lacks an upward-closed domain, our results are not applicable
and we refer to existing literature [6, 12, 13] instead.

4.2 Energy Games over Vectors of Naturals

In recent research, energy games with reachability winning conditions have garnered some
attention [3, 8]. We now demonstrate that we generalize their results. We do so with a
syntactical approach to define a set of updates permitted in Galois energy games over vectors
of naturals. We introduce the set U,, of possible updates that allow changing entries in two
ways: By adding an integer or replacing it with the minimum of components. Such updates
can be represented as vectors where each entry contains the information how the respective
component is updated. First, we fix a set of energies: The set of vectors of extended naturals
N7 of dimension n € N with the component-wise order <..

» Definition 20. Let n € N and U, = (Z U 2{0""’"*1}\{®})n, Then, we interpret u =
(ug, s Un—1) € Uy, as a partial function v : N, — NI by setting

e, +z ifu; =z€Z N —2< ¢
(e, ey €n—1) 1= (€0 .y€h_1) with ef :={ " 7 f ’ =
Mmingep ex, ifu; =D < {0, vy — 1}

if all €} are defined.
As a consequence of Theorem 15, we obtain the following.

» Corollary 21. Let n € N and let G = (G, Gq,>) be an energy game over (NI, <.) with
updates in Uy,. Then, G is a Galois energy game. Further, if the set of positions is finite, the
game is decidable.!

Proof. We argue that G is a Galois energy game: By definition, all updates in U,, are
monotonic with an upward-closed domain. Generalizing the inversion in [3], we show
that u©(e’) = min{e | ¢/ < u(e)} exists for all u € U, and €’ € £ by giving a computable

calculation.

/

Let u be an update in G, i.e. u = (ug, ..., un—1) € Uy. For ¢’ = (e, ..., e, _4

uO(e’) such that the i-th component is the maximum of

) € N2 we set

e} — z, if this is not negative and the update adds z in the i-th component,
e;-, if the ¢-th component is used when taking the minimum resulting in the j-th component,
0 else.

That is

uO(e')i = max({e; —z |ui = +2€ +Z n z < ej} u{e]j |icu; € {0,....,n—1}} U {0}). <

» Remark 22. All our arguments for U, still hold, if we allow multiplication with a nonzero
natural. When calculating u®(e’); we then have to add [:] to the maximum, if the update

multiplies the i-th component with m.

! This is formalized using Remark 25 to establish a subclass relationship, i.e. a sublocale relationship.
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» Example 23. Note that all occurring updates in Example 1 aside from the loop at
CoffeeMaker are elements of Uy. That loop can be replaced by adding a Brew-position such
that CoffeeMaker > Brew y oot Cel, o feeMaker.

Actually, the adjustment of the game graph described in Example 23 is not necessary to
prove the game to be a Galois energy game given that Galois connections compose.

» Lemma 24. Let uj,uy : € — &€ be partial functions with upward-closed domains such
that u® and u; forms a Galois connection between € and dom(u;) for i € {1,2}. Then,
(ug oul)Q = u? o ug and ug ouy form a Galois connection between £ and the reverse image
under uy of dom(ug), i.e. uy*(dom(uz)).?

» Remark 25. Lemma 24 implies that it suffices to study simple updates as generators and
check that they are permitted in a Galois energy game, to prove decidability. In particular,
we may focus on updates in {—1,0,+1}" € Z" that add or subtract at most one in any
component to understand all updates in Z"™ < U,,.

Now we can turn to instances where multi-weighted energy games with reachability conditions
were considered. Bisping et al. [3, 4, 5] introduce games generalizing the bisimulation game
to simultaneously decide all common notions of behavioral equivalence, i.e. the linear-time-
branching-time spectrum [26]. In particular, they use energy games over (N7, <.) with
declining updates in U,,. The decidability of those games is a direct implication of Corollary 21.

The multi-weighted reachability games described by Brihaye and Goeminne [8] can easily
be transformed to energy games with declining updates in Z™ by utilizing the construction
from Remark 8. When considering the component-wise order, decidability follows directly
from Corollary 21. When considering the lexicographical order <;, decidability can be
concluded using Theorem 15.

4.3 Implementations

We now illustrate the practical feasibility of Algorithm 1, which has been implemented twice
in open source software: Once, in the Linear-Time-Branching-Time Spectroscope, a web tool
to decide spectra of behavioral equivalence [4], and once in gpuequiv, a GPU-accelerated
version thereof [27]. Both work on energy games of arbitrary-dimensional vectors of naturals.

The Spectroscope is implemented in Scala.js, powering the tool on https://equiv.io/.
Its energy game class supports positive, negative, and min-updates. Example 1 is reproduced
as a unit test in io.equiv.eqfiddle.game.GaloisEnergyGameTests.

gpuequiv [27] uses Rust and the WebGPU system to solve declining energy games on
the GPU. The core is an implementation of our algorithm split up across several shaders in
order to exploit GPU parallelism in gpuequiv: :energygame: :EnergyGame. For the shader
implementation, it is particularly important that the buffer size for the Pareto fronts can
be bounded, as will be discussed in Section 5. (In order to conserve memory, the shader
will initially reserve space for fronts of up to 64 entries during updates, and must retry
positions with more space whenever the allocated space does not suffice.) So far, gpuequiv
only supports declining energy games, for which it includes several tests. According to
benchmarking [27, Chapter 5], gpuequiv tends to solve the games 10 to 20 times faster than
the Scala implementation (even if the latter is compiled and run through JVM instead of JS).

Both implementations increase our confidence that the approach works well in practical
scenarios, and hopefully can be of help to others who want to solve similar problems.

2 This is formalized as galois_composition.


https://equiv.io/
https://github.com/benkeks/equivalence-fiddle/blob/ec49615eeed81928f53f394a68e734931c1aaad6/shared/src/test/scala-2.12/io/equiv/eqfiddle/game/GaloisEnergyGameTests.scala
https://github.com/Gobbel2000/gpuequiv/blob/6d694133cbb963231c31ffb6340c70dce47a9abb/src/energygame.rs
https://github.com/crmrtz/galois-energy-games/blob/0b267ff9fda4539a4d709073689d166d9694621f/isabelle-theories/Galois_Energy_Game.thy#L213
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5 Complexity

The complexity of deciding Galois energy games varies based on the energy order and the
updates. Since deciding multi-weighted reachability games is PSPACE-complete as stated
by Brihaye and Goeminne [8], deciding energy games over vectors of naturals with the
component-wise order and only vector-subtraction is PSPACE-hard:

» Proposition 26. Deciding Galois energy games over n-dimensional vectors of naturals
with the component-wise order is PSPACE-hard with respect to n.

In this section, we give more fine-grained upper complexity bounds for the generic algorithm
and for the instantiations according to the previous section.

The running time of Algorithm 1 depends on factors beyond input size, such as the
occurring updates which affect the number of iterations needed. To analyze the influence of
the order on complexity, we introduce functions that will help establish upper bounds for
attacker winning budgets, which are then used in our complexity results.

» Definition 27. For e € € let antichaing, be the set of antichains in {¢' € £ | ¢’ < e}. Then,
hgt(e) is the cardinality of {€’' € £ | ¢’ < e} and wdh(e) is the mazimal cardinality of elements
in antichaing,, i.e. wdh(e) := supy{|A| | 4 € antichaing.}.

Fixing even more parameters, we can state our complexity result.

» Theorem 28 (Complexity). Let G = (G,G,,>>) be a Galois energy game over (€,<).
Further, let
o be the branching degree of the underlying graph,
tsup be an upper bound of the time to compute the supremum of two energies,
t< be an upper bound of the time to compute the comparison of two energies,
tes be an upper bound of the time to compute u©(e) for any update u in G and e € £, and
Cworst := supjufo...ouP(min&) | i€ {0,...,|G| —1} A uy,...,u; are updates in G} be the
highest energy obtainable using up to |G| — 1 reverse updates applied to the least element
of €.

Then, Algorithm 1 on input G terminates in a time in

@] (|G|2 -0 - hgt(eworst) - Wdh(€worst)® - (tes + tsup + Wdh(worst) - tg)) ,
and in O (|G|2 -0 - wdh(ewom)2 (s + tsup + wdh(eworst) ~t<)) , if G is declining.

In both cases, the output is calculated using space in O (|G| - wdh(eworst) - Se) where sg is an
upper bound for the space needed to store any energy.

For a detailed proof, we refer to the appendix. Compared to the approach by Bisping [3],
this result significantly improves complexity — see Table 3. The key argument leading to this
improvement is the calculation of line 9 of Algorithm 1, i.e. win[g] for a defender position g.
Inspired by Brihaye and Goeminne [8], we apply the following procedure:

1 def compute_new_ win(G,old_win, g):
new := Min &
for ¢ with g ¥ ¢':
new := Min{sup{e’,u®(e, )} | €’ € new A e, € old_win[g']}
return new

[S N N R V]
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Table 3 compares the complexity results we obtain by Theorem 28 to results stated by
Bisping [3] on declining energy games and Brihaye and Goeminne [8] on multi-weighted
reachability games, respectively. Further, it states the complexity of Algorithm 1 when
applied to a shortest path problem as discussed in Proposition 17 and for energy games
with updates in Z" < U,,, i.e. integer vector addition, subsuming the complexity of solving
coverability on VASS as seen in Proposition 19.

To do so, we first give upper bounds for some variables: In all cases, we over-approximate
o with |G| when applying Theorem 28. Further, we assume tg,,t<,,tsup € O(n). We use
w as an upper bound of the absolute value of the integers being added to a component at
any edge.®> Then, we have eyorst = w - (|G|, ..., |G|) and hgt(eworst) € O ((w - |G|)™). Other
upper bounds are stated in Table 3, where all entries are to be understood in big O-notation.

Table 3 Application of Theorem 28 to energy games over vectors of naturals.

Game model ‘ tes wdh(eworst) time complexity ~ complexity in cited work
Declining energies [3] n® |Gt n? - |GI*" |- [G]™ - (0 + |G|~ 1)°)
Multi-reachability, component-wise <. [8] | n  w" '-|G|" ! n-w® V. |GP"  atowtt |Gt
Multi-reachability, lexicographic <; [8] n 1 n- |G n- |G
Shortest paths (with N-edges) 1 1 tel .
Integer vector addition, component-wise <. | = w"™'- |G| n-w? |G

Due to similarities in both the algorithm and approximation techniques, it is not surprising
that our complexity result (stated in Table 3) for multi-weighted reachability games with
the lexicographic order coincides with previous work by Brihaye and Goeminne [8]. The
improvement, when considering the component-wise order, can be attributed primarily to a
finer approximation. However, we do improve Bisping’s [3] result (in the case of a branching
degree greater than two). This comparison demonstrates that our algorithm achieves a
competitive performance while offering generality.

6 How to Handle Other Winning Conditions

Reachability winning conditions are fundamental to the analysis of games, both in their
simplicity and their importance. In this section, we examine how other types of winning
conditions relate to reachability (Definition 5 and 6) studying related games.

6.1 Within the Scope: Captured Games

Weak Upper Bounds. The defender winning if the energy level becomes undefined is another
way of saying that there is a lower bound for the energy (and the attacker is energy-bound).
We now consider energy games with an additional upper bound [15, 16] of resources the
attacker may hold. A weak upper bound caps the energies. In Example 1, the number of cups
resembles a weak upper bound of the number of shots. Similarly, a weak upper bound can
be added to any energy game, where the minimum is monotonic, by adding a new dimension
for each dimension that should be bounded and composing every update with the function
taking the minimum of the dimension and its upper bound. Then, Algorithm 1 can be used
in the case of both, a known and an unknown weak upper bound.

3 To get a fair comparison we consider the complexity of declining energy games as formally defined by
Bisping [3] where an update may subtract at most one from a component, i.e. w = 1.
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Generalized Reachability. Generalized reachability [9] refers to reachability games with
multiple target sets where the attacker wins a play if each set has been visited at least once
(without running out of energy). Combining the construction in Remark 8 and that for weak
upper bounds, an energy game can model a generalized reachability game by encoding the
target sets using additional dimensions that track the visited sets. For this construction, we
add positions and edges such that the attacker may choose after reaching any target set,
whether to continue or to move to the only deadlock defender position at the cost of one
in every dimension corresponding to a target set. Note that this construction increases the
dimension and thereby increases time complexity of our algorithm for computing minimal
winning budgets exponentially in the number of target sets.

6.2 At the Borders: Related but Distinct Games

Strong Upper Bounds. We reconsider energy games with an upper bound of the attackers
resources. Exceeding a strict upper bound [16] results in the defender winning. Such an
upper bound can be integrated similarly to a weak upper bound by adding dimensions for
the bounded dimensions and instead of taking the minimum adding the difference between
the energy and the updated energy in the dimensions corresponding to the bounds at every
edge. (Inspired by Juhl et al. [16] we additionally apply the mapping b; — b; + (e; — u(e);)
to each added bound b; for the bounded dimension i when e — u(e) is calculated.) However,
if the updates are more complex than vector addition, this construction might not yield a
Galois energy game — the game might not even be monotonic.

Safety Winning Conditions. Instead of aiming to reach a target set, the goal of safety [1]
winning conditions is to avoid a set of unsafe positions. This corresponds to changing the
winner of infinite plays to the attacker (if the energy level does not become undefined).
Proving decidability then is symmetric to the proofs presented in this paper and can be
achieved by adjusting the definitions and statements accordingly. In particular, this includes
calculating maximal defender winning budgets instead and defining Galois energy games using
Lemma 13.3, i.e. as monotonic energy games where u©(e’) := max{ee & w {1} | u(e) < ¢’}
always exists and is computable. (Here L represents undefined energies with 1 < e for all
eef and u(l):= 1))

Parity Games. An energy parity game [2, 24] is an energy game with a ranking function
that assigns each position a natural number (called priority) and has a finite image. Then,
infinite plays where the energy level never becomes undefined are won by the attacker if and
only if the lowest priority appearing infinitely often is even. A stronger objective for the
attacker would be to never visit more than [ positions with odd priority before visiting a
position with a smaller even priority for a fixed [ € N. Abdulla et al. [2] show that deciding
games with that stronger objective in some cases is equivalent to deciding energy parity
games. Such energy parity games with vector addition only can be formulated as an energy
game with safety winning conditions as described by Chatterjee et al. [11] where dimensions
corresponding to the odd priorities are added. Whether such a procedure can be applied to
other kinds of updates remains an open question.

6.3 Beyond the Horizon: Games Outside the Framework

Both-Bounded Energy Games. In both-bounded energy games [18] both players are energy-
bound. This is modeled by assigning two updates to each edge, operating on pairs of current
energies — one for the attacker, one for the defender. Considering such games over vectors of
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naturals, undecidability arises if one player has one-dimensional energies and the other two,
so our results cannot be transferred.

Payoffs of Plays. To compare infinite plays and decide a winner, different payoffs [7]
can be calculated. The mean-payoff refers to the limit average gain per edge, i.e.
lim sup,,_, %EL(p, eo,n) for a play p w.r.t. an initial energy ey, while the total-playoff
is the limit energy level, i.e. limsup,,_,,, EL(p, e, n), and the average-energy refers to the
limit average energy level, i.e. limsup,,_,., %Z?:o EL(p,ep,i). Since Algorithm 1 relies on
the fact that it suffices to consider finite plays, our results cannot be transferred directly.

7 Conclusion

In this paper, we presented a simple algorithm for calculating minimal winning budgets,
solving the (un)known initial credit problem for energy games over any well-founded bounded
join-semilattice. We generalized two recent approaches [3, 8] and improved the running time.
Our results demonstrate that Galois connections offer a simple framework for constructing
decidable energy games. Compared to Abdulla et al’s monotonic games [1] or to Mohri’s
generalized shortest-distances [22], our work is more concrete in its application. For a
relevant class of energy games over vectors of naturals, we offer an algorithm implementation
for practical use. Additionally, we provide an Isabelle/HOL formalization of the general
decidability proof, ensuring confidence in our results. By exploring various winning conditions
and relating games to Galois energy games, we highlighted the theory’s aplicability and
limitations and identified areas for further research, such as using Galois connections to
classify energy parity games.
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A Appendix

This appendix contains the proofs of selected results from the main body of the paper.

Energy-positional Determinacy

» Lemma 7. Let G be an energy game over (€,<). For all positions g € G and energies e € £
either the defender or the attacker wins G[g,e]. Further, there exists an energy-positional
winning strategy, i.e. a winning strategy that depends only on the current position and energy
level.

Proof. The (energy-positional) determinacy follows from the positional determinacy of parity
games. We define a parity game Pg := (Gg, Ggo, Eg,rg) where

Gg:={(g.¢) | ge G,ee Ew {L1}},

Ggo := Gg\Gg1 with Gg1 :={(g9,e) e Gg | g€ G4 v e= 1},

Eg :={((g,e),(¢',€)eGg xGg | g»> g ne# L Anu(e)=e'} and

rg:Gg —> N, (g,e) — 0.
This construction is similar to that of a configuration graph. Thereby, a play in Pg corresponds
to a play in G and vice versa. Note that player 0 wins all infinite plays in Pg while the
defender wins all infinite plays in G. By construction a position (g,e) is a deadend in Pg
if and only if g is a deadend in G or e = 1. Hence, a play is won by the defender (resp.
attacker) in G if and only if the corresponding play is won by player 0 (resp. player 1) in Pg.

Let e € £ and g € (G. Since parity games are positionally determined, there exists
a positional winning strategy s for player 0 or player 1 when starting in (g,e). Define
sp : G*G, — G by setting s,(go..-9n) := ¢’ With s (gn, EL(go..-gn,€)) = (¢',€¢') if g, € G,
where G, = Gy if player 0 wins and G, = G, else. Note that this strategy is an energy-
positional winning strategy. <

Complexity

» Theorem 28 (Complexity). Let G = (G, Gy, ) be a Galois energy game over (€,<).
Further, let
o be the branching degree of the underlying graph,
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tsup be an upper bound of the time to compute the supremum of two energies,

t< be an upper bound of the time to compute the comparison of two energies,

tes be an upper bound of the time to compute u©(e) for any update u in G and e € £, and
Cworst = sup{ufo..ou@(min &) | i€ {0,....|G| =1} A w1, ...,u; are updates in G} be the
highest energy obtainable using up to |G| — 1 reverse updates applied to the least element
of £.

Then, Algorithm 1 on input G terminates in a time in

@) (|G|2 -0+ hgt(eworst) - WAA(€worst)? - (tes + tsup + wdh(eworst) ~t<)) ,
and in O (|G|2 0 wdh(eworst)? - (tes + tsup + wdh(eworst) - tg)) , if G is declining.

In both cases, the output is calculated using space in O (|G| - wdh(eworst) - Se) where sg is an
upper bound for the space needed to store any energy.

Proof. We start our arguments by considering the number of needed iterations. If all
successors of a defender position g; were previously assigned a non-empty set, then gy
will be assigned a non-empty set in the next iteration. Similarly, if any successor of
an attacker position g, was assigned a non-empty set, then g, will be assigned a non-
empty set next. After |G| iterations the information, which positions are winnable for
the attacker, has traveled from defender deadlocks to all other winnable positions, i.e.
Vg € G. Wing(g) # @ < lteration!®!(0)(g) # @. This allows us to calculate an upper bound
for the energies being assigned to positions during the run of the algorithm, i.e. eyt

If G is declining, then cycles do not benefit the attacker and a fixed point is
reached in O(|G|) iterations. In both, declining and non-declining games, only sets in
antichaing,,,., are assigned to positions as candidates for minimal attacker winning bud-
gets. Each set in antichaing.,, . can only truly be updated at most as many times
as the maximal length of chains in antichaing.,,., w.r.t. inclusion of upward-closures,
i.e. at most supy{ie N |3A;,..., 4; € antichaing,,, .. Vje{l,....i—1}. A; < 1A4; 1} =
hgt(eworst) times. Thus, in non-declining energy games, the algorithm terminates after
at most 1 + |G| + |G| - hgt(eworst) € O(|G| - hgt(eworst)) iterations of the while-loop.

The computing time needed for operations outside the while-loop is negligible. We now
focus on the time needed to execute one iteration, where line 7’s time is dominated by that
of line 9. The following procedure inspired by Brihaye and Goeminne [8] calculates line 9, i.e.
win[g] for a defender position g.

1 def compute_new_ win(G,old_win, g):

2 new := Min &

3 for ¢’ withg»> ¢ :

4 new := Min{sup{e’,u®(e, )} | €’ € new A e, € old_win[g']}
5 return new

Note that the repeated application of Min ensures that wdh(eyrst) is an upper bound
for the size of new as well as old_win[¢’] for all ¢’ € G. Therefore, line 4 in the procedure
can be calculated in O (wdh(eworst)2 (tey + tsup + wdh(eworst) - tg)). The for-loop in line 3
adds a factor of the branching degree o, while line 5 adds |G|. This yields a running time of
Algorithm 1 in O (|G\2 -0 - hgt(eworst) - Wdh(eworst)? * (tcs + tsup + Wdh(eworst) - tg)) where
hgt(eworst) may be omitted in the case of declining energy games.

Since each win[g] calculated contains at most wdh(eyorst) elements, the space needed to
compute the output is proportional the space of |G| - wdh(eyorst) energies. <
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