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—— Abstract
A fault domain reflects a tester’s assumptions about faults that may occur in an implementation
and that need to be detected during testing. A fault domain that has been widely studied in the
literature on black-box conformance testing is the class of finite state machines (FSMs) with at
most m states. Numerous strategies for generating test suites have been proposed that guarantee
fault coverage for this class. These so-called m-complete test suites grow exponentially in m — n,
where n is the number of states of the specification, so one can only run them for small values of
m —n. But the assumption that m — n is small is not realistic in practice. In his seminal paper from
1964, Hennie raised the challenge to design checking experiments in which the number of states may
increase appreciably. In order to solve this long-standing open problem, we propose (much larger)
fault domains that capture the assumption that all states in an implementation can be reached by
first performing a sequence from some set A (typically a state cover for the specification), followed
by k arbitrary inputs, for some small k. The number of states of FSMs in these fault domains grows
exponentially in k. We present a sufficient condition for k-A-completeness of test suites with respect
to these fault domains. Our condition implies k-A-completeness of two prominent m-complete test
suite generation strategies, the Wp and HSI methods. Thus these strategies are complete for much
larger fault domains than those for which they were originally designed, and thereby solve Hennie’s
challenge. We show that three other prominent m-complete methods (H, SPY and SPYH) do not
always generate k- A-complete test suites.
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1 Introduction

We revisit the classic problem of black-box conformance testing [18] in a simple setting in
which both specifications and implementations can be described as (deterministic, complete)
finite state machines (FSMs), a.k.a. Mealy machines. Ideally, given a specification FSM
S, a tester would like to have a finite set of tests T' that is complete in the sense that
an implementation FSM M will pass all tests in T if and only if M is equivalent to S.
Unfortunately, such a test suite does not exist: if IV is the number of inputs in the longest
test in T then an implementation M may behave like S for the first N inputs, but differently
from that point onwards. Even though M is not equivalent to S, it will pass all tests in
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T. This motivates the use of a fault domain, a collection of FSMs that reflects the tester’s
assumptions about faults that may occur in an implementation and that need to be detected
during testing. The challenge then becomes to define a fault domain that captures realistic
assumptions about possible faults, but still allows for the design of sufficiently small test
suites that are complete for the fault domain and can be run within reasonable time.

A fault domain that has been widely studied is the set U,, of finite state machines (FSMs)
with at most m states. Test suites that detect any fault in this class are called m-complete.
The idea of m-complete test suites can be traced back to Moore [23] and Hennie [12].
Numerous methods for constructing m-complete test suites have been proposed, for different
types of transition system models, see for instance [39, 3, 41, 9, 28, 26, 18, 6, 27, 30, 31, 32,
38, 22, 16, 35, 10]. We refer to [18, 5, 22] for overviews and further references. The interest
in m-complete test suites is somewhat surprising, given that in a black-box setting there is
typically no sensible way to bound the number of possible states of an implementation to a
small m. After all, each additional Boolean variable in an implementation potentially doubles
the number of extra states. This is problematic in practice, since the size of m-complete test
suites generated by existing methods grows exponentially in m — n, where n is the number
of states of the specification. Actually, Moore [23] was not aiming for practical methods
and only described gedanken-experiments. He introduced the example of combination lock
machines, and was therefore well aware of the combinatorial explosions in m-complete test
suites. In his seminal paper from 1964, Hennie [12] also observed the exponential blow-up
in m-complete test suites and wrote “Further work is needed before it will be practical to
design checking experiments in which the number of states may increase appreciably.” In
two classic papers, Vasilevskii [39] and Chow [3] independently showed that m-complete test
suites can be constructed with a size that is polynomial in the size of the specification FSM,
for a fixed value of kK = m — n. Nevertheless, the test suites generated by their W-method
grow exponentially in &, and so they did not solve the problem raised by Hennie [12].

In this article, we solve the long-standing open problem of Hennie [12] as follows:

1. As an alternative for m-completeness, we propose fault domains Z/l,;4 that contain all
FSMs in which any state can be reached by first performing a sequence from some set
A (typically a state cover for the specification), followed by k arbitrary inputs, for some
small k. These fault domains contain FSMs with a number of extra states that grows
exponentially in k.

2. Based on ideas from [6, 35, 37], we present a sufficient condition for k-A-completeness of
test suites with respect to these fault domains, phrased entirely in terms of properties
of their testing tree. We present a ©(N?)-time algorithm to check this condition for a
testing tree with N states.

3. We show that our sufficient condition implies k-A-completeness of two prominent ap-
proaches for test suite generation: the Wp-method of Fujiwara et al [9], and the HSI-
method of Luo et al [19] and Petrenko et al [41, 28]. The W-method of Vasilevskii [39] and
Chow [3], and the UIOv-method of Chan et al [2] are instances of the Wp-method, and
the ADS-method of Lee & Yannakakis [17] and the hybrid ADS method of Smeenk et al
[31] are instances of the HSI-method. This means that k-A-completeness of these methods
follows as well. Hence these m-complete test suite generation methods are complete for
much larger fault domains than those for which they were designed originally.

4. We present counterexamples showing that three other prominent test generation methods,
the H-method of Dorofeeva et al [6], the SPY-method of Siméao, Petrenko and Yevtushenko
[30] and the SPYH-method of Soucha and Bogdanov [32], do not always generate k-A-
complete test suites.
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The rest of this article is structured as follows. First, Section 2 recalls some basic definitions
regarding (partial) Mealy machines, observation trees, and test suites. Section 3 introduces
k- A-complete test suites, and shows how they strengthen the notion of m-completeness. Next,
we present our sufficient condition for k- A-completeness in Section 4. Based on this condition
(and its proof), Section 5 establishes k- A-completeness of the Wp and HST methods, and
m~completeness of the H-method. Finally, Section 6, discusses implications of our results
and directions for future research. All proofs are deferred to the full version of this article
available on arXiv.

2 Preliminaries

In this section, we recall a number of key concepts that play a role in this article: partial
functions, sequences, Mealy machines, observation trees, and test suites.

2.1 Partial Functions and Sequences

We write f: X — Y to denote that f is a partial function from X to Y and write f(z))
to mean that f is defined on z, that is, Jy € Y: f(x) = y, and conversely write f(z)?
if f is undefined for z. Often, we identify a partial function f: X — Y with the set
{(z,y) € X xY | f(z) = y}. We use Kleene equality on partial functions, which states that
on a given argument either both functions are undefined, or both are defined and their values
on that argument are equal.

Throughout this paper, we fix a nonempty, finite set I of inputs and a set O of outputs.
We use standard notations for sequences. If X is a set then X* denotes the set of finite
sequences (also called words) over X. For k a natural number, X<F denotes the set of
sequences over X with length at most k. We write € to denote the empty sequence, X+ for
the set X*\ {e}, « to denote the sequence consisting of a single element = € X, and o - p
(or simply op) to denote the concatenation of two sequences o, p € X*. The concatenation
operation is extended to sets of sequences by pointwise extension. We write |o| to denote
the length of sequence o. For a sequence 7 = p ¢ we say that p and ¢ are a prefix and a
suffix of 7, respectively. We write p < 7 iff p is a prefix of 7. A set W C X* is prefiz-closed
if any prefix of a word in W is also in W, that is, for all p,7 € X* with p < 7, 7€ W
implies p € W. For W C X*, Pref(W) denotes the prefiz-closure of W, that is, the set
{p€ X*|3Ir € W:p<r7} of all prefixes of elements of W. If o = zp is a word over X with
x € X, then we write hd(o) for z, and tl(o) for p.

2.2 Mealy machines

Next, we recall the definition of Finite State Machines (FSMs) a.k.a. Mealy machines.

» Definition 2.1 (Mealy machine). A Mealy machine is a tuple M = (Q, qo, 0, \), where Q
is a finite set of states, gy € Q) is the initial state, §: Q@ x I — @Q is a (partial) transition
function, and A: Q x I — O is a (partial) output function that satisfies A(q,1)} < 6(q,7)J,
forq e Q and i € I. We use superscript M to disambiguate to which Mealy machine we
refer, e.g. QM qgt, &M and M. We write q iO% q' to denote A\(q,i) = o and §(q,i) = ¢'.
We call a state ¢ € @ complete iff ¢ has an outgoing transition for each input, that is, 5(q,1)],
forallie I. A set of states W C @Q is complete iff each state in W is complete. The Mealy
machine M is complete iff Q is complete. The transition and output functions are lifted to

sequences in the usual way. Let q,¢' € Q, o € I* and p € O*. We write q % q' to denote
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Figure 1 A specification S (left) and an inequivalent implementation M (right).

Xg,0) = p and §(q,0) = ¢'. We write q SZLN if there is a ¢’ € Q with q LN q, we write

q > ¢ if there is a p € O* with q ﬂ) q', and we write q X, q if there is a o € I with
) o . .
q— q'. If g9 — q then we say that q is reachable via o.

A state cover for M is a finite, prefiz-closed set of input sequences A C I* such that, for
every q € Q, there is a 0 € A such that q is reachable via o. A state cover A is minimal if
each state of M 1is reached by exactly one sequence from A. M is initially connected if it
has a state cover. We will only consider Mealy machines that are initially connected.

» Definition 2.2 (Semantics and minimality). The semantics of a state ¢ of a Mealy machine
M is the map [q]™': I* = O* defined by [q]*'(0) = AM(q, 7).

States q,7 of Mealy machines M and N, respectively, are equivalent, written q =~ r, iff
[[qﬂM = [[r]]N. Mealy machines M and N are equivalent, written M ~ N, iff their initial
states are equivalent: ¢y =~ q{)\/. A Mealy machine M is minimal iff, for all pairs of states
0.4, a~q iffq=4¢".

» Example 2.3. Figure 1 shows an example (taken from [22]) with a graphical representation
of two minimal, complete Mealy machines that are inequivalent, since the input sequence
aba triggers different output sequences in both machines.

2.3 Observation Trees

A functional simulation is a function between Mealy machines that preserves the initial state
and the transition and output functions.

» Definition 2.4 (Simulation). A functional simulation between Mealy machines M and N
is a function f: QM — QN satisfying flgh) = qé\f and, for g € QM andi € I,

Mgl = fOM(g1) =0V (f(a). 1) and M (g.1) = XV (f(a). ).
We write f: M — N if f is a functional simulation between M and N .

Note that if f: M — N, each transition ¢ l/—0> ¢ of M can be matched by a transition
7,/0
fl@) = f(d') of V.

For a given Mealy machine M, an observation tree for M is a Mealy machine itself that
represents the inputs and outputs that have been observed during testing of M. Using
functional simulations, we may define it formally as follows.

» Definition 2.5 (Observation tree). A Mealy machine T is a tree iff for each g € Q7 there
is a unique o € I* s.t. q is reachable via o. We write access(q) for the sequence of inputs
leading to q. For U C Q7 , we define access(U) = {access(q) | ¢ € U}. For q # qJ , we write
parent(q) for the unique state ¢’ with an outgoing transition to q. A tree T is an observation
tree for a Mealy machine M iff there is a functional simulation f from T to M.
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Figure 2 A Mealy machine S (left) and an observation tree T for S (right).

» Example 2.6. Figure 2 (right) shows an observation tree T for the Mealy machine S of
Figure 2 (left). Mealy machine S, an example taken from [32], models the behavior of a
turnstile. Initially, the turnstile is locked (L), but when a coin is inserted (¢) then, although
no response is observed (N), the machine becomes unlocked (U). When a user pushes the
bar (p) in the initial state, the turnstile is locked (L), but when the bar is pushed in the
unlocked state it is free (F') and the user may pass. State colors indicate the functional
simulation from 7 to S.

2.4 Test Suites

We recall some basic vocabulary of conformance testing for Mealy machines.

» Definition 2.7 (Test suites). Let S be a Mealy machine. A sequence o € I* with 6°(qo, )l
is called a test case (or simply a test) for S. A test suite T' for S is a finite set of tests for
S. A Mealy machine M passes test o for S iff MM (g, 0) = A\5(q5, ), and passes test suite
T for S iff it passes all tests in T.

Observe that when M passes a test o, it also passes all prefixes of ¢. This means that only
the maximal tests from a test suite T (tests that are not a proper prefix of another test in T')
need to be executed to determine whether M passes T. Also note that when M passes a
test o, we may conclude 6™ (g, o).

We like to think of test suites as observation trees. Thus, for instance, the test suite
T = {ccep, cepp, cppp, pepep, ppp} for the Mealy machine S of Figure 2(left) corresponds to
the observation tree of Figure 2(right). The definition below describes the general procedure
for constructing a testing tree for a given test suite T" for a specification S. The states of the
testing tree are simply all the prefixes of tests in T'. Since T' may be empty but a tree needs
to have at least one state, we require that the empty sequence € is a state.

» Definition 2.8 (Testing tree). Suppose T is a test suite for a Mealy machine S. Then the
testing tree Tree(S,T) is the observation tree T given by:

QT = {e} U Pref(T) and q] =,

For allo € I* and i € I with oi € Q7 , §7 (a,i) = o4,

Forallo € I* and i € I with oi € QT, \7 (0,i) = AS(05(q§, 0), ).
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There is a functional simulation from a testing tree to the specification that was used
during its construction.

» Lemma 2.9. The function f that maps each state o of T = Tree(S,T) to the state 6°(q5, o)
of § is a functional simulation.

The next lemma, which follows from the definitions, illustrates the usefulness of testing

trees: a Mealy machine M passes a test suite T for S iff there exists a functional simulation
from Tree(S,T) to M.

» Lemma 2.10. Suppose S and M are Mealy machines, T is a test suite for S, and
T = Tree(S,T). Suppose function f maps each state o of T to state ™ (qi*, o) of M. Then
f:T = M iff M passes T.

3 Fault Domains and Test Suite Completeness

A fault domain reflects the tester’s assumptions about faults that may occur in an implemen-
tation and that need to be detected during testing.

» Definition 3.1 (Fault domains and U-completeness). A fault domain s a set U of Mealy
machines. A test suite T for a Mealy machine S is U-complete if, for each M € U, M
passes T implies M =~ S.

The next three lemmas are immediate consequences of the above definition. In particular,
whenever T' is U-complete, completeness is preserved when we add tests to T" or remove
machines from U.

» Lemma 3.2. If T and T’ are test suites with T C T’ and T is U-complete, then T’ is
U-complete.

» Lemma 3.3. IfU and U’ are fault domains withU' C U, and T is a U-complete test suite,
then T is U’ -complete.

» Lemma 3.4. If a test suite for S is both U-complete and U’ -complete, then it is U UU'-
complete.

A particular class of fault domains that has been widely studied is based on the maximal
number of states of implementations.

» Definition 3.5. Let m > 0. Then fault domain Uy, is the set of all Mealy machines with
at most m states.

In the literature, U,,-complete test suites are usually called m-complete. Suppose m > n,
where n is the number of states of a specification S. Given that the size of m-complete test
suites grows exponentially in m — n, a tester cannot possibly consider all Mealy machines
with up to m states, if m —n is large. Therefore, we will propose alternative and much larger
fault domains that can still be fully explored during testing.

We consider fault domains of Mealy machines in which all states can be reached by
first performing an access sequence from a set A (typically a state cover of specification S),
followed by k arbitrary inputs, for some small k. These fault domains capture the tester’s
assumption that when bugs in the implementation introduce extra states, these extra states
can be reached via a few transitions from states reachable via scenarios from A. The next
definition formally introduces the corresponding fault domains U;*. A somewhat similar
notion was previously proposed by Maarse [20], in a specific context with action refinement.
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» Definition 3.6. Let k be a natural number and let A C I*. Then fault domain Z/l,f is the
set of all Mealy machines M such that every state of M can be reached by an input sequence
op, for some o € A and p € I=F,

» Example 3.7. Mealy machine M from Figure 3 is contained in fault domain U{*, for
A = {e, ¢}, since all states of M can be reached via at most one transition from the two
states L’ and U’ that are reachable via A.

p/L ¢/N
p/F

Figure 3 A Mealy machine M contained in fault domain U3*, with A = {e, c}.

» Remark 3.8. The definition of Z/{lg4 is closely related to the fundamental concept of eccentricity
known from graph theory [7]. Consider a directed graph G = (V, E). For vertices w,v € V,
let d(w,v) be the length of a shortest path from w to v, or oo if no such a path exists. The
eccentricity e(w) of a vertex w € V is the maximum distance from w to any other vertex:

e(w) = max d(w,v).

This definition generalizes naturally to subsets of vertices. The distance from a set W C V
of vertices to a vertex v € V, is the length of a shortest path from some vertex in W to v,
or oo if no such path exists. The eccentricity ¢(W) of a set of vertices W is the maximum
distance from W to any other vertex:

d(W,v) = i d(w,v) e(W) = max d(W,v).

We view Mealy machines as directed graphs in the obvious way. In the example of Figure 3,
the eccentricity of initial state L’ is 2 (since every state of M can be reached with at most 2
transitions from L’) and the eccentricity of state U’ is oo (since there is no path from U’ to
L’). The eccentricity of {L’,U’} is 1, since state L can be reached with a single transition
from L', and states L” and U can be reached with a single transition from U’.

Fault domain L{,;4 can alternatively be defined as the set of Mealy machines M for which
the eccentricity of the set of states reachable via A is at most k. Note that, for a set of
vertices W, (W) can be computed in linear time by contracting all elements of W to a single
vertex w, followed by a breadth-first search from w.

The Mealy machine of Figure 3, which is contained in fault domain #{*, has two states
(L' and U’) that are reached via a sequence from A, and three extra states that can be
reached via a single transition from these two states. More generally, if A is a prefix closed
set with n sequences and the set of inputs I contains [ elements, then at most n states can
be reached via sequence from A, and at most nl — n + 1 additional states can be reached
via a single transition from states already reached by A. A second step from A may lead to
I(nl —n+ 1) extra states, etc. This leads us to the following proposition.
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» Proposition 3.9. Let A C I* be prefix closed with |A| =n, let |I| =1 and k > 0. Then
fault domain U contains Mealy machines with up to n + (Zf;é 17)(nl —n + 1) states.

This observation implies that the number of states of Mealy machines in Z/{,f grows
exponentially in & when there are at least 2 inputs. Even for small values of k, the number
of states may increase appreciably. Consider, for instance, the Mealy machine model for the
Free BSD 10.2 TCP server that was obtained through black-box learning by Fiterau-Brogtean
et al [8]. This model has 55 states and 13 inputs, so if A is a minimal state cover, then fault
domain U3 contains Mealy machines with up to 9309 states.

Even though the size of Mealy machines in L{,? grows exponentially in k, fault domain U,
is not contained in fault domain U{* if m = |A| + k. For instance, the machine of Figure 2 has
two states and is therefore contained in Us. However, this machine is not contained in g if
we take A = {€,p}. We need to extend U{* in order to obtain a proper inclusion. Suppose
that A is a minimal state cover for a minimal specification S. Then states in S reached by
sequences from A will be pairwise inequivalent. Methods for generating m-complete test
suites typically first check whether states of implementation M reached by sequences from
A are also inequivalent. So these methods exclude any model M in which distinct sequences
from A reach equivalent states. This motivates the following definition:

» Definition 3.10. Let A C I*. Then fault domain U is the set of all Mealy machines M
such that there are o,p € A with o # p and M (gg, o) ~ M (g, p).

Note that 244 is infinite and contains Mealy machines with arbitrarily many states. Under
reasonable assumptions, fault domain U, is contained in fault domain Z/l,f uut.

» Theorem 3.11. Let A C I* be a finite set of input sequences with € € A. Let k and m be
natural numbers with m = |A| + k. Then U, CUF UUA.

We refer to Z/l,;4 U UA-complete test suites as k-A-complete. By Theorem 3.11 and
Lemma 3.3, any k- A-complete test suite is also m-complete, if m = |A| + k. The converse of
the inclusion of Theorem 3.11 does not hold, as 4/ may contain FSMs with an unbounded
number of states. The next example illustrates that a test suite T can be m-complete, but
not 0-A-complete for a state cover A of the specification.

» Example 3.12. The set A = {¢,a,aa} is a minimal state cover of Mealy machine S at the
left of Figure 4. Machine S is minimal and aaa is a distinguishing sequence since it generates
different outputs for each of the three states of S . Mealy machine S is trivially contained in
fault domains U3 and Ug', whereas Mealy machine M at the right of Figure 4 is clearly not
contained in Us and Ug'.

Figure 4 A specification S (left) and an inequivalent implementation M (right).

b/1
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However, M is contained in fault domain U* since 6™ (qo,a) = 6™ (qo,aa). Note that
the set B = {¢,b,bb} is also a minimal state cover for S, and the sequence bbb is also a
distinguishing sequence. Using the Wp-method, to be discussed in more detail in Section 5,
0-B-complete test suites can easily be built from a state cover and a distinguishing sequence.
In particular, the set T = B - {bbb} U B -{a,b}-{bbb} is a 0-B-complete test suite for S,
and therefore (by Theorem 3.11) also 3-complete. However, since M passes test suite T, T
is not U$' UUA-complete, and thus not 0-A-complete.

Below we give an example to show that, for k£ > 0, m-complete test suites generated by
the SPYH-method [32] are not always k-A-complete, if m = |A| + k. Appendix B contains
variations of this example, which demonstrate that the SPY-method [30] and the H-method
[6] are not k-A-complete either.

» Example 3.13. Consider specification S and testing tree 7 from Figure 2. This specification
and the corresponding test suite T' = {ccep, cepp, cppp, pepep, ppp} were both taken from [32],
where the SPYH-method was used to generate T', which was shown to be 3-complete for S.
Consider the minimal state cover A = {¢, ¢} for S. FSM M from Figure 3 belongs to fault
domain U{*, since all states can be reached via at most one transition from L’ or U’. Clearly
S % M, as input sequence cpep provides a counterexample. Nevertheless, M passes test
suite T'. Thus the test suite generated by the SPYH-method [32] is not 1-A-complete.

4 A Sufficient Condition for k- A-Completeness

In this section, we describe a sufficient condition for a test suite to be k- A-complete, which

(based on ideas of [6, 35, 37]) is phrased entirely in terms of properties of its testing tree.

This tree should contain access sequences for each state in the specification, successors for
these states for all possible inputs should be present up to depth k + 1, and apartness
relations between certain states of the tree should hold. Before we present our condition
and its correctness proof, we first need to introduce the concepts of apartness, basis and
stratification, and study their basic properties.

4.1 Apartness

In our sufficient condition, the concept of apartness, inspired by a similar notion that is
standard in constructive real analysis [33, 11], plays a central role.

» Definition 4.1 (Apartness). For a Mealy machine M, we say that states q,r € Q™ are
apart (written q # r) iff there is some o € I'* such that [q](o)4, [r](o){, and [q] (o) # [r](o).
We say that o is a separating sequence for q and r. We also call o a witness of ¢ # r and
write o = q # p.

Note that the apartness relation # C @ x @ is irreflexive and symmetric. For the observation
tree of Figure 2 we may derive the following apartness pairs and corresponding witnesses:
pFO# 1and pt 0 # 11. Observe that when two states are apart they are not equivalent,
but states that are not equivalent are not necessarily apart. States 0 and 12, for instance,
are neither equivalent nor apart. However, for complete Mealy machines apartness coincides
with inequivalence.

The apartness of states g # r expresses that there is a conflict in their semantics, and
consequently, apart states can never be identified by a functional simulation.
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» Lemma 4.2. For a functional simulation f: T — M,
q#rinT = flq) # f(r) in M for all g,r € Q7.

Thus, whenever states are apart in the observation tree 7, we know that the corresponding
states in Mealy machine M are distinct. The apartness relation satisfies a weaker version
of co-transitivity, stating that if o - r # r’ and ¢ has the transitions for o, then ¢ must be
apart from at least one of r and 7/, or maybe even both.

» Lemma 4.3 (Weak co-transitivity). In every Mealy machine M,

obr#1r AN d(go)l = r#qV r'#q for allr,r',q € QM 0 € I*.

4.2 Basis

In each observation tree, we may identify a basis: an ancestor closed set of states that are
pairwise apart. In general, a basis is not uniquely determined, and an observation tree may
for instance have different bases with the same size. However, once we have fixed a basis, the
remaining states in the tree can be uniquely partitioned by looking at their distance from
this basis.

» Definition 4.4 (Basis). Let T be an observation tree. A nonempty subset of states B C Q7
is called a basis of T if

1. B is ancestor-closed: for allq € B : q# q] = parent(q) € B, and

2. states in B are pairwise apart: for all ¢, € B:q#q¢ = q# .

For each state q of T, the candidate set C(q) is the set of basis states that are not apart
from q: C(q) = {¢' € B|—(q# ¢')}. State q is identified if |C(q)| = 1.

Since B is nonempty and ancestor-closed, all states on the access path of a basis state
are in the basis as well. In particular, the initial state g is in the basis. Also note that, by
definition, basis states are identified. The next lemma gives some useful properties of a basis.

» Lemma 4.5. Suppose T is an observation tree for M with f: T — M and basis B such
that |B| = |QM|. Then f restricted to B is a bijection, M is minimal, and access(B) is a
minimal state cover for M.

Whenever a subset of states B of a testing tree is a basis, the corresponding test suite is
UA-complete, for A = access(B).

» Lemma 4.6. Let S be a Mealy machine, let T be a test suite for S, let B be a basis for
T = Tree(S,T), and let A = access(B). Then T is U -complete.

4.3 Stratification

A basis B induces a stratification of observation tree 7 first we have the set F° of immediate
successors of basis states that are not basis states themselves, next the set F'' of immediate
successors of states in F°, etc. In general, F* contains all states that can be reached via a
path of length k£ + 1 from B.

» Definition 4.7 (Stratification). Let T be an observation tree with basis B. Then B induces
a stratification of Q7 as follows. For k >0,

F¥ = {qeQ7|d(B,q)=k+1}.
We call F* the k-level frontier and write F<F = Jo, ., F* and F=F =Jo ;< F'.
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Figure 5 Stratification of an observation tree induced by B = {0, 1, 8}.

» Example 4.8. Figure 5 shows the stratification for an observation tree for specification S
from Figure 1 induced by basis B = {0, 1,8}. Witness aa shows that the three basis states are
pairwise apart, and therefore identified. States from sets B, F°, F'' and F? are marked with
different colors. In Figure 5, B is complete, but F°, F' and F? are incomplete (since states
of F9 and F' have no outgoing b-transitions, and states of F2 have no outgoing transitions
at all). The four F© states are also identified since C(2) = {0}, C(5) = {8}, C(9) = {0}, and
C(12) = {1}. Two states in F! are identified since C(3) = C(10) = {1}, whereas the other
two are not since C'(6) = C(13) = {0,8}. Since states in F? have no outgoing transitions,

they are not apart from any other state, and thus C(4) = C(7) = C(11) = C(14) = {0, 1, 8}.

4.4 A Sufficient Condition for k- A-completeness

We are now prepared to state our characterization theorem.

» Theorem 4.9. Let M and S be Mealy machines, let T be an observation tree for both
M and S, let B be a basis for T with |B| = |Q°|, let A = access(B), let FO,F! ... be the
stratification induced by B, and let k > 0. Suppose B and F<F are complete, all states in
F* are identified, and the following condition holds:

Vge FFvYre F<F:  Clq)=C(r)Vq#r (1)
Suppose that M € L{,f, Then 8 ~ M.
As a corollary, we obtain a sufficient condition for k- A-completeness.

» Corollary 4.10. Let S be a Mealy machine, let T' be a test suite for S, let T = Tree(S,T),
let B be a basis for T with |B| = |Q%|, let A = access(B), let FO, F',... be the stratification
of T induced by B, and let k > 0. Suppose B and F<F are complete, all states in F* are
identified, and condition (1) holds. Then T is k-A-complete.

The conditions of Corollary 4.10 do not only impose restrictions on testing tree 7, but also
on specification S. Suppose that the conditions of Corollary 4.10 hold. Then, by Lemma 2.9,
there is a functional simulation f: 7 — S. By Lemma 4.5, f restricted to B is a bijection, S
is minimal, and access(B) is a minimal state cover for S. Furthermore, since B is complete
and f restricted to B is a bijection, § is also complete. Minimality and completeness of
specifications are common assumptions in conformance testing.
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» Example 4.11. A simple example of the application of Corollary 4.10, is provided by the
observation tree from Figure 5 for the specification S from Figure 1. This observation tree
corresponds to the test suite T' = {aaaa, abaa, baaa,bbaa}. We claim that this test suite is
0-A-complete, for A = {¢,a,b} = access(B). Note that condition (1) vacuously holds when
k = 0. All other conditions of Corollary 4.10 are also met: basis B is complete and all states
in FO are identified. Therefore, test suite T is 0-A-complete. We may slightly optimize the
test suite by replacing test bbaa by test bba, since all conditions of the corollary are still met
for the reduced testing tree.

The conditions of Corollary 4.10 are sufficient for k-A-completeness, but the following
trivial example illustrates that they are not necessary.

» Example 4.12. Consider the Mealy machines S of Figure 6, which has a single state, two
inputs a and b, and minimal state cover A = {e}. Test suite T' = {ab} does not meet the

HQD a/0, b/1

Figure 6 Test suite T = {ab} is 0-{e}-complete for the above specification.

conditions of Corollary 4.10, since the basis of the corresponding testing tree is not complete.
Nevertheless, we claim that T is 0-A-complete. Since A is a singleton, the fault domain 44 is
empty. The fault domain UZ' only contains Mealy machines with a single state, and self-loop
transitions for inputs a and b. Test suite T verifies that the outputs of these transitions are
in agreement with S. Thus, any machine in 2g* that passes T will be equivalent to S. Hence
T is 0-A-complete.

Theorem 4.9 and Corollary 4.10 do not require that all states in F'<F are identified, but
the other conditions of the theorem/corollary already imply this.

» Proposition 4.13. Let T be an observation tree for S, B a basis for T with |B| = |Q%|,
FO F' ... the stratification induced by B, and k > 0. Suppose B and F<F are complete, all
states in F* are identified, and condition (1) holds. Then all states in F<F are identified

Appendix A contains an example to illustrate that the converse implication does not
hold: even if all states in B U F=F are identified, condition (1) may not hold. The next
proposition asserts that condition (1) implies co-transitivity for a much larger collection of
triples, namely triples of a basis state, a state in F* and a state in F7, for all i # j.

» Proposition 4.14. Let T be an observation tree for S, B a basis for T with |B| = |Q°|,
FO F ... the stratification induced by B, and k > 0. Suppose B and F<* are complete, all
states in F* are identified, and condition (1) holds. Then Vi,j Vg€ FiVr € FI:0<i<
i<k = Cl=C(r)Va#r

As a consequence of the next proposition, condition (1) can be equivalently formulated as
Vge Frvre F<kVseB:s#q = s#rVg#r (2)

Condition (2) says that apartness is co-transitive for triples of states in the observation tree
consisting of a state in F'*, a state in F<F, and a basis state. Co-transitivity is a fundamental
property of apartness [33, 11].

» Proposition 4.15. Let T be an observation tree for S, B a basis for T, and |B| = |Q%|.
Suppose q and r are states of T and q is identified. Then

Clq)=C(r)Vq#r & [Vs€B:s#q = s#rVqr]
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4.5 Algorithm

We will now present an algorithm that checks, for a given observation tree 7 with N states,
in ©(N?) time, for all pairs of states, whether they are apart or not. In practice, models of
realistic protocols often have up to a few dozen states and inputs [24]. This means that if &
equals 2 or 3, the observation tree will contain up to a few thousand states, and so with some
optimization (e.g. on the fly computation of apartness pairs) our algorithm is practical. For
larger benchmarks the observation trees already contain millions of states, and our algorithm
cannot be applied. Nevertheless, from a theoretical perspective it is interesting to know that
the apartness relation (and hence also our sufficient condition for k-A-completeness) can be
computed in polynomial time.

Algorithm 1 Computing the apartness relation.

1: function FILLAPARTNESSARRAY( )

2 for ¢ € Q do

3 for ¢ € Q do

4: if — Visited(q, q') then APARTNESSCHECK(q,q)
5: end if

6 end for

7 end for

8 return Apart

9: end function

10: function APARTNESSCHECK(q,q')

11: 1 + Adjlq], I + Adjlq']

12: while | # e Al' # € A =Apart(q,q’) do

13: r  hd(l), 7' hd(l')

14: if in(r) <in(r’) then I « ti(l)

15: else if in(r') < in(r) then I’ + tI(I)

16: else if out(r) = out(r’') then

17: if = Visited(r,r") then APARTNESSCHECK(r, ")
18: end if

19: Apart(q,q') < Apart(q,q') V Apart(r,r')

20: L tl(D), I t(l')

21: elseApart(q,q') + true

22: end if

23: end while
24: Visited(q, q') < true
25: end function

Algorithm 1 assumes a total order < on the set of inputs I and two partial functions
in: QT — I and out : Q7 — O which, for each noninitial state ¢, specify the input and
output, respectively, of the unique incoming transition of ¢. It also assumes, for each state
q € Q7 , an adjacency list Adj[q] € (Q7)* that contains the immediate successors of g, sorted
on their inputs. The algorithm maintains two Boolean arrays Visited and Apart to record
whether a pair of states (¢, ¢’) has been visited or is apart, respectively. Initially, all entries
in both arrays are false. When exploring a pair of states (q,¢’), Algorithm 1 searches for
outgoing transitions of ¢ and ¢’ with the same input label. In this case, if the outputs are
different then it concludes that ¢ and ¢’ are apart. Otherwise, if the outputs are the same,
it considers the target states r and /. If the pair (r,7’) has not been visited yet then the
algorithm recursively explores whether this pair of states is apart. If r and ' are apart then
q and ¢’ are apart as well.

The theorem below asserts the correctness and time complexity of Algorithm 1.
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» Theorem 4.16. Algorithm 1 terminates with running time ©(N?), where N = |Q7|. Upon
termination, Apart(q,q’) = true iff ¢ # ¢, for all ¢,¢' € Q7.

Once we know the apartness relation, there are several things we can do, e.g., we may
check in ©(N?) time whether the conditions of Theorem 4.9 hold (but note that N grows
exponentially in k). First we check in linear time whether all states in B and F<* are
complete. Next, in one pass over array Apart, we compute the candidate sets for all frontier
states. By Proposition 4.13, if some state in the frontier has a candidate set with more
than one element, then the conditions of Theorem 4.9 do not hold. Otherwise, we can check
in constant time whether frontier states have the same candidate set. Finally, we check
condition (1) with a double for-loop over F* and F<*.

If we can compute the apartness relation, we may also select appropriate state identifiers
on-the-fly in order to generate small k-A-complete test suites (similar to the H-method [6]),
and we can check in ©(N?) time whether tests can be removed from a given test suite without
compromising k-A-completeness.

5 Deriving Completeness for Existing Methods

In this section, we show how k-A-completeness of two popular algorithms for test suite
generation, the Wp and HSI methods, follows from Corollary 4.10. We also present an
alternative m-completeness proof of the H-method [6], which is a minor variation of the proof
of Theorem 4.9. In order to define the Wp and HSI methods, we need certain sets (of sets)
of sequences. The following definitions are based on [22]; see [5, 22] for a detailed exposition.

» Definition 5.1. Let S be a Mealy machine.
A state identifier for a state ¢ € Q° is a set W, C I* such that for every inequivalent
state r € Q°, W, contains a separating sequence for q and v, i.e., a witness for their
apartness.
We write {Wy},eqs or simply {Wq}q for a set that contains a state identifier Wy for
each q € Q.
If W = {Wy}, is a set of state identifiers, then the flattening |JW is the set {oc € I* |
JgeQ°:0eW,}.
If W is a set of input sequences and W = {Wy}, is a set of state identifiers, then the
concatenation W © W is defined as {o7 |0 € W, 7 € Wis(ys o)}
A set of state identifiers {Wy,}, is harmonized if, for each pair of inequivalent states
g7 € Q°, Wy N W, contains a separating sequence for q and r. We refer to such a set of
state identifiers as a separating family.

k- A-completeness of the Wp-method [9] follows from Corollary 4.10 via routine checking.

» Proposition 5.2 (k- A-completeness of the Wp-method). Let S be a complete, minimal Mealy
machine, k > 0, A a minimal state cover for S, and W = {W,}, a set of state identifiers.
Then T = (A- IS U (A-ISF .- UW)U (A - ISFFL O W) is a k-A-complete test suite for S.

Also k-A-completeness of the HSI-method of Luo et al [19] and Petrenko et al [41, 28]
follows from Corollary 4.10 via a similar argument.

» Proposition 5.3 (k-A-completeness of the HSI-method). Let S be a complete, minimal
Mealy machine, k > 0, A a minimal state cover for S, and W a separating family. Then
T=(A-ISFHHY U (A-ISFL W) is k-A-complete for S.
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The W-method of [39, 3], and the UTOv-method of [2] are instances of the Wp-method, and

the ADS-method of [17] and the hybrid ADS method of [31] are instances of the HSI-method.

This means that k- A-completeness of these methods also follows from our results.
The H-method of Dorofeeva et al [6] is based on a variant of our Theorem 4.9 which
requires that all states in F'<* are identified and replaces condition (1) by

Vq,reFSk:qi)r = C(q=C(r)Vag#r (3)

By Proposition 4.14, condition (3) is implied by condition (1) of Theorem 4.9. Appendix B
contains an example showing that the H-method is not k-A-complete. However, as shown
by [6, Theorem 1], the H-method is m-complete. Our condition (1) can be viewed as a
strengthening of condition (3) of the H-method, needed for k-A-completeness. Below we
present an alternative formulation of the m-completeness result for the H-method of [6],
restated for our setting. The full version of this article contains a proof of this proposition
that uses the same proof technique as Theorem 4.9.

» Proposition 5.4 (m-completeness of the H-method). Let S be a Mealy machine with n
states, let T be a test suite for S, let T = Tree(S,T), let B be a basis for T with n states, let
A = access(B), let FO, F1,... be the stratification of T induced by B, and let m,k > 0 with
m =n+k. Suppose B and F<* are complete, all states in F<* are identified, and condition
(3) holds. Then T is m-complete.

6 Conclusions and Future Work

In order to solve a long-standing open problem of Hennie [12], we proposed the notion of
k-A-completeness. We showed that the fault domain for k-A-completeness is larger than
the one for m-completeness (if m = |A| + k), and includes FSMs with a number of extra
states that grows exponentially in k. We provided a sufficient condition for k- A-completeness
in terms of apartness of states of the observation induced by a test suite. Our condition
can be checked efficiently (in terms of the size of the test suite) and can be used to prove
k-A-completeness of the Wp-method of [9] and the HSI-method of [19, 41, 28]. Our results
show that the Wp and HSI methods are complete for much larger fault domains than the
ones for which they were originally designed. We presented counterexamples to show that
the SPY-method [30], the H-method [6], and the SPYH-method [32] are not k-A-complete.
We view our results as an important step towards the definition of fault domains that
capture realistic assumptions about possible faults, but still allow for the design of sufficiently
small test suites that are complete for the fault domain and can be run within reasonable
time. A promising research direction is to reduce the size of the fault domains via reasonable
assumptions on the structure of the implementation under test. Kruger et al [16] show
that significantly smaller test suites suffice if the fault domains U,,, are reduced by making
plausible assumptions about the implementation. The same approach can also be applied
for the fault domains Z/{,Q4 UUA proposed in this article. We expect that our results will find
applications in the area of model learning [1, 25, 34, 13]. Black-box conformance testing,
which is used to find counterexamples for hypothesis models, has become the main bottleneck
in applications of model learning [34, 40]. This provides motivation and urgency to find fault
domains that provide a better fit with applications and allow for smaller test suites [16].
An important question for future research is to explore empirical evidence for the usefulness
of our new fault domains: how often are faulty implementations of real systems contained
in fault domains U}, for small k& and a sensible choice of A? Hiibner et al [14] investigated

how test generation methods perform for SUTs whose behaviors lie outside the fault domain.
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They considered some realistic SUTs — SystemC implementations of a ceiling speed monitor
and an airbag controller described in SysML — and used mutation operators to introduce
bugs in a systematic and automated manner. Their experiments show that m-complete
test suites generated by the W- and Wp-methods exhibit significantly greater test strength
than conventional random testing, even for behavior outside the fault domain. It would be
interesting to revisit these experiments and check which fraction of the detected faults is
outside U,,, but contained in Z/{,f.

Our condition is sufficient but not necessary for completeness. If one can prove, based on
the assumptions of the selected fault domain, that two traces ¢ and 7 reach the same state
both in specification S and in implementation M, then it makes no difference in test suites
whether a suffix p is appended after o or after 7. Simao et al [4, 30] were the first to exploit
this idea of convergence to reduce the size of test suites in a setting for m-completeness. It
is future work to adapt these results to reduce the size of k-A-complete test suites. Also,
the complexity of deciding whether a test suite is k-A-complete is still unknown. Another
direction for future work is to lift our results to partial FSMs with observable nondeterminism,
e.g. by adapting the state counting method [28].

Closest to our characterization is the work of Sachtleben [29], who develops unifying
frameworks for proving m-completeness of test generation methods. Inspired by the H-method,
he defines an abstract H-condition that is sufficiently strong to prove m-completeness of
the Wp, HSI, SPY, H and SPYH methods. Sachtleben [29] also considers partially defined
FSMs with observable nondeterminism, and takes convergence into account. Moreover, he
mechanized all his proofs using Isabelle. It would be interesting to explore whether the
formalization of [29] can be adapted to our notion of k-A-completeness.

An obvious direction for future work is to extend our notion of k- A-completeness to richer
classes of models, such as timed automata and register automata. The recent work of [15]
may provide some guidance here. It will also be interesting to explore if our characterization
can be used for efficient test suite generation, or for pruning test suites that have been
generated by other methods.
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A Condition (1) is Needed

Proposition 4.13 establishes that condition (1) implies that all states in F'<* are identified.
The converse implication does not hold: even if all states in BU F<F are identified, condition
(1) may not hold. The Mealy machines § and M of Figure 7 present a counterexample with
k=1and A={el,r}.

/0 r/0
r/0 r
— —
1/1 11
s s
210 |r/0 210 |r0
2
7
7

Figure 7 A specification S (left) and a faulty implementation M (right).

Note that these machines are not equivalent: input sequence rrrlil distinguishes them. The
extra state g3 of M behaves similar as state gy of S, but is not equivalent. Figure 8 shows
an observation tree 7 for both S and M.

Observation tree 7 meets all the requirements of Theorem 4.9, except condition (1). One
way to think of T is that M cherry picks distinguishing sequences from S to ensure that
the F'! states are identified by a sequence for which S and M agree. Note that B and F°
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are both complete, and all states in B and F<! are identified. However, 7 does not satisfy
condition (1) as t13 is not apart from tg, C(tg) = {to} and C(t13) = {t2}. The example
shows that without condition (1), Theorem 4.9 doesn’t hold.

B The SPY and H-methods are not k- A-Complete

» Example B.1. Figure 9(left) shows the running example S from the article by Simao,
Petrenko and Yevtushenko that introduces the SPY-method [30]. Using this method, a
3-complete test suite {aaaa, baababba, bbabaa} was derived in [30]. Consider the minimal
state cover A = {¢,a} for S. Implementation M from Figure 9(right) is contained in fault
domain U, since all states can be reached via at most one transition from 0’ and 1’. Clearly
S % M, as input sequence aab provides a counterexample. Nevertheless, M passes the
derived test suite. Thus the test suite generated by the SPY-method [30] is not 1-A-complete.

» Example B.2. Figure 11 shows the tree for a 3-complete test suite generated by the
H-method of Dorofeeva et al [6] for the machine of Figure 10(left). This tree satisfies
condition (3) since the only transitions from FY to F! that change the candidate set are
a-transitions, and the sources and targets of those transitions are apart. The machine of
Figure 10(right) will pass this test suite, even though the two machines are inequivalent
(che is a counterexample). It is easy to check that the machine on the right is in U;}, for
A ={e,a}. Thus the test suite generated by the H-method is not 1-A-complete. Indeed, the
test suite does not meet condition (1) since (for example) the states with access sequences cb
and ac have different candidate sets but are not apart.
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Figure 8 Observation tree for FSMs S§ and M from Figure 7.
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Figure 9 An implementation from fault domain I;* (right) that passes the 3-complete test suite
{aaaa, baababba, bbabaa} that was constructed for the specification (left) using the SPY-method.
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Figure 10 Specification (left) and implementation (right) from fault domain U{* that passes the
test suite of Figure 11.
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c/0 c/1

Figure 11 Testing tree for 3-complete test suite constructed for the specification of Figure 10(left)
using the H-method.
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