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Abstract
We establish an assume-guarantee (AG) framework for compositional reasoning about multi-objective
queries in parametric probabilistic automata (pPA) – an extension to probabilistic automata (PA),
where transition probabilities are functions over a finite set of parameters. We lift an existing
framework for PA to the pPA setting, incorporating asymmetric, circular, and interleaving proof
rules. Our approach enables the verification of a broad spectrum of multi-objective queries for pPA,
encompassing probabilistic properties and (parametric) expected total rewards. Additionally, we
introduce a rule for reasoning about monotonicity in composed pPAs.
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1 Introduction

Probabilistic Model Checking [21, 31] studies the automated verification of Markov models
for systems with random behavior. Applications include network and security protocols,
biochemical processes, and planning under uncertainty [40, 33, 20]. Common properties
such as reachability probabilities in Markov decision processes (MDPs) can often be verified
efficiently in PTIME [3].

When the probabilities with which the system evolves are not known exactly, verification
results must be robust towards slight perturbations. Parametric Markov models [14, 28] allow
representing uncertain model quantities – for example the bias of a coin-flip or the probability
of a sensor misreading – using parameters. Feasibility is a fundamental verification problem for
parametric systems and asks whether there is an instantiation of the parameters under which
a given specification holds. Deciding feasibility for reachability probability specifications
in parametric MDPs is ETR-complete, i.e., at least NP-hard and within PSPACE [29].
The dual verification problem that asks if the specification holds under all instantiations
is co-ETR complete. Checking parametric Markov models is therefore significantly more
complex compared to Markov models without parameters.
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The number of system states grows exponentially with the number of system components.
The resulting state-space explosion is an omnipresent challenge when model checking complex
systems, often rendering analysis computationally infeasible. Compositional verification
techniques such as assume-guarantee (AG) reasoning [26, 44] address this problem by
decomposing the verification task into smaller sub-tasks that consider individual components
in isolation. This modular verification approach has been successfully applied in various
domains, including service-based workflow verification [6], large-scale IT systems [7], and
autonomous systems incorporating deep neural networks [42, 43]. Recent advancements
include circular AG reasoning [16] and verification-repair techniques [22]. Extensions to
probabilistic systems have further expanded the scope of AG reasoning, as demonstrated
in works such as [35], where AG reasoning was applied to Segala’s probabilistic automata
(PA) [47] – a compositional extension of Markov decision processes. Automated approaches
to AG reasoning for probabilistic systems have also been explored [19, 36], enabling more
scalable verification. Other works have considered parametric, but non-probabilistic timed
automata [2] as well as parameterized programs [4, 48, 39] – where the concurrent system is
parameterized by the number of processes or threads in a configured instance.

This work introduces a framework for compositional reasoning about parametric probabil-
istic automata (pPA). The case studies presented by Kwiatkowska et al. [35] demonstrate
the practical applicability of AG reasoning within a non-parametric setting. These findings
provide strong motivation for extending this approach to the parametric domain. In this work,
we develop the theoretical foundations of an AG reasoning framework for pPAs, leveraging
results from (non-parametric) PAs [35]. Due to the aforementioned ETR-hardness, composi-
tional reasoning has a large potential and can be crucial to verify complex parameterized
systems that are too large to handle monolithically.

▶ Example 1. Consider a communication system, where a sender S broadcasts messages
to a receiver R through a broadcast channel B. The system is modeled by the parallel
composition S ∥ B ∥ R. The components are faulty: S might face a collision, broadcasting in
B might fail due to message loss, and R might miss broadcasts. The reliability of S, B, and
R is influenced by parameters and the precise values of these parameters vary depending
on network conditions, interference, or other factors. Our goal is to verify that under all
parameter instantiations in a given parameter space R, the message is successfully received
with at least probability 0.7, formally denoted by

(S ∥ B ∥ R), R |= P≥0.7(received).

AG reasoning allows to verify the specification without explicitly considering the (potentially
large) composition S ∥ B ∥ R. To this end, assume that we have established the following
statements:

S, R |=P<0.1(collision) – the probability that S faces a collision is below 0.1
B, R |=P<0.1(collision)→P≥0.8(broadcast) – if B observes a collision with probability below
0.1, the message is broadcast with probability at least 0.8
R, R |=P≥0.8(broadcast)→P≥0.7(received) – If the message is broadcast with probability
at least 0.8, then R receives the message with probability at least 0.7

We reason about the composed system using the AG rule stated in Theorem 33 in Section 5:

S, R |=P<0.1(collision)
B, R |=P<0.1(collision)→P≥0.8(broadcast)

(S ∥ B), R |=P≥0.8(broadcast)

(S ∥ B), R |=P≥0.8(broadcast)
R, R |=P≥0.8(broadcast)→P≥0.7(received)

(S ∥ B ∥ R), R |=P≥0.7(received)
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Contributions. To the best of our knowledge, we provide the first framework for composi-
tional reasoning of parametric Markov models. Our main contributions are as follows.

We introduce and formalize pPAs, i.e., compositional probabilistic automata with para-
metric transitions.
We provide a conservative extension of strategy projections [46, 35] to pPAs, including
a more natural definition based on conditional probabilities. Strategy projections are
essential for correctness of compositional reasoning as they allow to link measures of a
composed model to measures of its constituting components.
We present rules for assume-guarantee reasoning, generalizing an established framework
by Kwiatkowska et al. [35] to the parametric setting – which requires some technically
intricate proofs. The framework applies to ω-regular and expected total reward properties
as well as multi-objective combinations thereof.
We provide a new rule for compositional reasoning about monotonicity in pPAs. Knowing
that a measure of interest – either the probability to satisfy an ω-regular specification
or an expected total reward – is monotone in one or more parameters can significantly
speed up verification [28, 50]. Our rule allows to derive monotonicity w.r.t. a composed
pPA by only determining monotonicity for its components.

We introduce pPAs in Section 2 and discuss strategy projections in Section 3. Section 4
outlines properties of interest and Section 5 presents our AG rules. We outline results for
monotonicity in Section 6 and related work in Section 7. Section 8 concludes the paper.
Proofs omitted in the main part of the paper are given in the extended version [38].

2 Preliminaries

For sets X and Y , let f : X ↪→ Y denote a partial function from X to Y with domain
dom(f) ⊆ X. The projection of f to a set Z is written as f↾Z : (X ∩ Z) → Y . Iverson
brackets J φ K ∈ {0, 1} map a Boolean condition φ to 1 if φ holds and 0 otherwise.

Q[V ] denotes the set of (multivariate) polynomials over a finite set of real-valued parameters
V = {p1, . . . , pn}. A (parameter) valuation for V is a function v : V → R. Evaluating a
polynomial f ∈ Q[V] at v yields f [v ] ∈ R. A region R for V is a set of valuations. For p ∈ V ,
we define the valuation ep with ep(q) = J p=q K for q ∈ V .

A parametric distribution2 for V over a finite set S is a function µ : S → (Q[V ] ∪ R).
Applying valuation v to µ yields µ[v ] : S → R with µ[v ](s) = µ(s)[v ] for all s ∈ S. We
call µ : S → [0, 1] a subdistribution if

∑
s∈S µ(s) ≤ 1 and a distribution if

∑
s∈S µ(s) = 1.

The sets of parametric distributions, subdistributions, and distributions over S are denoted
by DistV (S), SubDist(S), and Dist(S), respectively. For s ∈ S, 1s ∈ Dist(S) is the Dirac
distribution with 1s(s′) = J s′=s K. For sets S1, S2, the product of µ1 ∈ DistV (S1) and µ2 ∈
DistV (S2) is the distribution µ1×µ2 ∈ DistV (S1×S2) with (µ1×µ2)(s1, s2) = µ1(s1)·µ2(s2).

2.1 Parametric Probabilistic Automata
We combine probabilistic automata (PA) [47, 52] with parametric Markov models [28].

▶ Definition 2. A parametric probabilistic automaton (pPA) over a finite alphabet Σ is a tuple
M =

(
S, sinit , V, Act, P, L

)
, where S, V , and Act are finite sets of states, parameters, and

actions, respectively, sinit ∈ S is an initial state, P : (S × Act) ↪→ DistV (S) is a parametric
transition function, and L : dom(P) → Σ is a labeling function.

2 We use the term parametric distribution – rather than parametric function – to emphasize that we are
typically interested in functions µ where µ[v ] is a (sub)probability distribution.
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Figure 1 Example pPAs M1 and M2.

Let M =
(
S, sinit , V, Act, P, L

)
be a pPA. For s ∈ S, Act (s) = {α ∈ Act | (s, α) ∈ dom(P)}

denotes the set of enabled actions in s and Ms is the pPA where the initial state is set to s.
We set P(s, α, s′) = P(s, α)(s′) if (s, α) ∈ dom(P) and otherwise P(s, α, s′) = 0. M is a
(non-parametric) PA if P(s, α) ∈ Dist(S) for all (s, α) ∈ dom(P). In this case, P(s, α, s′) is
the probability to transition to successor state s′ when action α is selected at state s.

The instantiation of M at valuation v for V is the pPA M[v ] =
(
S, sinit , ∅, Act, P[v ], L

)
,

where dom(P[v ]) = dom(P) and P[v ](s, α) = P(s, α)[v ]. If M[v ] is a non-parametric PA,
we say v is well-defined for M. A valuation v is graph-preserving for M if it is well-defined
and for all s, s′ ∈ S and α ∈ ActM: P(s, α, s′)[v ] = 0 iff P(s, α, s′) = 0. A region R is
well-defined (graph-preserving) if all its valuations v ∈ R are well-defined (graph-preserving).

▶ Example 3 (pPA). Consider the pPA M1 in Figure 1a and M2 in Figure 1b. M1 =(
S1, sinit

1 , V1, Act1, P1, L1
)
, where S1 = {s0, s1}, sinit

1 = s0 and V1 = {p}. Actions Act1 =
{a, b, c} and alphabet Σ1 = {a, b, c}. In this example, the alphabet coincides with actions
as these uniquely define the transitions. Similarly, M2 =

(
S2, sinit

2 , V2, Act2, P2, L2
)
, where

S2 = {t0, . . . , t4}, sinit
2 = t0, and V2 = {p, q}. Again, Act2 = Σ2 = {a, c,/}.

An infinite path of M is an alternating sequence π = s0, α0, s1, α1, . . . of states si ∈ S

and actions αi ∈ Act such that (si, αi) ∈ dom(P) for all i ≥ 0. A finite path of length n ∈ N
is a prefix π̂ = s0, α0, . . . , sn of an infinite path, ending in a state last(π̂) = sn ∈ S. Pathsinf

M
and Pathsfin

M are the sets of infinite and finite paths of M, respectively. For a (finite or
infinite) path π ∈ Pathsinf

M ∪ Pathsfin
M , we write |π| ∈ N ∪ {∞} for its length and π[0, j] for

its prefix of length j ≤ |π|. We deliberately allow paths that take transitions with probability
0. As a consequence, a path of a pPA M is always also a path of any of its instantiations
M[v ] – even if v is not graph-preserving.

Strategies – also known as schedulers or adversaries – resolve nondeterminism by assigning
(sub-)distributions over enabled actions based on the history – i.e., a finite path – observed so
far. We allow for partial strategies that, intuitively, can choose none of the enabled actions
to reflect the case that no further transition is executed.

▶ Definition 4. A (partial) strategy for M is a function σ : Pathsfin
M → SubDist(Act) such

that σ(π̂)(α) > 0 implies (last(π̂), α) ∈ dom(P). A strategy σ : Pathsfin
M → Dist(ActM) is

called complete. The set of all partial and complete strategies on M are denoted by Str⋆
M,

where ⋆ ∈ {prt, cmp}, respectively. A memoryless strategy only depends on the last state of
π̂. The set of memoryless strategies on M is denoted by Strmless,⋆

M .

For a strategy σ for M, we may write σ(π̂, α) instead of σ(π̂)(α). If σ is memoryless, we
write σ(sn, α) instead of σ(π̂, α), where sn = last(π̂).
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A well-defined instantiation v and a strategy σ for M yield a purely probabilistic process
described by the (sub)probability measure Prv ,σ

M on the measurable subsets of Pathsinf
M ,

which is obtained by a standard cylinder set construction [3]:

Cyl(π̂) = {π ∈ Pathsinf
M | π̂ is a prefix of π}

is the cylinder set of a finite path π̂ = s0, α0, . . . , sn of M and we set

Prv ,σ
M (Cyl(π̂)) = J s0 = sinit K ·

n−1∏
i=0

σ(π̂[0, i], αi) · P(si, αi, si+1)[v ].

This definition extends uniquely to a probability measure on all measurable sets of infinite
paths. We further lift Prv ,σ

M to (sets of) finite paths and write, e.g., Prv ,σ
M (π̂) for π̂ ∈ Pathsfin

M
or Prv ,σ

M (Π) for Π ⊆ Pathsfin
M – implicitly referring to (unions of) cylinder sets. If M is a

(non-parametric) PA, we may omit v and write Prσ
M. Well-defined v yields Prσ

M[v ] = Prv ,σ
M .

▶ Example 5. For the pPA M2 from Figure 1b and a well-defined valuation v , the probability
to reach the state t3 under valuation v is (1 − v(p)) · v(q) + v(p) · 1

10 .

▶ Remark 6. Our definition of PA slightly deviates from related work [47, 35, 32, 36], which
commonly define a transition relation δ ⊆ S × Σ × Dist(S) instead of functions P and
L. In our setting, a pair (s, α) ∈ dom(P) uniquely identifies both, a label L(s, α) ∈ Σ,
and a distribution over successor states P(s, α) ∈ Dist(S), which significantly simplifies
formalizations related to pPAs. In particular, any strategy for M immediately also applies
to instantiations of M and vice versa, i.e., we have StrM = StrM[v ] for any valuation v. On
the other hand, our variant does not affect expressiveness of non-parametric PA as one can
convert between the two formalisms.
We lift parallel composition of PA [47] to pPAs. Composed pPAs synchronize on common
transition labels while behaving autonomously on non-common labels. For simplicity, we
assume that composed pPAs consider a common set of parameters V .3

▶ Definition 7 (Parallel Composition). For i = 1, 2, let Mi = (Si, sinit
i , V, Acti, Pi, Li) be two

pPAs over alphabets Σi with Acti ∩ (Σ1 ∪ Σ2) = ∅. The parallel composition of M1 and M2
is given by the pPA M1 ∥ M2 =

(
S1 × S2, (sinit

1 , sinit
2 ), V, Act∥, P∥, L∥

)
over Σ1 ∪ Σ2, where

Act∥ = (Act1 × Act2) ·∪ (Act1 × Σ1 \ Σ2) ·∪ (Σ2 \ Σ1 × Act2),
for each (s1, α1) ∈ dom(P1), (s2, α2) ∈ dom(P2) with L1(s1, α1) = L2(s2, α2) ∈ Σ1 ∩ Σ2:

P∥((s1, s2), (α1, α2)) = P1(s1, α1)×P2(s2, α2) and L∥((s1, s2), (α1, α2)) = L1(s1, α1),

for each (s1, α1) ∈ dom(P1), s2 ∈ S2 with L1(s1, α1) = a1 ∈ Σ1 \ Σ2:

P∥((s1, s2), (α1, a1)) = P1(s1, α1)×1s2 and L∥((s1, s2), (α1, a1)) = a1 = L1(s1, α1),

for each s1 ∈ S1, (s2, α2) ∈ dom(P2) with L2(s2, α2) = a2 ∈ Σ2 \ Σ1:

P∥((s1, s2), (a2, α2)) = 1s1 ×P2(s2, α2) and L∥((s1, s2), (a2, α2)) = a2 = L2(s2, α2).

The parallel composition of parametric probabilistic automata (pPAs) is associative, meaning
that (M1 ∥ M2) ∥ M3 and M1 ∥ (M2 ∥ M3) are equivalent up to state renaming. Therefore,
we denote this composition as M1 ∥ M2 ∥ M3.

3 If two pPAs have different parameter sets V1 ≠ V2, the assumption can be established by considering
V = V1 ∪ V2 instead, potentially adding (unused) parameters to the individual pPAs.
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Figure 2 Parallel composition of pPAs M1 and M2 from Figure 1.

▶ Example 8 (Parallel Composition). Figure 2 shows the composition of pPAs M1 and M2
from Figure 1. Actions with labels a or c are synchronized while b and / are asynchronous.

Similar to [35, Section 3.5], we sometimes assume fairness of strategies, meaning that specific
sets of labels Σi ⊆ Σ are visited infinitely often.

▶ Definition 9 (Fair Strategy). Let C ⊆ 2Σ and v be a well-defined valuation for M over Σ.
A complete strategy σ ∈ Strcmp

M[v ] is fair w.r.t. C (denoted fairC) if

Prv ,σ
M

({
s0, α0, s1, α1, · · · ∈ Pathsinf

M
∣∣ ∀Σi ∈ C : ∀j ∈ N : ∃k ≥ j : L(sk, αk) ∈ Σi

})
= 1.

The set of all fairC strategies of M[v ] is denoted Str
fairC
M[v ] .

Almost-sure repeated reachability in PA only depends on the graph structure, which yields:

▶ Proposition 10. For any graph-preserving valuations v , v ′ for M we have Str
fairC
M[v ] =

Str
fairC
M[v ′], i.e., a strategy is fairC for M[v ] iff it is fairC for M[v ′].

3 Strategy Projections

In this section, we define the projection of a strategy of a composite pPA M = M1 ∥ M2
onto a single component Mi for i = 1, 2. Projections for PA are defined in [35, Definition 6]
and originate from [46, page 65, Definition of Projection]. They are intuitively used to relate
probability measures for M and Mi.

The projection of a finite path π ∈ Pathsfin
M onto component Mi is the finite path π↾i ∈

Pathsfin
Mi

obtained by restricting π to the steps performed by Mi. Formally, (sinit
1 , sinit

2 )↾i =
sinit

i and for π = π′, (α1, α2), (s1, s2):

π↾i =
{

π′↾i, αi, si if αi ∈ Acti

π′↾i otherwise.

Path projections are neither injective nor surjective, i.e., we might have π↾i = π′↾i for two
distinct paths π ̸= π′ of M, and for some πi ∈ Pathsfin

Mi
there might not be any π ∈ Pathsfin

M
with πi = π↾i. We define the set of paths of M1 ∥ M2 that are projected to πi ∈ Pathsfin

Mi
as

πi ⊗ M3−i =
{

π ∈ Pathsfin
M | πi = π↾i

}
.

We first focus on strategy projections for non-parametric PA. Then, we lift our notions to
the parametric setting.
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3.1 Projections for non-parametric PAs

We fix the parallel composition N = N1 ∥ N2 =
(

S∥, sinit
∥ , Act∥, P∥, L∥

)
of (non-parametric)

PAs N1 and N2 with Ni =
(
Si, sinit

i , Acti, Pi, Li

)
and alphabets Σi for i = 1, 2.

▶ Definition 11 (Strategy Projection for PA). The projection of a strategy σ ∈ Strprt
N to Ni

is the strategy σ↾N
i ∈ Strprt

Ni
, where for πi ∈ Pathsfin

Mi
and αi ∈ Acti:

σ↾N
i (πi, αi) =


∑

si∈Si
Prσ

N ((πi, αi, si) ⊗ N3−i)
Prσ

N (πi ⊗ N3−i)
if Prσ

N (πi ⊗ N3−i) > 0

0 otherwise.

If N is clear, we simply write σ↾i instead of σ↾N
i . Lemmas 12 and 13 below yield that

Definition 11 is equivalent to the projection defined in [35, Def. 6]. We argue that our variant
is more intuitive since the numerator and denominator of the fraction consider the same
probability measure Prσ

N . Intuitively, σ↾i(πi, αi) coincides with the conditional probability
that – under Prσ

N and given that a path π with projection π↾i = πi is observed – the
next action of component Ni is αi. We now provide an alternative characterization for the
numerator given in Definition 11.

▶ Lemma 12. For σ ∈ Strprt
N , πi ∈ Pathsfin

Ni
, and αi ∈ Acti:∑

si∈Si

Prσ
N ((πi, αi, si) ⊗ N3−i) =

∑
π∈(πi⊗N3−i)

∑
(α̂1,α̂2)∈Act∥, α̂i=αi

Prσ
N (π) · σ(π, (α̂1, α̂2)).

The next lemma is the key observation for strategy projections as it connects the probability
measure Prσ

N for N and Pr
σ↾i
Ni

for each component Ni.

▶ Lemma 13. For σ ∈ Strprt
N and πi ∈ Pathsfin

Ni
: Pr

σ↾i
Ni

(πi) = Prσ
N (πi ⊗ N3−i).

The following result lifts [35, Lemma 2] to our setting and states that fair (and therefore
also complete) strategies have fair and complete projections.

▶ Lemma 14. Let C1 ⊆ 2Σ1 and C2 ⊆ 2Σ2 . If σ ∈ Str
fairC1∪C2
N , then σ↾i ∈ Str

fairCi

Ni
.

The converse of Lemma 14 does not hold: The projection σ↾i might not be a complete
strategy for Ni, even though σ is complete for N . Furthermore, σ↾i might not be memoryless,
even if σ is memoryless. The following example shows both cases.

▶ Example 15 (Strategy Projection for pPA). Consider the pPA M = M1 ∥ M2 from Figure 2,
using M1 and M2 depicted in Figure 1. We fix the valuation v with v(p) = v(q) = 0.1 and
set N = M[v ] and Ni = Mi[v ] for i = 1, 2. Let σ ∈ Strmless,cmp

N1∥N2
that always selects the

actions with label a, c, or / with probability 1 when available; otherwise, it chooses b.
We compute the projection σ↾2 to the PA M2[v ]:
σ↾2(t0, a) = 1
σ↾2((t0, a, t2), c) = (v(p))2

v(p) = v(p) = 0.1

σ↾2((t0, a, t2, c, t3),/) = (v(p))2· 1
10

v(p)· 1
10

= v(p) = 0.1
Similarly, σ↾2((t0, a, t1), a) = v(p) = 0.1 and σ↾2((t0, a, t1, a, t3),/) = v(p) = 0.1. We observe
that the projection is not a complete strategy as / is the only available action in t3 for M2.
Moreover, the projection is not memoryless, because, for example, σ↾2((t0, a, t2, c, t4), c) =
v(p) = 0.1 is not equal to σ↾2((t0, a, t1, a, t4), c) = 1.

CONCUR 2025



31:8 Compositional Reasoning for Parametric Probabilistic Automata

3.2 Projections for Parametric PAs
We now lift strategy projections to the parametric case. We fix the parallel composition
M = M1 ∥ M2 of two pPAs M1 and M2 with a common set of parameters V . Let i = 1, 2
and let vi : V → R be a well-defined valuation for Mi. We define strategy projections for
pPAs in terms of the instantiated PAs.

▶ Definition 16 (Strategy Projection for pPA). The projection of a strategy σ ∈ Strprt
M to

pPA Mi w.r.t. v1, v2 is the strategy σ↾v1,v2
i ∈ Strprt

Mi
, defined by σ↾v1,v2

i = σ↾M1[v1]∥M2[v2]
i .

If the valuations coincide, i.e., v1 = v2 = v , we write σ↾v
i instead of σ↾v1,v2

i . Strategy
projections depend on the parameter instantiations as the following example illustrates. Such
strategies are also referred to as (parameter) dependent strategies [49, Def. 2.6].

▶ Example 17 (Strategy Projection for pPA). Consider M1 ∥ M2 from Figure 2 and the
strategy σ as in Example 15. Let v1 and v2 be the valuations used for M1 and M2,
respectively, with v1(p) = v1(q) = 0.1, and v2(p) = v2(q) = 0.9. For the projection σ↾v1,v2

2 to
M2, the following values are obtained:

σ↾v1,v2
2 (t0, a) = 1

σ↾v1,v2
2 ((t0, a, t2), c) = v1(p)·v2(p)

v2(p) = v1(p) = 0.1

σ↾v1,v2
2 ((t0, a, t2, c, t3),/) = v1(p)·v2(p)· 1

10
v2(p)· 1

10
= v1(p) = 0.1,

σ↾v1,v2
2 ((t0, a, t1), a) = v1(p) = 0.1, and

σ↾v1,v2
2 ((t0, a, t1, a, t3),/) = v1(p) = 0.1.

Note that the resulting projection coincides with the one computed in Example 15, where
both components were instantiated using v1, i.e., σ↾v1,v2

2 = σ↾v1
2 = σ↾v1,v1

2 .

The next lemma states that – when restricting to valuations that yield the same non-zero
transitions – the strategy projection to Mi only depends on the parameter instantiation
applied to M3−i. This observation is the key insight for the correctness of the proof rule in
Theorem 41, which enables compositional reasoning about monotonicity.

▶ Lemma 18. For i = 1, 2, and well-defined valuations vi, v ′
i : V → R for Mi such that

Pi(si, αi, s′
i)[vi] = 0 iff Pi(si, αi, s′

i)[v ′
i ] = 0 we have: σ↾v1,v2

1 = σ↾v ′
1,v2

1 and σ↾v1,v2
2 = σ↾v1,v ′

2
2 .

4 Verification Objectives for pPAs

We define properties of interest for pPA verification. Let Σ be a finite alphabet. Σ∞ = Σ∗∪Σω

denotes the set of all finite and infinite words over Σ. For a word ρ = a0, a1, · · · ∈ Σ∞ and
another alphabet Σ̂, let ρ↾̂Σ ∈ Σ̂∞ denote the projection of ρ onto Σ̂ – obtained by dropping
all ai ∈ Σ \ Σ̂ from ρ. The restriction ρ↾̂Σ can be finite, even if ρ is infinite.

We fix a pPA M =
(
S, sinit , V, Act, P, L

)
. The trace of π = s0, α0, s1, α1, · · · ∈ Pathsinf

M
is the sequence tr(π) = L(s0, α0), L(s1, α1), . . . of transition labels. The probability of a
language L ⊆ Σ∞ at a well-defined valuation v under strategy σ of M is given by

Prv ,σ
M (L) = Prv ,σ

M

(
{π ∈ Pathsinf

M | tr(π)↾Σ ∈ L}
)

.

We also consider (parametric) expected total reward properties. Let V be a set of
parameters. A reward function R : Σ → Q[V ] ∪R≥0 over Σ assigns a (potentially parametric)
reward to each symbol a ∈ Σ. Instantiation of R at a valuation v : V → R yields R[v ] with
R[v ](a) = R(a)[v ] for all a ∈ Σ. Valuation v is well-defined for R if R[v ] : Σ → R≥0. In
this case, the accumulated reward for a word ρ = a0, a1, · · · ∈ Σ∞ is given by R[v ](ρ) =∑|ρ|

i=0 R[v ](ai) ∈ R≥0 ∪ {∞}.
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When applied to a pPA M, a reward function R assigns the reward R(L(s, α)) to the
enabled state-action-pairs (s, α) ∈ dom(P) with L(s, α) ∈ Σ. For a well-defined valuation v
for M and R, we define the expected total reward under strategy σ as

Exv ,σ
M (R) =

∫
π∈P athsinf

M
R[v ]

(
tr(π)↾Σ

)
dPrv ,σ

M (π) .

We consider probabilistic and reward-based objectives as well as their multi-objective
combinations.

▶ Definition 19 (Objectives). For ∼ ∈ {>, ≥, <, ≤}, p ∈ [0, 1], and r ∈ R≥0, we denote
a probabilistic objective over L ⊆ Σ∞ by P∼p(L) and
a reward objective over R : Σ → Q[V ] ∪ R≥0 by E∼r(R).

Their satisfaction for a well-defined valuation v and strategy σ is defined by

M, v , σ |=P∼p(L) ⇔ Prv ,σ
M (L) ∼ p and M, v , σ |=E∼r(R) ⇔ Exv ,σ

M (R) ∼ r.

Let φ ∈ {P∼p(L),E∼r(R)} refer to a (probabilistic or reward) objective. If neither M nor
φ consider any parameters, we may drop the valuation from the notation and just write
M, σ |=φ. We lift the satisfaction relation |= to regions, i.e., sets of valuations.

▶ Definition 20 (Region Satisfaction Relation). Let ⋆ ∈ {prt, cmp} ∪ {fairC | C ⊆ 2ΣM}. For
objective φ and well-defined region R for M – and R if φ = E∼r(R) – the region satisfaction
relation |=⋆ is given by:

M, R |=⋆ φ ⇔ ∀v ∈ R : ∀σ ∈ Str⋆
M : M, v , σ |=φ.

Satisfaction under memoryless strategies – denoted by |=mless,⋆ – is defined similarly.

▶ Remark 21. For ⋆ ∈ {prt, cmp} and any well-defined valuation v we have Str⋆
M[v ] = Str⋆

M.
Thus, for well-defined R, we can swap the quantifiers in Definition 20:

M, R |=⋆ φ ⇔ ∀σ ∈ Str⋆
M : ∀v ∈ R : M, v , σ |=φ.

However, this is not the case for fair strategies and regions that are not graph-preserving:
A strategy that is not fairC for M (under graph-preserving instantiations) might be fairC
for M[v ] if v is not graph-preserving, because states that violate the fairness condition
might not be reachable in M[v ]. For a graph-preserving region R and all v ∈ R, we have
Str

fairC
M = Str

fairC
M[v ] . Thus, we can swap quantifiers as above.

Our framework also handles conjunctions of multiple objectives.

▶ Definition 22 (MO-Query). A multi-objective query (mo-query) is a set X = {φ1, . . . , φn}
of n probabilistic or reward objectives with M, v , σ |=X ⇔ M, v , σ |=φi for all φi ∈ X.

The conjunction of two mo-queries is a union of sets: X1 ∧ X2 = X1 ∪ X2. We lift objective
satisfaction for regions (Definition 20) to mo-queries in a straightforward way.

▶ Remark 23. In [38] it is shown that model checking under partial strategies in M for
probabilistic properties, rewards, and multi-objective queries reduces to model checking under
complete strategies in a modified pPA, denoted Mτ . This result extends [35, Proposition 2]
to pPA while preserving memorylessness of the strategies.

We consider safety objectives as a special type of probabilistic objectives.
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▶ Definition 24 (Safety Objective). P≥p(L) is a safety objective4 if L can be characterized
by a DFA Abad

L accepting a language of finite words (bad prefixes):

L = {w ∈ Σ∞ | no prefix of w is accepted by Abad
L }.

A mo-query is called safe, denoted Xsafe, if each φi is a probabilistic safety objective.
For PA, computing the probability for a safety objective reduces to maximal reachability

properties in the PA-DFA product [35, Lemma 1]. This result can be lifted to pPA in a
straightforward manner; see [38]. For reachability and safety objectives, it is equivalent to
quantify over complete or partial strategies. Lemma 25 lifts [35, Proposition 1] to pPA.

▶ Lemma 25. Let M be a pPA, let R be a well-defined region and let P≥p(L) be a safety
objective for M. It holds that: M, R |=cmp P≥p(L) ⇔ M, R |=prt P≥p(L). Same for |=mless,⋆.

4.1 Preservation Under Projection
We generalize the result from [35, Lemma 3] – originally stated in [46, Lemma 7.2.6] – to
the parametric setting. In particular, we show that probabilistic and reward properties in a
composed pPA M = M1 ∥ M2 under a strategy σ are preserved when projecting to either
component Mi over Σi, assuming a well-defined valuation v .

▶ Theorem 26. For i = 1, 2, let L be a language over Σi and R be a reward function over
Σi. Then, for a well-defined valuation v :

Pr
v ,σ↾v

i

Mi
(L) = Prv ,σ

M1∥M2
(L) and Ex

v ,σ↾v
i

Mi
(R) = Exv ,σ

M1∥M2
(R)

▶ Example 27. Let L = {w ∈ {a, c,/}∞ | ∃i ∈ N : wi = /} be the language of words in
which / occurs. Reconsider the strategy σ of M1 ∥ M2 from Example 17 and the projection
σ↾v

2 to M2. We have Prv ,σ
M1∥M2

(L) = Pr
v ,σ↾v

2
M2

(L) = (v(p))2 · 1
10 + v(p) · (1 − v(p)) · v(q)).

Theorem 26 assumes that the property only involves action labels from a single component
Mi. To allow objectives over arbitrary alphabets Σ, we can add a self-loop labeled a at every
state, for each label a /∈ Σi.

▶ Definition 28 (Alphabet Extension). Let M =
(
S, sinit , V, Act, P, L

)
be a pPA over ΣM

and let Σ be an alphabet with Act ∩ (Σ \ ΣM) = ∅. The alphabet extension of M with respect
to Σ is the pPA M⟨Σ⟩ = (S, sinit , V, Act ·∪ (Σ \ ΣM), PΣ, LΣ) over alphabet ΣM ∪ Σ, where

PΣ(s, α) = P(s, α) and LΣ(s, α) = L(s, α) for all (s, α) ∈ dom(P) and
PΣ(s, a) = 1s and LΣ(s, a) = a for all s ∈ S and a ∈ Σ \ ΣM.

▶ Example 29 (Alphabet Extension). Figure 3 shows M2⟨{a, b}⟩ for pPA M2 over Σ2 =
{a, c,/} from Figure 1b. Transitions with label a remain unchanged as a ∈ Σ2, but an
additional self-loop with action b ̸∈ Σ2 is added to every state.
We now lift [35, Lemma 3] to the parametric setting, covering properties and mo-queries over
an alphabet that is not necessarily shared by Mi:

▶ Theorem 30. Let Σ ⊆ ΣM1∥M2 , and σ be a strategy for M1⟨Σ⟩ ∥ M2⟨Σ⟩. Let L be a
language over Σ and R be a reward function over Σ. Then, for well-defined valuation v :

Pr
v ,σ↾v

i

Mi⟨Σ⟩(L) = Prv ,σ
M1⟨Σ⟩∥M2⟨Σ⟩(L) and Ex

v ,σ↾v
i

Mi⟨Σ⟩(R) = Exv ,σ
M1⟨Σ⟩∥M2⟨Σ⟩(R)

4 Note that safety objectives contain all finite prefixes of words in L, i.e., they are prefix-closed. This is
different in [35], where only infinite words are considered, leading to technical problems. See [38].
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1
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b,/

b,c
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b

Figure 3 Alphabet extension M2⟨{a, b}⟩ of the pPA M2 from Figure 1b to the alphabet {a, b}.

Let X be a mo-query over Σ. Then, for any well-defined valuation v :

Mi⟨Σ⟩, v , σ↾v
i |=X ⇔ (M1⟨Σ⟩ ∥ M2⟨Σ⟩), v , σ |=X

▶ Remark 31. Since alphabet extensions add self-loop transitions for new labels, and thus do
not change the system’s state, the pPAs M1⟨Σ⟩ ∥ M2⟨Σ⟩ and M1 ∥ M2 satisfy the same
properties and mo-queries over the alphabet Σ ⊆ ΣM1∥M2 .
Theorems 26 and 30 play a key role in the proof of the AG framework for reasoning about
mo-queries and monotonicity, which will be established in Sections 5 and 6.

5 Assume-Guarantee Reasoning for pPA

Kwiatkowska et al. [35] introduced assume-guarantee (AG) reasoning proof rules for PA. This
section extends their proof rules to the parametric setting. We first generalize the concept of
AG triples to pPAs in Section 5.1. Then, we extend the asymmetric and circular proof rule
in Section 5.2. Additional proof rules from [35] are presented in [38].

5.1 Assume-Guarantee Triples for pPA
We extend compositional reasoning to the parametric setting by generalizing assume-guarantee
(AG) triples. Intuitively, an AG triple states that if a component satisfies an assumption, it
also satisfies the guarantee under the same strategy and valuation.

▶ Definition 32 (AG Triple). The assume-guarantee triple for M, (parametric) mo-queries
A (assumption) and G (guarantee), well-defined region R, and ⋆ ∈ {cmp, prt, fairC} is

M, R |=⋆ A→G ⇔
(

∀v ∈ R : ∀σ ∈ Str⋆
M[v ] : M, v , σ |= A → M, v , σ |= G

)
5.2 Assume-Guarantee Rules for pPA
We present AG proof rules for the compositional verification of parametric probabilistic
automata (pPAs). In the remainder of this section, we fix two pPAs M1 and M2 with
alphabets Σ1, and Σ2, respectively. Further, let Ri be a well-defined region for Mi.

First, we establish the asymmetric proof rule for safety and mo-queries – based on [35,
Theorem 1 and 2], respectively – for pPA.

▶ Theorem 33 (Asymmetric Rule). Let A and G be mo-queries over ΣA ⊆ Σ1 and ΣG ⊆
Σ2 ∪ ΣA , respectively. Let C1 ⊆ 2Σ1 and C2 ⊆ 2Σ2∪ΣA . Then, the two proof rules holds:

M1, R1 |=cmp Asafe

M2⟨ΣAsafe ⟩, R2 |=prt Asafe→Gsafe

M1 ∥ M2, R1∩R2 |=cmp Gsafe

M1, R1 |=fairC1 A
M2⟨ΣA⟩, R2 |=fairC2 A→G

M1 ∥ M2, R1∩R2 |=fairC1∪C2 G

CONCUR 2025
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Proof sketch. Let v ∈ R1∩R2, and σ be a strategy for the composed pPA M1 ∥ M2. To
prove validity of the rule, we need to show that M1 ∥ M2 instantiated with v satisfies Gsafe.
1. Since v ∈ R1, the first premise implies M1, v |=cmp Asafe, which is equivalent to

M1, v |=prt Asafe by Lemma 25. This implies that M1 under the partial strategy
σ↾v

M1
also satisfies Asafe. Since strategies and their projections satisfy the same properties

(as shown in Theorem 30), we conclude that M1 ∥ M2 instantiated at v under the
strategy σ satisfies Asafe.

2. As v ∈ R2, the second premise implies that M2[v ] under the strategy σ↾v
M2

satisfies Gsafe.
Again, Theorem 30 implies that (M1 ∥ M2)[v ] under the strategy σ satisfies Gsafe.

Thus, we conclude that M1 ∥ M2 instantiated at v under σ satisfies Gsafe. The rule on the
right holds by a similar reasoning, where, in addition, Lemma 14 is used to establish that
projections of fair strategies remain fair. ◀

▶ Example 34 (Asymmetric Rule). We illustrate the left proof rule from Theorem 33
for the pPA M1 ∥ M2 in Figure 2 – composed of the pPAs M1 and M2 depicted in
Figure 1 – and w.r.t. G = P≥0.8(LG), where LG = {w ∈ {a, b, c,/}∞ | |w|/ = 0}. Let
A = {P≥0.9(LA)}, where LA = {w ∈ {a, b}∞ | |w|a ≤ 1}. The pPA M2⟨{a, b}⟩ is depicted
in Figure 3. For the premises of the proof rule, we obtain that the (largest) region R for
which M1, R1 |=cmp P≥0.9(LA) is R1 = {v : {p, q} → R | v(p) ∈ [0, 0.1]} and the (largest)
region R2 for which M2⟨{a, b}⟩, R2 |=prt A→G holds, is R = {v : {p, q} → R | (v(p) ∈
[0, 0.5], v(q) ∈ [0, 1]) ∨ (v(p) ∈ (0.5, 1), v(q) ∈ [0, 2 − 2 · p])}. The intersection R1∩R2 –
for which M1 ∥ M2, R1∩R2 |=prt G holds by [38, Theorem 52] – contains all valuations
with v(p) ∈ [0, 0.1], v(q) ∈ [0, 1]. The (largest) region R for which M1 ∥ M2, R |=prt G is
R = {v : p, q → R | (v(p) ∈ ([0, 1

4 ] ∪ {1}), v(q) ∈ [0, 1]) ∨ (v(p) ∈ ( 1
4 , 1), v(q) ∈ [0, p+1

5·p ])}.
This satisfies (R1∩R2) ⊂ R.

The proof rules in Theorem 33 can be extended to systems with more than two components,
as detailed in [38, Theorem 52]. Next, we lift the circular proof rule given in [35, Theorem 5]
to pPAs:

▶ Theorem 35 (Circular Rule). Let A1,A2 and G be (parametric) mo-queries over ΣA1
⊆ Σ2,

ΣA2
⊆ Σ1 ∪ ΣA1

and ΣG ⊆ Σ2 ∪ ΣA2
, respectively. Let Ci ∈ 2Σi∪ΣA

i for i ∈ {1, 2}, and
C3 ∈ 2Σ2 . Then:

M1⟨ΣAsafe
1

⟩, R1 |=prt Asafe
1 →Asafe

2

M2⟨ΣAsafe
2

⟩, R2 |=prt Asafe
2 →Gsafe

M2, R3 |=cmp Asafe
1

M1 ∥ M2, R1∩ R2∩ R3 |=cmp Gsafe

M1⟨ΣA1
⟩, R1 |=fairC1 A1→A2

M2⟨ΣA2
⟩, R2 |=fairC2 A2→G

M2, R3 |=fairC3 A1

M1 ∥ M2, R1∩ R2∩ R3 |=fairC1∪C2∪C3 G

Proof sketch. Similar to Theorem 33, the proof of the circular rules makes use of Theorem 30,
which establishes that the composition under a strategy satisfies the same properties as the
individual components under their corresponding projections. For safety, Lemma 25 allows
us to verify the condition for complete strategies rather than partial strategies in the third
premise. For fairness, Lemma 14 ensures that strategy projections remain fair. ◀

▶ Remark 36. The inclusion of fairness in the premises of the right rules in Theorem 33 and
Theorem 35 enables recursive application and thus supports the compositional verification of
systems with more than two components. In the case of a single application of one of the
rules, it is sufficient to verify with respect to complete strategies, which, while a stronger
condition, simplifies the verification process.
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6 Compositional Reasoning about Monotonicity

Exploiting monotonicity can significantly enhance the efficiency of parameter synthesis [51].
However, determining monotonicity is computationally hard5 and it would be beneficial to
determine monotonicity in a compositional way. Additionally, monotonicity in composed pPA
is challenging due to the complexities introduced by parameter dependencies and interactions
among components. While we focus on global monotonicity, the following results can be
extended to local monotonicity, which considers only the first transition from a given state.
See [49, Definitions 4.4 and 4.5].

The probability of a language or the expected total reward for a pPA M can be viewed
as a function – called solution function – that maps a well-defined parameter valuation to
the corresponding probability or expected total reward, respectively [27, Definition 4.7].

▶ Definition 37 (Solution Function). Let M be a pPA over Σ, let σ ∈ StrM and let R be a
well-defined region. The solution function for M and language L ⊆ Σ∞ is solP r(L)

M,σ : R → [0, 1],
where solP r(L)

M,σ (v) = Prv ,σ
M (L). The solution function for M and a reward function R over Σ

is solEx(R)
M,σ : R → R≥0, where solEx(R)

M,σ (v) = Exv ,σ
M (R).

When referring to a solution function without specifying whether it pertains to probabilities
or expected rewards, we simply write solM,σ.

▶ Example 38 (Solution Function). Consider the pPA M1 ∥ M2 in Figure 2 and the region
R = {v : {p, q} → [0, 1]} which is well-defined for M1 ∥ M2. Let L = {w ∈ {a, c,/}∞ |
|w|/ = 0} be the language of words over {a, b, c,/} that do not contain /. Let σ be
the complete strategy of M1 ∥ M2 from Example 17, which always selects action a, c
or / with probability 1 whenever any of them is enabled; otherwise, it chooses b with
probability 1. The solution function solP r(L)

M1∥M2,σ : R → [0, 1] is defined by solP r(L)
M1∥M2,σ(p, q) =

1 −
(
p2 · 1

10 + p · (1 − p) · (p · q + (1 − p) · q)
)

= 1 −
(
p2 · 1

10 + (p − p2) · q
)
.

We extend the standard notion of monotonicity [49] by differentiating between different
strategy classes, including complete, partial, and fair strategies.

▶ Definition 39 (Monotonicity). Let σ be a strategy of M. A solution function solM,σ is
monotonic increasing in p ∈ V on region R – denoted solM,σ

x
p,R

– if for all v , v+ ∈ R with
v+(q) = v(q) + x · J p=q K for q ∈ V and some x ≥ 0, we have: solM,σ(v) ≤ solM,σ(v+).

For ⋆ ∈ {prt, cmp}, we write solM
x⋆

p,R
if solM,σ

x
p,R

for all σ ∈ Str⋆
M. If R is graph-

preserving, we write solM
xfairC

p,R
if solM,σ

x
p,R

holds for all fair strategies σ ∈ Str
fairC
M[v ] , v ∈ R.

Notations solM,σ

y
p,R

and solM
y⋆

p,R
for monotonic decreasing solM,σ are defined analogously.

We require the region to be graph-preserving when defining monotonicity w.r.t. fair strategies.
This ensures that for any two valuations, v , v+, we have Str

fairC
M[v ] = Str

fairC
M[v+]; see Proposi-

tion 10.

▶ Remark 40. Monotonicity for partial strategies w.r.t. general properties is equivalent to
monotonicity for complete strategies in a modified pPA; see [38].

The following theorem states that monotonicity of a composed system can be verified by
analyzing its individual components.

5 For deterministic pPA (Markov chains) determining monotonicity is coETR-hard [49, Sec. 3.4].
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▶ Theorem 41 (Monotonicity). Let M1, M2 be pPAs with alphabets Σ1 and Σ2 and Ri be a
graph-preserving region for Mi. Let sol ∈ {solP r(L), solEx(R)} be a solution function w.r.t.
the language L or reward function R over Σ ⊆ (Σ1 ∪ Σ2) and let

xy ∈ {
x,

y}. Let Ci ⊆ 2Σ1∪Σ.
Then the following two proof rules hold:

solM1⟨Σ⟩
xyprt

p,R1

solM2⟨Σ⟩
xyprt

p,R2

solM1∥M2

xyprt
p,R1∩R2

solM1⟨Σ⟩
xyfairC1

p,R1

solM2⟨Σ⟩
xyfairC2

p,R2

solM1∥M2

xyfairC1∪C2
p,R1∩R2

Proof. We show the premises imply solM1⟨Σ⟩∥M2⟨Σ⟩
xy⋆

p,R1∩R2
for ⋆ ∈ {prt, fairC1∪C2

}, which
directly implies that solM1∥M2

xy⋆

p,R1∩R2
holds, see Remark 31. We focus on the left rule, i.e.,

⋆ = prt.
▶ Remark 42. The proof for ⋆ = fairC1∪C2

is similar but additionally requires Lemma 14 in
[38, Appendix A.4].
We further consider

xy =
x. The case

xy =
y follows analogously. Our proof is by contradiction.

Assume that the premises hold but solM1⟨Σ⟩∥M2⟨Σ⟩
x⋆

p,R1∩R2
does not hold. Thus, there is a

strategy σ ∈ Str⋆
(M1⟨Σ⟩∥M2⟨Σ⟩) and valuations v , v+ ∈ R1 ∩ R2 with v+(q) = v(q) + x · J p=q K

for q ∈ V and some x ≥ 0 and

sol(M1⟨Σ⟩∥M2⟨Σ⟩),σ(v) > sol(M1⟨Σ⟩∥M2⟨Σ⟩),σ(v+). (1)

Theorem 30 yields sol(M1⟨Σ⟩∥M2⟨Σ⟩),σ(v) = solM1⟨Σ⟩,σ↾v,v
1

(v). We have PM1⟨Σ⟩(s, α, s′)[v ] = 0
iff PM1⟨Σ⟩(s, α, s′)[v+] = 0 as v and v+ are graph preserving for M1. Thus, we can apply
Lemma 18 and obtain

solM1⟨Σ⟩,σ↾v,v
1

(v) = solM1⟨Σ⟩,σ↾
v+,v
1

(v) (by Lemma 18)

≤ solM1⟨Σ⟩,σ↾
v+,v
1

(v+) ( σ↾v+,v
1 ∈ Strprt

M1⟨Σ⟩, solM1⟨Σ⟩
xprt

p,R1
)

= sol(M1⟨Σ⟩∥M2⟨Σ⟩[v ]),σ(v+) (by Theorem 30)

We observe that(
M1⟨Σ⟩ ∥ M2⟨Σ⟩[v ]

)
[v+] =

(
M1⟨Σ⟩[v+] ∥ M2⟨Σ⟩[v ]

)
=

(
M1⟨Σ⟩[v+] ∥ M2⟨Σ⟩

)
[v ].

Consequently, sol(M1⟨Σ⟩∥M2⟨Σ⟩[v ]),σ(v+) = sol(M1⟨Σ⟩[v+]∥M2⟨Σ⟩,σ(v). By a similar reasoning
as above, we obtain

sol(M1⟨Σ⟩[v+]∥M2⟨Σ⟩),σ(v) = solM2⟨Σ⟩,σ↾
v+,v
2

(v) (by Theorem 30)

≤ solM2⟨Σ⟩,σ↾
v+,v
2

(v+) ( σ↾v+,v
2 ∈ Strprt

M2⟨Σ⟩, solM2⟨Σ⟩
xprt

p,R2
)

= solM2⟨Σ⟩,σ↾
v+,v+
2

(v+) (by Lemma 18)

= sol(M1⟨Σ⟩∥M2⟨Σ⟩),σ(v+) (by Theorem 30)

Thus, sol(M1⟨Σ⟩∥M2⟨Σ⟩),σ(v) ≤ sol(M1⟨Σ⟩∥M2⟨Σ⟩),σ(v+), violating Equation (1). ◀

▶ Example 43. Reconsider the pPA M1 ∥ M2 in Figure 2, the region R = {v : {p, q} →
[0, 1]}, and the language L = {w ∈ {a, c,/}∞ | |w|/ = 0} from Example 38. The pPA
M1 ∥ M2 is composed of the pPAs M1 and M2 shown in Figure 1. The region R is well-
defined for M1 and M2. We check whether solP r(L)

M1∥M2
is monotonic in q on R via Theorem 41.

Since the premises solP r(L)
Mi⟨ΣL⟩

yprt
q,R

for i ∈ {1, 2} are satisfied, we conclude solP r(L)
M1∥M2

yprt
q,R

.
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7 Related Work

Compositional verification has been widely studied in both probabilistic and non-probabilistic
systems. We summarize key contributions related to our work.

Jones’ rely-guarantee method [26] and Pnueli’s compositional proof system [44] for
temporal logic laid the foundation for AG reasoning. Subsequent work focused on AG rules for
systems using CTL∗ [12] and developed AG reasoning for reactive modules [25, 1]. Automated
AG reasoning techniques – developed by Pasareanu et al. [13, 41] – include learning-based
assumption generation. More recent work has focused on circular AG reasoning [16] and
verification-repair approaches [22].

AG reasoning has been lifted to probabilistic settings. Initial work by de Alfaro et al. [15]
introduced AG rules for a probabilistic extension of reactive modules [25, 1]. Their model is
similar to PA [47, 46], but limited to synchronous composition.

Kwiatkowska et al. [34, 21] generalized AG verification for PA, allowing more flexible
parallel compositions and extending AG reasoning to probabilistic safety properties. Their
approach reduces AG verification to multi-objective model checking, as proposed by Etessami
et al. [17]. This was further refined in [35], enabling AG reasoning over a broader class
of quantitative properties, including conjunctions over probabilistic liveness and expected
rewards. Algorithmic learning-based assumption generation techniques [13, 23] were later
adapted for AG reasoning in probabilistic settings [18, 19, 36]. Other assumption generation
approaches include abstraction-refinement methods [32, 10], based on the CEGAR paradigm
[11], and symbolic learning-based methods [24, 5]. AG reasoning has been applied to various
real-world domains, including service-based workflow verification [6], large-scale IT systems
[7], and autonomous systems with deep neural networks [42, 43].

AG reasoning has also been extended to systems with uncertainty, for example, [55]
introduced an AG framework for verifying systems with components modeled by MDPs and
partially observable MDPs (POMDPs). In contrast, our work considers a different type of
uncertainty; We extend AG reasoning to parametric probabilistic automata (PA), leveraging
research on parametric MDPs [27, 45, 28] and previous AG verification techniques [35]. Our
framework allows to reason about monotonicity [49, 50, 51] in a compositional manner. To
the best of our knowledge, this the first AG-based compositional verification framework for
parametric PA. Existing modular proof systems have focused on parametric timed automata
[2] or non-probabilistic parameterized systems [4, 48, 39], where concurrent programs are
parameterized by the number of processes or threads in a configured instance.

Another recent line of research focuses on the sequential composition of MDPs rather
than parallel decomposition: Junges and Spaan [30] introduced an abstraction-refinement
approach for hierarchical probabilistic models, leveraging parametric MDPs to represent sets
of similar subroutines. Recent work by Watanabe et al. [53] on mean-payoff games, applies
category-theoretic string diagrams to the verification of sequentially composed MDPs.

8 Conclusion

We presented an assume-guarantee framework for compositional verification of parametric
probabilistic automata, building on the proof rules for Segala’s PA by Kwiatkowska et al.
[35]. In addition, we introduced new compositional proof rules to reason about monotonicity
in composed systems. These contributions lay the theoretical foundations for modular
verification of pPA. To the best of our knowledge, these are the first AG proof rules for
probabilistic models with parametric transition probabilities.
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Future work involves implementing the framework and demonstrating its effectiveness
through case studies. Another direction is to deduce additional assume-guarantee rules –
for example, reasoning about robust valuations or strategies, i.e, properties of the form:
∃v ∈ R : ∀σ ∈ Str⋆

M : M[v ], σ |= X. Additionally, interesting directions include the
modular verification of other properties, such as long-run average rewards or expected
visiting times [37]. Other areas include extending verification to logics such as parametric
LTL [9] and probabilistic CTL. Further research could also explore Markov automata with
parameters, building on preliminary work in modular reasoning for continuous-time and
continuous-space models [8]. Another interesting direction is adapting assume-guarantee
reasoning for stochastic games [54] to a parametric setting.
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