
From Bisimulation to Traces: The Impact of
Parallel Composition on Finite Bases
Rowin Versteeg
Eindhoven University of Technology, The Netherlands

Valentina Castiglioni
Eindhoven University of Technology, The Netherlands

Bas Luttik
Eindhoven University of Technology, The Netherlands

Abstract
We consider process algebras with inaction, action prefix, non-deterministic choice and interleaving
parallel composition modulo the behavioural equivalences in van Glabbeek’s linear time-branching
time spectrum, and study the existence of finite bases (i.e., finite sound and complete axiomatisations)
for these algebras. We prove that if the alphabet of actions is infinite and the behavioural equivalence
is either simulation equivalence or trace equivalence, then a finite basis exists and is obtained by
extending the known ground-complete axiomatisations for these behavioural equivalences. We prove
that if the alphabet of actions is finite, then a finite basis does not exist for these equivalences. We
also prove for all behavioural equivalences between ready simulation and completed traces there
cannot exist a finite basis irrespective of the cardinality of the alphabet of actions (provided that it
is non-empty). Finally, we prove that these results are maintained if the process algebra is extended
with a constant for successful termination.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Equational basis, Parallel composition, Preorders, Equivalences, Linear time
- branching time spectrum

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.35

1 Introduction

Behavioural semantics have been introduced as simple and elegant tools for an explicit
comparison of the semantics of processes. These are preorders and equivalence relations
allowing one to establish whether two processes have the same observable behaviour : different
notions of observability correspond to different levels of abstraction from the information
on process execution, which can either be considered irrelevant in an application context,
or be unavailable to an external observer. A taxonomy of behavioural relations based on
their distinguishing power, known as the linear time - branching time spectrum (henceforth
referred to as the spectrum), was proposed by van Glabbeek in [20].

Semantic properties of processes can also be defined, implicitly, by a set of equational
axioms, i.e., syntactic equations over terms in a considered process algebra. Informally, if
a term t is proved equal to a term u by means of the axioms, then we can say that t and
u describe the same behaviour. An axiomatisation E is ground-complete for a behavioural
semantics S if all variable-free terms (i.e., processes) that are related by S can be proved
equal from E. An axiomatisation E is complete for S if also terms with variables that are
related by S can be proved equal from E. We call a finite, sound and complete axiomatisation
a finite basis. Obtaining an axiomatisation of a behavioural semantics is a key problem in
concurrency theory, as it allows us to characterise the semantics of a process algebra in a
purely syntactic fashion, making thus such a characterisation independent of the details of the
definition of the behavioural semantics of interest. Moreover, an axiomatisation underlines

© Rowin Versteeg, Valentina Castiglioni, and Bas Luttik;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 35; pp. 35:1–35:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0005-3171-6647
https://orcid.org/0000-0002-8112-6523
https://orcid.org/0000-0001-6710-8436
https://doi.org/10.4230/LIPIcs.CONCUR.2025.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

35:2 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

Table 1 Existence of finite bases for the behavioural semantics over BCCSP∥. The rows are
clustered to indicate the dependencies of the proofs.

|A| = 1 2 ≤ |A| < ∞ |A| = ∞
Bisimulation - - -
2-Nested Simulation ? - -
Possible Futures ? - -
Ready Simulation - - -
Possible Worlds - - -
Ready Traces - - -
Failure Traces - - -
Readies - - -
Failures - - -
Completed Simulation - - -
Completed Traces - - -
Simulation - - +
Traces - - +

the differences between the various semantics via a collection of revealing axioms, and, due
to its syntactic nature, it can be applied in verification tools based on theorem proving or
rewriting.

As part of the analysis of the behavioural semantics in the spectrum, van Glabbeek
proposed finite, ground-complete axiomatisations for them over the language BCCSP, which
consists of the basic operators of CCS [26] and CSP [24], i.e., inaction, action prefix, and
nondeterministic choice. However, the majority of process algebras include some form of
parallel composition operator to model the concurrent interaction between processes. Hence,
the paper [2] proposed a systematic study of the axiomatisability of the CCS interleaving
parallel composition operator “∥” modulo the behavioural semantics in the spectrum. The
study was carried out over the language BCCSP∥, i.e., BCCSP extended with ∥. Specifically,
it was shown that all behavioural semantics that are at least as coarse as ready simulation
admit a finite ground-complete axiomatisation over BCCSP∥. Conversely, for all behavioural
semantics that are at most as coarse as possible futures there exists no finite ground-complete
axiomatisation, and, thus, no finite basis, provided the set of actions A over which the terms
are built contains more than one element. (It is still an open problem to determine whether
a finite ground-complete axiomatisation exists for possible futures and the n-nested trace
and n-nested simulation semantics when |A| = 1.)

Our Contribution. In this paper, we move the focus from processes to terms with variables,
and we investigate the existence of finite bases for the behavioural semantics in the spectrum
over BCCSP∥. Table 1 reports an overview of our findings. We remark that the non-existence
of finite bases for possible futures, nested simulations, and bisimulation semantics follows
directly from the non-existence of finite ground-complete axiomatisations over BCCSP∥ for
them [2,7, 27]. Interestingly, for the other semantics, we show that almost all finite ground-
completeness results from [2] turn into negative results. The only exception is constituted
by trace and simulation equivalences over BCCSP∥ terms constructed over an infinite set
of actions A. In this case, we provide, for each equivalence, an ω-complete axiomatisation
that combined with the ground-completeness results from [2] give us the desired finite bases
(Section 4.3). Here, by finite we mean finitely representable, namely, the axiomatisation

R. Versteeg, V. Castiglioni, and B. Luttik 35:3

includes only finitely many axiom schemas (that can generate infinitely many equations).
The ω-completeness result is obtained by making use of Groote’s technique of inverted
substitutions [21] and two additional axioms for ∥ with respect to those in [2] (one of which
is original with respect to the related literature). As soon as |A| < ∞, this positive results
for trace and simulation semantics turn into negative ones. The interesting bit is that those
negative results require different proof techniques, according to the cardinality of A. In the
case |A| = 1 we use the transformation technique from [4] to establish a relation between
BCCSP∥, modulo the two semantics, and the max-plus algebra over natural numbers [5].
We then use this relation and the non-finite axiomatisability result for the latter algebra [5]
to conclude that the same negative result holds for the former algebra (Section 4.1). In
the case 2 ≤ |A| ≤ ∞, we prove the non-existence of a finite axiomatisation modulo trace
and simulation semantics over BCCSP∥ by applying Moller’s proof-theoretic technique [27]
(Section 4.2). We make use of the same technique to prove the non-existence of finite
basis modulo all semantics between ready simulation and completed traces over BCCSP∥,
regardless of the cardinality of A (Section 3). Notably, we prove all negative results for both
versions of each semantics: preorder and equivalence. Finally, we also discuss the lifting of
our results to BCCSP∥ extended with successful termination (Section 5).

Due to space limitations, we present only a high-level description of our results and
the proof techniques applied to obtain them. We refer the interested reader to [30] for the
detailed technical development.

Related Work. The axiomatisations of BCCSP have been studied extensively, and we
give here only a brief summary of the results. Van Glabbeek presented finite, sound and
ground-complete axiomatisations for most equivalences in the spectrum [20]. However, some
of these axiomatisations contained conditional axioms. In response Blom, Fokkink and Nain
gave finite, sound and ground-complete axiomatisations for ready traces, ready simulation
and failure traces without conditions [11]. They also proved that there exists no finite, sound
and ground-complete axiomatisation for ready traces if the number of actions is infinite.
Aceto et al. proved that there are no finite, sound and ground-complete axiomatisations for
2-nested-simulation and possible futures [7].

Moller proved the existence of a finite basis for bisimulation [27], Groote did this for
completed traces and traces [21] and Fokkink and Nain for failures [19]. Conversely, Chen,
Fokkink and Nain proved non-finite axiomatisability results for ready simulation and com-
pleted simulation [15], Chen and Fokkink for simulation [12], Fokkink and Nain for ready
traces, readies and possible worlds [18] and Chen et al. for failure traces [13].

For what concerns preorders, Aceto, Fokkink and Ingólfsdóttir presented the transforma-
tion technique for BCCSP to transform finite, sound and (ground-)complete axiomatisations
for a behavioural preorder to a (ground-)complete axiomatisation for the respective behavi-
oural equivalence [6]. This method was applied only to the behavioural semantics between
ready simulation and traces. The transformation technique can be used also to lift results
across process algebras. Aceto, Ésik and Ingólfsdóttir proved there is no finite basis for the
max-plus algebra on natural numbers, then used that fact to prove that trace equivalence
with |A| = 1 has no finite basis over the process algebra BPA [4], which is similar to BCCSP.

Regarding BCCSP∥, Hennessy and Milner [22, 23], proposed a ground-complete axio-
matisation over it modulo strong bisimilarity and weak bisimilarity. This axiomatisation
contains the expansion law, an axiom schema which expresses equationally the semantics of
the parallel composition operator. However, the expansion law generates an infinite number
of axioms, which makes any axiomatisation containing it infinite. Moller then proved that no

CONCUR 2025

35:4 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

Table 2 Operational semantics of BCCSP∥.

a.t
a−→ t

t
a−→ t′

t + u
a−→ t′

u
a−→ u′

t + u
a−→ u′

t
a−→ t′

t ∥ u
a−→ t′ ∥ u

u
a−→ u′

t ∥ u
a−→ t ∥ u′

finite, sound and ground-complete axiomatisation exists for bisimulation [28]. As discussed
above, Aceto et al. recently studied the existence of ground-complete axiomatisations for the
other behavioural equivalences in the spectrum [2].

2 Preliminaries

The Process Algebra BCCSP∥. The language BCCSP∥ extends BCCSP with the inter-
leaving parallel composition operator, and it is defined by the following grammar:

t ::= 0 | x | a.t | t + t | t ∥ t

where a ranges over a non-empty set of actions A, and x ranges over a countably infinite
set of variables V . We shall use the meta-variables t, u, . . . to range over the set O of open
BCCSP∥ terms, and write var(t) for the collection of variables occurring in the term t. We
also adopt the standard convention that prefixing binds strongest and + binds weakest. We
use a summation

∑n
i=1 ti to denote the term t = t1 + · · · + tn, where terms t1, . . . , tn do

not have + as head operator and are called summands of t. The empty sum represents
0. We let tn = t ∥ tn−1, with t1 = t. A term is closed if it does not contain any variables.
Closed terms are usually called processes, and we denote the set of BCCSP∥ closed terms by
P. A substitution σ : V → O is a mapping from variables to terms. A closed substitution
ρ : V → P is a mapping from variables to closed terms.

We use the SOS framework [29] to equip processes with an operational semantics. A
(closed) literal is an expression of the form t

a−→ t′ for some (closed) terms t, t′ and action
a ∈ A. The inference rules for prefixing a._, nondeterministic choice + and interleaving
parallel composition ∥ are reported in Table 2. These rules induce the labelled transition
system (LTS) [25] (P, A, −→) whose transition relation −→ ⊆ P × A × P contains exactly the
closed literals that can be derived using the rules in Table 2. As usual, we write p

a−→ p′

in place of (p, a, p′) ∈ →, and p
a−→ if there exists some p′ such that p

a−→ p′. Let the set of
initial actions of p be defined as I(p) = {a ∈ A | p

a−→}. Then, we write p → if I(p) ̸= ∅, and
p ̸→ otherwise. Given a sequence of actions s = a1 · · · an ∈ A∗, we write p

s−→ p′ if and only
if there exists a sequence of transitions p = p0

a1−→ p1
a2−→ · · · an−−→ pn = p′. If p

s−→ p′ holds for
some process p′, then s is a trace of p. Moreover, we say that s is a completed trace of p if
I(p′) = ∅. We let ε denote the empty trace, and |s| denote the length of trace s. We use s[i]
to denote the action occurring at position 1 ≤ i ≤ |s|. The prefix of s up to, and including,
position i is denoted by s[..i]. Similarly, the suffix from position i onward is denoted by s[i..].
We write sn for an n repetition of s, where s0 = ε and sn = ssn−1. For ease of notation,
given s ∈ A∗ and a term t, we let s.t = s[1].s[2..].t, with ε.t = t.

Behavioural Semantics. To compare the behaviour of two processes, we use behavioural
semantics (BS). These are preorders (reflexive and transitive relations) and equivalences over
the states of a LTS allowing us to establish whether two processes have the same observable
semantics. A preorder p ≾BS q specifies that the semantics of p is included in that of q,

R. Versteeg, V. Castiglioni, and B. Luttik 35:5

according to the notion of observability specified by BS. We have that p and q are BS
equivalent, denoted p ≃BS q, if and only if p ≾BS q and q ≾BS p. Van Glabbeek presented the
linear time–branching time spectrum [20], henceforth the spectrum, which is a taxonomy of BS
based on their distinguishing power. Henceforth, we write ≾ (respectively, ≃) to denote an
arbitrary preorder (respectively, equivalence) in the spectrum. Below, we report the formal
definitions of the BS that we will use in the technical development of our results.

▶ Definition 1 (Trace and completed trace preorders). We denote the set of traces of p by
T(p) = {s ∈ A∗ | ∃ p′.p

s−→ p′}. Then p ≾T q if and only if T(p) ⊆ T(q). Likewise, the set of
completed traces of p is denoted by CT(p) = {s ∈ A∗ | ∃p′.p

s−→ p′ ∧ p′ ̸→}. Then, p ≾CT q if
and only if T(p) ⊆ T(q) and CT(p) ⊆ CT(q).

We remark that, since all BCCSP∥ processes have traces of finite length, CT(p) ⊆ CT(q)
implies T(p) ⊆ T(q) for all p, q. Hence, we have p ≾CT q if and only if CT(p) ⊆ CT(q).

▶ Definition 2 ((Bi)simulation relations). A binary relation R over processes is a simulation
if p R q and p

a−→ p′ imply there is some q′ such that q
a−→ q′ and p′ R q′. Then p ≾S q if and

only if there exists a simulation R such that p R q.
A simulation R is a ready simulation if p R q implies I(p) = I(q). Then p ≾RS q if and only
if there exists a ready simulation R such that p R q.
A simulation R is a bisimulation if it is symmetric. Then p ≃B q if and only if there exists a
bisimulation R such that p R q.

Using literals and inference rules, we can consider transitions over terms containing
variables, e.g. a.x

a−→ x and x ̸→, and extend the BS over terms as follows: for t, u ∈ O, we
let t ≾ u if and only if ρ(t) ≾ ρ(u) for all closed substitutions ρ. The following property is
straightforward:

▶ Lemma 3. Whenever t ≾ u, then var(t) ⊆ var(u).

Additionally, since BCCSP∥ operators are defined by inference rules in the de Simone
format [17], all the preorders in the spectrum are precongruences with respect to them [8].
This means that t1 ≾ u1 and t2 ≾ u2 imply a.t1 ≾ a.u1 for any a ∈ A, t1 + t2 ≾ u1 + u2 and
t1 ∥ t2 ≾ u1 ∥ u2. Likewise, any equivalence is a congruence over BCCSP∥ [8].

We define the depth of a term t, notation |t|, as the length of the longest trace in CT(t),
formally defined as |t| = max{|s| | s ∈ CT(t)}. Notice that |x| = 0 for all x ∈ V . Then, for
all behavioural preorders ≾, the following property holds:

▶ Lemma 4. For all terms t, u, if t ≾ u, then |t| ≤ |u|.

Moreover, a substitution cannot decrease the depth of a term.

▶ Lemma 5. For all terms t and substitutions σ, |t| ≤ |σ(t)|.

Equational logic. In this paragraph we will use only equivalences to introduce notation and
concepts. However, those can be extended to preorders. An axiom system, or axiomatisation,
E is a collection of equations t ≈ u over the considered language, thus BCCSP∥ in this paper.
An equation t ≈ u is derivable from an axiom system E, notation E ⊢ t ≈ u, if there is
an equational proof for it from E, namely if t ≈ u can be inferred from the axioms in E
using the rules of equational logic. An axiom t ≈ u is sound modulo ≃ if t ≃ u holds. An
axiomatisation E is sound modulo ≃, if all of its axioms are sound. Consequently, if ≃ is a
congruence and E is sound modulo ≃ then E ⊢ t ≈ u implies t ≃ u. Then, an axiom system

CONCUR 2025

35:6 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

Table 3 The axiomatisation E1, which is sound modulo ≃B .

A0 x + 0 ≈ x P0 x ∥ 0 ≈ x

A1 x + y ≈ y + x P1 x ∥ y ≈ y ∥ x

A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x

EL1 a.x ∥ b.y ≈ a.(x ∥ b.y) + b.(a.x ∥ y)

E is ground-complete modulo ≃ if p ≃ q implies E ⊢ p ≈ q for all closed terms p and q. E
is ω-complete modulo ≃ if E ⊢ ρ(t) ≈ ρ(u) for all closed substitutions ρ implies E ⊢ t ≈ u.
Lastly, E is complete modulo ≃ if t ≃ u implies E ⊢ t ≈ u for all terms t and u.

▶ Lemma 6. Any ground- and ω-complete axiomatisation modulo ≃ is complete modulo ≃.

Hence, any complete axiomatisation is also ground-complete. An axiomatisation is finite
if it contains a finite number of axioms. We say that there exists a finite basis modulo
≃ if there exists a finite, sound and complete axiomatisation modulo ≃. Consider, for
instance axiomatisation E1 in Table 3. E1 is sound modulo ≃B [2], and, thus, modulo any
equivalence in the spectrum. If an axiom contains an action, e.g. axiom EL1, then this may
be instantiated with any action in A. Hence, if |A| = ∞, this axiom actually represents an
infinite number of axioms. However, in this case we still consider the axiomatisation to be
finite, since we interpret occurrences of actions in axioms as variables.

We present another axiom, P2, modelling associativity of interleaving:

P2 (x ∥ y) ∥ z ≈ x ∥ (y ∥ z)

We can show that P2 is sound modulo all the equivalences in the spectrum, and it will be
used in the technical results for every finite basis presented in this work.

▶ Lemma 7. Axiom P2 is sound modulo ≃B.

Henceforth, we write all terms modulo A0-A3 and P0-P2, to improve readability.

Breadth. We conclude this section by introducing the novel notion of breadth of a term,
that is the largest nested parallel composition of variables in the term. Formally, we define
the breadth of t, notation [[t]], inductively as follows:

[[0]] = 0 [[x]] = 1 [[a.t′]] = [[t′]]
[[t1 + t2]] = max([[t1]], [[t2]]) [[t1 ∥ t2]] = [[t1]] + [[t2]]

Notice that [[t]] = 0 if and only if var(t) = ∅. Breadth satisfies the following property:

▶ Lemma 8. For all terms t, u, if t ≾ u, then [[t]] ≤ [[u]].

3 From Ready Simulation to Completed Traces

In this section we show that there exists no finite basis modulo any ≾RS ⊆ ≾ ⊆ ≾CT or
any ≃RS ⊆ ≃ ⊆ ≃CT, as soon as the set of actions A is not empty. To this end, we use the
proof-theoretic technique [27]: This consists in providing a property of terms that is invariant
under provability from finite axiom systems that are sound modulo ≃ (≾). Then one can
identify an infinite family of (in)equations, all sound modulo ≃ (≾) in which the property
is not preserved, i.e., one side of each (in)equation satisfies it, but the other side does not.
This implies that there are infinitely many (in)equations that cannot be derived from any
finite, sound, axiom system, and thus that there is no finite basis modulo ≃ (≾).

R. Versteeg, V. Castiglioni, and B. Luttik 35:7

3.1 Negative Results for the Preorders
Our main objective is to prove the following theorem.

▶ Theorem 9. No precongruence ≾ s.t. ≾RS ⊆ ≾ ⊆ ≾CT admits a finite basis over BCCSP∥.

Following the strategy above, we introduce an infinite family of sound inequations for
which there exist no finite, sound, axiomatisation from which we can derive all of them:

{x ⪯ x + xn | n ≥ 2} (1)

▶ Lemma 10. The infinite family of inequations in (1) is sound modulo ≾RS.

Intuitively, if we have a closed substitution ρ then ρ(x) is simulated by ρ(x + xn) and
I(ρ(x)) = I(ρ(x + xn)). Moreover, Lemma 10 implies that all the inequations in (1) are also
sound modulo ≾ for all ≾RS⊆≾⊆≾CT.

Next, we identify a property of terms that is invariant under provability from a finite
axiom system E that is sound modulo ≾CT. To this end, notice that, since E is finite, it
can only contain terms with a breadth less than some n ≥ 2. Consider then a derivation
E ⊢ t ⪯ u where u ≾CT x + xn and t ≃CT x. We will argue that no derivation step can
increase the breadth of the term, showing that u ≃CT x must hold as well. The following
proposition shows that this property is an invariant under provability from finite, sound,
axiom systems.

▶ Proposition 11. Let E be a finite set of inequations over BCCSP∥ that is sound modulo
≾CT. Let n ≥ 2 be greater than the breadth of any term in E. Assume that: E ⊢ t ⪯ u;
u ≾CT x + xn; and t ≃CT x. Then u ≃CT x.

The following properties are straightforward:
1. t ≾CT u, by the soundness of E;
2. |t| = |u| = 0, by Lemma 4;
3. [[t]] = 1, by Lemma 8;
4. var(t) = var(u) = {x}, by Lemma 3.
The proof of Proposition 11 is by induction on the length of the derivation of t ⪯ u from E,
with a case distinction on the last rule used in the derivation. We will sketch here the proof
of the most interesting case, i.e. the case of the substitution rule. The core of the proof lies
in determining the syntactic structure of t and u. We do this by means of the novel notion
of breadth: by showing that [[u]] = 1 must hold, we can determine that u ≃CT x. To this end,
we present some properties on the depth and breadth of terms as in Proposition 11:

▶ Lemma 12. Let t, u be BCCSP∥ terms:
1. If t ≾CT x + xn with n ≥ 2, then [[t]] = 1 or [[t]] = n.
2. If t ≾CT u and |u| = 0, then var(u) ⊆ var(t).
3. If |t| = [[t]] = 0, then t ≃CT 0.
4. If |t| = 0, [[t]] = 1 and var(t) = {x}, then t ≃CT x.

Assume that E ⊢ t ⪯ u because t = σ(v) and u = σ(w) from some v ⪯ w ∈ E and
substitution σ. We have σ(v) ≾CT σ(w), and since σ(w) ≾CT x + xn, we can use Lemma 12.1
to obtain [[σ(w)]] = 1 or [[σ(w)]] = n. We argue that [[σ(w)]] = 1 must hold, so assume, towards
a contradiction, [[σ(w)]] = n. We have [[w]] < n, so there must be some variable y ∈ var(w)
such that 2 ≤ [[σ(y)]] ≤ n. By the soundness of E we have v ≾CT w. Since σ(w) ≾CT x + xn,
by Lemma 4 we get |σ(w)| = 0, from which, by Lemma 5, we infer |w| = 0. Hence, by
Lemma 12.2 we obtain y ∈ var(v). Then we reach a contradiction, since [[σ(v)]] ≥ [[σ(y)]] > 1
contradicts [[σ(v)]] = 1. Consequently, [[σ(w)]] = 1, so σ(w) ≃CT x by Lemma 12.4.

CONCUR 2025

35:8 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

Theorem 9 then follows by noticing that no inequation in (1) satisfies the considered
property. In fact, while it is clearly the case that x ≃CT x and x + xn ≾CT x + xn, it is not
true that x + xn ≃CT x. In light of Proposition 11, this means that no finite axiomatisation
that is sound modulo ≾CT can derive all the inequations in (1). Hence, there is not finite
basis for ≾CT over BCCSP∥. Then, recall that the considered inequations are also sound
modulo ≾RS (Lemma 10). Let ≾RS⊆≾⊆≾CT be a precongruence over BCCSP∥, and let E be
any finite inequational axiomatisation for BCCSP∥ that is sound modulo ≾. Since ≾⊆≾CT,
we have that E is sound modulo ≾CT. Let n ≥ 2 and larger than the breadth of each term in
the inequations in E. Then x ⪯ x + xn cannot be derived from E. Since this inequation is
sound modulo ≾, it follows that E is not complete modulo ≾.

3.2 Negative Results for the Equivalences
We now show how we can extend Theorem 9 from preorders to equivalences. Specifically, the
goal is to prove the following theorem.

▶ Theorem 13. No congruence ≃ s.t. ≃RS ⊆ ≃ ⊆ ≃CT admits a finite basis over BCCSP∥.

From Lemma 10, we infer that the inequation a.x ⪯ a.(x + xn) is sound modulo ≾RS for
any a ∈ A. Then, we consider the infinite family of equations:

{a.x + a.(x + xn) ≈ a.(x + xn) | n ≥ 2}. (2)

▶ Lemma 14. The infinite family of equations in (2) is sound modulo ≃RS.

Intuitively, for any closed substitution ρ, ρ(a.x + a.(x + xn)) is simulated by ρ(a.(x + xn))
and vice versa. Additionally, the set of initial actions is {a}. As a direct consequence of
Lemma 14, every equation in (2) is sound modulo ≃ for all ≃RS⊆≃⊆≃CT.

We can prove that the equations in (2) are not derivable from any finite axiom system E
which is sound modulo ≃CT and contains terms up to breadth n ≥ 2. Informally, consider
the derivation E ⊢ a.x + a.(x + xn) ≈ a.(x + xn). The question is whether we can apply
an axiom v ≈ w ∈ E, with σ(v) = a.x + a.(x + xn) and σ(w) = a.(x + xn). Since w has a
breadth less than n, there must be some variable y ∈ var(v) encapsulating some part of xn.
However, equation a.x + a.(x + xk∥y) ≈ a.(x + xk∥y) with k ≥ 1 is not sound modulo ≃CT.
Unfortunately, the proof is not this immediate, since the direct application of the axiom does
not cover the general case in the considered derivation. Still, notice that a.x

a−→ x, while
a.(x + xn) a−→ x + xn is the only transition from a.(x + xn). Then, we show that having an
a-derivative that is completed trace equivalent to a variable is an invariant under provability
from finite, sound, axiom systems. Afterwards, we can argue that no equation in (2) satisfies
this invariant, from which the non-existence of a finite basis modulo ≃CT follows.

▶ Proposition 15. Let E be a finite set of equations over BCCSP∥ that is sound modulo
≃CT. Let n ≥ 2 be greater than the breadth of any term in E. Assume that: E ⊢ t ≈ u;
u ≾CT a.(x + xn); and t

a−→ t′ for some t′ ≃CT x. Then u
a−→ u′ for some u′ ≃CT x.

Also in this case we have some straightforward properties:
1. t ≃CT u by the soundness of E;
2. |t| = |u| = 1 by Lemma 4 and the fact that t

a−→;
3. 1 ≤ [[t]] = [[u]] ≤ n by Lemma 8 and the fact that t′ ≃CT x; and
4. var(t) = var(u) = {x} by Lemma 3 and the fact that t′ ≃CT x.
Moreover, as we consider terms t ≾CT a.(x + xn), the following lemma will be helpful.

R. Versteeg, V. Castiglioni, and B. Luttik 35:9

▶ Lemma 16. If t ≾CT a.w and t
a−→ t′, then t′ ≾CT w.

Proposition 15 is proved by induction on the derivation of E ⊢ t ≈ u. We sketch only the
substitution case. Assume that E ⊢ t ≈ u because t = σ(v) and u = σ(w) for some v ≈ w ∈ E
and substitution σ. We distinguish two cases, according to the derivation of t

a−→ t′.
Assume first that there exists some v′ such that v

a−→ v′ and σ(v′) ≃CT x. Then consider
the closed substitution ρ defined as ρ(y) = 0 if [[σ(y)]] ≤ 1 and ρ(y) = a2.0 otherwise. Then,
ρ(v′) ̸→, so a ∈ CT(ρ(v)). From the soundness of E, we have v ≃CT w, so a ∈ CT(ρ(w)). By
construction of ρ, this gives that w

a−→ w′ for some w′ s.t. ρ(w′) ̸→. Then, σ(w) a−→ σ(w′).
By Lemma 16 we obtain σ(w′) ≾CT x + xn, so by Lemma 1 it holds that either [[σ(w′)]] = 1
or [[σ(w′)]] = n. If [[σ(w′)]] = 1, then σ(w′) ≃CT x by Lemma 4, so the invariant holds.
If [[σ(w′)]] = n, then since [[w]] < n, there exists some variable z ∈ var(w′) such that
2 ≤ [[σ(z)]] ≤ n. However, we reach a contradiction, since ρ(w′) a−→ contradicts ρ(w′) ̸→.

Assume now that there is no v′ such that v
a−→ v′ and σ(v′) ≃CT x. We first prove that

there is some y ∈ var(v) s.t. σ(y) a−→ t′′ and either t′ = t′′ or t′ = t′′∥σ(v∥) for some v∥. We
have σ(v) a−→ t′, so there must exist some summand v′ of v such that σ(v′) a−→ t′. We proceed
by a case distinction on the structure of v′. We consider only the case v′ = v1∥v2. In this
case, assume, without loss of generality, that σ(v1) a−→ t1 such that t′ = t1∥σ(v2). Note that
σ(v2) ̸→, since |σ(v)| = 1. We can then perform a case distinction on the summands of
v1 to prove that there is some y ∈ var(v1) such that σ(y) a−→ t′′ and either t′ = t′′∥σ(v2)
or t′ = t′′∥σ(v′

∥)∥σ(v2) = t′′∥σ(v′
∥∥v2) for some v′

∥. If t′′ = t′, it is clear that t′′ ≃CT x. If
t′ = t′′∥σ(v∥), from t′′∥σ(v∥) ≃CT x and Lemma 8 it follows that [[t′′∥σ(v∥)]] = 1. So either
[[t′′]] = 1 and [[σ(v∥)]] = 0 or vice versa. Then t′′ ≃CT x and σ(v∥) ≃CT 0 or vice versa,
by Lemmas 3, 4. Consider the closed substitution ρ′ defined as ρ′(y) = a2.0, ρ′(z) = 0
if [[σ(z)]] ≤ 1 and ρ′(z) = a3.0 otherwise. Then a2 ∈ CT(ρ′(v)) in both forms of t′, so,
by soundness of E, a2 ∈ CT(ρ′(w)). Hence, there is some summand w′ of w such that
a2 ∈ CT(ρ′(w′)). We expand only the case w′ = w1∥w2. Assume, without loss of generality,
that a2 ∈ CT(ρ′(w1)) and CT(ρ′(w2)) = {ε} (it is impossible that a ∈ CT(ρ′(w1)) and
a ∈ CT(ρ′(w2)), since |σ(w)| ≤ 1 and by construction of ρ′). From a2 ∈ CT(ρ′(w1)), we can
again do a case distinction on the summands of w1. This process can be repeated a finite
number of times, until the nested summand y is reached. Let w∥ be the accumulation of
parallel compositions, such that CT(ρ′(w∥)) = {ε}. We obtain that σ(w) a−→ t′′∥σ(w∥). By
Lemma 16 we must have that t′′∥σ(w∥) ≾CT x+xn. Hence, [[t′′∥σ(w∥)]] = 1 or [[t′′∥σ(w∥)]] = n

by Lemma 1. In the first case we obtain that t′′∥σ(w∥) ≃CT x by Lemma 4, so the invariant
holds. In the second case we reason towards a contradiction as above. Hence, a2 ∈ CT(ρ′(w))
only holds if σ(w) a−→ u′ for some u′ ≃CT x.

As discussed above, the equations in (2) do not satisfy the invariant in Proposition 15.
Hence Theorem 13 follows for ≃CT. The same reasoning applied in Section 3.1 then allows
us to conclude that Theorem 13 holds for any congruence included between ≃RS and ≃CT.

4 Simulation and Traces

In this section we discuss the axiomatisability modulo trace and simulation semantics over
BCCSP∥. Interestingly, we show that as long as the set of actions is finite, then no finite
basis can be given. However, this changes when |A| = ∞ since we can provide complete
axiomatisations including only finitely many axiom schemas characterising the considered
semantics. Moreover, we need to apply various proof techniques to obtain these results.
Specifically, if |A| = 1 we prove that there exist no finite bases modulo ≃S or ≃T using the
transformation technique from [5]; whereas if 2 ≤ |A| < ∞ we prove that there exist no finite

CONCUR 2025

35:10 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

bases modulo ≾S, ≾T, ≃S or ≃T using the proof-theoretic technique described in Section 3.
Lastly, for |A| = ∞, we present finite bases modulo ≃S and ≃T using Groote’s technique of
inverted substitutions [21].

4.1 Negative Results with |A| = 1
The main result of this subsection is the following theorem.

▶ Theorem 17. If |A| = 1, then no congruence ≃ s.t. ≃S ⊆ ≃ ⊆ ≃T admits a finite basis
over BCCSP∥.

For this section, assume A = {a} and that ≃ represents a congruence between ≃S and
≃T. To prove that the algebra of BCCSP∥ processes modulo ≃ has no finite basis we apply
the transformation technique: we show how a presupposed finite basis for the algebra of
BCCSP∥ processes modulo ≃ can be transformed into a finite basis for the so-called max-plus
algebra of natural numbers with max and + as operations. Since it has been shown that
the latter algebra is not finitely based [5], it then follows that the former cannot be finitely
based either. A similar approach was applied by Aceto et al. to prove that there exists no
finite basis modulo ≃T if |A| = 1 over the process algebra BPA [4].

The following lemma is straightforward to prove.

▶ Lemma 18. If |A| = 1, then for all processes p, q, we have p ≃ q if and only if |p| = |q|.
Moreover, |0| = 0, |p + q| = max(|p|, |q|) and |p ∥ q| = |p| + |q|.

Note that Lemma 18 establishes an isomorphism from the algebra of closed BCCSP∥
expressions modulo ≃ with constant 0 and binary operations + and ∥ and the max-plus
algebra with constant 0 and binary operations max and +. Hence, there is a correspondence
between the equational theories of these two algebras that we shall now formalise. We
need the following inductively defined mapping (with W the set of variables in the max-plus
algebra):

⟨0⟩ = 0 ⟨t1 + t2⟩ = max(⟨t1⟩, ⟨t2⟩)
⟨x⟩ = x, where x ∈ W ⟨t1 ∥ t2⟩ = ⟨t1⟩ + ⟨t2⟩

The following lemma is then the counterpart of Lemma 18 on the max-plus algebra, since
the mapping defined above combines the depth of terms with occurrences of variables.

▶ Lemma 19. For all terms t, u without an action prefix, we have t ≃ u if and only if
⟨t⟩ = ⟨u⟩.

Now suppose that E is a finite basis for the algebra BCCSP∥ processes modulo ≃. Then,
in particular, if t ≃ u, then E ⊢ t ≈ u. Now E may include axioms with action prefixes, so
we cannot readily transform all of E into a complete set of axioms for the max-plus algebra.
The following lemma, however, establishes that whenever two (open) BCCSP∥ terms are
equivalent modulo ≃, then either both or neither have occurrences of the action prefix.

▶ Lemma 20. If t ≃ u, then t contains an action prefix if and only if u contains an action
prefix.

Now, let E ′ ⊆ E be obtained by removing all axioms with occurrences of the action prefix.
By Lemma 20 we have, for all BCCSP∥-terms t and u without occurrences of action prefixes
that E ⊢ t ≈ u if and only if E ′ ⊢ t ≈ u. Denote by ⟨E ′⟩ the set of equations ⟨t⟩ ≈ ⟨u⟩ such
that (t ≈ u) ∈ E ′. Then, for t, u without occurrences of action prefixes, E ⊢ t ≈ u if and

R. Versteeg, V. Castiglioni, and B. Luttik 35:11

only if ⟨E ′⟩ ⊢ ⟨t⟩ = ⟨u⟩. It would follow that ⟨E ′⟩ is a finite basis for the max-plus algebra,
which cannot exist. We conclude that the presupposed finite basis for the algebra of closed
BCCSP∥ expressions modulo ≃ can also not exist.

4.2 Negative Results with 2 ≤ |A| < ∞
We use the proof-theoretic technique discussed in Section 3 to prove the following:

▶ Theorem 21. If 2 ≤ |A| < ∞, then no precongruence ≾ s.t. ≾S ⊆ ≾ ⊆ ≾T admits a finite
basis over BCCSP∥.

▶ Theorem 22. If 2 ≤ |A| < ∞, then no congruence ≃ s.t. ≃S ⊆ ≃ ⊆ ≃T admits a finite
basis over BCCSP∥.

Throughout this section consider A = {a1, . . . , a|A|}, where a = a1, b = a2 and s =
a3 · · · a|A|. Note that s = ε if |A| = 2. Let n ≥ 1, then consider the term

hn = abns.0 + bns.x ∥ x + a.(s.x ∥ xn) +
|s|∑

i=1
abns[..i − 1].(s[i + 1..].x ∥ x).

Then we introduce the following infinite family of inequations:

{abns.x ⪯ hn | n ≥ 1}. (3)

Intuitively, for any closed substitution ρ we see that ρ(abns.x) is simulated by one of the
summands of ρ(hn) because of the added parallel composition with x. If ρ(x) ̸→ then it is
the first summand, and if ρ(x) a−→, then it is the second summand, etc. Thus, for each of the
|A| + 1 options there is a corresponding summand.

▶ Lemma 23. The infinite family of inequations in (3) is sound modulo ≾S.

We argue that not all inequations in the family are derivable using a finite collection
of inequations E, which is sound modulo ≾T and contains terms up to depth n ≥ 1. First,
we give some intuition why this is the case. Consider term abns.x, for which we know that
abns.x

abns−−−→ x. However, hn cannot perform trace abns and reach a term with an occurrence
of x. We introduce a new notion, named the front of a term, to formally express this.

▶ Definition 24. Let front(t) ⊆ var(t) be defined inductively as follows:

front(0) = front(a.t′) = ∅ front(x) = {x}
front(t1 + t2) = front(t1 ∥ t2) = front(t1) ∪ front(t2)

Hence, front(t) is the set of all variables of t that do not occur after an action prefix in t.

This means that whenever we have a substitution σ such that σ(x) a−→, then x ∈ front(t)
implies σ(t) a−→. Additionally, it follows that if |t| = 0, then var(t) = front(t). Using this
definition we obtain the following proposition.

▶ Proposition 25. Let 2 ≤ |A| < ∞ and let E be a finite collection of inequations over
BCCSP∥ that is sound modulo ≾T. Let n ≥ 1 be greater than the depth of any term in
E. Assume that: E ⊢ t ⪯ u; u ≾T hn; and t

abns−−−→ t′ for some t′ with x ∈ front(t′). Then
u

abns−−−→ u′ for some u′ with x ∈ front(u′).

CONCUR 2025

35:12 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

Continuing our intuitive argument, consider t = abns.x and derivation E ⊢ abns.x ⪯ u

where u ≾T hn. Either we directly apply an axiom v ⪯ w ∈ E on abns.x, so σ(v) = abns.x

and σ(w) = u, or E ⊢ bns.x ⪯ u′ and u = a.u′. To proceed, we need a property of front:

▶ Lemma 26. If |A| > 2, a ∈ A, t ≾T u and t
s′

−→ t′ for some t′ with x ∈ front(t′) and s′

does not contain a, then u
s′

−→ u′ for some u′ with x ∈ front(u′).

If E ⊢ bns.x ⪯ u′ and u = a.u′, we can infer, from bns.x ≾T u′ and Lemma 26, that
u′ bns−−→ u′′ and x ∈ front(u′′), so that a.u′ abns−−−→ u′′ and x ∈ front(u′′). If axiom v ⪯ w ∈ E
is applied such that σ(v) = abns.x and σ(w) = u, then some part of abns.x must be
encapsulated in a variable y ∈ var(v), i.e. v = (abns)[..i].y for some 0 ≤ i < n. To see this,
let us first introduce the notion of 0-nested summand.

▶ Definition 27. t′ is a 0-nested-summand of t, denoted t′ ⊑0 t, if and only if either:
1. t′ is a summand of t, or
2. t has a summand t1 ∥ t2, where t′ ⊑0 t1 and t2 ≃T 0, or
3. t has a summand t1 ∥ t2, where t′ ⊑0 t2 and t1 ≃T 0.

Using this new notion, we can prove the following lemma.

▶ Lemma 28. If |A| ≥ 2, t ≾T hn and t
(abns)[..i]−−−−−−→ t′ for some t′ which has a 0-nested-

summand of the form t1 ∥ t2 such that t1 ∥ t2
(abns)[i+1..]−−−−−−−−→ t′′ for some t′′ with 0 ≤ i < n and

x ∈ front(t′′), then either t1 ≃T 0 or t2 ≃T 0.

Hence, even if v was of the form v1 ∥ v2, thanks to Lemma 28 we can always eliminate one
of the two parallel components, and repeat the reasoning on the remaining component until
we reach a term v′ ⊑0 v such that y ∈ front(v′). Consequently, y is in the front of v after
performing trace (abns)[..i] and x is in the front of σ(y) after performing the remaining part
of the trace, namely (abns)[i + 1..]. If |A| ≥ 3, then we can infer from v ≾T w and Lemma 26
that y is in the front after performing the same trace in w. Hence, σ(w) abns−−−→ u′ for some
u′ with x ∈ front(u′). To complete our reasoning, we need a special case of Lemma 26 if
|A| = 2, covering the case in which variable y is in the front of v after performing trace abk

for some k < n. Note that the following lemma holds for |A| > 2 due to Lemma 26.

▶ Lemma 29. If |A| ≥ 2, t ≾T u, 1 ≤ k < |t| and t
abk

−−→ t′ for some t′ with x ∈ front(t′),
then there exist u′ and 0 ≤ ℓ < |u| such that u

abℓ

−−→ u′ and x ∈ front(u′).

From Lemma 29 we know that w can perform trace abn[..k] for some 0 ≤ k < |w| for
which y ∈ front(w). We argue that k = i must hold, because of the constraints of σ(w) in
regards to the depth and soundness.

Hence, we can conclude that, in all cases, u = σ(w) abn

−−→ u′ for some term u′ with
x ∈ front(u′).

Theorem 21 then follows by applying the same reasoning used to conclude Section 3.
The infinite family of inequations in (3) results in an infinite family of equations as:

{abns.x + hn ≈ hn | n ≥ 1}. (4)

▶ Lemma 30. The infinite family of equations in (4) is sound modulo ≃S.

Then, following a similar reasoning as used for Proposition 25, we can prove the invariance
under equational derivation also in the case of equivalences.

R. Versteeg, V. Castiglioni, and B. Luttik 35:13

Table 4 Additional axioms for ≃T and ≃S.

SP1 (x + y) ∥ (z + w) ≈ x ∥ (z + w) + y ∥ (z + w) + (x + y) ∥ z + (x + y) ∥ w

TP (x + y) ∥ z ≈ x ∥ z + y ∥ z SP2 a.x ∥ (y + z) ≈ a.(x ∥ (y + z)) + a.x ∥ y + a.x ∥ z

T a.x + a.y ≈ a.(x + y) S a.(x + y) ≈ a.(x + y) + a.x

▶ Proposition 31. Let 2 ≤ |A| < ∞ and let E be a finite collection of equations over BCCSP∥
that is sound modulo ≃T. Let n ≥ 1 be greater than the depth of any term in E. Assume that:
E ⊢ t ≈ u; u ≾T hn; and t

abns−−−→ t′ for some t′ with x ∈ front(t′). Then u
abns−−−→ u′ for some

u′ with x ∈ front(u′).

Similar arguments to those used to prove Theorem 21 allow us to prove Theorem 22.

4.3 Finite Bases with |A| = ∞

In [2] it was proved that the axiomatisation ET = E1 ∪{T, TP}, with E1 given in Table 3 and T,
TP from Table 4, is a finite, sound and ground-complete axiomatisation of ≃T over BCCSP∥.
Similarly, the axiomatisation ES = E1 ∪ {S, SP1, SP2} is finite, sound and ground-complete
modulo ≃S, with S, SP1 and SP2 given in Table 4. In this section, we extend ET and ES with
a finite number of sound axioms that make them ω-complete besides ground-complete, so
that the existence of finite bases for the two equivalences follows from Lemma 6.

To this end, consider the following axiom, that, to the best of our knowledge, is original
with respect to the related literature:

P3 a.x ∥ y ≈ a.x ∥ y + a.(x ∥ y).

▶ Lemma 32. Axiom P3 is sound modulo ≃B.

Consider E ′
T = ET ∪ {P2, P3}. We use Groote’s technique of inverted substitutions to

prove that the axiomatisation E ′
T is ω-complete if the number of actions is infinite. In [21],

it is proved that an axiomatization E is ω-complete if for each equation t ≈ u, of which all
closed instances can be derived from E, we can define a mapping R : P → O such that:
1. We can define a closed substitution ρ̃ such that E ⊢ R(ρ̃(t)) ≈ t and E ⊢ R(ρ̃(u)) ≈ u.
2. From E and {p1 ≈ q1, p2 ≈ q2, R(p1) ≈ R(q1), R(p2) ≈ R(q2)} we can derive R(a.p1) ≈

R(a.q1) for all a ∈ A, R(p1 + p2) ≈ R(q1 + q2) and R(p1∥p2) ≈ R(q1∥q2).
3. For each v ≈ w ∈ E and each closed substitution ρ, we have E ⊢ R(ρ(v)) ≈ R(ρ(w)).

In our setting, given an equation t ≈ u such that E ′
T ⊢ ρ(t) ≈ ρ(u) for all closed

substitutions ρ, we consider the following mapping R : P → O, where ax is a unique action
for each x ∈ V and ax does not appear in either t or u:

R(0) = 0 R(a.p) = a.R(p) where a ̸= ax for all x ∈ V

R(ax.p) = x ∥ R(p) R(p + q) = R(p) + R(q) R(p ∥ q) = R(p) ∥ R(q)

We remark that existence, and uniqueness, of action ax is guaranteed by the fact that we
are considering a countably infinite set of actions. Then, we can show, by induction on the
structure of terms, that E ′

T ⊢ R(ρ̃(t)) ≈ t and E ′
T ⊢ R(ρ̃(u)) ≈ u for the closed substitution

ρ̃ defined by ρ̃(x) = ax.0 for all x ∈ V . The other two properties follow by a case analysis
on terms and axioms, respectively. In particular, we remark that the new axiom P3 is

CONCUR 2025

35:14 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

fundamental in proving the third property for axiom EL1 (Table 3). In fact, we have that if
a ̸= ax for all x ∈ V and b = by for some y ∈ V , then, letting ρ(x) = p and ρ(y) = q:

R(a.p ∥ b.q)

= a.R(p) ∥ R(b.q) P3
≈ a.R(p) ∥ R(b.q) + a.(R(p) ∥ R(b.q))

= R(a.p) ∥ (y ∥ R(q)) + a.(R(p) ∥ R(b.q))
P1,P2
≈ y ∥ (R(a.p) ∥ R(q)) + a.(R(p) ∥ R(b.q))

A1
≈ a.(R(p) ∥ R(b.q)) + y ∥ (R(a.p) ∥ R(q)) = R(a.(p ∥ b.q) + b.(a.p ∥ q)).

The following Theorem is then a direct consequence of [21, Theorem 3.1].

▶ Theorem 33. If |A| = ∞, then the axiomatisation E ′
T is ω-complete modulo ≃T.

We can then use the same technique, with the same mapping R and closed substitution
ρ̃, to show that E ′

S = ES ∪ {P2, P3} is ω-complete if the number of actions is infinite.

▶ Theorem 34. If |A| = ∞, then the axiomatisation E ′
S is ω-complete modulo ≃S.

We remark that axioms T, S, SP2 and P3 are axiom schemas, i.e., they generate an
equation for every instantiation of the action prefix. This means that, when |A| = ∞, they
generate infinitely many axioms. However, as stated in the previous sections, we still consider
the axiomatisations ET′ and ES′ as finite, since they are finitely representable (they include
only finitely many axiom schemas).

5 Extension with Successful Termination

In this section we extend BCCSP∥ with successful termination, and we discuss which results
from the previous sections can be lifted to the new language.

First of all, we extend the definition of a LTS with successful termination, i.e., a LTS is a
tuple (P, A, →, ↓) where ↓ ⊆ P is a set of successfully terminating processes. We write p ↓
if and only if p ∈ ↓. We extend the initial actions of a process p by successful termination
(↓), namely we define menu(p) = I(p) ∪ {↓} if p ↓ and menu(p) = I(p) otherwise. Then we
extend the behavioural semantics with requirements on successful termination.

▶ Definition 35 (Trace and completed trace preorders with termination). The set of terminating
traces of p is denoted by T↓(p) = {s ∈ A∗ | ∃p′.p

s−→ p′ ∧ p′ ↓}. Then p ≾↓
T q if and only if

T(p) ⊆ T(q) and T↓(p) ⊆ T↓(q). Similarly, p ≾↓
CT q if and only if T(p) ⊆ T(q), CT(p) ⊆ CT(q)

and T↓(p) ⊆ T↓(q).

▶ Definition 36 ((Bi)simulations with termination). A simulation R is terminating if pRq

and p ↓ imply q ↓. Then p ≾↓
S q if and only if there exists a terminating simulation R such

that pRq.
A terminating simulation R is a terminating ready simulation if pRq implies menu(p) =
menu(q). Then p ≾↓

RS q if and only if there exists a terminating ready simulation R such
that pRq.
A terminating simulation R is a terminating bisimulation relation if it is symmetric. Then
p ≃↓

B q if and only if there exists a terminating bisimulation relation R such that pRq.

We then extend BCCSP∥ with the constant process 1, denoting successful termination,
obtaining the language BSP∥. The operational semantics of BSP∥ is obtained by adding the
inference rules in Table 5 to those in Table 2. While most axioms of E1 remain sound, P0
does not. In Table 6, we introduce the axioms P0a, P0b and P0c to replace P0.

▶ Lemma 37. Axiom system E2, consisting of the axioms in Table 6, is sound modulo ≃↓
B.

R. Versteeg, V. Castiglioni, and B. Luttik 35:15

Table 5 Operational semantics of successful termination in BSP∥.

1 ↓
t ↓

t + u ↓
u ↓

t + u ↓
t ↓ u ↓
t ∥ u ↓

Table 6 The axiomatisation E2, which is sound modulo ≃↓
B.

A0 x + 0 ≈ x P0a 0 ∥ 0 ≈ 0
A1 x + y ≈ y + x P0b x ∥ 1 ≈ x

A2 (x + y) + z ≈ x + (y + z) P0c a.x ∥ 0 ≈ a.(x ∥ 0)
A3 x + x ≈ x P1 x ∥ y ≈ y ∥ x

EL1 a.x ∥ b.y ≈ a.(x ∥ b.y) + b.(a.x ∥ y)

5.1 Preservation of Negative Results
We present a schema to apply the transformation technique on any finite basis for BSP∥ into
a finite basis for BCCSP∥. This schema also works for finite, sound and ground-complete
axiomatisations. Consequently, for every behavioural semantics it holds that the non-existence
of a finite basis for BCCSP∥ implies the non-existence of a finite basis for BSP∥.

Consider some behavioural semantics in the spectrum, let ≾ and ≾↓ be the corresponding
preorders and let ≃ and ≃↓ be the corresponding equivalences. We argue that if t ≾ u holds,
then t ∥ 0 ≾↓ u ∥ 0 must hold. Since from the operational semantics it is clear that for any
closed BSP∥ substitution ρ no successfully terminating term can be reached from ρ(t ∥ 0) or
ρ(u ∥ 0), then any closed substitution which uses the successful termination constant has
no influence on the behaviour. We define [t]17→0 to be BSP∥ term t with every occurrence
of the constant 1 replaced with the constant 0. We then also argue that t ≾↓ u implies
[t]1 7→0 ≾ [u]1 7→0, since the successful termination constant has no influence on the old criteria.
Using these arguments, consider a finite basis modulo ≃↓, let this be E. We argue that
[E]1 7→0 ∪ {P0}, where [E]1 7→0 = {[v]1 7→0 ≈ [w]1 7→0 | v ≈ w ∈ E}, then serves as a finite basis
modulo ≃, leading to a contradiction with Theorem 13. Therefore, we can conclude that the
following theorem holds.

▶ Theorem 38. No congruence ≃↓ s.t. ≃↓
RS⊆≃↓⊆≃↓

CT admits a finite basis over BSP∥. If
|A| < ∞, then no congruence ≃↓ s.t. ≃↓

S⊆≃↓⊆≃↓
T admits a finite basis over BSP∥.

We can use the same schema also for the preorders, provided we substitute axiom P0
with the inequations P0-l (x ∥ 0 ⪯ x) and P0-r (x ⪯ x ∥ 0), which are sound modulo ≃B.

▶ Theorem 39. No precongruence ≾↓ s.t. ≾↓
RS⊆≾↓⊆≾↓

CT admits a finite basis over BSP∥.
If |A| < ∞, then no precongruence ≾↓ s.t. ≾↓

S⊆≾↓⊆≾↓
T admits a finite basis over BSP∥.

5.2 Finite Basis with |A| = ∞
Consider the axiomatisations E↓

T = E2 ∪ {T, TP}, and E↓
S = E2 ∪ {P0d, S, SP1, SP2}, where

P0d (x + y) ∥ 0 ≈ x ∥ 0 + y ∥ 0

is a new axiom, sound modulo ≃↓
B. From [10] we know that, when considering BSP terms, the

axiom system {A0, A1, A2, A3, T} is ground-complete modulo ≃↓
T and {A0, A1, A2, A3, S} is

CONCUR 2025

35:16 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

ground-complete modulo ≃↓
S. Hence, to establish the ground-completeness of E↓

T and E↓
S , it

suffices to show that all occurrences of ∥ from BSP∥ processes can be eliminated using their
respective axioms. In the remainder of this section, let X ∈ {T, S}.

▶ Lemma 40. For all BSP processes p and q there exists a closed BSP term r s.t. E↓
X ⊢ p∥q ≈ r.

Then, for every BSP∥ process p there exists a BSP process q s.t. E↓
X ⊢ p ≈ q.

▶ Theorem 41. The axiomatisation E↓
X is ground-complete modulo ≃↓

X.

Consider the axiomatisation E↓′

X = E↓
T ∪ {P2, P3}. We can use the technique of inverted

substitutions to prove the ω-completeness of E↓′

X . To this end, it is enough to extend the
mapping R defined in Section 4.3 with R(1) = 1, and consider the closed substitution
ρ̃(x) = ax.1 in the proof of the first property of the mapping.

▶ Theorem 42. If |A| = ∞, then the axiomatisation E↓′

X is ω-complete modulo ≃↓
X.

6 Concluding remarks

We have studied the existence of finite bases over BCCSP∥ terms with respect to the
behavioural equivalences in van Glabbeek’s linear time-branching time spectrum. For the
behavioural semantics between ready simulation and completed traces we proved a negative
result for both the preorders and equivalences using Moller’s proof-theoretic technique.
For traces and simulation we obtained a negative result with |A| = 1 by applying the
transformation technique to the max-plus algebra on natural numbers, for which it is known
that no finite basis exists. Additionally, in the case of 2 ≤ |A| < ∞ we proved a negative
result for both the preorders and equivalences using the proof-theoretic technique. Conversely,
we exploited Groote’s technique of inverted substitutions to obtain finite basis for trace and
simulation semantics when |A| = ∞.

In our investigations, we independently developed the results for the preorders and their
corresponding equivalences. While we encountered many similarities, it was not possible to
automatically lift the results obtained for one to the other. In [6], it is shown that, under
certain conditions, it is possible to lift an axiomatisation for a preorder to the corresponding
equivalence over languages without parallel composition. It is an interesting avenue for
future research to see whether the lifting technique can be extended to languages including a
parallel composition operator and which kind of conditions will be necessary in that case.

The study of (ground-)completeness for possible futures and 2-nested simulation with
|A| = 1 is a natural venue for future work. Additionally, for the behavioural equivalences
between ready simulation and failures, in the case of |A| = ∞, it is unknown whether
finite, sound and ground-complete axiomatisations exist. Moreover, the axiomatisability of
parallel composition modulo possible worlds and impossible futures have not been studied
yet [3, 14, 16]. In this paper, we considered the interleaving parallel composition operator,
so the next step will be to include communication as well. In [3], it has been proved that
the finite, sound and ground-complete axiomatisations over interleaving provided in [2] are
preserved if CCS full merge operator is considered. It would be interesting to see whether
a similar extension can be obtained for our results regarding finite bases. Furthermore,
following [1], CSP-style and ACP-style communication can be studied as well.

Finally, given the amount of negative results that we obtained, it is natural to wonder
whether the use of auxiliary operators can help us to find some finite bases. Given its
successful application in the case of bisimilarity [9], we will first investigate the role of left
merge in obtaining completeness results for all the congruences that we considered in this
paper.

R. Versteeg, V. Castiglioni, and B. Luttik 35:17

References

1 Luca Aceto, Elli Anastasiadi, Valentina Castiglioni, and Anna Ingólfsdóttir. Non-finite
axiomatisability results via reductions: CSP parallel composition and CCS restriction. In A
Journey from Process Algebra via Timed Automata to Model Learning, volume 13560 of Lecture
Notes in Computer Science, pages 1–26. Springer, 2022. doi:10.1007/978-3-031-15629-8_1.

2 Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, Bas Luttik, and Mathias Ruggaard
Pedersen. On the Axiomatisability of Parallel Composition: A Journey in the Spectrum. In
Proceedings of CONCUR 2020, volume 171 of LIPIcs, pages 18:1–18:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.18.

3 Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, Bas Luttik, and Mathias Ruggaard
Pedersen. On the axiomatisability of parallel composition. Log. Methods Comput. Sci., 18(1),
2022. doi:10.46298/LMCS-18(1:15)2022.

4 Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. On the two-variable fragment of the
equational theory of the max-sum algebra of the natural numbers. Technical report, Aarhus
University, 1999. doi:10.7146/brics.v6i22.20079.

5 Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. The max-plus algebra of the natural
numbers has no finite equational basis. Theoretical Computer Science, 293(1):169–188, 2003.
doi:10.1016/S0304-3975(02)00236-0.

6 Luca Aceto, Wan Fokkink, and Anna Ingólfsdóttir. Ready to preorder: Get your BCCSP
axiomatization for free! In Algebra and Coalgebra in Computer Science, pages 65–79. Springer,
2007. doi:10.1007/978-3-540-73859-6_5.

7 Luca Aceto, Wan Fokkink, Rob van Glabbeek, and Anna Ingólfsdóttir. Nested semantics
over finite trees are equationally hard. Information and Computation, 191(2):203–232, 2004.
doi:10.1016/j.ic.2004.02.001.

8 Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational semantics. In Jan A.
Bergstra, Alban Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra, pages
197–292. North-Holland / Elsevier, 2001. doi:10.1016/B978-044482830-9/50021-7.

9 Luca Aceto, Wan J. Fokkink, Anna Ingólfsdóttir, and Bas Luttik. A finite equational base for
CCS with left merge and communication merge. ACM Trans. Comput. Log., 10(1):6:1–6:26,
2009. doi:10.1145/1459010.1459016.

10 Josephus C.M. Baeten, Twan Basten, and Michel A. Reniers. Process algebra: equational
theories of communicating processes, volume 50. Cambridge university press, 2010. doi:
10.1017/CBO9781139195003.

11 Stefan Blom, Wan Fokkink, and Sumit Nain. On the axiomatizability of ready traces, ready
simulation, and failure traces. In Automata, Languages and Programming, pages 109–118.
Springer Berlin Heidelberg, 2003. doi:10.1007/3-540-45061-0_10.

12 Taolue Chen and Wan Fokkink. On finite alphabets and infinite bases III: Simulation. In
Proceedings of CONCUR 2006, pages 421–434. Springer, 2006. doi:10.1007/11817949_28.

13 Taolue Chen, Wan Fokkink, Bas Luttik, and Sumit Nain. On finite alphabets and infinite
bases. Information and Computation, 206(5):492–519, 2008. doi:10.1016/j.ic.2007.09.003.

14 Taolue Chen and Wan J. Fokkink. On the axiomatizability of impossible futures: Preorder
versus equivalence. In Proceedings of LICS 2008, pages 156–165. IEEE Computer Society,
2008. doi:10.1109/LICS.2008.13.

15 Taolue Chen, Wan J. Fokkink, and Sumit Nain. On finite alphabets and infinite bases II:
completed and ready simulation. In Proceedings of FOSSACS 2006, volume 3921 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2006. doi:10.1007/11690634_1.

16 Taolue Chen, Wan J. Fokkink, and Rob J. van Glabbeek. On the axiomatizability of impossible
futures. Log. Methods Comput. Sci., 11(3), 2015. doi:10.2168/LMCS-11(3:17)2015.

17 Robert de Simone. Higher-level synchronising devices in Meije-SCCS. Theor. Comput. Sci.,
37:245–267, 1985. doi:10.1016/0304-3975(85)90093-3.

CONCUR 2025

https://doi.org/10.1007/978-3-031-15629-8_1
https://doi.org/10.4230/LIPIcs.CONCUR.2020.18
https://doi.org/10.46298/LMCS-18(1:15)2022
https://doi.org/10.7146/brics.v6i22.20079
https://doi.org/10.1016/S0304-3975(02)00236-0
https://doi.org/10.1007/978-3-540-73859-6_5
https://doi.org/10.1016/j.ic.2004.02.001
https://doi.org/10.1016/B978-044482830-9/50021-7
https://doi.org/10.1145/1459010.1459016
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1007/3-540-45061-0_10
https://doi.org/10.1007/11817949_28
https://doi.org/10.1016/j.ic.2007.09.003
https://doi.org/10.1109/LICS.2008.13
https://doi.org/10.1007/11690634_1
https://doi.org/10.2168/LMCS-11(3:17)2015
https://doi.org/10.1016/0304-3975(85)90093-3

35:18 From Bisimulation to Traces: The Impact of Parallel Composition on Finite Bases

18 Wan J. Fokkink and Sumit Nain. On finite alphabets and infinite bases: From ready pairs to
possible worlds. In Proceedings of FOSSACS 2004, volume 2987 of Lecture Notes in Computer
Science, pages 182–194. Springer, 2004. doi:10.1007/978-3-540-24727-2_14.

19 Wan J. Fokkink and Sumit Nain. A finite basis for failure semantics. In Proceedings of ICALP
2005, volume 3580 of Lecture Notes in Computer Science, pages 755–765. Springer, 2005.
doi:10.1007/11523468_61.

20 Rob J. van Glabbeek. The Linear Time - Branching Time Spectrum I. In Handbook of Process
Algebra, pages 3–99. Elsevier Science, 2001. doi:10.1016/B978-044482830-9/50019-9.

21 Jan Friso Groote. A new strategy for proving ω-completeness applied to process algebra. In
Proceedings of CONCUR 1990, pages 314–331. Springer, 1990. doi:10.1007/BFb0039068.

22 Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency. In
Proceedings of ICALP 1980, volume 85 of Lecture Notes in Computer Science, pages 299–309,
1980. doi:10.1007/3-540-10003-2_79.

23 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137–161, 1985. doi:10.1145/2455.2460.

24 Charles A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978. doi:10.1145/359576.359585.

25 Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384,
1976. doi:10.1145/360248.360251.

26 Robin Milner. A Calculus of Communicating Systems. LNCS 92, Springer-Verlag, Berlin, 1980.
doi:10.1007/3-540-10235-3.

27 Faron Moller. Axioms for Concurrency. PhD thesis, Department of Computer Science,
University of Edinburgh, July 1989. Report CST-59-89. Also published as ECS-LFCS-89-84.

28 Faron Moller. The nonexistence of finite axiomatisations for CCS congruences. In Proceedings
of LICS 1990, pages 142–153. IEEE Computer Society, 1990. doi:10.1109/LICS.1990.113741.

29 Gordon D. Plotkin. A structural approach to operational semantics. Technical report, Aarhus
University, 1981.

30 Rowin Versteeg. From Bisimulation to Traces: The Impact of Parallel Composition on
Finite Bases. Master’s thesis, Eindhoven University of Technology, 2021. URL: https:
//research.tue.nl/en/studentTheses/from-bisimulation-to-traces.

https://doi.org/10.1007/978-3-540-24727-2_14
https://doi.org/10.1007/11523468_61
https://doi.org/10.1016/B978-044482830-9/50019-9
https://doi.org/10.1007/BFb0039068
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/360248.360251
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/LICS.1990.113741
https://research.tue.nl/en/studentTheses/from-bisimulation-to-traces
https://research.tue.nl/en/studentTheses/from-bisimulation-to-traces

	1 Introduction
	2 Preliminaries
	3 From Ready Simulation to Completed Traces
	3.1 Negative Results for the Preorders
	3.2 Negative Results for the Equivalences

	4 Simulation and Traces
	4.1 Negative Results with |A| = 1
	4.2 Negative Results with 2 < = |A| < infinity
	4.3 Finite Bases with |A| = infinity

	5 Extension with Successful Termination
	5.1 Preservation of Negative Results
	5.2 Finite Basis with |A| = infinity

	6 Concluding remarks

