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—— Abstract

Open bisimilarity is an equivalence relation for the w-calculus that is also congruence, making it

suitable to use in compositional reasoning for mobile processes and communication protocols. The
original definition of open bisimilarity, due to Sangiorgi, does not account for the mismatch operator,
that is crucial in modelling real-world protocols. When mismatch is present, the congruence property
no longer holds for open bisimilarity. In a LICS 2018 paper, Horne et al. proposed an extension of
open bisimilarity, using a history-indexed class of relations, to address this problem. That definition,
however, turns out to be non-compositional as we shall demonstrate in this paper. This paper
presents a new definition of open bisimilarity in the w-calculus that incorporates mismatch. This
is achieved by augmenting the transition semantics of the m-calculus with an explicit assumption
about name distinctions, and by requiring that open bisimulation to be closed under an arbitary
extension of the name distinctions assumption. We then prove that the resulting open bisimilarity is
both an equivalence relation and a congruence.
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1 Introduction

The m-calculus is a mathematical model developed for studying and describing concurrent
systems, particularly focusing on how these systems can communicate and change their
structures dynamically. It was introduced by Milner, Parrow, and Walker in the late 1980s
and early 1990s [18,19]. Within this framework, equivalence relations, known as bisimilarities,
were developed to compare the behaviors of processes. Milner, Parrow and Walker initially
defined the late and early bisimilarity [19], which provide foundational approaches for
reasoning about process equivalence. Later, Sangiorgi and Walker extended these notions by
introducing open bisimilarity [22] and quasi-open bisimilarity [23], which allow for a more
flexible treatment of free and bound names. These extensions address limitations in the
original definitions, particularly with respect to handling name instantiation and substitution.

An important property for an equivalence relation in the w-calculus is that it is a
congruence. A congruence relation ensures that if two processes are bisimilar, they remain
bisimilar in any context. While late and early bisimilarities fail to satisfy congruence, as they
are not preserved by the input prefix operator, both open and quasi-open bisimilarities are
congruence relations. This property guarantees that if two processes are shown to be open or
quasi-open bisimilar, they will exhibit identical behavior under any contextual composition.

However, Sangiorgi’s definition does not account for the mismatch operator [z # y|P,
which is crucial for modeling protocols that require explicit distinctions between names. The
mismatch operator, denoted as [z # y] P, enables a process P to proceed only if the names
x and y are distinct. If x and y are the same, the process cannot proceed and essentially
behaves like the deadlock process 0.
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We are particularly interested in congruence relations (open and quasi-open bisimilarity).
With congruence, one can prove equivalence for individual components of a system and
infer equivalence for the entire system without re-evaluating interactions in every context.
This greatly simplifies reasoning about correctness and facilitates the modular design of
mobile systems, where processes often operate in dynamic and evolving environments. While
quasi-open bisimilarity with mismatch has been explored and formalised in previous work [13],
open bisimilarity with mismatch remains an open topic. In this paper, we fill this gap by
extending Sangiorgi’s original definition of open bisimilarity to include mismatch.

Our interests in (quasi-)open bisimulation stem from its operational nature that brings it
closer to implementation. In particular, it gets rid of one source of infinity — the quantification
over all input when reasoning about processes that are parameteric on the input they
receive. The lazy treatment of input values in open bisimulation is similar to that of
symbolic bisimulation [7,12], but with the additional advantage of being a congruence.
The former allows for practical implementations of bisimulation checkers for the w-calculus
and its extensions (see e.g., [5,26,27]), while the latter has been shown to be crucial in
reasoning about privacy properties of security protocols formalised in the applied-pi calculus,
a cryptographic extension of the m-calculus [15]. The addition of mismatch enables processes
to make decisions based on name inequalities. This capability allows one to, for example,
encode a typical if-then-else construct in programming languages and protocols, with the else
branch corresponds to the mismatch prefix. This use of the mismatch operator is important in
modeling real-world protocols, as such protocols typically incorporate various error conditions
(that are typically captured in the else-branch of a decision point) that could potentially lead
to privacy leakage, as shown in cryptographic extensions of the w-calculus, e.g., [4,9]. By
studying mismatch in a minimal setting in the w-calculus, we hope to gain insights into its
uses in (cryptographic) extensions of the m-calculus.

In most presentations of the w-calculus including the original syntax, the mismatch oper-
ator is absent for several reasons. Firstly, introducing mismatch can violate the monotonicity
property of substitutions in the m-calculus. Substitutions typically should not reduce the
capability of a process for action [24, Chapter 1.1]. Formally, if P % P’, then we want
Po 2% P’ for all possible o [20]. However, mismatch can lead to situations where two
originally distinct names become identical after substitution, resulting in a process being less
capable of performing actions due to name equality. For example, [x # y]7 can perform a
7-transition, but when we apply the substitution {¥/z}, the process transforms into [y # y|r
which equals 0. Secondly, a naive extension of open bisimilarity with mismatch would result
in a non-compositional open bisimilarity, breaking the congruence property that ensures the
open bisimilarity is preserved under all contexts. We will use counterexamples to illustrate
this point in the next section.

To maintain the monotonicity property, one crucial measure is to impose some restrictions
on the substitution of names. We stipulate that, without any further assumptions, [z # y|P
can only execute if it is guaranteed that x and y can never become equal under an arbitrary
context that can potentially modify = or y, e.g., if the process is nested inside an input
prefix binding x or y. To account for the interactions between input names and restricted
names (induced by scope extrusion in the m-calculus), a notion of name distinctions [22] is
introduced in both the operational semantics of the m-calculus and our new definition of open
bisimulation. Under this definition, these two processes [x # y|7 and 7 can be distinguished
using open bisimilarity because the former can perform a 7-transition only if the inequality
between x and y is ensured, i.e., x and y cannot be equal under any possible substitutions,
while the latter can perform the 7-transition unconditionally.
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Horne et al. [13] introduced an extended definition of quasi-open bisimilarity that incor-
porates mismatch. In the same work, they also explored open bisimilarity with mismatch,
proposing an extended definition based on a history-indexed syntax that allows histories
to be prepended. An alternative extension of open bisimilarity was proposed in [17], also
utilizing history-indexed syntax, but leveraging on a certain rigidisation relation. However,
as we will demonstrate in Section 3, these definitions are fundamentally unsound in a strong
sense, i.e., they are not preserved by parallel composition. We propose here a new definition
of open bisimilarity that extends only slightly Sangiorgi’s original definition, by essentially
requiring open bisimilarity to be preserved by additions of name distinctions. We then prove
that this new open bisimilarity is both an equivalence relation and a congruence.

Outline. In Section 2 we review related work on process calculi featuring mismatch. In
Section 3, we revisit the original syntax and operational semantics of the m-calculus (excluding
mismatch) and review Sangiorgi’s foundational definitions of distinction and open strong
bisimilarity. As all the bisimulation relations we discuss in this paper are strong bisimulation
relations (where the silent transitions are taken into account in the bisimulation game),
we shall simply refer to these relations as bisimulation rather than strong bisimulation.
Our results should extend to weak bisimulation as well, as the issue of name distinctions
is orthogonal to the strong vs weak semantics of bisimulation. In Section 4, we discuss
prior attempts to incorporate mismatch into open bisimilarity and illustrate their issues
through counterexamples. In Section 5, we add mismatch to the syntax and operational
semantics, subsequently defining open bisimilarity with mismatch. We present a slightly
revised operational semantics indexed by distinction D. Then this new definition of open
bisimilarity is proven to be a equivalence relation and a congruence relation. In Section 6, we
show that our open bisimilarity cannot be represented using the previously history-indexed
semantics. Finally, Section 7 provides conclusions and outlines future work.

2 Related Work

We touch on some related work on process calculi featuring mismatch and work on open
bisimilarity.

Parrow and Victor introduced the fusion calculus [21], which is a unified communication
model where name equivalence and name fusion replace name-passing and scope extrusion,
simplifying the core concepts of mobility. The Fu and Yang provided complete axiomatizations
for fusion calculus both with and without the mismatch operator. The paper discusses how
mismatch can complicate the semantics but is essential for certain types of behavioral
equivalences and conditions. In [11], the authors investigated weak bisimulation congruences
for finite m-calculus processes, focusing on challenges posed by the mismatch operator. The
paper demonstrates that the standard definition of weak open congruence leads to problematic
equivalence relations when mismatch is included, and proposes two alternatives: late open
congruence and early open congruence.

Open bisimulation shares many similarities with symbolic bisimulation, in particular in
its “lazy” treatment of name instantiations. Symbolic bisimulation has been extensively
studied for different calculi: For value-passing CCS, Hennessy and Lin [12] generalised the
standard notion of labelled transition graphs to symbolic transition graphs, allowing the
operational semantics of value-passing processes to be represented in finite terms even when
the underlying transition graph is infinite. This work introduces algorithms applicable to early
and late bisimulation equivalences, extending the scope of standard bisimulation techniques.
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Symbolic bisimulation for the m-calculus was addressed in [7], where symbolic transition
systems are tailored to handle mobility and dynamic process communication, culminating
in a sound and complete proof system for symbolic bisimulation. Delaune et al. proposed
a symbolic semantics for the finite applied 7-calculus [10], adapting symbolic bisimulation
for modeling cryptographic protocols. While this approach is sound, it is not complete,
primarily automating observational equivalence under constraints from external inputs. A
more comprehensive framework was proposed in [16], which achieved both soundness and
completeness for symbolic bisimulation in the full applied 7-calculus. This framework also
supports replication and other complex constructs, making it suitable for equivalence checking
in dynamic and security-critical systems.

The original semantics provided for the applied m-calculus is sound and complete with
respect to observational equivalence [1]. However, as we know, observational equivalence is
not closed under input prefix, as per its definition in the context of protocol verification. This
distinguishes it fundamentally from open bisimulation. Early work on symbolic bisimulation
for CCS and its subsequent extension to the w-calculus can be characterised as “classical”.
In these approaches, labelled transition semantics are indexed by constraints — arising from
name equality or inequality in the m-calculus, and more complex terms in the applied 7-
calculus. Different solutions to these constraints correspond to different continuations of
a given symbolic process. The constraint languages employed are based on classical logic,
inherently incorporating the principle of the excluded middle for names (x =y V z # y). As
demonstrated in [3], open bisimulation, in contrast, is inherently intuitionistic. Consequently,
symbolic bisimulations are distinct from open bisimulation at that fundamental level.

Horne and Mauw have explored open bisimilarity in the applied m-calculus that features
mismatch. In [14], they introduced a generalisation of the distinction relation to sets
of inequalities between terms, where inequalities act as constraints that exclude unifying
messages under an equational theory. Their framework was developed to support a chain of
techniques for verifying privacy properties in a real-world ePassport case study, highlighting
the practical relevance of open bisimilarity in applied security protocols. While their work
demonstrates the applicability of the concept in a more expressive calculus, it does not
establish a congruence result for the proposed bisimilarity. In contrast, this paper addresses
this theoretical gap in the simpler setting of the w-calculus with mismatch, where many of
the core challenges of compositional reasoning arise.

3 Preliminary definitions

In this section we review the syntax and operational semantics of the finite fragment (i.e.,
the fragment without replication or recursion) of the m-calculus and open bisimilarity.

3.1 7 calculus

We assume a countably infinite set of names, whose members are ranged over by lower-case
letters such as x,y and z. Figure 1 shows the original syntax and operational semantics of
the m-calculus. We denote with P the set of processes.

There are three kinds of prefixes for processes, i.e., the silent prefix, the output prefix,
and the input prefix, indicating the capabilities of actions. The silent prefix represents an
internal action that is not visible to the outside environment. It is used to model internal
computation or synchronization that does not involve any communication with the external
environment. The output prefixes represent an action where the process sends the name
y along channel z. In free output Ty, the name y is not bound by the action, meaning it
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mu= 71 (silent) P:= 0 (deadlock)
Ty (free output) ve.P (new)
z(y) (input) m.P (action)
[x =y]P (match)
PP (par)
P+ P (choice)
n J N
_ (AcT) P—Q =z §§an(77) U fn(m) (Res) Qaz)z #T (OpEN)
w.P — P vz.P —vz.Q vz.P —= Q@
z(z) / z(2) ’ Ty / =(2) ’ ™
F —)f Ci— (CLOSE) F— jj Ci— (Cowm) P#f (Sum)
PlQ = vz.(P'|Q) P|Q — P'|Q"{v/=} P+Q—R
P=Q bn(:) nin(R) =0 (PAR) _Pr=eQ ?r (MATCH)
PIR — Q|R [x=2]P —Q

Figure 1 The original syntax and late transitional semantics of the m-calculus. Their symmetric
variants are omitted.

is a freely chosen name. The input prefix represents an action where the process waits to
receive a name on channel z, and the received name is bound within the scope of the input
action. The processes can be of the form defined in Figure 1. Besides the action prefixes
that we just introduced, vz.P represents the creation of a new, private channel x within the
process P. The scope of the name z is restricted to the process P, meaning x is not visible
outside P. Match represents a conditional process that behaves like P can evolve if and only
if z is equal to y. Parallel composition represents two processes running in parallel. Both

processes can proceed independently or interact with each other through communication.

Choice represents a process that can choose to behave either like process P or ). The choice
is nondeterministic, meaning the process can proceed with either option.

3.2 Distinction and open bisimilarity

As previously mentioned, names in the m-calculus are not inherently distinguished by how
they can be instantiated. However, there are situations where we need to impose additional

requirements on certain names, such as ensuring that some specific names remain distinct.

Therefore, distinctions [22] are used to manage and track name inequalities explicitly. They
help to maintain and enforce the conditions under which two processes can be considered
behaviorally equivalent, taking into account the different ways names can be treated (bound
or free) and ensuring that comparisons are meaningful even when names are abstracted or
bound within processes.

A substitution is a mapping from names to names that is the identity everywhere except for
a finite set of names, called its domain. Substitutions are ranged over by o, 6, p, possibly with
subscripts. We use the notation {y;/x1,...,yn/z,} to enumerate a substitution mapping
x; to y;, for i € {1,...,n}. Given a substitution ¢ and names = and y, the substitution
oly/z] is defined as follows: (oly/z])(z) = o(2) if z # z, and o(z) = y. Applications of a
substitution to a syntactic expression (terms, processes, etc) are written in a postfix notation,
e.g., Po denotes the result of applying ¢ to P. This notational convention is extended
homomorphically to sets and relations. We require that the application of a substitution to
an expression containing binders are capture-avoiding.

30:5

CONCUR 2025



30:6

Open Bisimilarity for the 7-Calculus with Mismatch

» Definition 1 (Distinction). A distinction D is a finite symmetric and irreflexive relation
on names. A substitution o respects D if (x,y) € D implies xo # yo. We denote with D the
set of all distinctions. Given sets of names A and B, the distinction A ® B is defined as:

A® B ={(a,b),(b,a) |a € A,be B,a # b}

This means that A ® B contains all ordered pairs (a,b) and (b,a) such that a is an element
of A, b is an element of B, and a # b.

Sangiorgi defined the open bisimilarity as a family of equivalence relations indexed by
distinctions. Given two family of relations R = {RP}pep and S = {SP} pep, we say R is
subsumed by S, written R < S, if for every D € D, we have RP C SP.

» Definition 2 (Sangiorgi's open bisimilarity). A family of relations R = {RP}pep is an open
bisimulation if for every D € D , whenever PRPQ:

For all o respecting D, (Po) RP7 (Qo);

If P P’ and o is not a bound output, then 3Q’ s.t. Q = Q' and P'RPQ’;

If P LZ)> P’ and z is fresh, then 3Q' s.t. Q ﬂ) Q' and P'RP'Q’, where D' =

DU ({z} @ In(P,Q)).
We refer to ~2 as open D-bisimilarity iff there exists an open bisimulation R and an RP € R
such that PRP Q. Open bisimilarity refers to a special case of open D-bisimilarity where
D =.

However, as we mentioned in the introduction, directly adding mismatch to Sangiorgi’s
open bisimilarity would break the monotonicity property. The mismatch operator typically
behaves as "if x # y then P" [20], formally,

L@ (MISMATCH)
[ #y]P — Q (1)

This definition is obviously not closed under substitution. As we illustrated in the
introduction, [z # y]P can execute as P, but when we apply {v/=} to the process, [y # y|P
cannot perform any transitions.

4 History-indexed formulations of bisimilarity

As mentioned in the introduction, maintaining the monotonicity property requires imposing
certain restrictions on name substitution. Several works have attempted to address this
challenge. In this section, we review existing approaches to incorporating mismatch into
open bisimilarity and discuss the shortcomings of each approach.

Horne at al. [13] presented an extended open bisimilarity using the notion of history h,
which is a list of names annotated with either ¢ (denoting an input name) or o (denoting an
output name). A history h captures the sequence of names that a process sends and receives
during its transitions. It is essentially a (partial) trace of a process. The use history-indexed
open bisimulation was first proposed in [25] for the spi-calculus [2], a cryptographic extension
of the m-calculus, although the idea dates back to the encoding of the 7-calculus in a logical
framework [27], where the quantifier alternation used in statements surrounding bisimilarity
captures the notion of histories we use here. A history or a quantifier alternation gives
rise to an implicit encoding of distinction, and is very natural from both the logical and
an implementation perspective. The latter, for example, could build on existing logical
frameworks (such as [5]) to provide a simple implementation of open bisimulation. It is thus
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a natural question to ask whether one could reformulate open bisimulation using histories to
encode distinctions. The answer for the case without mismatch is in the affirmative; in the
presence of mismatch, this turns out to be not true. We shall come back to this in Section 6.

We simplify the notion of histories from [25] to include only names, rather than general
terms. Names annotated with o (written as z°) represent the output names that a process
emits in its bound output transitions. Conversely, names annotated with ¢ (written as
2%) signify the symbolic inputs (i.e., variables) received by the process. The difference
between these two types of annotations is formalised in the following definition of respectful
substitutions.

» Definition 3 (Substitutions with respect to a history). A substitution o respects h if, for all
W', k" and x such that h = h'-z°-h", we have xo = x and yo # x for ally € I'.

In this context, the o-annotated names act like constants, while i-annotated names act
like scoped variables, with their scoping determined by their relative positions in the history.
Viewing a history as a trace of names that a process inputs and outputs, this scoping ensures
that a name received earlier in the trace cannot be identified with a fresh name outputted
later. Tiu and Miller have discussed in [27, Corollary 22] that open bisimulation indexed by
histories does not affect the resulting notion of bisimilarity compared to Sangiorgi’s original
definition.

Given a history h, it is easy to generate a distinction that can functionally replace h. Let
P and @ be two processes, h be a history. Define a distinction D}, from h such that

Dy, = {(w,z;) | i # j and z;,2; € h°, or i < j and x; € h',x; € h°} (2)

The converse does not hold, as not all possible distinctions can be represented as histories.
However, the open bisimilarity relation (i.e., the largest open bisimulation), defined via the
history-indexed style, coincides with Sangiorgi’s original definition (Definition 2), as one can
show that open-bisimilarity between two processes (under the empty distinction) can be
witnessed by a bisimulation relation indexed only by distinctions that are representable as
histories [27].

With the history-indexed semantics, the operational semantics of mismatch can be adapted
as follows.

h:PLQ hlEax#y
h:le#yP = Q

(MISMATCH)

where h =z #y iff xzo # yo for all o respecting h. Other operational semantics can be
indexed by history similarly.

This semantics successfully preserves the monotonicity rule mentioned in the introduction.
The history-indexed monotonicity rule can be stated as: Suppose h : P = Q. Then
ho : Po =% Qo for all o that respect h and satisfy for all = € bn(r), yo = z iff 2 = y. The
proof that monotonicity holds with the history-indexed mismatch rule is provided in [17].

While the monotonicity issue has been resolved, the congruence problem remains challen-
ging. Let us look at a history-indexed open bisimilarity defined in [17].

» Definition 4 (History-indexed open bisimilarity [17]). An open bisimulation is a history-
indezed collection {B! | h € H} of symmetric relations on processes such that whenever
PBrQ:

For all substitutions o respecting h, we have PoB" Q.

Ifh: P % P then 3Q" s.t. h: Q = Q' and P'BMQ’, where « is of the form T or Ty;

30:7

CONCUR 2025



30:8

Open Bisimilarity for the 7-Calculus with Mismatch

Ifh:P M P’ and z is fresh, then Q" s.t. h: Q M Q' and P'B"*"Q';

Ifh:P 2B P oand = is fresh, then 3Q’ s.t. h: Q =), Q' and P’Bg'ziQ',
The pointwise union of all open bisimulations is denoted by {~"| h € H}. We refer to ~" as
open h-bisimilarity. We write P ~" Q if there exists an open bisimulation {B" | h € H}
and a history h' with only i-annotated names such that PBZ/Q and (P, Q) C h'. We call
P and @ open bisimilar.

This definition aligns with Sangiorgi’s open bisimilarity (Def. 2). In the third clause with
bound output transitions, the history (environment) is updated with a fresh private name,
which serves the same function as adding the fresh name to the distinction set.

This definition is not congruent in the presence of the mismatch operator. The process
[z # y]7 under the history h = 2% - y® is open bisimilar to 0, as there exists a respectful
substitution {#/y} that invalidates = # y, thereby preventing the 7-transition from [z # y]7.
However, this open bisimilarity does not extend to a(z).[z # y]7 and a(z).0 under the history
h' = y' - x°, since [x # y] always holds under the history &'.

To address this limitation, a few studies have been conducted. Horne et. al. [13] provided
an extended version of the history-indexed open bisimilarity that allows to extend histories
in the past, which gives rise to a strictly coarser semantics. Their definition can be stated as
follows.

» Definition 5 (Extended open bisimilarity [13]). A symmetric relation R indexed by an
environment is an open bisimulation whenever, if PR"Q the following hold:
For all o respecting h, PeR" Qo ;
For any history h/, we have PRh/‘hQ;
Ifh: P35 P and « is of the form T or Ty, then 3Q’ s.t. h: Q = Q' and P'R"Q’;
IFh: P29 P and = is fresh, then 3Q s.t. h: Q = Q' and P'RM°().

Ifh:P ﬁ) P’ and z is fresh, then Q" s.t. h: Q —>I(Z) Q' and P'Rhw'iQ/.

Open bisimilarity ~, is defined such that P ~, Q holds whenever there exists an open
bisimulation R such that PR®1®2"+*nQ holds, where fn(P) U(Q) C {z1,22,...,2n}.

The above definition extends the original open bisimilarity by the second clause allowing for
the prepending of history, enabling the incorporation of additional environmental information.

As it turns out, however, this semantics is not compositional.
» Example 6. We look at the following two processes:
P =vk,Lak.al.a(z).([k = 2]t + [k # 2]T) v.s. vk Lak.ala(z).(0=zlT+[L £ 2]T) =Q

Under Definition 5, P and @) are open bisimilar (so we are treating a as an -annotated
name). After three transitions, we compare

P=lk=z2r+k#£2]T vs. [U=2r+[({#£2]T =Q

under the history a’ - k° - £° - z* We cannot distinguish the two processes because the history
does not indicate the equality either between k and z or between ¢ and z. However the above
processes can be distinguished when placed in the following context.

a(w) | [
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A possible partial trace for a(w) | P is as follows:
a(w) | P 25 a(w) | veaba(z).([k = 2] + [k # 2]7)
@ vl.al.a(2).([k = 2|7 + [k # 2]7)

2O, a(2).(lk = 27 + [k # 27)

), ([k = 2]7 + [k £ 2]7)

These transitions would have to be matched by a(w) | @ for the two processes to be bisimilar,
so proving their bisimilarity reduces to proving bisimilarity of P’ and @’ under the history
h =a’.k°-w'-£°-z*. So let us suppose that P’ and @’ are bisimilar under k. Since bisimilarity
must be closed under respectful substitution, and since {w/z} respects h, it follows that

P'{w/:} = [k = w|T + [k # w]T must be bisimilar to  Q'{w/z} = [{ = w|T + [ # w|T

under b’ = h{w/:} = a' - k° - w® - °. According to the definition of respectful substitutions in
Definition 3, £ # w holds, yet neither k = w nor k # w hold. Thus Q'{w/-} can perform a T
transition while P’{w/>} cannot, contradicting their supposed bisimilarity.

In another attempt to address the issue [17], the authors resolved the monotonicity problem
leveraging history-indexed operational semantics. Then to address the congruence property,
they introduced the concept of rigidisation to refine open bisimilarity. The rigidisation of
names allows us transforming an i-annotated name into an o-annotated name.

» Definition 7 (Rigidisation relation). The relation C,, is the smallest relation on histories
such that:

hgmh’ iﬁh:h1~Ii'h2 andh':h1~a:"~h2.

h Cro h.

Cro 18 transitively closed.

Then open bisimilarity is extended by adding the second clause using the rigidisarion relation.

» Definition 8 (Rigid open bisimilarity). An open bisimulation is a history-indexed collection
{B | h € H} of symmetric relations on processes such that whenever PBIQ:

For all substitutions o respecting h, we have PoB Qo.

For any h' Dy h, we have PBY Q.

Ifh:P % P then3Q s.t. h: Q% Q' and P'B"Q’, where o is of the form T or Ty;

Ifh:P ﬁ) P’ and z is fresh, then Q" s.t. h: Q & Q' and P'B"*"Q';

Ifh:P P& proand = is fresh, then 3Q" s.t. h: Q LGN Q' and P’Bg‘ziQ’.
The pointwise union of all open bisimulations is denoted by {~"| h € H}. We refer to ~" as
open h-bisimilarity. We write P ~" Q if there exists an open bisimulation {B" | h € H} and
a history h with only i-annotated names such that PB*Q and fn(P,Q) C h. We call P and
Q@ open bisimilar.

This definition is also not compositional, as the following counterexample shows.
» Example 9. Consider the following processes:
P =a(2).a(y).a(z).([x # ylr.([x = z]7+[x # 2]7)) v.s. a(z).a(y).a(z).([x £ylT7.7) =Q

These two processes are rigid open bisimilar according to Definition 8. To see this, observe
after three inputs we get to

([z # Y7z = 27 + [z # 2)7) ~2 V" [z £ ylrr
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There are two minimal ways to pass that guard, using the rigidisation. One approach is to
directly rigidise 2% to #°, which enables the condition [x # 2]. Alternatively, we can first set
x = z, and then rigidise z, in which case [x = z] is enabled. However, when these processes
are placed in the following context, they are no longer rigid open bisimilar.

C[] = vy.b(z).b(y).b(2).va.(a(z).a(y).a(z)|[-])
Placing the above processes in the given context and executing for 6 steps we get:
[0 # ylr.(fo = 27 + [1 # 2)7) 0 TV [w £ ylrr

Now, since x appears before y is output in the history, we have x # y, so we reach the
following after another 7-transition.

[ =z]7+ [x # 2|7 Nﬁ’:'”i‘yo‘zi T

Trivially process 7 on the right hand side can make a 7-transition, however, since neither
x = z nor x # z are decided yet in this history, that 7-transition cannot be matched on the
left hand side. This gives us a distinguishing strategy.

Therefore we violate the fundamental property of open bisimilarity — that it is a congruence.
That is we have P ~ @, but not C[P] ~" C[Q].

5 A compositional open bisimilarity with mismatch

We now present our approach to incorporating mismatch in open bisimulation in a way that
ensures the resulting bisimilarity is a congruence.

5.1 Syntax and operational semantics

This section introduces a variant of the m-calculus that incorporates mismatch. The labelled
operational semantics are indexed by distinction D to address mismatch in open terms, where
names are treated as variables instead of distinct constants. The syntax of processes is as in
Figure 1, extended with the mismatch operator [z # y]P.

Intuitively, the mismatch operator [z # y]P is interpreted as saying that that process
behaves like P if “x and y can never be equal”, that is, £ and y can be proven distinct.
This interpretation obviously depends on the context of name distinction under which this
process is executed, so the transition judgment in our operational semantics includes an
explicit reference to a distinction. The rest of the operators are interpreted in the same way
as introduced in Section 3.1.

In the context of open bisimulation, names within a process can be substituted throughout
execution. Consequently, the operational semantics for mismatch must account for all possible
instantiations. To address this, we present the operational semantics of the w-calculus with
mismatch in Figure 2. Our formulation introduces a slight variation from the standard late
operational semantics by incorporating a distinction index for each transition. This index
is crucial for including the mismatch operator. Another key point to observe is that the
distinctions are extended with a fresh name in the OPEN and RES rules when the v-binder
appears in process expressions. This notation ensures that such names remain unchanged by
respectful substitutions. This is crucial for dealing with mismatch when a variable is bound
by a v-binder, e.g., to conclude that vz.[x # y]T can perform a 7-transition:

(Acr)
(MISMATCH)
(RES)

{(z,9), (y,2)}: 7 50
{(x,y), (y,l“)} : [-73 # y]T 5o
0:vefr#£ylr 50
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_ (AcT) D':P—Q z¢&n(m) DW: DU ({z} ® fn(vz.P)) (REs)
D:nw.P— P D:vz.P—vz.Q

D/:P&Q z#x D' =DU{z}®(vz.P)) (OPEN) D:P&)P' D:QMQ'

D:vzp 22 D:PIQ D va(P|Q)

(CLOSE)

. Ty / . z(z) , . E _
D.P—>PTD.Q—>Q (Com) D:P—=Q bn(:)ﬁfn(R) @(PAR)
D: P|Q — P'|Q'{v/:} D:P|R— QIR

.pZ D:PZ D:PZ ,y) €D
L—ZR (Sum) —_)?T (MATCH) —Q f) (MISMATCH)
D:P+Q—R D:jz=2]P —Q D:z#ylP —Q

Figure 2 The late transition semantics with mismatch of the w-calculus indexed by distinction D.

Their symmetric variants are omitted. For any transition D : P — @ that z is a bound name in P,
we require z to be fresh from D.

» Lemma 10. Let D be a distinction and suppose 0,0 are substitutions such that o respects
D. Then 0 respects Do if and only if o - 6 respects D.

The following monotonicity property of processes ensures that any substitution does
not diminish the process’s capability for action. We show that our extended operational
semantics with mismatch preserves the monotonicity property.

» Lemma 11 (Monotonicity). Suppose D : P = Q. Then Do : Po =% Qo for all o that
respect D and satisfy for all x € bu(n), yo =z iff v = y.

Proof. We prove the lemma by induction on the transition rules. We show here an inductive
case involving the MISMATCH rule.
D:P5Q (x,y)€D
D:fx#yPHQ

We want to prove that if D : [z # y]P 5 Q then Do : [z0 # yo]Po =5 Qo for all o
respecting D. From the MISMATCH rule we have D : P ™ Q and (x,y) € D. By induction
hypothesis, Do : Po =% Qo for all o respecting D. Also from Lemma 10, (zo,yo) € Do.
Then following the Mismatch rule, we have

Do : Po % Qo (wo,yo) € Do
Do : [xo # yo|Po =% Qo

5.2 Open bisimilarity with mismatch

Indexing the transition rule by the distinction D resolves the monotonicity problem. However,
this does not address all the issues. The congruence property of open bisimilarity is still not
guaranteed. We look at a simple example.

» Example 12. Consider the following two processes: P = [z # y|7 and @ = 0. They are
bisimilar (P ~2 Q) under Sangiorgi’s definition (Def. 2), because = and y are free names so
that D = 0. Yet if we place the above processes in the context a(x).{-},

a(x).([x # yl7) %5 a(x).0  where D = {(z,y), (y,2), (z,a), (a,z)}.
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Then after the first bound output transition, the resulting processes are no longer bisimilar
according to the same definition. The former process can make a 7-transition because
(x,y) € D, which implies that  and y cannot be equal under all respectful substitutions. In
contrast, the latter process cannot make such a transition.

We then need to revise the definition of open bisimilarity to address the congruence
problem. The below definition slightly extends Definition 2 by adding the second clause,
imposing the closure of open bisimulation under arbitrary extensions of distinctions. For
clarity and convenience in subsequent proofs, for the rest of the paper, we denote open
bisimilarity as a ternary relation, relating triplets of two processes and a distinction.

» Definition 13 (Open bisimilarity). An open bisimulation is a ternary relation R C PxP xD
such that R is symmetric (i.e., (P,Q,D) € R iff (Q,P,D) € R) and for all (P,Q,D) € R:
For all o respecting D, (Po,Qo,Do) € R
Forall D' D> D, (P,Q,D') € R
IfD: P % P and a is not a bound output, then 3Q" such that D : Q = Q' and
(P',Q',D)eR

IfD:P iz% P’ and z is fresh, then Q" such that D : Q i(—z)> Q' and (P',Q',D’) € R,

where D' = DU ({z} ® fn(P, Q))

Open D-bisimilarity ~ is such that P ~P Q whenever there exists an open bisimulation
R such that (P,Q,D) € R. We write P ~ Q to denote P ~? Q, i.e., they are open bisimilar
under the empty distinction.

Consider again Example 12. We have shown that [z # y]r ~2 0, for D = ), under
Definition 2. However, according to the second clause in our new definition, we can add
{(z,9), (y,2)} to D and then D : [z # y]r = 0 while 0 cannot make such transition.
Therefore [z # y]7 and 0 are not open bisimilar by our extended definition.

Similarly, we look at Example 6:

P =vk,Lak.al.a(z).([k = 2]t + [k # 2]T) v.s. vk Lak.ala(z).(0=z]T+[L#£2]T) =Q

We have shown that P and @ are open bisimilar under the history-indexed open bisimilarity
(Def. 5). The history is k°-£°-z%, which corresponds to a distinction D = {(k, ¢), (¢,k)}. By our
new definition, however, we could define D’ O D such that D’ = {(k,£), (¢, k), (¢, 2),(z,£)}.

The names ¢ and z can never be equal under distinction D’ while neither & = z nor k # z
is decided yet. Thus there is a distinguishing strategy where the latter process plays a 7 but
the former cannot match the transition. Hence, under our new definition, P and @ are not
open bisimilar, which avoids the non-congruence problem.

Problems with Example 9 can be resolved in a similar manner:
P =a(2).a(y).a(x).([x £ ylr.([x = 2]t + [z £ 2]7)) v.s. Q= a(2).a(y).a(zx).([x # y]r.T)

Initially, the distinction D = (), as there are no bound-output names in the processes.
Under our new Definition 13, if we extend D to D’ = {(z,y), (y, )}, these processes are no
longer open bisimilar. This is because x # y is guaranteed, while the equality between z
and z remains undecided. This extension avoids the non-congruence issue.

A well-formulated definition of open bisimilarity should be an equivalence relation,
satisfying the properties of reflexivity, symmetry, and transitivity.
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» Theorem 14. The open D-bisimilarity is an equivalence relation.
Reflexivity: For all P and D, P ~P P.
Symmetry: For all P,Q,D, if P ~P Q, then Q ~P P.
Transitivity: For all P,Q,V and D, if P ~P Q and Q ~P V, then P ~P V.

Proof. The proof is provided in Appendix 8.1. <

To prove that our open bisimilarity (Def. 13) is a congruence, we must demonstrate that
if two processes are open bisimilar, they remain open bisimilar under all possible contexts.

First, since the behavior of distinctions within contexts depends on the structure of the
context, we define a formal mechanism to update a distinction D when it is placed within a
context C[-]. Specifically, if the context includes a restriction operator vz, which binds the
name z, the distinction is updated by removing all references to z from D (as z becomes
local to the context). For all other contexts, the distinction D remains unchanged.

This mechanism ensures that distinctions accurately reflect the constraints on free names
in the process, while adhering to the scoping rules imposed by restrictions.

Given a distinction D and a name z, we denote with D \ z the distinction obtained from

D by removing all pairs of names in D containing z, i.e., D\ z = {(z,y) |  # z and y # z}.

» Definition 15 (Distinction update under context). Let C[-] be an arbitrary context, and
D € D be a distinction. We define the distinction C[D] as follows:

C[D] = {C/[D] \z ifCl]=vz.C'[]

D otherwise

Then the congruence of open bisimilarity can be formally stated as follows:

» Theorem 16. Open bisimilarity is a D-congruence. Specifically:
If P ~P Q, then C[P] ~CIPL C[Q] for any context C.

The core goal of the proof is to show that the relation (C[P], C[Q], C[D]) is included in
bisimilarity. The most direct and intuitive approach would be to construct a bisimulation that

relates them explicitly and verify that it satisfies the required properties of a bisimulation.

However, finding such a bisimulation relation directly can be challenging and computationally
expensive, especially when dealing with complex contexts, distinctions, and substitutions.

To address this, we adapt the up-to technique, a powerful method introduced by Milner
and later developed extensively by Sangiorgi and others [24, Chapter 2.3], which simplifies
the task of proving bisimilarity by reducing the complexity of direct comparisons. Instead of
checking whether P and @ are directly bisimilar, this technique defines a function F', called a
safe function, which transforms or approximates the bisimilarity relation. By verifying that F’
is safe — that is, F' behaves consistently under various transformations such as substitutions,
context embeddings, and name restrictions — the proof can be carried out more abstractly
and modularly.

The key idea is that instead of requiring a bisimulation to explicitly relate every process
pair at every step, we demonstrate that the function F' preserves the necessary properties of
bisimulation when applied to the transformed processes. In this way, the proof burden shifts
from directly constructing and verifying a bisimulation to ensuring that F' satisfies certain
progression and closure properties. This abstraction makes the up-to technique more flexible
and easier to apply in practice.

Before delving into the proof, we first define strong open progression, which is the
foundation for defining the safe function F.
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» Definition 17 (Strong open progression). Let R and S be ternary relations such that
R, S CPxPxD. We say R strongly open progresses to S, written R ~» S, if whenever
(P,Q,D) € R:

For all o respecting D, (Po,Qo, Do) € S

Forall D' D> D, (P,Q,D') €S

IfD: P 5 P and a is not a bound output, then 3Q" such that D : Q = Q' and

(P,Q',D)e S

IfD:P & P oand s fresh, then Q" such that D : Q EION Q' and (P',Q',D") € S,

where D' = DU ({z} @ (P, Q))

Now we can introduce the safe function. The safe function F' operates on relations and
preserves the progression structure, ensuring that the bisimilarity relation is not broken
during transformations. This property is formalised by the notion of strong safety, which
guarantees that F' behaves consistently with respect to progression.

» Definition 18 (Strongly safe function). A function F is strongly safe if R C S and R ~~ S
implies F(R) C F(S) and F(R) ~ F(S).

We now formally define a strongly safe function and present two key lemmas that describe
its properties. These can be proved similarly to the analogous lemmas in [24, Chapter 2.3].

» Lemma 19. If F is strongly safe and R ~~ F(R), then R and F(R) are included in ~.
» Lemma 20. If F is strongly safe and ~C F(~), then F(~) =~.

To apply the up-to technique, we define the function F' that maps a relation R to a
new relation capturing all possible transformations of R under arbitrary contexts C. The
following lemma establishes that the function F' is strongly safe.

» Lemma 21. Let F be the function
F(R) ={(C[P],C[Q],C[D]) | C is an arbitrary context and (P,Q, D) € R}.

Then F is strongly safe.

Proof. Suppose R C S and R ~» S. We need to prove that F(R) C F(S) and F'(R) ~> F(95).
The inclusion F'(R) C F(S) follows directly from R C S and the definition of F.

To prove the progression, we need to show that if C is an arbitrary context and (P, Q, D) €
R, (C[P],C[Q)],C|D]) € F(R) by definition of F, then the progression conditions in Def. 17
are satisfied. We need to prove each of the claims below.

> Claim 1. (C[P]o, C[Q]o, C[D]o) € F(S) for each o that respects C[D].

> Claim 2. (C[P],C|Q], Ds) € F(S) for all Dg 2 C[D].

> Claim 3. If C[D] : C[P] < P’ and « is not a bound output, then C[D] : C[Q] < Q' with
(P, Q",C[D]) € F(5).

> Claim 4. If C[D] : C[P] @y proand 2 is fresh, then C[D] : C[Q] % Q' with
(P',Q',C[D)) € F(S) where C[D] = C[D|U ({z} @ mn(C[P], C[Q])).

We present the proof of Claim 2 here, as it involves the key clause introduced in our
extended definition of open bisimilarity. The remaining three claims are proved by induction
on C, which requires a thorough and exhaustive case analysis. Complete proofs are provided
in Appendix 8.2.
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There are two cases to consider for Claim 2. In the first case, we have that the context
C[] does not contain any v-binders binding a name in Dg, so we have C[Dg] = Dg. Let
Dy = DUDg. Then Dy O Dg and C[D;] = Dg. From the assumption that R ~» S, we have
(P,Q,Dy) € S, therefore (C[P],C[Q],C[D1]) = (C[P],C|Q)], Ds) € F(S) by the definition
of F. For the second case, suppose that the context C[.] contains a v binder that binds a
name in Dg. We consider the case where C[.] binds exactly one name z in Dg (but this
argument can be generalised to any number of binders). Let D¥ be obtained from Dg by
replacing z with a fresh name w. Since z is a binder in C[.] it follows that C[D] contains no
occurrences of z. So we also have DY D C[D]. Then by the construction in the first case,
we have (C[P],C[Q], D¥) € F(S). Now by Claim 1, we can apply the substitution {z/w},
which respects DY, to obtain (C[P], C[Q], Ds) € F(S) as required. <

Proof of Theorem 16. Let R be an open bisimulation and F(R) defined as in Lemma 21.

Clearly R = F(R) when C[] is empty. Therefore R C F(R). Then F(R) is also an open
bisimulation by Lemma 20. |

6 Alternative definitions of open bisimilarity with mismatch

We reflect here on semantically different definitions of open bisimilarity with mismatch. A
question is whether open bisimilarity, as in Def. 13, has an equivalent definition in terms
of histories, by extending Def. 5 to allow more histories to be induced. In particular, an
extended definition could permit more permutations such that inputs behave like universal
quantifiers and outputs of fresh names like nominal quantifiers. This is a natural question,
since several deep embeddings of the w-calculus work in this way.

Tt turns out that using (linear) histories would result in a distinct semantics. Consider
the following example process.

P=lzFyllw#z|([z # A7+ [y # 27+ [z Zwr + [y # wlr) vs. Q=[x F# yllw# 2|7

Clearly, according to Def. 13 these processes are not open bisimilar, since we can extend the
set of distinction with the inequalities x # y and w # z without having to decide whether
any of the other inequalities hold.

If however a ground output in a history were used to induce x # y and w # z then we
require a history with z* before y° or z° before 3. In the same history we also require w’
before z° or 2° before w?. Without loss of generality suppose that z? is before y° and w? is
before z° in a history. Now, since a history is an ordered sequence of inputs and outputs we
have that w? is before y° or y° is before w?, as considered here.

If w? is before y°, then we have that w # y holds and hence a 7 transition is enabled for

both processes.

If 4° is before w?, then since we assumed also that 2° is before y° and w® is before 2° we

have that z? is before z°. Hence = # z holds and hence a 7 transition is enabled for both

processes.
Thus, regardless of how the definition is constructed, if a definition of open bisimilarity relies

on a linear history to force distinctions, the processes P and @) above will be open bisimilar.

7 Conclusion and future work

This paper presents a novel definition of open bisimilarity for the 7-calculus that integrates
the mismatch operator. Mismatch, while crucial for modeling protocols requiring explicit
name distinctions, introduces challenges such as violating the congruence property and
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breaking monotonicity. Building on Sangiorgi’s original framework, we address these issues by
introducing a distinction-indexed operational semantics that allows for arbitrary extensions of
distinctions. Our approach ensures that open bisimilarity remains a congruence relation even
in the presence of mismatch. While prior approaches that relied on history-indexed relations
or rigidisation strategies did not achieve compositionality, our method successfully addresses
this limitation while also providing greater simplicity and conceptual clarity. Through formal
proofs, we demonstrated that the extended open bisimilarity is both equivalent and congruent.
This makes it a robust and expressive framework for reasoning about mobile processes and
communication protocols, enabling better modeling of real-world systems.

As immediate future work, we plan to formalise the results of this paper in the theorem
prover Isabelle/Nominal [28], building on an existing formalisation of the m-calculus [6].

Another avenue for possible future work is to generalise our transition semantics to be
parameterised by logical constraints. Logically speaking, both distinctions and substitutions
can be seen as expressing a conjunction of (in)equalities between names. This can be gener-
alised in at least two possible directions: one in which we allow expressions of (in)equalities
between (algebraic) terms (like those arising from the transition semantics for the applied
m-calculus [1,14]) and another where we allow other logical connectives (e.g., disjunction,
implication, quantifiers). In such an extension, it is then natural to ask how such a logical
constraint should be interpreted semantically, e.g., whether it should be viewed as a formula
in classical (first-order) logic, or intuitionistic logic. We conjecture that the first interpretation
(in classical logic) would give rise to the notion of symbolic bisimulation [12], and the second
interpretation would give rise to open bisimulation. Work on symbolic bisimilarity for the
-calculus [8] takes a step in this direction. The t-calculus is parametrised on a constraint
system that can be very general. Notably in Sec. 7 of the aforementioned paper a constraint
logic is defined that must be classical for the completeness results in that paper to hold. By
simply working without the law of excluded middle, we hypothesise that a notion of open
bisimulation for i-calculi is obtained where the constraint logic can otherwise be general.
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8 Appendix
8.1 Proof for Lemma 14

Proof. We illustrate the proof for transitivity here (the other cases are straightforward).
By definition, ~ since P ~” @, there exists an open bisimulation relation R; such that
(P,Q, D) € R;. Similarly, there exists a Ry such that (Q,V, D) € Rs.
Let R3 = {(P,‘/,D) | (P,Q,D) € Ry, (Q,‘/,D) S Rg} ObViOUSly, (P,‘/,D) € Rs, so it
suffices to show that R3 is an open bisimulation.
Suppose (P,V, D) € Rs, then (P,Q,D) € Ry and (Q,V,D) € Rs. For all o respecting
D, we have (Po,Qo,Do) € Ry, and (Qo,Vo,Do) € Ry. Then by definition of R,
(Po,Vo,Do) € Rs.
Let D’ be a distinction that D’ O D. By definition of open bisimilarity, (P,Q,D’) € Ry
and (Q,V,D’) € Ry. Hence by definition of Rs, (P,V,D’) € Rs.
If D: P % P and « is not a bound output, then 3Q" such that D : Q = Q' and
(P',Q',D) € Ry. Then 3V’ such that D : V 2 V' and (Q',V’, D) € R,. By definition
of Rg, (P/,V,,D) S Rg.
1 D: P 2% P’ and 2 is fresh, then 3Q’ such that D : Q “%% @ and (P',Q', D') € Ry

where D' = DU({z}®(P,Q,V)). Then 3V such that D : V - V/ and (Q', V', D') €

Ry where D' = DU ({z} @ in(P,Q,V)). By definition of Rz, (P',V’,D’) € Rs. <

8.2 Proof for Lemma 21

Proof. We prove each of the conditions below (each listed as a claim followed by a proof).
> Claim 5. (C[P]o, C|Q]o, C[D]o) € F(S) for each o that respects C[D].

Proof. Because R ~~ S, (Pf,Q0, D) € S for all § respecting D and (C[P6], C|Q0],C[D¥0]) €
F(S) by definition of F.

We prove the statement by induction on C. When C = [-], (C[P], C[Q],C[D]) = (P, Q, D).
Then C[Ploc = Po,C[Q]oc = Qo,C[D]o = Do. Since R ~ S and (P,Q, D) € R, we have
(Po,Qo, Do) € S. Thus (C[P]o,C[Q]o,C[D]o) € S C F(S).

When C' = vz.C'[],C[D] = C'[D] \ z by Definition 15. Since substitutions must be
capture-avoiding, without loss of generality, we can assume that z is not in the range of o.
Let o/ = o[z/z], i.e., ¢’ is obtained from o by removing the mapping for z. We have that ¢’
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respects C'[D] \ z, and since z is a bound name C[-], we also have C[P]o = (vz.C'[P])o =
vz.(C'[Plo’) and C[Qlo = (vz.C'[Q])o = vz.(C'[P)o’) and (vz.C'[D]))o = (C’'[D] \ z)o =
C’'[D]o’. By induction hypothesis, (C'[Plo’,C’'[Qlo’,C'[D]o’) € F(S). By definition of F,
(C[P]o, C[Qlo,C[D]o) € F(S).

When C = M | C’[], by Definition 15, C[D] = C’[D]. By induction hypo-
thesis, (C'[P]o,C'[Q]o,C'[D]o) € F(S) for all o respects C’'[D]. By definition of F,
(M | C'|Plo,M | C'"|Qlo,M | C'[D]o) € F(S). Because o also respects C[D], ((M |
C'[P))a, (M | C'[Q))a, (M | C'[D])o) € F(S).

Other cases can be derived similarly. <
> Claim 6. (C[P],C[Q],Ds) € F(S) for all Dg 2 C[D).

Proof. There are two cases to consider. In the first case, we have that the context C|-] does
not contain any v-binders binding a name in Dg, so we have C[Dg] = Dg. Let D1 = DU Dg.
Then D; D Dg and C[D;] = Dg. From the assumption that R ~~ S, we have (P,Q, D1) € S,
therefore (C[P],C[Q],C[D1]) = (C[P],C[Q],Ds) € F(S) by the definition of F. For the
second case, suppose that the context C[.] contains a v binder that binds a name in Dg.
We consider the case where C[.] binds exactly one name z in Dg (but this argument can be
generalised to any number of binders). Let DY be obtained from Dg by replacing z with
a fresh name w. Since z is a binder in C[.] it follows that C[D] contains no occurrences
of z. So we also have D¢ D C[D]. Then by the construction in the first case, we have
(C[P],C[Q], D% € F(S). Now by Claim 1, we can apply the substitution {z/w}, which
respects DY, to obtain (C[P],C[Q], Ds) € F(S) as required. <

> Claim 7. If C[D] : C[P] < P’ and « is not a bound output, then C[D] : C[Q] = Q' with
(P, Q' C[D]) € F(S).

Proof. We prove by induction on C.

Case 1. Suppose C =[], so D : P % P’. Since (P,Q,D) € R and R ~ S, we have
D:Q % Q with (P',Q',D) € S. Then (P',Q’, D) € F(S) since S C F(S).

Case 2. Suppose C' = a.C’ (« is not a bound output), then P’ = C'[P] and C[D] = C’[D].
C[D] : ClQ] & C'[Q] by the ACT rule. Let Q' = C'[Q]. Because (P,Q,D) €
R, (C'[P],C'[Q],C'[D]) € F(R) by definition of F. Since F(R) C F(S), we have
(C'[P],C'Q],C'[D]) € F(S), i.e., (P',Q',C[D]) € F(S).

Case 3. Suppose C = vz.C’, then C[D] = C'[D]\z. By the RES rule, C'[D]\z : v2.C'[P] =
vz.P'if C'[D] : C'[P] & P'. By induction hypothesis, we get C'[D] : C'[Q] <> Q" and
(P',Q',C"[D]) € F(S). Then we have C'[D] \ z : v2.C'[Q] < vz.Q" by the RES rule. Also
by definition of F', we get (vz.P',vz.Q',C[D]) € F(S) from (P',Q’,C’'[D]) € F(S).

Case 4. Suppose C = C' | A, A is any process. In this case C[D] = C'[D]. If C[D] :
C'lPl| A% P | A, then C[D](= C'[D]) : C'[P] & P’ according to PAR rule. By
induction hypothesis, C'[D] : C'[Q] < Q" and (P',Q’,C'[D]) € F(S). Then we have
C[D]:C'Q] | A% Q' | A by the PAR rule. From (P’,Q’,C'[D]) € F(S) and definition of
F, we have (P' | A,Q' | A,C[D]) € F(S) as required.

Consider the symmetric case, when A is the process that is acting C[D] : A = A’, then
C[D]: C'[P]| A% C'[P]| A and C[D] : C'[Q] | A% C'[Q] | A" according to PAR rule.
By definition of F, (C'[P] | A',C'[Q] | A’,C'[D] | A’) € F(R) where C'[D] | A’ = C[D].
Then (C'[P] | A',C"[Q] | A", C[D]) € F(S) because F(R) C F(S).
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If we have C[D] : '[P] 22 P; O[D] : A % A', then C[D } C'P | AT va (P |

A"} according to CLOSE rule. From C[D](= C'[D)) : C'[P] — il —= P’ we have C'[D] :
C'[Q] ), Q' and (P',Q’,C[D]') € F(S) where C[D] = C'[D]U ({2} @ in(C'[P],C"[Q]))
by induction hypothesis. Then C[D] : C'[Q] | A = vz.(Q' | A’) by the CLOSE rule. From
(P, Q',C[D]) € F(S) and the definition of F, we have (P’ | A’,Q' | A’,C[D]') € F(S5)
where C[D]' = C'[D]U ({z} ® In(C'[P],C’"[Q])) = C[D] U ({z} ® n(C'[P],C’"[Q])). Then by
definition of F, (vz.(P' | A"),vz.(Q" | 4"),C[Q]) € F(S5).

When C[D] : ¢'[P] ZZ P and C[D]: A %% A, we have C[D] : C'[P] | A T P'{y/:} |
A’ according to the COM rule. By induction hypothesis, C[D](= C'[D]) : C'[Q] —= ) — Q'
so that C[D] : C'[Q] | A & Q'{v/-} | A’, and (P',Q',C[D]) € F(S). Because z is a
placeholder that z ¢ C[D], C[D]{v/-} = C[D]. Then (P'{y/z},Q'{v/z},C[D]) € F(S), and
(P'{v/-} | A", Q'{v/=} | A’,C[D]) € F(S) by definition of F.

The symmetric case is when C[D] : C'[P] 2% P’ and C[D] : @), A’ we have

C[D]: C'[P] | A5 P | A'{y/:}. By induction hypothesis, C[D] : C’[Q] s @' so that
CD]:C'Q] | A= Q' | A'{y/z} and (P',Q',C[D]) € F(S). Then by definition of F,
(P [ A'{y/=}, Q" | A'{y/=}, C[D]) € F(S).
Case 5. Suppose C' = [z # y]C’, then C[D] = C'[D]. According to the MISMATCH rule,
C[D] : [z # y]C'[P] & P' when C[D] : C'[P] = P’ and (=,y) € D. By induction hypothesis,
we have C[Q] : C'[Q] = Q' and (P',Q’,C[D]) € F(S). And by the MISMATCH rule,
C[D]: [x # y)C'[Q] = Q"

Other cases can be proved similarly using the same technique. <
> Claim 8. If C[D] : C[P] —= @y proand 2 is fresh, then C[D] : C[Q] = Q' with
(P, Q",C[D]') € F(S) where C[D]' = C[D]U ({z} ® in(C[P], C[Q])).

Consider the bound output case in Case 2., when C = z(z).C’, P’ = C'[P]. In this
case C[D] = C'[D] \ z because Z(z) is just the abbreviation of vz.Zz. By the ACT rule,

oD : C[Q] 22 ¢'[Q). Let Q' = C'[Q]. By definition of F, (C'[P],C’[Q],C"[D]) € F(R),
Le, (P, @, C[DIU ({z} @ m(C[P], C[Q)))) € F(R) € F(5).

Consider the bound output in Case 3. Consider the RES rule. When C = vy.C’
and C[D] = C'[D]\ y. We have C[D] : vy.C'[P] 2% vy P i C[D], : '[P] 2&s P,
where C[D], = C[D]U ({y} ® fn(C[P])). By induction hypothesis, C[D], : C'[Q)] ﬂ) Q'
and (P',Q',C[D],.) € F(S), where C[D],. = C[D], U ({z} ® in(C'[P],C"[Q])) = C[D], U
({z} ® m(C[P],C[Q])). By definition of F, we have (vy.P’,vy.Q’',C[D]) € F(S) where
C[D) = C[D]U ({z} ® In(C[P],C[Q)])) as required. Also by the RES rule we have C[D] :

vy.C'[Q] 2@, vy.Q’. )
Now we look at the OPEN rule. C[D] : vz.C'[P] — ), P when C[D) : C'[P] = P
with z ¢ {z} UD and C[D] = C[D]U ({z} ® fu(vz.C'[P])). By induction hypothesis,
CID) : C'[Q] 5 @ and (P, Q',C[D]') € F(S). Also we have C[D] : v2.C"[Q] 2% @' by
the OPEN rule. <
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