Reachability in Vector Addition System with States
Parameterized by Geometric Dimension

Yangluo Zheng =
BASICS, Shanghai Jiao Tong University, China

—— Abstract
The geometric dimension of a vector addition system with states (VASS), emerged in Leroux and
Schmitz (2019) and formalized by Fu, Yang, and Zheng (2024), quantifies the dimension of the vector
space spanned by cycle effects in the system. This paper examines the VASS reachability problem
through the lens of geometric dimension, revealing key differences from the traditional dimensional
parameterization. Notably, we establish that the reachability problem for both geometrically 1-
dimensional and 2-dimensional VASS is PSPACE-complete, achieved by extending the pumping
technique initially proposed by Czerwinski et al. (2019).
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1 Introduction

Vector addition systems with states (VASSes), equivalent to Petri nets, serve as a fundamental
model for concurrency [10]. A VASS extends finite automata with integer counters that
cannot be zero-tested but must be kept non-negative. Central to the algorithmic theory
of VASS is the reachability problem: determining if a run exists from one configuration to
another. Due to its generic nature, numerous practical problems can be modeled via the
reachability problem [19]. After decades of study, the computational complexity of the VASS
reachability problem was settled to be Ackermann-complete [15, 7, 14]. However, when
fixing the dimension — the number of counters, a gap remains in complexity bounds. For
d-dimensional VASS where d > 2, reachability lies in F4 [12], the dth level of the Grzegorczyk
hierarchy of complexity classes [17] (for d = 3 the upper bound has been improved to
2-EXPSPACE recently [8]), while F4-hardness is achieved with (2d + 3)-dimensional VASS
[5]. This gap is known to be closed only in low dimensions. PSPACE-completeness holds
for 2-dimensional VASS under binary encoding [3, 6], and NL-completeness under unary
encoding [9]. NP-completeness holds for 1-dimensional VASS under binary encoding [13],
and again NL-completeness under unary encoding [9]. Dimension has traditionally served as
the standard parameterization for reachability.

On the other hand, the structure of cycles was identified as a pivotal factor controlling
the complexity of the VASS reachability problem [15]. The notion of geometric dimension,
formalized in [12], measures the dimension of the cycle space — vector space spanned by all
cycle effects. Insights from [15, 12] suggest that the F; upper bound of the famous KMLST
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algorithm applies to geometric dimension d, not only to dimension d. In this work we propose
geometric dimension as an alternative parameterization for the VASS reachability problem.
In theory the geometric dimension is closer to the nature of the reachability problem, as
suggested by [15] and [12], and the cycles provides a rich structure for analysis. Recently a
work on 3-dimensional VASS also made use of the geometric dimension [8]. Moreover, the
structure of cycles played an important role in a study on continuous VASSes [1] where the
authors extended the technique of linear path schemes to study the reachability problem.
In practice, as the system parameters might not necessarily be independent of each other,
fixing geometric dimension rather than dimension allows one to introduce certain types of
interconnections in system parameters for free, which could possibly make the model more
expressive. For example, a bounded counter can be simulated by a pair of complementary
counters such that transitions increasing one of them must simultaneously decrease the other
by the same amount. One easily verifies that these two counters contribute at most 1 to the
geometric dimension.

Our contribution

In this paper, we study the reachability problem in VASSes with fixed geometric dimensions.
As mentioned before, the F4 upper bound in [12] directly applies to geometric dimension
d > 3. Thus, the primary focus is on VASSes with geometric dimension < 2. Our main
contributions are the following theorems.

» Theorem 1.1. Reachability in VASS of geometric dimension 2 is PSPACE-complete under
binary encoding.

Previous work [12] showing the semi-linearity of VASS reachability set in geometric
dimension 2 utilized the technique of linear path schemes, which yielded merely an EXPSPACE
upper bound (see [18] for an explicit statement). This is largely due to an exponential blow-up
in the number of control states introduced by a dimension-reduction argument (see, e.g.
[12, Lemma A.18]). In contrast, our proof relies on a pumping technique for 2-dimensional
VASSes [6]. To apply this technique, we make use of the sign-reflecting projection proposed
in [12], with some further properties developed in Subsection 4.1. Another tool called the
support projection is introduced in Subsection 4.2. Combining these projection tools we
establish a suitable coordinate system (Lemma 4.6) within the 2-dimensinoal cycle space
of the VASS. This enables us to apply the arguments in [6] to obtain the PSPACE upper
bound. Together with the PSPACE-hardness inherited from 2-dimensinoal VASS [3, 11], we
conclude PSPACE-completeness. We mention that the projection tools in this paper do not
provide a straightforward reduction from d-dimensional VASS of geometric dimension 2 to
2-dimensinoal VASS. But we will show such a reduction exists for d = 3 in Section 5.

Geometric dimensions lower than 2 are also studied in this paper:

» Theorem 1.2. Reachability in VASS of geometric dimension 1 is PSPACE-complete, and
that of geometric dimension 0 is NP-complete under binary encoding.

Results in VASS of geometric dimension 1 and 0 are obtained by a re-examination of
known results for VASS of dimension 1 and 2. These results show an interesting distinction
in complexity of VASS reachability parameterized by dimension and by geometric dimension,
as compared in Table 1.

In addition to the above complexity results, we also give an efficient (polynomial time)
algorithm computing the geometric dimension of a VASS in Subsection 3.1.
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Table 1 Complexity of VASS reachability parameterized by dimension and by geometric dimension.

dimension d geometric dimension d
= NL-complete (folklore) NP-complete
= NP-complete [13] PSPACE-complete
PSPACE-complete [3] PSPACE-complete

PSPACE-hard [3], in 2-EXPSPACE[8]  PSPACE-hard [3], in TOWER = Fs [12]

no known distinctions

S T Y
I
= W N = O

v

Organization

Section 2 fixes notations and definitions. Section 3 introduces the geometric dimension of
a VASS and discusses some useful properties. Section 4 proves the PSPACE-completeness
of geometrically 2-dimensional VASS. Section 5 gives a straightforward reduction from
geometrically 2-dimensional 3-VASS to 2-VASS. Section 6 considers geometric dimensions
lower than 2. Section 7 concludes the paper. Omitted proofs can be found in the full version.

2 Preliminaries

We use N, Z, Q to denote the set of natural numbers (non-negative integers), integers, and
rational numbers respectively. Let m < n be integers, we use [m,n] to denote the set
{m,m +1,...,n}. And we abbreviate [n] for [1,n]. For a d-dimensional vector v € Q¢,
we write v(i) for its ith component, and we use its maximum norm |[|v|| := max;¢[q) [v(7)|.
The order < is extended component-wise to vectors: we write u < v if u(i) < v(i) for
all ¢ € [d]. Similarly we define the component-wise strict order < for vectors. We write
(u,v) = > (g w(@)v(i) for their inner product. The support of a vector v is supp(v) :=
{i € [d],v(i) # 0}. The support of a set S of vectors is supp(S) := J, g supp(v). A vector
v is positive if v > 0, it is semi-positive if v > 0 and v # 0. For a string s = ajas...a, € *
over an alphabet X, we write s[i..j] for the substring a;a;41...q; of s.

2.1 Vector Addition System with States

Let d > 0 be an integer. A d-dimensional vector addition system with states (d-VASS) is
a pair G = (Q,T) where Q is a finite set of states and T C Q x Z? x Q is a finite set of
transitions. Clearly a VASS can also be viewed as a directed graph with edges labelled by
integer vectors. Given a word m = (p1, a1, q1)(p2,a2,q2) .. (Pn,@n,qn) € T* over transitions,
we say that 7 is a path from p1 to q, if g =p;y1 foralli=1,... ;n—1. It is a cycle if we
further have p; = ¢,. Such a path is usually presented in the following form:

t t t tn
T=p1— 1 —> G2 —> - = qn (1)

where t; = (p;, a;,¢;). The effect of 7 is defined to be A(w) :== Y7 | a;.

1=

Size, traversal number and characteristic

The norm of a transition t = (p, a, q) is defined by ||¢|| := ||a||. For a d-VASS G = (Q,T) we
write ||T|| := max{||¢| : ¢ € T}. We shall mainly consider VASS under binary encoding, so
the size of G is given by |G| :=|Q| +d - |T| - [log(||T|| +1)] + 1.
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We define the traversal number of G to be the maximal number of distinct states that
can be visited (traversed) by a path in G, denoted by ¢(G). We remark that ¢(G) is an
upper bound of (i) the length of any simple path/cycle, and (ii) the number of connected
components visited by any path. Note also the trivial fact ¢(G) < |Q)|.

The characteristic of G, denoted by x(G), is defined to be x(G) :=¢(G) - ||T||. So x(G)
upper bounds the norm of effect of any simple path/cycle in G.

Semantics of VASSes

Let G = (Q,T) be a d-VASS. A configuration ¢ of G is a pair of a state p € @ and a vector
v € N?, written as ¢ = p(v). We will often confuse a configuration with its vector. So we
shall write, for example, ||c|| for ||v]|, and ¢(i) for v(i). The semantics of G is defined as
follows. For each transition ¢t = (p,a,q) € T, the one-step transition relation L relates all
pairs of configurations of the form (p(u), q(v)) where u,v € N% and v = w + a. Then for
a word m = tity...t, € T™, the relation Ly is the composition o= My ooy g0
p(u) 5 g(v) if and only if there are configurations po(wo), . . ., pn(un) € Q x N% such that

p(w) = po(ug) 25 pr(ur) 2 - 25 p,(uy,) = g(v). (2)

Also, when 7 = € is the empty word, the relation < is the identity relation over @ x N¢.
Note that = is non-empty only if 7 is a path. When p(u) = q(v) we also say that 7 induces
(or is) a run from p(u) to ¢(v), and we write sre(m) := p(u) and trg(n) := ¢(v) for the source
and target of 7. We emphasize that all configurations on this run lie in N¢, and that they
are uniquely determined by p(u) and m. Finally, the reachability relation of G is defined to
be 5 1= U, ep- —-

Reachability problem

The general reachability problem in VASS is formulated as follows:

REACHABILITY IN VECTOR ADDITION SYSTEM WITH STATES
Input: A VASS G = (Q,T), two configurations p(u), ¢(v) of G.
Question: Does p(u) = ¢(v) hold in G?

It is a folklore that this problem can be reduced to the following one in polynomial time
without affecting the dimension or the geometric dimension:

0-REACHABILITY IN VECTOR ADDITION SYSTEM WITH STATES
Input: A G =(Q,T), two states p,q € Q.
Question: Does p(0) = ¢(0) hold in G?

Thus, in this paper we shall mainly care about runs starting from 0 and ending at 0.
Such a run is called a 0-run in the following.

Reverse of VASS

For a VASS G = (Q,T) we define its reverse as the VASS G™V = (Q,T"®) where T :=
{(¢,—a,p) : (p,a,q) € T}. The reverse rev(m) of a path (or a run) = is defined naturally
by reversing the order of transitions in 7, switching the source and target states of those
transitions, and negating their effects. We note that p(u) = ¢(v) in G if and only if

rev(m)

q(v) —— p(u) in G™".



Y. Zheng

3 Geometric Dimension

» Definition 3.1. Let G be a d-VASS. The cycle space of G is the vector space Cyc(G) C Q4
spanned by the effects of all cycles in G, that is: Cyc(G) := span{A(0) : 6 is a cycle in G}.
The dimension of the cycle space of G is called the geometric dimension of G, denoted by
gdim(G) := dim(Cyc(G)). We say G is geometrically k-dimensional if gdim(G) < k.
It should be noticed that the cycle space of a VASS is indeed spanned by the effects of
all simple cycles in it.
» Lemma 3.2. Let G be a d-VASS, then Cyc(G) equals to the vector space spanned by the
effects of all simple cycles in G, that is, Cyc(G) = span{A(p) : 5 is a simple cycle in G}.

Proof. Just note that the effect of every cycle is a finite sum of effects of simple cycles. <«

A naive algorithm that computes the geometric dimension of a VASS by enumerating all
simple cycles in it requires PSPACE. Indeed, we show here a more efficient algorithm which
computes gdim(G) in polynomial time.

3.1 Computing Geometric Dimension

We present a stronger algorithm that given a VASS G as input, computes a basis for Cyc(G).

Observe that every cycle lies within some maximal strongly connected component (SCC) of
G. Once we have an algorithm that computes a basis for the cycle spaces of every SCC of G,
a basis for Cyc(G) is just a maximal linearly independent subset of the union of these bases,
which can be computed by Gaussian elimination in polynomial time. So the problem reduces
to computing a basis for Cyc(G) in case G is strongly connected.

Fix a strongly connected d-VASS G = (Q,T). We introduce an operation called cycle
shrinking. Let 0 be a simple cycle in G that is not a self-loop and has the form

t t tn
0 =py—>p1 —> - = P = Do (3)

First we define a “shift function” s : Q — Z? as follows. If ¢ = p; for some k € [n],
we set s(q) = A(O[1..k]) = A(t1) + ... + A(tx); otherwise we set s(¢) := 0. Note that
s(po) = $(pn) = A(0). Let P = {p1,...,pn} be the set of states that occurs on 6. Now we
define a new VASS G /6 = (QY, T?) that “shrinks” 6 into a single states as follows.

Q%= (Q\ P)U{f}.

Let h: Q — QY be defined as h(q) = 0 if ¢ € P and h(q) = q otherwise. The transitions

are given by T := {(h(p), s(p) + a — 5(q), h(q)) : (p,@,q) € T}.

It should be clear that |Q?| < |Q| as 6 is not a self-loop, and that G/ can be constructed
in polynomial time given G and 6. Note that ||T°|| < (2|Q| + 1) |||, so the size of G /6 is
bounded by |G/0]| < |G|+ d-|T| - [log(2|Q| + 1)]. Observe that h is a graph homomorphism
from G onto G/6. Thus G/0 is strongly connected as long as G is. Besides, we can show
that G/ preserves the cycle space of G.

» Proposition 3.3. Cyc(G/0) = Cyc(G).
Now the algorithm for computing a basis of Cyc(G) where G is strongly connected should
be clear. As listed in Algorithm 1, we repeatedly shrink a cycle in G until there remains only

one state. Then its cycle space is the span of effects of self-loops in it. A basis of Cyc(Q)
can be computed using Gaussian elimination. Since a cycle shrinking reduces the number of

states by at least one, after at most |Q| iterations we must stop with a single state remained.

Note that the size of VASS is always bounded by |G| +d - |Q| - |T|[log(2|Q| + 1)] < |G|* in
each iteration. Thus the algorithm runs in polynomial time.

38:5
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Algorithm 1 CYCLESPACEBASIS.

input :a VASS G which is strongly connected
output : basis of Cyc(G)

1 while G contains more than one state do

2 0 < a simple cycle in G that is not a self-loop
3 G+ GJ/o

4 end

5 U < the set of effects of all self-loops in G

6 return a basis of U found by Gaussian elimination

3.2 Geometry of Reachability Sets and Runs

Given a VASS G = (Q, T) and a configuration p(u) € Q x N%, we write Reachg(p(u)) for all
configurations that is reachable from p(u): Reacha(p(u)) := {g(v) € Q x N¢ : p(u) = q(v)}.
The next lemma shows that the “dimension” of any reachable set is bounded by gdim(G), in
the sense that it is contained in a finite union of affine copies of Cyc(G). Here the sum of a
vector v € Q% and a set S C Q7 is defined as v + S := {v+s:s5 € S}.

» Lemma 3.4. Let G = (Q,T) be a d-VASS, p(u) € Q x N be a configuration of G. Then

Reachg(p(u)) C @ X U u + Cyc(G) + =. (4)

zez?
2] <x(G)

In other words, for any configuration q(v) € Q x N¢ with p(u) = q(v), we have v = u+c+z
for some ¢ € Cyc(G) and z € Z¢, where ||z|| < x(G).

Note that one may need exponentially many (roughly O(x(G)?)) affine copies of Cyc(G)
to cover Reachg(p(w)). The next lemma shows that any fixed run from p(u) is confined in,
however, at most |@| affine copies of Cyc(G).

» Lemma 3.5. Let G = (Q,T) be a d-VASS. For any run 7 in G with source p(u) € Q x N%,
there is a function fr : Q — Z% such that for every configuration q(v) occurring on T, we
have v € u + Cyc(G) + fr(q). Moreover, || f=(q)|] < x(G) for every q € Q.

These two lemmas follow easily from the fact that we can view a run as a simple path
interleaved with cycles. Their proofs can be found in the full version of this paper.

4 Geometrically 2-Dimensional VASS

In this section we focus exclusively on geometrically 2-dimensional VASSes. We prove that
reachability in geometrically 2-dimensional VASSes is PSPACE-complete. The lower bound is
a simple corollary of [3, Lemma 20], so most effort will be devoted to the upper bound. Our
proof is based on the pumping technique proposed in [6] for 2-VASSes, where they showed
that every run in a 2-VASS is either thin — confined in some belt-shaped regions, or thick —
enjoying good pumping properties that can be exploited to shrink long runs. We extend this
technique and prove a similar thin-thick classification for runs in geometrically 2-dimensional
VASSes. This will enable us to obtain the following exponential length bound for reachability
witnesses.
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» Theorem 4.1. For any O-run 7 in a geometrically 2-dimensional d-VASS G, there is a
0-run p in G with the same source and target states as T and |p| < x(G)O(g(G)'d4).

From the above theorem the PSPACE-completeness follows immediately.
» Theorem 4.2. Reachability in geometrically 2-dimensional VASS is PSPACE-complete.

Proof. The lower bound is inherited from the PSPACE-hardness of reachability in 2-VASS
[3, Lemma 20]. For the upper bound, an algorithm only need to search a run of length up to
X(G)O(g(G)'d(l) after reducing to the O-reachability problem, for which PSPACE is enough. <«

In order to establish the thin-thick classification of runs in a geometrically 2-dimensinoal
VASS, we need to create a suitable coordinate system within its cycle space. This is achieved
using the projection tools developed in Subsection 4.1 and Subsection 4.2. Depending on
whether these tools can be applied, we classify geometrically 2-dimensinoal VASSes into
degenerate ones (where projection tools are not applicable) and proper ones (where projection
tools are applicable). Degenerate VASSes are easier to handle as they only admit thin runs,
see Subsection 4.3. For proper VASSes in Subsection 4.4 we adapt the argument of [6]
within the coordinate system created by the projection tools and establish the thin-thick
classification. Finally we recall in Subsection 4.5 that both thin runs and thick runs can be
shrunk to exponential length, thus Theorem 4.1 follows.

4.1 Sign Reflecting Projection

An orthant is one of the 2% regions in Q¢ split by the d axes. Formally, given a vector
t € {+1,—1}4, the orthant Z; defined by ¢ is the set Z; := {u € Q¢ : u(i)-t(i) > 0 for all i €
[d]}. The non-negative orthant Q¢, = Z(41,41,....41) is a major concern in this paper.

Let I C [d] be a subset of indices. For a vector u € Q?, we define its projection onto
indices in I as a function u|; € Q! given by (u|;)(i) = wu(i) for alli € I. We tacitly
identify the function u|; € Q! as a vector in Q!l. For a set of vectors V C Q%, we define
Vir:= {'v| IIVE V}. It should be clear that the projection of a vector space onto indices in
I is again a vector space in QI!, and the projection of an orthant Z, onto I is an orthant in
QM1 defined by ¢|;.

» Definition 4.3 ([12, Definition A.7]). Let P C Q% be a vector space and Z be an orthant in
Q?. A set of indices I C [d] is called a sign-reflecting projection for P with respect to Z if
for any v € P, v|; € Z|; implies v € Z.

Sign-reflecting projection helps us project the vectors in a vector space to some of its
components so that the pre-image of a certain orthant still belongs to one orthant. Moreover,
we have that such a projection is one-to-one.

» Lemma 4.4 ([12, Lemma A.8]). Let P C Q% be a vector space and Z be an orthant in
Q4. Let I C [d] be a sign-reflecting projection for P w.r.t. Z. Then every vector v € P is
uniquely determined by v|r. In other words, for any v,v’ € P, v|; = v'|1 implies v = v’.

We mainly care about sign-reflecting projections for a plane, i.e. a 2-dimensional subspace
of Q¢. In this case a good sign-reflecting projection is given by the following lemma.

» Lemma 4.5 ([12, Theorem A.9]). Ford > 2, let P C Q¢ be a plane (i.e. a 2-dimensional
subspace), and Z be an orthant in Q% such that P N Z contains two linearly independent
vectors. Then there is a sign-reflecting projection I for P w.r.t. Z such that |I| = 2.

38:7
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Intuitively Lemma 4.5 projects a plane onto an axis plane. The preimages of those two
axes will play an important role in our work, as stated in the following lemma.

» Lemma 4.6. Let P C Q% be a plane. Let I = {iy,iz} C [d] be a sign-reflecting projection
for P w.r.t. (@io. Suppose P = span{vy, vy} for linearly independent vectors vy, vy € Z¢
with norm N := max{|lvi||, ||v2||}. Then there exists two non-zero vectors ui,uy € PN N?
such that uy(iz) = uz(iy) = 0 and wy (i) = uz(iz) > 0 and that ||uq||, ||us|| < 2N2.

We call vectors w1, us given by this lemma the canonical horizontal / vertical vector
derived from vy, vs for P with respect to Q‘io. We remark that this notion can be generalized
to orthants other than Q‘io. As any vector in Pis uniquely represented as a linear combination
of u; and us, we can obtain a bound for components of vectors in P in terms of their
projections.

» Lemma 4.7. Let P C Q% be a plane. Let I = {iy,iz} C [d] be a sign-reflecting projection
for P w.r.t. (@éo. Suppose P = span{vy, vy} for linearly independent vectors vy, vy € Z¢
with norm N := max{||lv{||, |v2||}. For every w € PN N and every i € supp(P), we have

min{w(iy), w(iz)}

Yoo <w(i) <2N% - (w(iy) + w(iy)). (5)

4.2 Support Projection

Lemma 4.7 gives bounds on the components in the support of the plane. So we would like
the cycle space of a VASS G to have full support, i.e. supp(Cyc(G)) = [d]. In this section
we develop a technique called support projection to transform an arbitrary geometrically
2-dimensional VASS to one with such good property, without increasing its traversal number
and the characteristic.

Let G = (Q,T) be a geometrically 2-dimensional d-VASS. Let S = supp(Cyc(G)) and
S = [d]\ S. For vectors v € Z° and v € Z°, we define their composition v og ¥ € Z<
naturally by (v og®)(i) = v(i) if i € S and (v ogw)(i) = v(i) if i € S. Since S is always
clear from the context, we will simply write v o v for this composition.

The support projection of G is the |S|-dimensional VASS G*° = (Q%,T°) where

Q% = {(q,v) € Q x N° : |v|| < 2x(G)}, (6)
T := {((p,u), als, (¢,v)) € Q° x N* x Q% : (p,a,q) € T, u + alg = v}. (7)

A state of the form (g,v) in G* is denoted ¢¥ for conciseness. _

There is a huge expansion in the size of G, as |Q%| = |Q|- (2x(G))!®I. On the other hand,
we can show that support projection does not increase traversal number and characteristic,
and the projected VASS has full support as we expected.

» Proposition 4.8. ¢(G®) < (@), x(G®) < x(G), and supp(Cyc(G®)) = S.

Proof. Let’s denote by ¢(7) the number of distinct states in the path w. Consider any

s s
iy

path 7% in G¥ of the form 7% = pi° - pi* i LN p2n where 7 € T¥. We define
a corresponding path 7 in G as 7w := pg L2 P1 RN pn where t; = (pi—1, @i, p;)
and a; := A(t?) o (v; — v;_1). Verify that ¢; is indeed a transition in 7 by the definition
of T, We claim that for any 4,57 € [0,n], p; = p; implies v; = v;, then it follows that
¢(m%) = ¢(m). Indeed, suppose p; = p;, then the sub path in 7 from p; to p; is a cycle with
effect A(tiz1tize...t;) € Cyc(G). So vj = v; + A(tiy1tite - .- t;)lg = vi, which proves the
claim. As the choice of 7° is arbitrary, for any path in G°, there exists a path in G visits
the same number of distinct states. This proves ¢(G) > ¢(G¥).
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Since it is clear that ||T9|| < [T, we immediately have x(G°) = <(G%) - ||T¥||
(@) - IT = x(@).

Finally, we show supp(Cyc(G®)) = S. Observe that it suffices to prove Cyc(G)|s C
Cyc(G®). By Lemma 3.2, Cyc(G) is spanned by effects of all simple cycles in G. So consider

IN

any cycle 6 in G of the form 0 := pg il%pl LN t—")pn = pg where t1,...,t, € T. We
define vectors vy, . .., v, € N by
Vg = X(G) -1, Viy1 ‘= U; + A(ti+1)|§. (8)

Since 6 is simple, we have n < ¢(G). It follows that 0 < v; < 2x(G) - 1 for all i € [0,n]. So

pyi is a state in G¥. Also note that v, = v + A(f)|g = vo. We can define a corresponding
S S S

cycle 6% := pg° 4, it Ly Iy p2n, where t; = (p;7", A(t;)|s,p*). Verify that each

t; is a transition in 7% by definition. So 6° is a cycle in G°. In particular, we have

A(0)|s = A(0%) € Cyc(G?). As the choice of  is arbitrary, we conclude that

Cyc(@)|s = (span{A(0) : 0 is a simple cycle in G})|s C Cyc(G?), (9)
which is the desired result. <

Using the support projection we can change our focus on VASSes with full support. We
will prove the following lemma in the remaining of this section.

» Lemma 4.9. For any 0-run 7 in a geometrically 2-dimensional d-VASS G with the
additional property that supp(Cyc(G)) = [d], there is a 0-run p in G with the same source
and target states as T and |p| < X(G)O(g(G)'d4),

Once Lemma 4.9 is established, Theorem 4.1 follows by plugging in the support projection
of G. The rest is devoted to Lemma 4.9, so we can always assume that the VASS G has full
support, i.e., supp(Cyc(G)) = [d].

4.3 Degenerate VASS and Thin Runs

Depending on whether the cycle space of a VASS can be sign-reflectively projected onto
an axes-plane with respect to the non-negative orthant Qio, we classify geometrically
2-dimensional VASSes into the following two classes.

» Definition 4.10. A geometrically 2-dimensional VASS G is proper if Cyc(G) N Q<,
contains two linearly independent vectors; it is degenerate otherwise.

In this subsection we focus on degenerate VASSes. We show that every run from 0 in a
degenerate VASS is thin in the sense of the following definitions. An illustration of thin runs
can be found in Figure la.

» Definition 4.11. Let v € N? and W € N. The beam B, w is defined by
Bow = {ueN*:3a € Qso, [|u—av| <W}. (10)
The beam By, w is said to be an A-beam where A € N if ||v]| < A and W < A.

» Definition 4.12. Let G be a d-VASS. A run © in G is said to be A-thin if for every
configuration p(u) occurring in 7, the vector u belongs to some A-beam.
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Indeed, we can relax the definition of beams by letting the direction v range over all
integer vectors in Z¢. Let v € Z¢ and W € N. The generalized beam, BZZ,’W is defined by

B,Z)’W ={ueN':3aeQ|u—av|<W}. (11)

» Lemma 4.13. For any v € Z% and W € N, there exist vt € N% and v~ € N¢ such that
BfW C By+,w UBy- w and that o™l o=l < ol

With Lemma 4.13, Definition 4.12 is equivalent to stating that each configuration is
located in some generalized A-beam. This makes it easier to argue if a run is thin, as
demonstrated in the following lemma. We remark that the following result does not depend
on whether the VASS has full support.

» Lemma 4.14. Let G be a geometrically 2-dimensional VASS that is degenerate. Then
every 0-run in G is x(G)°@ -thin.

Proof sketch. A degenerate VASS G falls into one of the following 3 cases: (i) gdim(G) < 2;
(ii) gdim(G@) = 2 and Cyc(G)NQ<, = {0}, or (iii) gdim(G) = 2 and Cyc(G)NQL, = Q>0 -u
for some u € N%\ {0}. We consider only the first case here. For the other cases we refer the
readers to the full version of this paper.

Suppose gdim(G) < 2, then Cyc(G) = span{c} where ¢ is the effect of a (possibly empty)
simple cycle in G. So ||¢|| < x(G). By Lemma 3.4 every configuration ¢(v) reachable from
p(0) satisfy v = ac + z for some a € Q and ||z|| < x(G). This shows that v € BfX(G). As
the choice of g(v) is arbitrary, we deduce that every O-run in G is confined in the generalized
beam B?X(G), thus is x(G)-thin. <

4.4 Proper VASS and the Thin-Thick Classification

In this subsection we fix a geometrically 2-dimensional d-VASS G = (Q,T) that is proper,
and assume that supp(Cyc(G)) = [d]. So by Lemma 4.5, there exists i; # iz € [d] such that
I := {iy,i2} is a sign-reflecting projection of Cyc(G) with respect to io' Moreover, let
w1, us € N? be the canonical horizontal and vertical vectors given by Lemma 4.6. We have
w1 (iz) = 0 and us(i;) = 0. Observe that we can assume |Juq||, |[|uz| < 2x(G)?, as they can

be derived from effects of simple cycles in G.

4.4.1 Thick Runs

We will show that every O-run in G can be classified into thin runs and thick runs. Here we
give the definition of thick runs.

Sequential cones

Recall that the cone generated by vectors vy, ..., v, € Z¢ is the set Cone{vy,...,v;} :=
{Z?Zl a;v; : a1,...,a, € Q>o}. The definition of cones is enhanced in [6] where every prefix
sum is also required to be non-negative:

» Definition 4.15 (sequential cones). Let vy,...,vx € Z% be a sequence of vectors, the
sequential cone generated by these vectors is the following set:

k i
Sequne(vl, ey ’Uk) = {Z a;jv; 1 ai,...,0aL S QZQ,Vi. Z a;v; > 0} (12)
j=1

j=1



(a) Thin runs. (b) Thick runs.

Figure 1 Illustration of thin runs and thick runs.

In dimension 2 it was shown that a sequential cone is nothing but a cone generated by 2
vectors [6]. We generalize this result to sequential cones generated by vectors from the cycle
space of a proper geometrically 2-dimensional VASS.

» Lemma 4.16. Let vy,..., v, € Z% be vectors in Cyc(G). Then SeqCone(vy,...,vy) =
Cone{x,y} for some non-negative vectors x,y where each of them is either v; for some
j € [k], or is the canonical horizontal / vertical vector uy or us.

Indeed, this lemma reduces to [6, Lemma 2] easily by projecting the sequential cone onto
coordinates in I.

Sequentially enabled cycles and thick runs

A path 7 is enabled at configuration c if there exists a configuration ¢ such that ¢ = ¢ is a
legal run. Let S C [d], we say 7 is S-enabled at ¢ = p(u) if there exists a vector z € N¢ with
supp(z) C [d] \ S such that 7 is enabled at p(u + z). In other words, 7 is S-enabled if it is
enabled when ignoring the coordinates outside S.

» Definition 4.17. Let A € N, and let 71,7, w3, ™4 be four cycles in G, we say these cycles
are A-sequentially enabled in a run p in G if their lengths are at most A, and p can be
factored into five parts p = p1papspaps such that
A(m)|1 is semi-positive, and my is enabled at trg(p1). Moreover, both coordinates in I
are bounded by A along p;.
If A(my)|1 is positive, then o is (-enabled at trg(pa). Otherwise, o is S-enabled at
trg(pz) for S = [d] \ supp(A(m1)), and, if A(m)(is) = 0, then the ip-th coordinate is
bounded by A along ps where b=1,2.
SeqCone(A(71), A(ms)) contains some positive vector. (We remark that this is possible
only if G has full support.)
3,4 are P-enabled at trg(ps), trg(ps) respectively.

» Definition 4.18. Let A € N. A 0-run 7 in G is A-thick if 7 factors into T = pp’ such that
some cycles w1, 7o, 3,74 in G are A-sequentially enabled in p,
some cycles 7, wh, w4, ) in G*V are A-sequentially enabled in rev(p),
SeqCone(A(my), A(ma), A(ms), A(ma)) NSeqCone(A(r)), A(nh), A(nh), A(r})) is not triv-

ial (i.e. it contains two linearly independent vectors).

An illustration of thick runs is given in Figure 1b.
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4.4.2 Thin-Thick Classification

In spirit of [6], the following classification lemma is of great significance.

» Lemma 4.19. Let G be a proper geometrically 2-dimensional d-VASS with supp(Cyc(G)) =
[d], then there exists a number A < x(G)PC(E) such that every O-run in G is A-thick if it is
not A-thin.

An important technical lemma in [6] is the “non-negative cycle lemma” [6, Lemma 3],
which states that a run in 2-VASS from 0 visiting a high configuration must contain a
configuration enabling a semi-positive cycle. Here we need a similar lemma for geometrically
2-dimensional VASS.

» Lemma 4.20. There exists a polynomial P such that every run p in G from 0 to v with
[v]| > P(x(G)(%) contains a configuration enabling a cycle 6 of length at most P(x(G))
such that A(0)|; is semi-positive.

We also need some simple geometric facts.

» Lemma 4.21. Letu,v € Q. Let X C span{u,v} be a convex set such that X NQxq-u = 0
and X NQ>¢ - v =0. Then either X N Cone{u,v} =0 or X C Cone{w,v}.

Given a 2-vector v € Q2, we define its right rotation v := (v(2), —wv(1)). For another
vector u € Q?, we write v ~ w if (u, v?) > 0, and write v ~ w if (u, vT) > 0. We generalize
this notation to the 2-dimensional subspace Cyc(G): given two vectors u,v € Cyc(G), we
write v ~w if v ~ulr, and v ~ w if V] Y ul;.

» Proposition 4.22. Let u,v € Cyc(G) be such that u ~v. Then for any w € Cyc(G),
w € Cone{u,v} if and only if u ~»w A v.
The threshold A

Let P be the polynomial in Lemma 4.20. We define p to be the polynomial

p(x) = 4a* - (22° - (P(2) + (z + 1)® + 5) + 22) + 2. (13)
Define A := p(x(G))*(@) < x(G)9C(E), Note that in particular we have

A= p(X(G))D = 4x(G)* - (B +x(@)) + x(C) (14)

where B := 2x(G)? - (P(x(G))*(%) + (x(G) +1)2 +5) + x(G).

If a O-run is not A-thin, then we can find a configuration that lies out of all A-beams.
The property that G has full support helps to further show that each component of this
configuration is high.

» Lemma 4.23. Let p be a O-run in G that is not A-thin. Then p contains a configuration
s(w) where w lies outside all A-beams, and such that w(i) > B for all i € [d].

Main Lemma

» Lemma 4.24. Let 7 be a O-run in G that is not A-thin. Let s(w) be the configuration
on T given by Lemma 4.23. Then T can be factored into two parts T = pp’ where trg(p) =
s(w) = sre(p’) such that
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There are 4 cycles w1, o, w3, T4 in G that are B-sequentially enabled in p, such that the
set SeqCone(A(my), A(ms), A(rms), A(ms)) contains a vector x with ||z — wl| < x(G).
There are 4 cycles 7y, mh, wh, w4 in G*V that are B-sequentially enabled in rev(p’), such
that SeqCone(A(m]), A(wh), A(nh), A(})) contains a vector &' with |z’ — w| < x(G).

We show that Lemma 4.19 follows immediately from Lemma 4.24.

Proof of Lemma 4.19. If the run 7 is not A-thin, then Lemma 4.24 applies. Regarding the
definition of thick runs, we are only left to show SeqCone(A (1), A(ms), A(ms), A(ma)) N
SeqCone(A(7}), A(nh), A7), A(r})) contains two linearly independent vectors. Define U :=
{u € Cyc(GQ) : |lu —w| <2-x(G)}. By Lemma 4.16, SeqCone(A(m1), A(ma), A(7s), A(ma))
is equal to some Cone{wvy,v2} where ||v1|,|v2] < B - x(G) < A. As w lies out of all
A-beams, we must have UNQx>ov1 = 0 and UNQ>gve = (). On the other hand, Lemma 4.24
guarantees that SeqCone(A(m), A(ms), A(m3), A(ms)) NU # 0. So by Lemma 4.21, we
have U C SeqCone(A(m1), A(ma), A(ms), A(ms)). A similar argument shows also that U C
SeqCone(A(ry), A(mh), A(wh), A(my)). Finally, one easily verifies that U contains two linearly
independent vectors. |

Proof sketch of Lemma 4.24. By symmetry we only need to prove the first item. Since p
reaches the configuration s(w) which is high enough, Lemma 4.20 shows that p contains a
configuration ¢; enabling a semi-positive cycle 7. For the second cycle, if m; is positive, then

we simply let w9 := 1. Otherwise, A(m) is parallel to one of the canonical vectors u; or us.
Say it is the latter case, so A(m1)(i1) = 0. We need to find a cycle mg with A(mg)(i1) > 0.

First observe that Lemma 4.20 allows us to assume [|c;|| < P(x(G))S%) + x(G). As
w(iy) > B > ¢;(i1) + x(G), the run from c¢; to s(w) must contain a cycle with positive
effect in i1-th coordinate. We would like to choose this cycle to be 7o, but its length may be
unbounded. So we remove from it all sub-cycles whose effect is in parallel with A(my). This
makes mo merely ([d] \ supp(A(7y)))-enabled, but that’s enough. Finally, we exhibit cycles
w3, T4 s0 that the sequential cone contains some vector & in the neighbor of w. We would

like @ to be exactly w, but this may be impossible as w might not even belong to Cyc(G).

So we write w = ¢+ z for ¢ € Cyc(G) and ||z|| < x(G). The goal is now to contain & = ¢ in
the sequential cone. Consider all simple cycles enabled at some configuration on the run p
after the source of 5. List them in the order they are enabled, and extract a subsequence
T3, T4, . .. such that A(me) ~ A(ms) ~ A(mg) ~ - -+ So the effects of them sweep the cycle
space clockwise. Then we are able to argue, as in [6], that there must be some m;, 7;+1 in this
sequence such that A(m;) ~ e~ A(miy1). We are done by choosing them as 73 and 4. <

4.5 Exponential Bounds of Reachability Witnesses

Lemma 4.19, together with Lemma 4.14, shows that every run in a geometrically 2-dimensional
VASS G is either A-thin or A-thick for A = x(G)?(@<(@), For both cases we are able to
exhibit a reachability witness of length exponential in A. The proofs are similar to that in
[6]. So here we only state the results with basic sketches of the proof.

» Lemma 4.25. For any O-run 7 that is A-thin in a d-VASS G where A > 2x(G), there
exists a 0-run p with the same source and target states as T such that |p| < A0

Proof sketch. Recall that A-thin runs are confined in A-beams of finitely many possibilities.

These beams become eventually disjoint in the region far away from the origin. If an A-thin
O-run 7 without repeated configuration is long enough, it must contain a configuration c
whose vector is far from origin. In this case we can find a sub-run 7 around c that stays
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within a unique A-beam. As 7 is a 0-run, 7 first goes “up” and then “down” in this beam.
From this observation we will extract from 7 two cycles of opposite effects by Pigeonhole
Principle. Deleting these cycles shortens the length of . |

For thick runs, recall that they only occur in proper VASSes.

» Lemma 4.26. Let G be a proper geometrically 2-dimensional d-VASS with supp(Cyc(G)) =
[d]. For any O-run 7 in G that is A-thick for some A > x(G), there is a 0-run p with the
same source and target states as T such that |p| < AO(@),

Proof sketch. Consider a thick run 7. By definition, it can be decomposed into 7 = 77’
such that each of m and rev(n’) contains four pumping cycles. For each path 7 and 7', we
remove any cycle whose effect can be realized by those pumping cycles to shorten their
lengths. After that, we add some additional iterations to the pumping cycles to make the
target configurations of m and 7’ meet in a common point. This is possible as we required
that the sequential cones generated by the pumping cycles have a non-trivial intersection.
The bound on the number of iterations of cycles can be obtained using standard tools in
integer programming, e.g. [4] and [16]. |

With these bounds we can finish the proof of our major goal Lemma 4.9.

Proof of Lemma 4.9. By Lemma 4.14 and Lemma 4.19, any 0-run 7 in G is either A-thin or
A-thick for some A = x(G)°(@<(@), We can apply Lemma 4.25 or Lemma 4.26 to transform
T into a run p with the same source and target so that |p| < A9@) < y(G)OW@' (@) 4

5 A Note on Geometrically 2-Dimensional 3-VASS

The projection techniques used in Section 4 did not provide a straightforward reduction from
geometrically 2-dimensional d-VASS to 2-VASS. In this section we will show that such a
reduction is indeed possible for d = 3. We shall also mention some issues one will face when
trying to generalize this reduction for d > 3.

In this section we care about the unary-encoding size of VASSes. Let G = (Q,T) be a
d-VASS, its unary-encoding size is defined as |G|y :=|Q| +d - |T| - ||T|| + 1. The reduction is
stated as the following lemma, from which one immediately gets the PSPACE upper bound
for reachability in geometrically 2-dimensinoal 3-VASS even under binary encoding.

» Lemma 5.1. Given a geometrically 2-dimensinoal 3-VASS G with 2 states p,q, one can
compute in time polynomial in |G|y a 2-VASS G with 2 states p,q satisfying |G|1 < |G|?(1)
such that the following statements are equivalent:

)

there exists a run from p(0) to q(0) of length £ in G;
there exists a run from p(0) to q(0) of length 3¢ in G.

» Corollary 5.2. Reachability in geometrically 2-dimensinoal 3-VASS is in PSPACE.

Proof. By [2, Theorem 3.2], in a 2-VASS G, length of the shortest reachability witness
is bounded by |§|?(1). Together with Lemma 5.1 this shows that length of the shortest
reachability witness in a geometrically 2-dimensinoal 3-VASS G is also bounded by |G|?(1)
which is exponential in the binary-encoding size |G|. Polynomial space is enough for

)

enumerating every run of length at most |G |?(1). <
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The following is devoted to Lemma 5.1. Fix a geometrically 2-dimensinoal 3-VASS

= (Q,T) with 2 states p,q. We can assume that gdim(G) = 2, by adding isolated loops to

G when necessary. Then there exists a normal vector n € Z3 such that Cyc(G) = {c € Q3 :

(n,c) = 0}. As Cyc(G) is spanned by effects of two simple cycles, whose norms are bounded

by x(G) < |G|?(1)7 applying Cramer’s rule we can assume |n| < |G\10(1). Let h € Z, we

define the set C" := {u € N3 : (n,u) = h} as an affine copy of Cyc(G). The following
proposition shows that any run from p(0) moves within a limited number of Chs.

» Proposition 5.3. There exists a number B < \G|1O(1)

reachable from p(0), w € C" for some h with |h| < B.

such that for any configuration s(w)

Proof. By Lemma 3.4 we have w = ¢ + z for some ¢ € Cyc(G) and ||z]] < x(G). So

w € O for h = (n,w). Note that |h| = |(n,w)| = [(n,c) + (n,2)| = |(n, z)|. We can pick
o(

B :=3x(G) - [In] < |GI7. “

Proof of Lemma 5.1. Let B be the number given in Proposition 5.3. We consider 2 cases
according to the signs of components in 7.

Case 1. n > 0 (or symmetrically n < 0). By Proposition 5.3, every configuration s(w)
reachable from p(0) satisfies [(n,w)| < B. We claim that ||w| | < B. Otherwise, as n
is an integer vector, n(i) > 1 for all i € supp(n), then ||w|

supp(n) ’

supp(ne
Then we can encode all possible values of the coordinates in supp( ) using the states of the

VASS and thus reduce its dimension. As n # 0, supp(n) contains at least one coordinate, so
the resulting VASS is at most 2-dimensional. And the size is blown up by a factor of at most
(B+1)2< |G|?(1). Note that to validate the factor 3 in the amplification of lengths of runs
as in the statements of Lemma 5.1, we also need to add two dummy transitions after each
transition in the original VASS.

Case 2. n contains both positive and negative components. By negating n we can assume

there is only one negative component in n. Assume w.l.o.g. n(3) < 0 and n(1),n(2) > 0.
Let m =: (a,b, —c) for some a,b,c € N, then we have C" = {(x,y,2) € N® : ax +by = cz + h}.

We construct a 2-VASS G that projects G onto the first 2 coordinates. Let G = (Q,T) be
defined as follows. The state set Q contains {s" : s € Q,h € Z,|h| < B} U {sh : s € Q,h €
7, |h| < B}. Intuitively a configuration s”(z,y) in G represents the configuration s(z,y, 2)
in G such that (z,y,2) € C", and the barred version marks an “unchecked” state, where
z = (ax + by — h)/c could be negative So for each transition t = (r, a, s) of G, we add the
transitions t" = (", al(; 23, s") to G for all |h|, || < B and b/ = h + (n,a). Indeed, if

r(u) 5N s(v) in G and w € C", v € C", then ' = (n,v) = (n,u+ A(t)) = h+ (n, A(t)).

This justifies the correctness of the transitions we added to G.

Next, we add to G transitions that checks, at each state STL, if the configuration ST(x, Y)
represents a legal configuration s(z,y, z) in G, where (z,y,2) € C", so cz = ax + by — h. As
¢ > 0, this is equivalent to checking if ax + by — h > 0. Recall that a,b > 0, one can verify
that for (z,y) > 0, we have az + by — h > 0 if and only if (z,y) > m for some m € M",
where M" is the set of minimal solutions given by

{(0,0)} if h <0;

ho_ {(0,[h/b])} ifa=0,b>0, and h > 0; (15)
{(fh/cﬂ 0)} ifa>0,b=0, and h > 0;
{(z,[(h—ax)/b]) :x=0,1,...,[h/a]} ifa>0,b>0, and h > 0.

)|| > B implies |(n, w)| > B.
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Now for each number h with |h| < B, we add the path s — & ™% s" to G for each
m € M", where e is an arbitrary but unique state added to G. One can easily verify that
sh(x,y) = s"(x,y) if and only if z = (az + by — h)/c > 0. Therefore, p(0) = ¢(0) in G for a
path 7 of length £ if and only if p°(0) = ¢°(0) in G for a path 7 of length 3¢. Also note
that |M"| < B < |G|1O(1), so we have |G|y < \G|?(1). This completes the proof. <

Finally, we mention some issues when trying to generalize for higher dimensions.

1. If the dimension d is not fixed as a parameter, one can easily construct an acyclic
(geometrically 0-dimensinoal) VASS so that each point in the Hamming cube {0, 1}¢ is
reachable from 0. Then the reduced VASS must handle an exponential number of affine
copies of Cyc(G), which suggests an exponential blow-up in size.

2. For d = 3 the reduced 2-VASS only need to check inequalities of the form (a,x) > b for
a > 0. For higher dimensions we no longer have the assumption a > 0. And we have no
idea how to make a VASS check inequalities such as x —y > 3.

6 Geometrically 1-Dimensional and 0-Dimensional VASS

We have shown that the reachability problem in geometrically 2-dimensional VASS is PSPACE-
complete, which is same as the complexity of reachability in 2-VASS. The situation becomes
different for lower geometric dimensions. In this section we study the reachability problems
for geometrically 1-dimensional and 0-dimensional VASSes. Indeed, these results turn out to
be just rephrase of existing results for 2-VASS and 1-VASS.

» Theorem 6.1. Reachability in geometrically 1-dimensional VASS is PSPACE-complete.

Proof. The upper bound is implied by Theorem 4.2. For the lower bound, we refer the readers
to the reduction from bounded one-counter automata to 2-VASS [3, Lemma 20]. We remark
that as the reduced VASS uses 2 counters to simulate a bounded counter, every transition
have effect of the form (z,—2z) for some z € Z. Thus, the cycle space of the reduced VASS is
contained in span{(1, —1)}. So this reduction indeed establishes the PSPACE-hardness of
reachability in geometrically 1-dimensional VASS. <

» Theorem 6.2. Reachability in geometrically 0-dimensional VASS is NP-complete.

Proof. We first show the upper bound. Let G = (Q,T) be a geometrically 0-dimensional
VASS. Then any cycle in G has effect 0. So for any run 7 in G we can safely remove all
cycles from 7 and obtain a run 7 whose length is bounded by |@|. Now a nondeterministic
algorithm can decide reachability in G by simply guessing a run of length at most |Q)|.

For the lower bound, we recall the folklore reduction from SUBSET-SUM to the reachability
problem in 1-VASS. Given an instance (S = {a1,...,a,},s) of SUBSET-SUM, where S C N
and the goal is to find a subset of S whose sum is s, we construct a 1-VASS G = (Q,T)
as follows. The states are @ := {qo,...,qn}. Foreach i =1,...,n we add two transitions
Qi1 — q; and ¢;_q LN ¢;- One can easily observe that there exists a subset of S with sum
s if and only if go(0) —* ¢,(s) in G. Note that there are no cycles in G, thus G is indeed
geometrically 0-dimensional. <

7  Concluding Remarks

In this paper, we have studied the reachability problem in vector addition systems with states
(VASS) parameterized by geometric dimension. We introduced an efficient algorithm for
computing the geometric dimension of a VASS and demonstrated some simple geometrical
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properties of reachable sets and runs. The primary focus is on VASS with low geometric
dimensions, particularly those that are geometrically 2-dimensional. By generalizing existing
pumping techniques for 2-VASS, we have shown that the reachability problem in geometrically
2-dimensional VASS is PSPACE-complete. The techniques of sign-reflecting projection and
support projection also provide insights into how results for d-VASS can be adapted to
geometrically d-dimensional VASS.

The results for geometrically 1- and 0-dimensional VASS are both interesting and techni-
cally straightforward. By re-examining existing results, we have shown that reachability in
geometrically 1-dimensional VASS is PSPACE-complete, while in geometrically 0-dimensional
VASS it is NP-complete. It is worth noting that reachability is known to be NP-complete in
1-VASS and NL-complete in 0-VASS. Our findings highlight a distinction in expressiveness and
computational power between geometrically d-dimensional VASS and d-VASS. We suggest
that comparing these two models could be a possible direction for future research.

In this paper our main focus is on binary encoded VASSes of low geometric dimensions.
The situation would become different if unary encoding is considered. It is known that in
fixed-dimensional settings the problem is NL-complete for dimensions 0, 1, and 2 [2]. However,
if only the geometric dimension is fixed, we note that logarithmic space is not enough to store
a single configuration containing d counters (recall that the size of G = (Q,T) under unary
encoding is |G|y :=|Q|+d - |T| - ||T|| +1). The complexity of reachability in low geometric
dimensions under unary encoding is left for future work.
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