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—— Abstract

We revisit a game from the literature that characterizes the probabilistic bisimilarity distances of a

labelled Markov chain. We illustrate how an optimal policy of the game can explain these distances.
Like the games that characterize bisimilarity and probabilistic bisimilarity, the game is played on
pairs of states and matches transitions of those states. To obtain more convincing and interpretable
explanations than those provided by generic optimal policies, we restrict to optimal policies that
delay reaching observably inequivalent state pairs for as long as possible (called 1-maximal) while
quickly reaching equivalent ones (called 0-minimal). We present iterative algorithms that compute
1-maximal and 0-minimal policies and prove an exponential lower bound for the number of iterations
of the algorithm that computes 1-maximal policies.

2012 ACM Subject Classification Theory of computation — Program verification; Mathematics of
computing — Probability and statistics

Keywords and phrases probabilistic bisimilarity distance, labelled Markov chain, game, policy,
explainability

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2025.36

Funding James Worrell: EPSRC Fellowship EP/X033813/1.
Franck van Breugel: Natural Sciences and Engineering Research Council of Canada.

Acknowledgements The authors would like to thank the referees for their constructive feedback.

1 Introduction

Probabilistic bisimilarity, a fundamental notion introduced by Larsen and Skou [39], captures
which states of a model with randomness are considered behaviourally equivalent. As shown
by Katoen, Kemna, Zapreev, and Jansen [31], reducing a model by identifying states that
are probabilistic bisimilar often speeds up probabilistic model checking. That is, the time it
takes to reduce a model and subsequently check a property of the reduced model is often
less than the time needed to check the property of the original model.

As shown by Giacalone, Jou, and Smolka [25], behavioural equivalences such as probabil-
istic bisimilarity are not robust. Even the smallest changes to the probabilities in the model
may result in different states being identified as behaviourally equivalent and, hence, may
lead to different reduced models. These models may even satisfy different properties.

Giacalone et al. suggested distances as a robust alternative to equivalences. Desharnais,
Gupta, Jagadeesan, and Panangaden [14] proposed a quantitative generalization of probabil-
istic bisimilarity: probabilistic bisimilarity distances (or distances for short). To each pair
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of states, a real number in the unit interval [0, 1] is assigned that captures the behavioural
similarity of the states. The smaller this number, the more alike the states behave. As shown
by Desharnais et al., states are probabilistic bisimilar if and only if their distance is zero.

During the last two decades, efficient algorithms have been developed to approximate and
compute probabilistic bisimilarity distances (see, for example, the work of Tang [51]). Once
we have computed that the distance between two states is, say é, it begs for an explanation.
In this paper we address the question how to explain probabilistic bisimilarity distances.

Logic has been extensively used to explain behavioural equivalences. Logics have been
designed such that for each pair of states that is not behaviourally equivalent there exists a
formula of the logic such one state satisfies the formula and the other state does not. For
example, for models with nondeterminism, such as labelled transition systems, bisimilarity,
due to Milner [42] and Park [44], is a key behavioural equivalence. The Hennessy-Milner logic
[27] provides a logical characterization of bisimilarity. For labelled Markov chains, which
model systems with randomness, probabilistic bisimilarity is logically characterized by the
probabilistic modal logic of [39]. Rady and Van Breugel [47] explained the distance of a pair
of states by means of an infinite sequence of formulas of a logic. The major drawback of
their approach is that the explanation is in general not finitely representable. In this paper,
we use games to explain distances. As we will see, these can be finitely represented. Before
introducing our game, we first review some related work from the literature as our approach
is different from the commonly used Ehrenfeucht-Fraissé-like games [19, 24|, yet uses some
ingredients of those games.

1.1 Bisimilarity

As was shown by Stirling (see, for example, [50]), bisimilarity for labelled transition systems
can be characterized by means of a two-player game. In the literature we find different names
for these players including Spoiler, Adversary, and Attacker for the first one and Duplicator,
Prover, and Defender for the other player. Here, we use Spoiler and Duplicator. The game
starts in a state pair (s,t). Spoiler tries to show that s and ¢ are not bisimilar, whereas
Duplicator tries to prove that they are.

The game is played in rounds. If a round starts in state pair (s,t), Spoiler chooses a state
uy € {s,t} and an outgoing transition of u; with target, say, s’. Duplicator uses the other
state ug € {s,t} \ {u1} and chooses one of the outgoing transitions of us with target, say, t’
(preferably with the same label as s’ — otherwise Duplicator loses). The next round of the
game continues in the state pair (s,¢'). The objective of Spoiler is to reach a state pair with
different labels whereas Duplicator tries to avoid ever reaching such a state pair. As has
been shown by Stirling [50, Section 2.4], states s and ¢ are bisimilar if and only if Duplicator
can avoid ever reaching a state pair with different labels when the game is started in state
pair (s,t), no matter how Spoiler plays.

As pointed out by Fijalkow, Klin, and Panangaden [21], “this classical bisimulation game
is elegant because it allows one to characterize a global property of behaviours (bisimilarity)
in terms of a game whose rules only depend on local considerations.”

1.2 Probabilistic Bisimilarity

Several characterizations of probabilistic bisimilarity for labelled Markov chains in terms of
a game can be found in the literature. We will briefly review two of those next. The games
are also played in rounds by two players. As in the game for bisimilarity, also in the games
for probabilistic bisimilarity, the objective of Spoiler is to reach a state pair with different
labels whereas Duplicator tries to avoid ever reaching such a state pair.
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Let us first consider the game introduced by Desharnais, Laviolette, and Tracol in [17].
If the game is in state pair (s,t), Spoiler chooses a state u; € {s,t} and a set of states U;.
Duplicator uses the other state us € {s,¢}\ {u1} and chooses a set of states Us such that the
probability of transitioning to a state in Uy from state uq, that is, the sum of probabilities of
the transitions from u; to a state in Uy, is less than or equal to the probability of transitioning
to a state in Uy from us. Such a Us always exists as Duplicator can pick the set of all states.
Subsequently, Spoiler chooses i € {1,2} and a state s’ € U;. Finally, Duplicator chooses
a state t’ € Us_; (preferably with the same label as s’ — otherwise Duplicator loses). The
next round of the game starts in the state pair (s’,¢'). As in the bisimulation game, the
objective of Spoiler is to reach a state pair with different labels whereas Duplicator tries to
avoid ever reaching such a state pair. Desharnais, Laviolette, and Tracol [17, Theorem 5]
proved that states s and ¢ are probabilistic bisimilar if and only if Duplicator can avoid ever
reaching a state pair with different labels when the game is started in state pair (s,t) no
matter how Spoiler plays. Forejt, Jancar, Kiefer, and Worrell [23] generalize this game to
a setting with both randomness and nondeterminism. Ford, Beohar, Konig, Milius, and
Schroder [22] consider an even more general setting.

Fijalkow, Klin, and Panangaden [21] propose a slightly simpler game that characterizes
probabilistic bisimilarity. If the game is in state-pair (s, ) then Spoiler chooses a set of
states U such that the probability of transitioning from state s to a state in U is different
from the probability of transitioning from state ¢ to a state in U. If no such choice exists then
Spoiler loses the game. Subsequently, Duplicator picks a state u that is in U and a state v
that is not in U (preferably with the same label as u — otherwise Duplicator loses), and the
game continues in the state pair (u,v). Fijalkow, Klin, and Panangaden [21, Theorem §]
showed that states s and ¢ are probabilistic bisimilar if and only if Duplicator can avoid ever
reaching a pair of states with different labels and does not lose, or Spoiler loses when the
game is started in state pair (s,t) no matter how Spoiler plays.

Fijalkow, Klin, and Panangaden [21] mentioned that “the connection between metrics
and bisimulation is well understood but it is possible that via the game one might gain a
more quantitative understanding of the numerical significance of the metric.” This paper
confirms that this is the case.

1.3 Probabilistic Bisimilarity Distances

Konig and Mika-Michalski [36] generalize the game of Desharnais, Laviolette, and Tracol
in two dimensions. Firstly, they consider distances instead of equivalences!. Secondly, they
present a general framework based on the category of sets and functions, an endofunctor on
that category, and coalgebras of that endofunctor. Below, we describe the game resulting
from an instantiation of their framework so that it is applicable to distances for labelled
Markov chains. The game starts in a triple (s,t,€), where s and ¢ are states and € € [0, 1).
Spoiler tries to show that the distance of s and ¢ is greater than e, whereas Duplicator tries
to demonstrate that the distance is at most €. Like all the games we discussed before, the
game is played in rounds. Each round consists of the following steps. Spoiler chooses a state
uy € {s,t} and a fuzzy set of states U;. Duplicator uses the other state us € {s,t} \ {ua}
and chooses a fuzzy set of states Us such that the expectation of transitioning from wu; to
U; minus expectation of transitioning from us to Us is at most €. Such a U, always exists.

! Desharnais et al. consider equivalence relations indexed by € € [0,1]. Above, we presented their approach
for e = 0.
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Spoiler chooses i € {1,2} and a state s’. Duplicator chooses a state ¢’ with U;(s") < Us_;(t').
Duplicator can always choose a Us in the second step so that it can pick a ¢’ in the fourth
step with U;(s") < Us_;(¥'). The next round starts in (s',t',Us_;(t') — U;(s’)). As shown
by Konig and Mika-Michalski [36, Theorem 35 and 38], the distance of states s and ¢ is at
most € if and only if Duplicator can avoid ever reaching a state pair with different labels
when the game is started in (s, €), no matter how Spoiler plays.

Konig, Mika-Michalski, and Schroder [37] present generic algorithms for computing
strategies of both Spoiler and Duplicator.

Komorida, Katsumata, Hu, Klin, and Hasuo [35, Table 2] generalize the game of Fijalkow,
Klin, and Panangaden to a quantitative setting using fibrations and coalgebras. Instantiating
their framework to our setting amounts to the following game. The game starts in (s, ,€).
Spoiler chooses a fuzzy subset of states U such that the expectation of transitioning from
state s to U and the expectation of transitioning from state ¢ to U differ by more than e.
If such a U does not exist, Spoiler loses. Duplicator chooses states s’ and ¢’ as well as
¢’ €10,1) such that U(s") and U(¢') differ by more than ¢’. As shown in [35, Theorem 5.11],
the distance of states s and ¢ is at most € if and only if Duplicator can avoid ever reaching a
state pair with different labels or Spoiler loses when the game is started in (s, ¢, €), no matter
how Spoiler plays.

1.4 OQOur Game

State pairs that have distance zero, which we call 0-pairs, are probabilistic bisimilar. We can
explain their behavioural equivalence, and hence their zero distance, by the games discussed
in Section 1.2. State pairs that have different labels, which we call 1-pairs as their distance
is one, are observably different. Their different labelling explains their distance. It remains
to explain the distances of the other state pairs, that is, those state pairs that have the same
label but are not probabilistic bisimilar, which we call ?-pairs. We explain the distances of
the 7-pairs by means of a game.

The foundation of the game that we study in this paper is an alternative characterization of
the distances given by Chen, Van Breugel, and Worrell [10, Theorem 8]. This characterization
underlies the algorithm of Bacci, Bacci, Larsen, and Mardare [1] to compute the distances.
Tang [51] showed that their algorithm is an instance of Howard’s policy iteration [28].
Howard’s generic algorithm works on Markov decision processes. A Markov decision process
is a lé—player game: one ordinary player and randomness which accounts for the remaining
half. In our setting, the ordinary player takes on the role of Duplicator and the randomness
embodies the Spoiler.

Tang [51, Section 5.3] defined the specific Markov decision processes so that Howard’s
policy iteration algorithm computes the distances. As shown by Tang [51, Section 6.1], one
needs to decide probabilistic bisimilarity before running Howard’s policy iteration algorithm.
Probabilistic bisimilarity can be efficiently decided (see, for example, the algorithm of Derisavi,
Hermanns, and Sanders [13]). Hence, at the time we start the game we know which states
pairs are 0-pairs and 1-pairs.

Like Stirling’s bisimilarity game, in our game we match transitions. In our setting we
match parts of transitions. For example, consider the transitions of states 0 and 1 in Figure 1.
The transition from state 1 to state 2 can be matched by part (of probability %) of the
transition from 0 to 2. Similarly, the transition from 0 to 3 can be matched by part (of
probability i) of the transition from 1 to 3 and the self loops of 0 and 1 can be matched. The
parts that remain, part of the transition from 0 and 2 and part of the transition from 1 to 3,
both have probability %6 and can be matched as well. This matching is depicted in Figure 2.
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Figure 2 A coupling of the transitions of states 1 and 2 of the labelled Markov chain of Figure 1.

These matchings are also knows as couplings, a notion introduced by Doebling [18]. The
set of couplings is known as the transportation polytope. There are infinitely many ways to
match parts of transitions. However, as we will see, there is a finite set of couplings so that
all other ones can be obtained as convex combinations of those in the finite set (the vertices
of the transportation polytope). Although this set is finite, its size may be exponential in
the number of states of the labelled Markov chain.

In our game the player tries match transitions, that is, chooses a coupling, in order to
avoid 1-pairs. Therefore, also this game is elegant in that it characterizes a global property of
behaviours (the distances) in terms of a game whose rules only depend on local considerations
(the couplings). As we will see later, [10, Theorem 8] implies that the player can restrict to
strategies, also known as policies in this setting, that consist of a choice of a coupling for
each 7-pair. Such policies are known as deterministic and memoryless.

Given a policy, our game unfolds as follows. Let us start the game in ?-pair (s, ). The
player uses their policy which provides a coupling of the transitions of s and ¢. Randomly,
respecting the probabilities associated with the coupling, a matching of parts of transitions
is chosen. This matching takes the game to a state pair (u,v). If this state pair is a 0-pair
(depicted as a blue rectangle) or a 1-pair (depicted as a red rounded rectangle), the game
stops. Otherwise, the game continues in ?-pair (u,v). The game reaches a 0- or 1-pair with
probability one.

In the games for bisimilarity and probabilistic bisimilarity, Duplicator tried to avoid
reaching 1-pairs. As our game involves randomness, the objective of the player is to minimize
the probability of reaching a 1-pair. A policy is optimal if it minimizes the probability of
reaching a 1-pair. [10, Theorem 8] shows that optimal policies exist and that for an optimal
policy the probability of reaching 1-pairs from ?-pair (s,t) coincides with the distance of s
and t. The coupling depicted in Figure 2 is part of an optimal policy for the labelled Markov
chain of Figure 1. Note that the probability of reaching a 1-pair from ?-pair (1,2) is %, the

distance of 1 and 2. Hence, an optimal policy can be seen as an explanation of the distances.

1.5 1-Maximal Policies

Both policies in Figure 3 are optimal and, therefore, can be seen as an explanation of the
distance of states 0 and 1. In all the above described games, including ours, (one of) the
player(s) tries to avoid reaching 1-pairs as only these pairs are observably different. The policy
on the left matches the transitions of 0 and 1 so that none of the state pairs reachable after
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Figure 3 A labelled Markov chain and two optimal policies.

the first round of the game are observably different, whereas the one on the right matches
the transitions so that two of the three reachable state pairs are 1-pairs. As a consequence,
we argue that the one on the left better exemplifies the similarity of the behaviour of the
states 0 and 1 and, as a result, is seen as a better explanation of the distance of 0 and 1.
More generally, the larger the expected number of rounds it takes a policy to reach 1-pairs,
the better it explains the distance. Therefore, policies that maximize this expected number
of rounds, which we call 1-maximal, are preferred as explanations.

By means of the algorithm of Tang [51, Section 6.2] we can compute an optimal policy.
We present an iterative algorithm that, starting from an optimal policy, computes an optimal
policy that is 1-maximal. We prove an exponential lower bound for the algorithm. That
is, we construct a labelled Markov chain of size O(n) for which the algorithm takes €2(2")
iterations.

1.6 0-Minimal Policies

Both policies in Figure 4 are optimal and 1-maximal. In both the 7-pair (0, 1) reaches a 1-pair
with probability % and is expected to do so in three rounds. For 0-pairs, the transitions can
be matched so that only 0-pairs are reached? and, hence, 1-pairs can be avoided all together.
As a result, apart from avoiding 1-pairs, a secondary objective is to reach 0-pairs. The policy
on the right does that better than the one of the left because its expected number of rounds
to reach O-pairs is smaller. We present an algorithm that, starting from a 1-maximal optimal
policy, computes a 1-maximal optimal policy that is O-minimal.

Let us jump into the details. Proofs and additional particulars can be found in [43, 53].

2 Probabilistic Bisimilarity Distances

We start with formalizing the model of interest, labelled Markov chains, and the probabilistic
bisimilarity distances by recalling several results from the literature. Given a finite set X, a
function p : X — [0, 1] is a probability distribution on X if ) p(x) = 1. We denote the set

2 This immediately follows from the fact that probabilistic bisimilarity is a probabilistic bisimulation (see,
for example, [6, Section 4]).
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Figure 4 A labelled Markov chain and two 1-maximal optimal policies.

of probability distributions on X by D(X). For p € D(X) and A C X, we often write p(A)
for 3° 4 p(z). Similarly, for w € D(X x X), z € X, and A C X, we usually write w(z, A) for

Y acaw(z,a). For p € D(X), we define the support of p by support(u) = {z € X | u(x)>0}.

To avoid clutter, for 4 € D(X) and f: X — R instead of >\ u(x) f(x) we write - f.

» Definition 2.1. A labelled Markov chain is a tuple (S, L, T, ) consisting of
a finite set S of states,
a finite set L of labels,
a transition probability function 7:.5 — D(S5), and
a labelling function ¢: S — L.

Several examples of labelled Markov chains have already been provided in the introduction.

The states are represented by circles, squares, and diamonds, the labels by colours as well as
shapes, and the transitions by arrows decorated with the probabilities. For the remainder of
this paper, we fix a labelled Markov chain (S, L, 7, £). We define probabilistic bisimilarity by
means of the set Q(u, ), which is known as the transportation polytope of the probability
distributions p and v. The elements of Q(u,v) are called couplings.

» Definition 2.2. Let p, v € D(S). The set Q(u,v) is defined by
Qu,v) ={weD(Sx8)|VseS:w(sS)=pu(s)Aw(S,s)=v(s)}.

For each p, v € D(S), Q(u,v) is a closed convex polytope. We denote the vertices of the
transportation polytope by V(Q(u,v)).

» Definition 2.3 ([30, Definition 4.3]). A relation R C S x S is a probabilistic bisimulation
if for all (s,t) € R, £(s) = £(t) and there exists w € Q(7(s),7(t)) with support(w) C R.
States s and t are probabilistic bisimilar, denoted s ~t, if (s,t) € R for some probabilistic
bisimulation R.

To define the probabilistic bisimilarity distances, it is convenient to partition the set of state
pairs into O-pairs, 1-pairs, and ?-pairs.

» Definition 2.4. The sets SZ, S?, and S? are defined by

Sg={(s,t)eSxS|s~t}
St ={(s.t) €S x S| Ls) # (1)}
S2= (5% 8)\ (S2USD).
The set Sg contains those state pairs that behave the same and, hence, have distance zero

(see Theorem 2.6). We call these O-pairs. The set S? contains those state pairs that have a
different label and, therefore, are fundamentally differently and, hence, have distance one
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(see Definition 2.5). We call these 1-pairs. The set S7 contains the remaining state pairs.
We call these 7-pairs. Note that some of these state pairs may have distance one, but cannot
have distance zero (see Theorem 2.6). The probabilistic bisimilarity distances are defined in
terms of the following function.

» Definition 2.5. The function Ay : (S xS — [0,1]) = (S xS = [0,1]) 4s defined by

0 if (s,t) € S2
Ar(d)(s,t) = { 1 if (s,0) € ST
inf w-d otherwise.

we(7(s),7(t))

The functions in S x S — [0, 1] carry a natural partial order. For d, e € S x S — [0, 1], we
define d C e if for all s, t € S, d(s,t) < e(s,t). According to, for example, [16, Lemma 3.2],
(8§ xS —[0,1],C) is a complete lattice. Since the function A; is monotone (see, for example,
[61, Proposition 2.1.13]), we can conclude from the Knaster-Tarski fixed point theorem
[32, 52] that A; has a least fixed point, which we denote by d;. It maps each pair of states
to a real number in the interval [0, 1]: the probabilistic bisimilarity distance of the states. As
we already mentioned, distance zero captures probabilistic bisimilarity.

» Theorem 2.6 ([15, Theorem 4.10]). For all s, t € S, 61(s,t) =0 if and only if s ~ t.

The 0-pairs are probabilistic bisimilar. This can be explained by means of the games
mentioned in Section 1.2. The 1-pairs have different labels, which explains their difference in
behaviour. Therefore, the distances of the 7-pairs remain to be explained. Hence, for the
remainder of this paper, we assume that S? # () and, as a result, S7 # 0.

3 Policies

As we already mentioned, a policy consists of a coupling of the transitions of states s and ¢
for each ?-pair (s,t).

» Definition 3.1. The set P of policies is defined by
P={PcS?—=D(SxS)|V(st)€S?:P(s,t) € Qr(s),7(t) }.

Figure 3 and 4 provide examples of policies. The O-pairs are blue rectangles, the 1-pairs
are red rounded rectangles, and the 7-pairs are purple ellipses. For each ?-pair, its outgoing
arrows labelled with probabilities represent a coupling. Given a policy, we can define the
probability of reaching a 0- or 1-pair from any state pair as follows.

» Definition 3.2. Leti € {0,1} and P € P. The function A;p : (SxS — [0,1]) = (Sx S —
[0,1]) 4s defined by

1 if (s,t) € S?
Aip(d)(s,t) =14 0 if (s,t) € 7,

P(s,t)-d if (s,t) € S3.

Since A;p can be shown to be a monotone function from a complete lattice to itself, we can
conclude from the Knaster-Tarski fixed point theorem that A;p has a least fixed point. We
denote the least fixed point of A;p by d;p. For states s and ¢, §;p(s,t) is the probability of
reaching an i-pair with respect to the policy P.

The probabilistic bisimilarity distances can be characterized in terms of a policy that
minimizes the probability of reaching a 1-pair.
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» Theorem 3.3 ([10, Theorem 8]). d; = glel% dp.

A policy that captures the distances, that is, the probability of reaching a 1-pair from a state
pair (s,t) when using policy P equals the distance of s and ¢, we call optimal.

» Definition 3.4. A policy P € P is optimal if 61p = d7.

For states s and ¢, the transportation polytope Q(7(s), 7(¢)) is generally infinite. As a result,
our game, if formulated in terms of all couplings, is infinite in general. However, as we
will see below, we can restrict our attention to the vertices of the transportation polytope
Q(7(s), 7(t)), making our game as well as the set of policies finite.

» Definition 3.5. The set V of vertex policies is defined by
V={PcP|V(st)eS%:P(s,t) € V(Qr(s),7(t))) }.

Even if we restrict ourselves to vertex policies, we can still characterize the distances in terms
of reachability probabilities.

» Theorem 3.6 ([51, Theorem 6.1.7]). 6; = glir}} dip.
€

According to Theorem 3.3 and 3.6, optimal and optimal vertex policies exist. We denote
the set of optimal policies by Pops and the set of optimal vertex policies by Vopt. The
policies depicted in Figure 3 and 4 are optimal vertex policies. The following alternative
characterization of optimal policies turns out to be very useful in several of our proofs.

» Proposition 3.7. For all P € P, P is optimal if and only if §1(s,t) = P(s,t) - 61 for all
(s,t) € S3.

For every policy that is not a vertex policy, there exists a vertex policy the support graph of
which is a strict subgraph. Hence, the transitions can be matched in such a way that fewer
state pairs need to be considered, resulting in a simpler explanation.

» Proposition 3.8. For all P € Popy \ Vopt there exists V. € Vopy such that for all
(s,t) € 5%, support(V (s,t)) C support(P(s,t)) and support(V (u,v)) C support(P(u,v))
for some (u,v) € S3.

Proof sketch. Let P be an optimal policy. For (s,t) € S2, we call a coupling w € Q(7(s), 7(t))
optimal for (s,t) if 01(s,t) = w-d1. Since we can show that the set of optimal couplings for (s, ?)
is a closed convex polytope and the vertices of this polytope are the vertices of Q(7(s), 7(¢))
that are optimal, we can conclude that P(s,t) is the convex combination of a set Vy; of
optimal couplings for (s,t) in V(Q(7(s), 7(t))). We can construct an optimal vertex policy V
by mapping V(s,t) to an optimal coupling in V;. By construction, support(V(s,t)) C
support(P(s,t)). To prove that support(V (u,v)) C support(P(u,v)) for some (u,v) € S7
we use the fact that a coupling is a vertex of the transportation polytope if and only if its
support graph is acyclic. <

Tang [51, Section 6.2] presents an algorithm that computes an optimal vertex policy for a
given labelled Markov chain. As we have already discussed in the introduction, although
such a policy can be viewed as an explanation of the distances, we argued that 0-minimal
1-maximal optimal policies are desirable. Both 0-minimal and 1-maximal are defined in
terms of expected number of rounds of the game, that is, the expected lengths of paths to
0-pairs and 1-pairs. We introduce these expected lengths next.

36:9
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4 Expected Length

Let ¢ € {0,1}. Given an optimal policy P and a pair of states (s,t), we are interested in
the expected length of paths from (s,t) to i-pairs when using P. We restrict to only those
paths that reach an i-pair, that is, it is a conditional expectation. For example, consider the
policy in the middle of Figure 4. To reach the 1-pair (5, 6) starting from the state pair (0, 1),
there are 2 paths, each with a probability of %, of length 2, 2 paths, each of probability %6,

of length 3, etc. The probability of reaching a 1-pair from state pair (0, 1) is 1. Hence,

2
lo4loy 134 13, .,
S22 s — 30 As we have already seen, &y p(s, t)

the conditional expectation is
captures the probability of all paths th2at reach an 1l-pair from (s,t). However, when we
restrict ourselves to optimal policies d1p(s,t) = 01(s,t). This represents the denominator
of the conditional expectation. Since P is optimal, the denominator is independent of P.
Therefore, we omit it. Hence, in the following we only consider the numerator.

We define the function g : S x S — [0, 1] by do(s,t) = 1—0d1(s,t). Since d;p(s,t) captures
the probability of reaching an i-pair from (s,t), we can conclude that (s,t) can reach an
i-pair if and only if §;p(s,t) # 0. Because P is optimal, this is equivalent to d;(s,t) # 0.

» Definition 4.1. Fori € {0,1}, the set D; is defined by
D; ={(s,t) € SxS|di(s,t) #0}.

Note that SiQ C D; C Sf U S?Q. The expected lengths are defined in terms of the following
function.

» Definition 4.2. Let i € {0,1} and P € Pypy. The function A;p : (D; — [0,00)) = (D; —
[0,00)) is defined by

o0 if (s,t) € S?
Aip(l)(s,t) = { P(s,t)-(8; +1) otherwise.

Since the set S is finite and, therefore, the set D; is finite, the set of functions D; — [0, 00)
endowed with the sup metric® forms a nonempty complete metric space (see, for example,
[49, Theorem 3.11]). Hence, A;p is a function from a nonempty complete metric space to
itself. To prove that A;p has a unique fixed point, which we denote by A\;p, we use the
following generalization of Banach’s fixed point theorem. This result dates back at least as
far as the sixties. Part (a) and (b) are Banach’s original fixed point theorem [4]. Part (c)
can already be found in [34] and [12] contains part (d).

» Theorem 4.3. Let (X,d) be a nonempty complete metric space. Let f: X — X. If f isa
power-contraction, that is, f™ is contractive for some n € N, then

(a) f has a unique fized point x and (b) forally € X,z = hIGIll\I ™ (y).

If f is also nonexpansive then

(c) x is the unique fized point of f and (d) for ally e X,z = linll\I ().
me

We denote P restricted to S? by P, that is, P, € S — (57 — [0,1]).

% The distance of k, | € D; — [0,00) is defined as max s ¢ep, |[k(s, t) — (s, t)|.
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» Proposition 4.4. For alli € {0,1}, P € Popt, k, 1 € D; — [0,0), (s,t) € D;, and n € N,
(a) if (s,t) € S? then AT (K)(s,t) = A3 (1) (s,t), and

(b) if (s,) € Di \ S? then L5 (k)(5.1) — A (1) (s, 8)] < PP(s,8)(53) |6 — 1.

From the above proposition we can conclude that A;p is a power-contraction and nonexpans-
ive.

» Theorem 4.5. For alli € {0,1} and P € Pop, Aip has unique fized point.

Proof sketch. Since A;p is monotone and nonexpansive, we can conclude from [5, Theorem 1]
that

dip = }llé%]AiP(J—)u (1)

where 1 : S xS — [0,1] is defined by L(s,t) = 0. Let (s,t) € D;. Hence, 0;(s,t) # 0.
Since P is optimal, for (s,t) € D; we have that d;p(s,t) # 0. Therefore, from (1) we can
conclude that exists ng € N such that for all n > ng; we have that A?}jl(L)(s, t)>0. As a
consequence, we can prove that P (s, t)(57) < 1.

Let n = (max(s)ep, nst) + 1 and ¢ = max (s )ep, PP (s,t)(S?). Note that ¢ < 1. From
Proposition 4.4 we can deduce that A7, is c-contractive. By means of Theorem 4.3(c) we

K3
can complete the proof. |

The above result is a key ingredient of the proof of Proposition 5.3, which is in turn crucial
in our proof of correctness and termination of Algorithm 1.

5 1-Maximal Policies

As discussed in the introduction and illustrated in Figure 3, an optimal policy that maximizes
the expected length of paths to 1-pairs is desirable. This maximal expected length is defined
as follows.

» Definition 5.1. The function \; : D1 — [0, 00] is defined by

Al(sat): sup >\1P(57t)'
Pepgpt

An optimal policy that realizes that maximal expected length is called 1-maximal.

» Definition 5.2. A policy P € Popt is 1-maximal if \ip = A;.

We denote the set of optimal 1-maximal policies by Poit* and the set of optimal 1-maximal

vertex policies by Voit*. Similar to Proposition 3.7, we provide an alternative characterization
of 1-maximal that we use in several of our proofs.

» Proposition 5.3. For all P € Py, P is 1-mazimal if and only if M (s,t) = P(s,t)-(01+X1)
for all (s,t) € Dy \ S%.

Below we present a policy iteration algorithm that computes a 1-maximal optimal vertex
policy from an optimal vertex policy. In our algorithm we use the following function.

» Definition 5.4. The function Ay : (D1 — [0,00)) — (D1 — [0,00)) is defined by
0 if (s,t) € S%

A (1)(s,t) = { max w- (01 +1) otherwise.
weV (Q(7(s),7(t)))Ad1(s,t)=w-01

36:11
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The following theorem is crucial for proving that the vertex policy our algorithm computes
is 1-maximal.

» Theorem 5.5. )\ is the unique fized point of A;.

Our algorithm starts from an optimal vertex policy P, which can be obtained by the policy
iteration algorithm of [51, Section 6.2]. It computes A;p for that policy P (line 1), which
can be done by means of standard algorithms (see, for example, [3, Section 10.1.1]). As long
as there is a state pair in D; \ S? that is not locally 1-maximal with respect to the current
policy (line 2), the policy at (s,t) is improved to a locally 1-maximal choice (line 3). This
boils down to solving a linear programming problem. After this change to the policy P, we
recompute A1p (line 4). The loop maintains the invariant that P is an optimal vertex policy
as w in line 3 is a vertex and satisfies d1(s,t) = w - §1 (see Proposition 3.7). At termination,
we have that A\1p is a fixed point of A; and, by Theorem 5.5, equals \; and, therefore, is
1-maximal.

Algorithm 1 1-maximal optimal vertex policy.

Input: optimal vertex policy P
Output: 1-maximal optimal vertex policy
1: compute A\1p
while 3(s,t) € D1 \ S : Ai(M\1p)(s,t) > A\1p(s,t) do
P(s,t) arg max w- (01 + Aip)

weV (Q(7(s),7(t)))A61(s,t)=w-01

4: compute \ip

end while

6: return P

o

Next, we prove an exponential lower bound for the above algorithm.

» Definition 5.6. The labelled Markov chain Cy is defined as

If n >0 then the labelled Markov chain C,, is defined as

(&)
©

The dashed square represents the labelled Markov chain Cp_1.
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Note that C,, has 3n + 8 states and 6n + 11 transitions and, hence, is of size O(n). Applying
the above algorithm to the labelled Markov chain C,, results in an exponential number of
iterations.

» Theorem 5.7. For each n € N, the labelled Markov chain C,, of size O(n) is such that
Algorithm 1 takes Q(2™) iterations.

Proof sketch. We define a sequence of 2™ optimal vertex policies and show that there exists
an execution of Algorithm 1 that cycles through all those policies. The policies only differ for
the (s;,t;) pairs. The two transitions of s; are matched with the two transitions of ¢; in the
two obvious ways. Which of those two matchings is chosen for each (s;,t;) pair is captured
by means of the (reversed) Gray code. Hence, the exponential lower bound proof relies on
the order in which the non-locally optimal (s;,t;) pairs are chosen (for which the current
matching is replaced with the other matching) rather than the fact that the transportation
polytopes may have exponentially many vertices (in our example that is not the case). <«

6 0-Minimal Policies

As we discussed in the introduction and Figure 4 illustrates, a 1-maximal optimal policy
that minimizes the expected length of paths to O-pairs is a preferable explanation. As in the
previous section, we first capture the minimal expected length.

» Definition 6.1. The function Ay : Dy — [0,00) is defined by

Ao(s,t) = Peigglax )‘OP(S7t)~

A 1-maximal optimal policy that matches that minimal expected length is called 0-minimal.

» Definition 6.2. A policy P € Py is O-minimal if A\gp = Ao.

Below we present a policy iteration algorithm that computes a 0-minimal 1-maximal optimal
vertex policy from a 1-maximal optimal vertex policy. In our algorithm we use the following
function.

» Definition 6.3. The function Ag : (Do — [0,00)) = (Do — [0, 00)) is defined by

0 if (s,t) € S?
w- (0o +1) otherwise.

Ao(D)(s,t) = {

min
weV (Q(7(s),7(t)))N1(s,t)=w-01 A1 (8,t)=w-(d1+A1)
The key ingredient of the correctness proof of our algorithm is the following result.
» Theorem 6.4. \q is the unique fized point of Ag.
Our algorithm that computes a 0-minimal 1-maximal vertex policy from a 1-maximal vertex
policy (Algorithm 2) is very similar in structure to Algorithm 1. Instead of focussing on

1-pairs, we concentrate on 0-pairs. Furthermore, we maintain as a loop invariant that P is
not only an optimal vertex policy but also that it is 1-maximal.
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Algorithm 2 0-minimal 1-maximal optimal vertex policy.

Input: 1-maximal optimal vertex policy P
Output: 0-minimal 1-maximal optimal vertex policy
1: compute Agp
2: while H(S,t) € Dy \ Sg : Ao(/\op)(s,t) < )\OP(S,t) do
P(s,t) arg min w - (8o + Xop)
weV (Q(7(s),7(t)))Ad1(s,t)=w-01 AX1(s,t)=w-(51+ A1)
compute \gp
5: end while

6: return P

Algorithm 1 and 2 both optimize locally in line 3 to obtain a global optimum. This may
remind the reader of the “elegance” quote of Fijalkow et al. in the introduction.

7 Symmetric Policies

Since probabilistic bisimilarity distances are symmetric, that is, d1(s,t) = d1(¢t, s) for all
states s and ¢, one may wonder whether d;(s,t) can be explained similarly to d1(¢,s). We
call a policy P symmetric if P(s,t) and P(t, s) are mirror images.

» Definition 7.1. Let P € P. P is symmetric if for all (s,t), (u,v) € S2,
P(s,t)(u,v) = P(t,5)(v,u).

We fix a total order < on the set of states S. This allows us to turn a policy into a symmetric
one as follows.

» Definition 7.2. Let P € P. We define P< by

P(s,t)(u,v) if s <t

P(s,t)(u,v) = {P(t,S)(U>U) ifort.

This construction preserves all the properties of policies in which we are interested.

» Theorem 7.3. For all P € P,

(a) P< is a symmetric policy,

(b) if P is a vertex policy then P~ is a vertex policy,

(c) if P is optimal then P is optimal,

(d) if P is 1-mazimal then P< is 1-maximal, and

(e) if P is 0-minimal then P is 0-minimal.

As a result, once we have computed a 0-minimal 1-maximal optimal vertex policy P, we can
turn it into a symmetric O-minimal 1-maximal optimal vertex policy P~. Generally, such
a symmetric policy is simpler as d;1(s,t) is explained similarly to d1(¢, s). In the graphical
representation of a symmetric policy, we only need to represent the state pairs (s, ) with
s = t, where an arrow from (s,t) to (u,v) with u > v is depicted as a twisted arrow.

8 Experimental Results

We have implemented Algorithm 1 and 2 in Java*. To compute an optimal vertex policy,
we used a Java implementation® of the algorithm presented in [51, Section 6.2]. In our
experimental evaluation we used the two examples of [51, Section 9.3], namely an example of

4 The code is available at github.com/antoNanahJi/Explainability
5 The code is available at bitbucket.org/discoveri/probabilistic-bisimilarity-distances.


https://github.com/antoNanahJi/Explainability
https://bitbucket.org/discoveri/probabilistic-bisimilarity-distances
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Table 1 Average (and standard deviation) in milliseconds of time to compute optimal, 1-maximal,
and O-minimal policies.

optimal 1-maximal 0-minimal
Crowds 913 (28) 1002 (24) 1099 (27)
Leader 494 (14) 593 (19) 576 (21)
Miller-Rabin 32,149 (149) 479 (2) 1,069 (5)
Quicksort 218,232 (8,971) | 38,528 (1,139) | 46,416 (1,165)
Two dies 3,142 (1) 2,271 (1) 1,569 (9)

two dies due to Knuth and Yao [33] and randomized quick sort, as well as the Miller-Rabin
primality test [41, 46], the crowds protocol by Reiter and Rubin in [48], and the leader
election protocol by Itai and Rodeh [29].

The experiments were run on an Intel machine with an i7-8700T CPU and 15 GB of
RAM. For each of the five examples, we first computed an optimal vertex policy, then a
1-maximal optimal vertex policy, and finally a 0-minimal 1-maximal optimal vertex policy.
We timed 55 trails for each of the three stages of the computation and report the average (and
standard deviation) in milliseconds in Table 1. Since a Java virtual machine needs to perform
just-in-time compilation and optimization, we discarded the first eight trails. Garbage
collection was triggered in between trials to minimize its impact on our measurements.

As can be seen, the algorithms tend to perform well in practice despite the exponential
lower bound. In most cases, computing the 1-maximal and 0-minimal optimal policies is
significantly faster than computing optimal policies. Recall that if policy P is optimal then
A1p captures the distances. Hence, once we have computed the distances by means of policy
iteration, we can construct a symmetric O-minimal 1-maximal optimal vertex policy that
explains the distances, often taking less time than computing the distances.

Our implementation also provides a graphical representation (DOT format) of the policy.

9 Conclusion

We have shown that explainability is a game in the context of probabilistic bisimilarity
distances of labelled Markov chains. More precisely, symmetric 0-minimal 1-maximal optimal
vertex policies for the 1%—player games presented in this paper explain the distances.

Apart from the area of probabilistic model checking, distances similar to the ones studied
in this paper also play a role in other fields including control theory [26], fault-tolerance [9],
privacy [11], quantum computing [20], reinforcement learning [40], and systems-biology [38].
As a consequence, we anticipate that our results are widely applicable.

The main contributions of this paper are the following.

We provide a unified overview of games related to probabilistic bisimilarity and probabil-

istic bisimilarity distances in the introduction of the paper.

We argue that symmetric O-minimal 1-maximal optimal vertex policies explain these

distances.

We develop algorithms to compute symmetric 0-minimal 1-maximal optimal vertex policies

and prove them correct.

We prove an exponential lower bound for the algorithm that computes a 1-maximal

optimal vertex policy from an optimal vertex policy.

We have implemented all algorithms in Java. The code is open-source.

36:15
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Several questions remain open. For example, we conjecture that the algorithm that
computes a 0-minimal 1-maximal optimal policy from a 1-maximal optimal policy also has
an exponential lower bound. Determining upper bounds for both our algorithms is left for
future work.

In [53], Vlasman introduced two properties of policies, label conflict and probabilistic
bisimilar conflict, argued that policies free of such conflicts are desirable for explaining
probabilistic bisimilarity distances, and presented algorithms to remove such conflicts from
optimal policies. We have already shown that 1-maximal optimal policies are free of label
conflicts (see [43]). It is an open problem whether a 0-minimal 1-maximal optimal policy is
free of probabilistic bisimilar conflicts. We conjecture that “transitivity” of policies, which
seems closely related to the fact that probabilistic bisimilarity distances satisfy the triangle
inequality, may play a role in tackling that problem. Apart from symmetry and “transitivity,”
it could be worthwhile exploring other forms of structure of policies to further reduce the
complexity of the explanation.

We conjecture that the policy iteration algorithm of [51, Section 6.2], as well as Algorithm 1
and 2 can be modified so that they maintain that the policy is symmetric as a loop invariant.
This may allows us to restrict our attention to only half of the state pairs currently being
considered in the algorithm.

As we mentioned in the introduction, our game can be viewed as a Markov decision
process presented by Tang in [51, Section 5.3]. Several definitions and results can be expressed
in the parlance of Markov decision processes. For example, the function Ay presented in
Definition 2.5 can be seen as a Bellman equation (see, for example, [45, Section 4.3]) — note
that a slight generalization of A; was already defined in, for example, [7, Definition 15], which
predates Tang’s presentation of the Markov decision process by more than a decade. Similarly,
for a policy P and a state pair (s,t), P(s,t) can be seen a decision rule and Proposition 3.7
then characterizes a conserving decision rule (see, for example, [45, Section 6.2.4]).

Our results are related to the work of Busatto-Gaston et al. [8]. They consider bi-objective
problems on Markov decision processes. In particular, they minimize the (conditional)
expected number of steps to a target while guaranteeing the maximal probability of reaching
it. In this paper, we consider three objectives (optimal, 1-maximal, and 0-minimal). They
propose a simple two-step pruning algorithm. Our algorithms show similarities to their
algorithm. For example, Definition 5.4 corresponds to pruning the Markov decision process
by restricting to couplings w that satisfy d1(s,t) = w - d;. Since the size of the Markov
decision process representing our game may be exponential in the number of states of the
labelled Markov chain, we do not explicitly construct the Markov decision process, nor do
we explicitly prune it.

The aim of our work is to provide a human-interpretable explanation of probabilistic
bisimilarity distances. According to Theorem 3.3, for a policy P we have that §;p provides
an upper bound for §;. As a result, a policy can also be viewed as a certificate (see, for
example, [2] for work on certificates for Markov decision processes) for an upper bound of
the probabilistic bisimilarity distances. In this case, we would aim for a small policy P so
that d1p can be computed quickly. We consider this an interesting line of future work.
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