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Abstract
Dependency graphs have emerged as a versatile and powerful formalism with wide-ranging ap-
plications in formal verification. In this extended abstract, we provide an overview of selected
advancements in on-the-fly verification techniques based on dependency graphs, focusing on the
recent developments, optimizations and generalizations of this generic verification framework.
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1 Introduction

On-the-fly model checking (also called local model checking) is an efficient approach to formal
verification that explores complex systems incrementally, enabling analysis of large models
without necessarily constructing their entire state-space upfront [28, 29, 33, 5, 3, 34].

Dependency graphs, introduced by Liu and Smolka [31], are directed graphs where nodes
are associated with Boolean values and hyperedges connect a source node to a number of
target nodes in order to represent causal dependencies in the graph. An assignment of nodes
to Boolean values 0 (false) and 1 (true) is a fixed-point assignment if for every hyperedge in
the graph, the source node must be assigned the value 1 whenever all of the target nodes
already have the value 1. Clearly, assigning 1 to all nodes gives us a fixed-point assignment,
however, we are interested in the minimum fixed-point assignment which can be obtained
by initially assigning 0 to all nodes and repeatedly improving the value 0 to 1 as long as
this is required by some hyperedge. Note that we allow hyperedges with an empty set of
target nodes which implies that the source node must necessarily obtain the value 1 in the
minimum fixed-point assignment.

We are usually only interested in the minimum fixed-point value of a specific root node,
which allows us in certain situations to explore only a subset of nodes in order to determine
the value of the root node. In their seminal work [31], Liu and Smolka provided an elegant,
linear-time algorithm for computing the minimum fixed-point assigment of the root node in
a given dependency graph where the nodes of the graph are constructed on-the-fly during
a forward exploration and where the newly discovered assignments of value 1 are back-
propagated along the hyperedges that are stored in a dynamically updated dependency list.
Similar ideas of local algorithms were developed also for a related formalism of Boolean
Equation Systems (BES) [1, 2, 30].
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The generic formalism of a dependency graph, together with the efficient linear-time
algorithm for computing fixed points, has found numerous applications in the equivalence
and model checking community. An overview of such applications can be found in [14, 16].
Among others, dependency graphs stand behind the verification engine UPPAAL TIGA for
strategy synthesis in timed games [7] and are the key-stone of the CTL verification engine for
Petri nets [10, 23], implemented in the tool TAPAAL [12]. The tool CAAL [4] is completely
built on the dependency graph framework, supporting both bisimulation and model checking
of CCS processes, including the possibility of playing games based on the generated minimum
fixed-point assignment.

The dependency graph formalism was further extended towards more expressive domains
for node assignments like integer domains for weighted CTL [18, 19] and even more complex
domains used for PCTL model checking [32], further generalized to weighted PCTL [21]
and multiplayer stochastic games [13]. Dependency graphs showed their usefulness for the
synthesis problems on multi-weighted games with branching conditions [20, 27] as well as
timed-arc Petri net games with discrete time [24, 25]. Recently, dependency graphs were
used for the verification and synthesis of (untimed) alternating-time logic (ATL) properties
in concurrent games with multiple players [6] as well as for the timed variant of ATL that
allows us to specify player-coalitions [22]. Parametric systems were also analyzed by means
of dependency graphs [8].

Concurrently, there has been an on-going effort to further optimize and speed-up the
algorithms for computing minimum fixed-point assignments on dependency graphs and their
extensions. The certain-zero technique [10] introduces a back-propagation of the Boolean
value 0 along the dependent hyperedges, as soon as it becomes clear that this value cannot
be further improved to 1. This often allows us to achieve an early termination of the
algorithms also for the negative cases where the root node can never obtain the value 1.
Negation edges, introduced in [10], enable an on-the-fly computation of mixed minimum
and maximum fixed-points, as needed for example for the encoding of logical negation. The
work in [15] introduces the “ignore” function that can speed-up the evaluation of nodes by
determining a subset of target nodes that are still relevant for the evaluation of the source
node. This allows us to prune the list of dependencies of nodes and the paper [15] discusses
a recursive algorithm for implementing such a pruning approach. A more light-weight but
practically beneficial variant of the pruning approach, the so-called “elimination of detached
regions” in the dependency graph [26], shows promising experimental results. Recently, the
technique of inclusion checking that formalizes yet another version of on-the-fly pruning of
the state-space has been defined in the dependency graph framework [22], further improving
the performance of the algorithms. Furthermore, there exists a line of work that describes
a successful distribution of the exploration work among a number of distributed processes
(workers) that communicate via message passing [11, 10, 9].

As many of the applications mentioned above include the implementation of a particular
variant of the minimum fixed-point algorithm for some given abstract domain, the work on
abstract dependency graphs [15] generalizes all these single-purpose implementations into
a unified framework and provides a single, efficient implementation1 that can be instantiated
to many different cases as outlined in [17]. If the node assignment is taking values from
the abstract algebraic structure of a Noetherian partial order with the least element, the
termination of the generic fixed-point computation algorithm is guaranteed.

1 https://launchpad.net/adg-tool/

https://launchpad.net/adg-tool/
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