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Abstract
We develop a denotational model for probabilistic and concurrent imperative programs, a class of
programs with standard control flow via conditionals and while-loops, as well as probabilistic actions
and parallel composition. Whereas semantics for concurrent or randomized programs in isolation is
well studied, their combination has not been thoroughly explored and presents unique challenges. The
crux of the problem is that interactions between control flow, probabilistic actions, and concurrent
execution cannot be captured by straightforward generalizations of prior work on pomsets and
convex languages, prominent models for those effects, individually. Our model has good domain
theoretic properties, important for semantics of unbounded loops. We also prove two adequacy
theorems, showing that the model subsumes typical powerdomain semantics for concurrency and
convex powerdomain semantics for probabilistic nondeterminism.
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1 Introduction

From simple imperative languages, to functional ones, to probabilistic and quantum paradigms,
the development of programming languages is often accompanied by a study of mathematical
objects capturing the semantics of syntactic constructs. Program semantics underpins many
static analysis and verification techniques, and also how a language can be extended.

Semantics can be presented in different styles – denotational, operational, and axiomatic
– and each approach offers different insights. Denotational semantics is often chosen for
expressivity and extensibility. For example, adding recursion raises questions about the
underlying domain, motivating the development of domain theory to provide mathematical
representations of iterated computations [51, 52]. Other constructs necessitate more involved
domains; two prime examples are probabilistic and concurrent programs.

Probabilistic programs have been widely studied – going back to the seminal works
of Kozen [31] and McIver and Morgan [36] – and their semantic domains require extra
algebraic structure to capture the distribution of outcomes generated by operations such
as sampling and coin flips. This added convex structure brings additional complexity to
questions of language extensions and program analysis, but the last decade has brought
success stories on taming the complexity through program logics and predicate transformer
calculi [5, 10,36,41,68].

© Noam Zilberstein, Daniele Gorla, and Alexandra Silva;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 39; pp. 39:1–39:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noamz@cs.cornell.edu
https://orcid.org/0000-0001-6388-063X
mailto:gorla@di.uniroma1.it
https://orcid.org/0000-0001-8859-9844
mailto:alexandra.silva@cornell.edu
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.CONCUR.2025.39
https://doi.org/10.48550/arXiv.2503.02768
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


39:2 Denotational Semantics for Probabilistic and Concurrent Programs

Concurrent programs have prominent applications in distributed systems and have long
been a target of program analysis, as concurrency bugs are hard to detect and prevent. There
have been many approaches to concurrent semantics, some arising from process algebra
research and some from more practical hardware considerations (e.g., memory models). In
terms of denotational semantics, pomsets [8,17,18,47] provide a prominent model, expressing
causality between actions and parallel branching as a partial order.

Semantics of concurrent and probabilistic programs, separately, are subtle and complex.
Unsurprisingly, their combination introduces additional challenges. In this paper, we develop
a denotational model for programs that mix probabilistic and concurrent constructs. We
work with a simple concurrent imperative programming language, shown below.

cmd ∋ C ::= skip | C1;C2 | C1 |C2 | if b then C1 else C2 | while b do C | a (1)

Here, the basic actions a ∈ act can perform probabilistic operations such as random sampling.
This is not only interesting from a theoretical point of view; for decades, randomization has
been used to enhance the capabilities of concurrent programs [19,43,49,50]. For example,
Dijkstra’s famous Dining Philosophers Problem – a distributed synchronization scheme – has
no deterministic solution [11], but it has a simple randomized one [35].

Despite the importance of mixing randomization and concurrency, semantic models for
probabilistic concurrent programs with unbounded looping are not yet well understood.
Such models are necessary to analyze behaviors of many concurrent randomized protocols
– including the Dining Philosophers – which avoid deadlock with probability 1, but admit
an infinite trace whose probability converges to 0. In this paper, we develop such a model,
drawing insights from prior work on concurrent and probabilistic semantics, but solving
challenges unique to their combination. In a nutshell, the contributions of this paper are:
1. We introduce pomsets with formulae, and prove that they have well behaved domain-

theoretic properties (Section 3), including an extension lemma [37], for extending monotone
operations on finite pomsets to continuous operations on infinite ones.

2. We define guarded, sequential, and parallel composition operations on pomsets with
formulae (Section 4) and use those operations to define the denotational semantics for
the concurrent imperative language (1), with uninterpreted actions (Section 5.1).

3. We define a linearization operation (via the extension lemma), parametric on the compu-
tational domain, to convert the pomset semantics into a state transformer (Section 5.2).

4. We prove two adequacy theorems showing that our model captures established models
for probabilistic nondeterminism (Theorem 5.3) and pure concurrency (Theorem 6.1).

We discuss related work in Section 7; omitted proofs and details are provided in [67].

2 An Overview of Probabilistic Concurrency Semantics

In this section, we introduce the requirements for interpreting programs that are both
probabilistic and concurrent. To illustrate the subtleties, consider the following program:

C ≜ x :≈ flip
( 1

2
)

; (y := 0 | y := 1); if y then skip else x := x+ 2 (2)

After executing C, the value of x can be any integer between 0 and 3, and that value depends
both on random sampling and nondeterminism (from concurrent scheduling). The parity of
x is fixed after the coin flip (returning 0 or 1 with probability 1

2 ), but then the scheduler can
influence its final value by choosing in which order to run the updates to y. Importantly
though, x will be even with probability exactly 1

2 , regardless of the behavior of the scheduler.
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Any semantic domain for this program must encompass probability distributions of
program states, while at the same time accounting for nondeterminism introduced from
parallel branching. One might attempt to give semantics to this program using a naive
composition of distributions and powerset (as monads) but, as it is well known from prior
work, such combination can easily lead to non-compositional semantics [45, 63, 71, 72]. While
there are several domains for this combination of effects, we use the convex powerset, which
is quite well-studied in that it is a monad [23] for sequential composition; it is a directed
complete partial order (dcpo) [30,57–59] for finding fixed points of iterated computations;
and has well behaved equational laws [6, 39,40].

We now give a basic account of the convex powerset; for more details on the dcpo structure
and monad operations, refer to Section A.2 and [68, §3]. A discrete probability distribution
µ ∈ D(X) = X → [0, 1] is a countable map from X to probabilities such that

∑
x∈X µ(x) = 1.

Convex combinations are defined for distributions (µ ⊕p ν)(x) = p · µ(x) + (1 − p) · ν(x)
and sets of distributions S ⊕p T ≜ {µ ⊕p ν | µ ∈ S, ν ∈ T}. A set S ⊆ D(X) is convex
if S = S ⊕p S for all p ∈ [0, 1], i.e., S contains all convex combinations of its elements.
Our computational domain – the convex powerset – consists of nonempty convex sets of
distributions1.

C(X) ≜ {S ⊆ D(X ∪ {⊥}) | S is nonempty, convex, . . . }

This computational domain allows us give semantics to the coin flip actions in program (2)
JaKact : S → C(S) where S ≜ var → val is the set of variable valuations. The semantics is
given by a set containing a single distribution, where x is set to 1 with probability p and
it is set to 0 with probability 1 − p. Being a set of distributions, C(S) can also represent
nondeterministic choice, which we denote by &. Operationally, S & T is not simply a choice
between S and T , but rather it is a choice of a distribution over S and T , corresponding to a
scheduler that can use biased coin flips to make decisions [60].

Jx :≈ flip (p)Kact (s) ≜
{[

s[x := 1] 7→ p
s[x := 0] 7→ 1 − p

]}
S & T ≜

⋃
p∈[0,1]

S ⊕p T

Our goal is to develop a pomset model to compositionally reason about concurrency in a
manner that is compatible with the convex powerset. Existing pomset models do not track
control flow, and instead rely on the following equation, stating that a command followed by
an if-statement can be decomposed into two traces, with the split lifted to the top:

C; if b then C1 else C2 ≡ (C; assume b;C1) & (C; assume ¬b;C2) (3)

It is well known that this equation is invalid in probabilistic contexts, especially C [39]. More
concretely, prior denotational models for concurrency J−KPL : cmd → P(pom) (shown in
Figure 5) map programs to pomset languages – sets of pomsets – where each α ∈ JCKPL
corresponds to a particular resolution of the tests in the program. For program (2), this
approach yields the semantics on the left of Figure 1, where the problematic Equation (3) is
implicitly applied. Arrows a1 → a2 indicate causality, i.e., a1 must occur before a2; when
there is no arrow between two actions, they can be interleaved in any order. There is a
significant problem in JCKPL; as we will soon see, there is no straightforward way to piece
together the entire distribution of outcomes in the program.

1 The dcpo structure relies of a few more properties, which we report in Section A.2.
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39:4 Denotational Semantics for Probabilistic and Concurrent Programs

JCKPL =



fork

assume y = 1

OO

y := 0
::

y := 1
dd

fork
dd ::

x :≈ flip
(

1
2

)OO

,

x := x + 2

assume y ̸= 1

OO

y := 0
::

y := 1
dd

fork
dd ::

x :≈ flip
(

1
2

)OO


JCK =

fork x := x + 2

?(y = 1)
T

cc cc

F

8888

y := 0
;;

y := 1
ff

fork
dd 88

x :≈ flip
(

1
2

)OO

Figure 1 Pomset language model (left) vs pomset with formulae model (right) for program (2)
(we use a fork with 0 branches to represent skip).

Crucially, our pomset structure tracks the results of control-flow tests (which can rely on
randomization). This is done symbolically by associating a Boolean formula to each node
of the pomset, recording the resolution of tests needed to reach that point. We call these
new structures pomsets with formulae, which capture both parallel composition and guarded
branching2. As such, this structure encodes many traces, avoiding the need for a set of traces
and simultaneously remaining compositional in the presence of probabilistic actions.

The semantics in our new model J−K : cmd → pom for program (2) is shown on the right
of Figure 1. Compared to JCKPL, our new model has merged the set of structures into a
single structure, where the two opposing tests are replaced by a single node labelled ?(y = 1).
The outgoing edges are labelled T and F, indicating that they can only be followed if the
test passes or fails, respectively. Now, we may wish to know the possible probabilities for
each outcome resulting from running this program. To this end, in Section 5.2 we develop a
linearization procedure L : pom → S → C(S) for interpreting a pomset as a state transformer.
Linearizing this structure, we get the following set of distributions:

L(JCK)(s) =



s[x := 0, y := 0] 7→ p

s[x := 1, y := 0] 7→ q

s[x := 2, y := 1] 7→ 1
2 − p

s[x := 3, y := 1] 7→ 1
2 − q


∣∣∣∣∣∣∣∣ 0 ≤ p, q ≤ 1

2


Linearization provides new insights about the program, which were not obvious in the pomset
structure. The scheduler can make y equal to 0 or 1 with any probability, which matches
our operational understanding of the program: the scheduler can choose to execute the
commands in either the order y := 0; y := 1 or y := 1; y := 0 (or some convex combination
thereof). However, regardless of the scheduler’s choice of p and q, x is even (or odd) with
exactly probability 1

2 . This formal semantics matches the intuition for the program, since
the parity of x is fixed by the initial coin flip.

We now contrast the semantics above with pomset language semantics to show that the
program C cannot be meaningfully interpreted using prior techniques. Recall that in JCKPL
each pomset corresponds to a particular resolution of the test, i.e., y = 1 and y ̸= 1. So, in
the first pomset we will always have x ≤ 1 whereas in the second pomset x ≥ 2. Let us now
try to obtain a meaningful state transformer semantics from this program by linearizing each
structure and then merging the results. To do so, we use the following semantics for assume,

2 Formulae are more expressive than conflict relations, e.g., in event structures: conflict can only exclude
execution of branches, whereas formulae record the entire outcome of tests that lead to every node.
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where failed tests evaluate to a special ? symbol, which halts the program execution:

Jassume bKact (s) =
{
η(s) if JbKtest (s) = 1
η(?) if JbKtest (s) = 0

Now, letting α1 and α2 be the left and right pomsets in JCKPL, we apply linearization to
both structures to obtain:

L(α1)(s) =


 s[x := 0, y := 0] 7→ p1
s[x := 1, y := 0] 7→ q1

? 7→ 1 − p1 − q1

∣∣∣∣∣∣ 0 ≤ p1, q1 ≤ 1
2


L(α2)(s) =


 s[x := 2, y := 1] 7→ p2
s[x := 3, y := 1] 7→ q2

? 7→ 1 − p2 − q2

∣∣∣∣∣∣ 0 ≤ p2, q2 ≤ 1
2


Already, we can begin to see a problem; in L(JCK)(s) the scheduler picks two probabilities, but
here the scheduler picks four probabilities, giving it a higher degree of freedom to influence
the outcome of the program. We make this formal by attempting to define an operation ▷◁

to merge the two semantics. As a first attempt, we generate a new set of distributions by
summing the non-? probability mass in every pair of distributions from the two sets such
that the mass of ? in one is equal to the non-? mass in the other:

S ▷◁ T ≜ {µ ▷◁ ν | µ ∈ S, ν ∈ T, µ(?) = 1 − ν(?)} (µ ▷◁ ν)(s) ≜
{
µ(s) + ν(s) if s ̸= ?
0 if s = ?

Indeed, this gives us L(JCK)(s) ⊆ L(α1)(s) ▷◁ L(α2)(s): take any µ ∈ L(JCK)(s), which is
generated by fixing some probabilities 0 ≤ p, q ≤ 1

2 . Picking p1 = p, q1 = q, p2 = 1
2 − p, and

q2 = 1
2 − q, we see that µ ∈ L(α1)(s) ▷◁ L(α2)(s). However, L(α1)(s) ▷◁ L(α2)(s) contains

extra distributions that are not in L(JCK)(s), and are not correct outcomes of the program.
For example, letting p1 = p2 = 1

2 and q1 = q2 = 0, we get:


s[x := 0, y := 0] 7→ 1

2
s[x := 1, y := 0] 7→ 0
s[x := 2, y := 1] 7→ 1

2
s[x := 3, y := 1] 7→ 0

 ∈ L(α1)(s) ▷◁ L(α2)(s)

But this distribution cannot be an outcome of running the program, since x is even with
probability 1, deviating from the expected operational behavior!

So a different implementation of ▷◁ is needed, which is more discerning about the
compatibility of pairs of distributions from the two sets. But as it stands, there is no
information in L(α1)(s) and L(α2)(s) to indicate compatibility. While we do not claim that
it is impossible to record this information during linearization, our investigation suggests
that it would not be straightforward. A proper linearization of the pomset language JCKPL
would essentially amount to a lockstep execution of the two pomsets, so that both branches
can be taken with the appropriate probabilities. That lockstep execution corresponds to a
straightforward linearization of the single pomset with formulae JCK, where each test already
has information about both branches. We therefore conclude that pomsets with formulae are
the correct semantic structure for this domain. In the remainder of the paper, we develop
the formal details of our pomset with formulae model and associated linearization procedure.

CONCUR 2025



39:6 Denotational Semantics for Probabilistic and Concurrent Programs

3 Semantic Structures

In this section, we define a particular kind of labelled partial order, which will form the core
of our semantic model. We call this structure a labeled partial order with formulae (lpof),
as it includes a special labelling, assigning a Boolean formula to each node. We recall basic
definitions from domain theory in Section A.1; for a complete treatment refer to [1].

3.1 Labelled Partial Orders with Formulae
Let nodes be a countable universe of nodes, that will be denoted by x, y, z, . . ., whereas
subsets of nodes will be denoted by N,X, Y, . . .. We start by defining the class of Boolean
formulae using nodes as the variables:

form ∋ ψ ::= true | false | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ¬ψ | x

Formulae are interpreted by valuations v : nodes → B, where B = {0, 1}; the satisfaction
relation, written v ⊨ ψ, is defined in the standard way (see Definition A.5 in Section A.1). The
variables of a formula ψ, written vars(ψ), are those nodes that appear in ψ. We write sat(ψ)
iff there exists a valuation v such that v ⊨ ψ; ψ ⇒ ψ′ iff v ⊨ ψ′, for every v ⊨ ψ; and ψ ⇔ ψ′

iff ψ ⇒ ψ′ and ψ′ ⇒ ψ. In what follows, given a strict poset ⟨X,<⟩ and any x ∈ X, we let
x↓ ≜ {y ∈ X | y < x}, x↑ ≜ {y ∈ X | x < y}, succ(x) ≜ {y ∈ X | x < y ∧ ̸ ∃z.(x < z < y)},
and min ≜ {x ∈ X | x↓ = ∅}. Further, the level of x, written lev(x), is the length of the
longest path from a minimal element to x. See Section A.1 for more details.

▶ Definition 3.1 (lpof). Let ⟨L,≤⟩ be a pointed, finitely preceded dcpo with bottom element
⊥. A labelled partial order with formulae (lpof) over L is a 4-tuple α = ⟨N,<, λ, φ⟩ where:
1. N ⊆ nodes is a countable set of nodes;
2. ⟨N,<⟩ is a (strict) poset such that:

a. it is finitely preceded, that is |x↓| < ∞, for every x ∈ N ;
b. every level has a finite number of nodes, i.e., |lev−1(n)| < ∞ for all n ∈ N; and
c. it is single-rooted, that is: | min | = 1.

3. λ : N → L is a labelling function such that succ(x) = ∅ whenever λ(x) = ⊥.
4. φ : N → form is a formula function satisfying:

a. sat(φ(x)) and vars(φ(x)) ⊆ x↓, for all x ∈ N ;
b. φ(y) ⇒ φ(x), for all x < y.

We denote by lpof (L) the set of all lpofs over L.

For some lpof α = ⟨N,<, λ, φ⟩, we use Nα, <α, λα, and φα to refer to its constituent
parts; similarly, we annotate all functions with the lpof they refer to, e.g., x↓α, succα(x),
minα, etc. We now explain the conditions in Definition 3.1.

As is typical in pomset semantics, the partial order ⟨N,<⟩ denotes causality: x < y iff x

must be scheduled before y. If x ̸< y and y ̸< x, then x and y execute concurrently, and can
be interleaved in any order. With this in mind, conditions (2a) and (2b) are standard; in
particular, since a node represents an action of a program, having finitely many predecessors
ensures that every action may happen in a finite amount of time. Moreover, requiring that
every level has a finite number of nodes is a weakening of the usual finite branching property:
indeed, we allow a node to have infinitely many successors, but they cannot be all at the
same level. We defer the discussion on Condition (2c) to Remark 4.1 later on.

Concerning Condition (3), labels correspond to Boolean tests and actions, performed
during a program execution (e.g., Figure 1). Unlike standard pomset models, actions can
be probabilistic, and our model is consistent with known sequential probabilistic semantics
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(Theorem 5.3). For the moment, we leave labels unspecified, only assuming the presence of
⊥, used to denote a nonterminating computation, which is fundamental in approximating
the fixed point semantics of while-loops. Since ⊥ denotes nontermination, nodes labelled
with ⊥ cannot be a predecessor of any node, as the successors of ⊥ would never be executed.

Condition (4) is about formulae, which are crucial for modeling conditional constructs
(if-then-else and while-loops), such as if b1 then a1 else if b2 then a2 else a3, where b1 and
b2 are tests and a1, a2, a3 are actions. This program corresponds to the lpof below, where
λ(xℓ) = ℓ for all ℓ ∈ {b1, b2, a1, a2, a3}, w T−→w1 means that φ(w1) ⇔ φ(w) ∧ w and w

F−→w2
means that φ(w2) ⇔ φ(w) ∧ ¬w (i.e., w is labeled with a test, whose outcome leads to w1 or
w2, depending on the Boolean outcome depicted on the colored arc):

φ(xa2) = ¬xb1 ∧ xb2 xa2 xa3 φ(xa3) = ¬xb1 ∧ ¬xb2

φ(xa1) = xb1 xa1 xb2
T
dd dd

F
::::

φ(xb2) = ¬xb1

φ(xb1) = true xb1
T
dd dd

F
::::

(4)

Hence, every node x labelled with a Boolean test yields a (binary) branch and its (two)
successors have the same formula as x, with an extra conjunct that is either x or ¬x, according
to the outcome of the test. With this in mind, Definition 3.1(4) is quite intuitive:

Requiring sat(φ(x)) amounts to expressing the fact that every node x is reachable, i.e.,
there exists a truth assignment v such that v |= φ(x). The truth assignment tells, for
every node labeled with a Boolean test, whether that test passes or not. In our example,
xa3 is reachable when both the tests b1 and b2 fail; this is exactly what satisfiability of
φ(xa3) entails (viz., that both b1 and b2 must be false to satisfy ¬xb1 ∧ ¬xb2).
This intuition justifies the other two requirements of Definition 3.1(4): reachability of a
node can only depend on the values of the tests that precede it (and so φ(x) can only use
nodes that precede x) and, since along a path we shall only add conjuncts, the formula of
a higher-level node is stronger than the formulae of all of its predecessors.

Next, we define an order on lpofs, which we will use for the construction of fixed points
to give semantics to unbounded loops. The intuition is that α ⊑lpof β iff β has more behaviors
than α, meaning that β can be obtained by expanding ⊥ nodes in α into larger structures
(each unfolding of a while-loop is obtained in this way, as shown in Section 5.1). Since lpofs
can only be expanded from ⊥ nodes, the label set L must be pointed (i.e., ⊥ ∈ L); however,
the order on L need not be flat: labels themselves can also become larger when passing from
α to β (e.g., if actions are nondeterministic assignments from a given set, this corresponds
to enlarging the set of possible choices). This can also be useful to model invariant sensitive
execution, introduced in Probabilistic Concurrent Outcome Logic [70]. Notationally, Botα
denotes the set of nodes labelled with ⊥, i.e., Botα ≜ {x ∈ Nα | λα(x) = ⊥}.

▶ Definition 3.2 (Ordering on lpofs). We let α ⊑lpof β iff:
1. Nα is a downward-closed subset of Nβ, written Nα ⊆↓ Nβ;

2. <α = <β ∩ (Nα ×Nα);

3. ∀x ∈ Nα:
a. λα(x) ≤ λβ(x);
b. φα(x) = φβ(x);
c. succα(x) = succβ(x) \ Botα↑β.

CONCUR 2025



39:8 Denotational Semantics for Probabilistic and Concurrent Programs

▶ Example 3.3. Consider the following three lpofs:

α = y1(⊥) y2

x

dd >> β =

z

y1(⊥) y2

OO

x

dd >>
γ =

z

y1

<<

y2

bb

x
bb <<

where node y1 is labelled with ⊥ in α and β, whereas all other nodes have non-⊥ labels.
Following the intuition given above, both α and β are attempts to specify that the computation
in γ is truncated at y1. However, only α ⊑lpof γ; this is because, if ⊥ represents a diverging
computation, then z will never have all the causes it needs to be executed and so it must
disappear. Indeed, β ̸⊑lpof γ because, even though Nβ ⊆↓ Nγ , condition (3c) of Definition 3.2
is violated: z ∈ succβ(y2) but z ̸∈ succγ(y2) \ Botβ↑γ , since y1 ∈ Botβ and y1 <γ z.

Finally, in order to find fixed points, we will need to have a directed complete partial
order (dcpo) structure and a notion of continuity for functions, which we now define.

▶ Definition 3.4 (dcpo). Given a poset ⟨X,≤⟩, a subset D ⊆ X is called directed iff it is
not empty and, for every two elements x1, x2 ∈ D, there exists x ∈ D such that x1, x2 ≤ x.

⟨X,≤⟩ is a directed complete partial order (dcpo) iff, for every directed set D, supD
exists; furthermore, ⟨X,≤⟩ is called pointed if there exists an element ⊥ ∈ X such that
⊥ ≤ x for all x ∈ X.

▶ Definition 3.5 (Scott Continuity). Given two dcpos ⟨X,≤X⟩ and ⟨Y,≤Y ⟩, a function
f : X → Y is Scott Continuous if it is monotone: f(x) ≤Y f(x′) for all x ≤X x′; and
preserves suprema of directed sets: supx∈D f(x) = f(supD) for all D ⊆ X directed.

▶ Lemma 3.6. For any directed set D ⊆ lpof (L), supD = ⟨N,<, λ, φ⟩, where:

N ≜
⋃
β∈D

Nβ < ≜
⋃
β∈D

<β λ(x) ≜ sup
β∈D : x∈Nβ

λβ(x) φ(x) ≜ ψx

and ψx = φβ(x), for all β ∈ D such that x ∈ Nβ.

In Lemma 3.6, φ is well defined since, for every x ∈ nodes and β, β′ ∈ D that contain x, it
must be that φβ(x) = φβ′(x). Indeed, since D is directed, there must exist a γ ∈ D such
that β, β′ ⊑lpof γ and, by Definition 3.2(3b), we have that φβ(x) = φγ(x) = φβ′(x).

Notice that lpof (L) is not pointed, since the node at the root can vary; hence, there is no
single lpof that is smaller (w.r.t. ⊑lpof ) than all other lpofs. This situation will change
when moving to pomsets [67, Lemma D.6], which abstract away from the specific nodes.

3.2 Pomsets with Formulae
Although lpofs express causality and branching behavior, they are not ideal semantic
structures because information about node identifiers is extraneous. We instead work with
partially ordered multisets (pomsets), which abstract away from the specific names used.

▶ Definition 3.7 (lpof Isomorphism). Let α and β be lpofs and f : Nα → Nβ be a bijection
between their nodes. Define f(α) = ⟨N,<, λ, φ⟩ as

N ≜ {f(x) | x ∈ Nα} < ≜ {(f(x), f(y)) | x <α y} λ ≜ λα ◦ f−1 φ ≜ f ◦ φ ◦ f−1

where f(ψ) syntactically renames the variables of ψ in the obvious way; α and β are
isomorphic, written α ≡ β, iff there is a bijection f : Nα → Nβ such that f(α) = β.
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▶ Definition 3.8 (Pomsets with Formulae). Let [α] ≜ {β ∈ lpof (L) | α ≡ β} be the
isomorphism class of α. A pomset with formulae (or, simply, pomset) α ∈ pom(L) is an
isomorphism class of lpofs: pom(L) ≜ {[α] | α ∈ lpof (L)}. Let pomfin(L) be the set of
pomsets with finitely many nodes. Finally, let α ⊑pom β iff ∀α ∈ α.∃β ∈ β. α ⊑lpof β.

The semantics of programs depends on a variety of pomset composition operations
(sequential, guarded, and parallel composition). We will also later linearize pomsets into
state transformer functions. Some of these operations cannot be defined inductively on
infinite structures, so we need ways to extend functions on finite structures to infinite ones.
We first show that infinite pomsets correspond to the suprema of their finite approximations.

▶ Lemma 3.9 (Finite Approximations). For any α ∈ pom(L), α = sup ⌊α⌋fin, where ⌊α⌋fin ≜
{β ∈ pomfin(L) | β ⊑pom α} is the set of finite approximations of α.

Finite approximations coincide with the approximation order ≪ of [1] instantiated to
pomsets (see [67, Appendix E] for more details); thus, from now on, we let α ≪ β denote
α ∈ ⌊β⌋fin. We are now ready to show that every operation f on finite pomsets can be
extended to infinite ones by defining the operation on α as the sup of the images through f
of all the approximations of α. This will be useful in the remainder of the paper.

▶ Lemma 3.10 (Extension). Let f : pomfin(L)n → T be a monotone function on the dcpo
⟨T,≤⟩. Then f∗ : pom(L)n → T , shown below, is well-defined and Scott continuous:

f∗(α1, . . . ,αn) ≜ sup
α′

1≪α1

· · · sup
α′
n≪αn

f(α′
1, . . . ,α

′
n)

4 Pomset Operations

In this section, we define pomset operations that mirror the program syntax C ∈ cmd from
(1). We first define the singleton lpof ⟨ℓ⟩x on node x with label ℓ ∈ L; this generalizes to
⟨ℓ⟩ on pomsets and will be used to give the semantics to skip and atomic actions:

⟨ℓ⟩x ≜ ⟨{x}, ∅, [x 7→ ℓ], [x 7→ true]⟩ ∈ lpof (L) ⟨ℓ⟩ ≜ {⟨ℓ⟩x | x ∈ nodes} ∈ pom(L)

4.1 Guarded Choice
We now define guard, recording the causality between a test and the two branches of
computation defined on it. Assuming that Nα ∩ Nβ = ∅ and x ̸∈ Nα ∪ Nβ , we let
guard(x, ℓ, α, β) = ⟨N,<, λ, φ⟩ where we overload ∧ s.t. ψ ∧ true = true ∧ ψ = ψ, and:

N ≜ {x} ∪Nα ∪Nβ < ≜ <α ∪<β ∪ ({x} × (Nα ∪Nβ))

λ(y) ≜


ℓ if y = x

λα(y) if y ∈ Nα
λβ(y) if y ∈ Nβ

φ(y) ≜


true if y = x

φα(y) ∧ x if y ∈ Nα
φβ(y) ∧ ¬x if y ∈ Nβ

So, guard(x, b, α, β) joins α and β with a new root node x, whose label is b, and additionally,
the formulae in α and β are updated to require that b passes or fails, respectively. As an
example, guard(xb1 , b1, ⟨a1⟩xa1

, guard(xb2 , b2, ⟨a2⟩xa2
, ⟨a3⟩xa3

)) produces the lpof depicted
in (4). For finite pomsets, we define the guard operation as follows:

guard(ℓ,α,β) ≜ {guard(x, ℓ, α, β) | α ∈ α, β ∈ β, Nα ∩Nβ = ∅, x /∈ Nα ∪Nβ}

Since guard is monotone [67, Lemma F.8], we can extend it to infinite pomsets:

guard(ℓ,α,β) ≜ sup
α′≪α

sup
β′≪β

guard(ℓ,α′,β′)

CONCUR 2025
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4.2 Sequential Composition
The sequential composition operation α # β is meant to enforce that all actions in α must
occur before any of those in β. This causality dependency interacts with guarded branching,
as we will now see, which makes the formal definition of # more challenging. Consider the
following lpofs (where we denote with x the singleton ⟨ℓ⟩x when the label is not relevant):

a. x # y =
y

x

OO b.
(

y1 y2

x

[[ CC

)
# z =

z

y1

CC

y2

[[

x

[[ CC
c.
(

y1 y2

x
T
[[ [[

F
CCCC

)
# z =

zx z¬x

y1

OO

y2

OO

x
T
\\ \\

F
@@@@

(5)

The sequential composition of two singletons (5a) simply creates a causality between them.
When the program has forked into parallel (unguarded) branches (5b), # introduces a diamond
structure, as is typical in pomset semantics. However, if the program has a guarded branch
(5c), then the following actions must be copied after each branch. Copying is essential to
correctly account for loops: in the program (while b do a) ; a′, if we only created a single
node labelled with a′, then that node would not be finitely preceded, invalidating Lemma 3.9;
see Figure 2 and [67, Appendix B.2] for a more detailed account. When a structure contains
⊥ nodes, so that some paths are stuck, the behavior of # is more complicated. Consider the
following lpofs, where node y1 is labelled with ⊥ and all other nodes have non-⊥ labels:

a.
(

y1(⊥) y2

x
T
`` ``

F
DDDD

)
# z =

z

y1(⊥) y2

OO

x
T
`` ``

F
DDDD

b.
(

y1(⊥) y2

x

`` DD

)
# z =

y1(⊥) y2

x

`` DD (6)

When composing the singleton z after a guarded branch with one stuck path (6a), z is only
added to the non-stuck branch. In the program execution, only one branch will be taken,
so z can be safely executed as long at the test x is false. However, the same is not true for
parallel branching; in (6b), both y1 and y2 will eventually be scheduled, so z must occur
after y1 – which is equivalent to not occurring at all – thus it does not appear in the final
structure. This behavior ensures monotonicity of # [67, Lemma F.5].

We first define # for finite lpofs, and then extend our definition to infinite ones using
Lemma 3.10. In the rest of this section, we assume that α, β ∈ lpof fin(L). We start by
defining the notion of stuck computations, extensible nodes, and branches.

stuckα ≜
∨
x∈Botαφα(x)

extα ≜ {x ∈ Nα | φα(x) ̸⇒ stuckα}
brα ≜

{
φα(S)

∣∣∣∣∣ ∅ ⊂ S ⊆ extα, φα(S) ⇒ ¬stuckα,

∀T. S ⊂ T ⊆ extα ⇒ ¬sat(φα(T ))

}

The formula stuckα indicates which nodes are guaranteed to encounter a ⊥ later in their
execution. Extensible nodes x ∈ extα are not stuck, so there is some computation path that
they can take without encountering any ⊥ node. In (5), all nodes are extensible, whereas in
(6a) only x and y2 are extensible and in (6b) none are extensible. The set of branches brα
contains all of the maximal formulae that can be obtained as the conjunction of formulae
of extensible nodes: there, for a set S ⊆ Nα, we define φα(S) ≜

∧
x∈S φα(x). For example,

in (5a,b), br = {true} since there are no tests; in (5c), br = {x,¬x} since both outcomes of
the test are not stuck; in (6a), br = {¬x} since the program is stuck if x passes; and in (6b),
br = ∅, since all paths are stuck. The set of branches increases monotonically with ⊑lpof .
Refer to [67, Appendix B.1] for more examples of extensibility and branches. As we saw in
(5c), we will need an isomorphic copy βψ ≡ β for each branch ψ ∈ brα. These copies are
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generated by a function f : brα → [β] such that the nodes of f(ψ) are disjoint from those of
α and of every f(ψ′) where ψ ̸= ψ′. The function f is drawn from the following set:

copyα,β ≜
{
f : brα→ [β]

∣∣ ∀ψ ∈ brα. (Nf(ψ) ∩Nα = ∅ ∧ ∀ψ′ ̸= ψ.Nf(ψ) ∩Nf(ψ′) = ∅)
}

Given any α, β ∈ lpof fin(L) and f ∈ copyα,β , we define sequential composition as α #f β =
⟨N,<, λ, φ⟩ where βψ ≜ f(ψ) and the components are defined as follows:

N ≜ Nα ∪
⋃

ψ∈brα

Nβψ < ≜ <α ∪
⋃

ψ∈brα

(
<βψ ∪ ({x ∈ Nα | ψ ⇒ φα(x)} ×Nβψ )

)
λ(x) ≜

{
λα(x) if x ∈ Nα
λβψ (x) if x ∈ Nβψ

φ(x) ≜
{
φα(x) if x ∈ Nα
φβψ (x) ∧ ψ if x ∈ Nβψ

(where, again, ψ∧ true = true ∧ψ = ψ). So, the nodes of α #f β are the nodes of α, and all the
nodes of the isomorphic copies βψ. The new order preserves the causalities in α and in each
βψ, and additionally requires that βψ occurs after all the nodes in the branch ψ. All labels
are preserved, and formulae in βψ are updated to also include ψ. Sequential composition for
finite pomsets is defined below (left), and is defined for infinite pomsets by extension (right).

α # β ≜ {α #f β | α ∈ α, β ∈ β, f ∈ copyα,β} α # β ≜ sup
α′≪α

sup
β′≪β

α′ # β′

▶ Remark 4.1. We can now explain Condition (2c) in Definition 3.1, requiring single-
rootedness, which may seem strange in a framework with concurrency; indeed, the usual
semantics of two commands put in parallel is obtained by taking the (disjoint) union of
their pomsets (and this yields several possible minimum elements in the resulting pomset).
However, having multi-rooted lpofs would make sequential composition not monotone. For

example, y ⊑lpof y z but x # y ≜
y

x
OO ̸⊑lpof

y z

x

^^ @@ ≜ x # (y z). This is undesirable and

easily fixed with the mild requirement of single-rootedness in Definition 3.1.

4.3 Parallel Composition
We finally define parallel composition. We assume that L contains a special (non-⊥) la-
bel fork that denotes thread forking and let nForkα ≜ Nα \ {x ∈ minα | λα(x) = fork}
denote the set of nodes of α without its fork-minimal elements (if any). Then, for both fi-
nite and infinite lpofs α and β, and for any x ̸∈ Nα∪Nβ , we let α ∥x β ≜ ⟨N,<, λ, φ⟩, where

N ≜ {x} ∪ nForkα ∪ nForkβ
< ≜ ({x} × (nForkα ∪ nForkβ)) ∪ (<α ∩ (nForkα × nForkα)) ∪ (<β ∩ (nForkβ × nForkβ))

λ(y) ≜


fork if y = x

λα(y) if y ∈ nForkα
λβ(y) if y ∈ nForkβ

φ(y) ≜


true if y = x

φα(y) if y ∈ nForkα
φβ(y) if y ∈ nForkβ

Notice that the branching that arises from ∥ is conceptually (and practically) different from
the branching that arises from a test: the branching due to ∥ does not exclude any branch,
whereas the two branches due to a test are mutually exclusive. This is apparent by the
different way in which we handle the formulae associated to the nodes after the branch: they
remain the same under parallel composition, whereas they are extended with a new conjunct
(specifying the value of the test at the branch) under a guard. The complication arising in
our handling of parallel composition through fork is that we want one single node labelled
with fork, even if we put in parallel many lpofs.

CONCUR 2025
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For example, by putting in parallel the singleton lpofs made up, respectively, by nodes
y1 and y2 and by nodes z1, z2 and z3 (and where fork is the label of the root nodes, say x1
and x2 respectively), we obtain the lpofs α, β, and their parallel composition as follows:

α =
y1 y2

x1(fork)

dd ::

β =
z1 z2 z3

x2(fork)

dd ::OO
α ∥x β =

y1 y2 z1 z2 z3

x(fork)

hh cc ;; 66
OO

where x1 and x2 disappear and the new root is x, labelled fork.
As a side note, observe that the way in which we defined parallel composition entails that

α ⊑lpof α ∥x β if and only if α = ⟨⊥⟩x: the lpof α has just a node x labelled with ⊥; the
second lpof has node x labelled with fork that precedes a node labelled with ⊥ and all the
nodes of β. Also, a somewhat unusual notion of associativity for parallel of lpofs holds, viz.
(α ∥x β) ∥y γ = α ∥y (β ∥z γ); the expectable notion of associativity is recovered for pomsets,
where we abstract from the specific node set3. Like before, we define parallel composition for
(both finite and infinite) pomsets on top of that for lpofs:

α ∥ β ≜ {α ∥x β | α ∈ α, β ∈ β, x ̸∈ Nα ∪Nβ}

▶ Remark 4.2. It is impossible for ∥ to be both associative and Scott continuous. If it were
continuous, then f(α) ≜ ⟨ℓ⟩ ∥ α would have a least fixed point lfp(f) = ⟨ℓ⟩ ∥ (⟨ℓ⟩ ∥ · · · ),
and, due to associativity, this pomset is infinitely branching, which invalidates Lemma 3.9.

5 Denotational Semantics

We now define denotational semantics for commands C ∈ cmd (see (1)) based on pom.
Although actions at this stage are uninterpreted, pom allows for actions with a variety of
different computational effects, which we will see in Section 5.2. Those actions a ∈ act are
drawn from a dcpo ⟨act ,≤act ⟩ and tests b ∈ test are drawn from a set test (with a flat order),
which is closed under conjunction, disjunction, and negation. We first define a compositional
denotational model for this language in Section 5.1, and then in Section 5.2 we show how to
interpret pomsets as state transformers, to learn their behavior on particular inputs.

5.1 Pomset Semantics
We will now discuss the semantics of programs C ∈ cmd as pomsets, which record both
the causality between atomic actions and the branching behavior of tests. The label set
label ≜ act ∪ test ∪ {fork,⊥} consists of actions, tests, fork, and bottom nodes, which forms
a pointed dcpo, with ⊥ as the bottom. Actions are ordered according to ≤act ; for any
other label ℓ ∈ test ∪ {fork}, we only have ⊥ ≤ ℓ and ℓ ≤ ℓ. We will also henceforth use
pom ≜ pom(label) to refer to pomsets over this label set.

The semantic function J−K : cmd → pom, mapping commands to pomsets, is shown
on the left of Figure 2. Its definition is straightforward using the pomset operations; in
particular, skip is interpreted as a singleton fork and while-loops are interpreted as the least
fixed point of the characteristic function Φ⟨C,b⟩ : pom → pom defined as follows:

Φ⟨C,b⟩(α) ≜ guard(b, JCK # α, JskipK)

3 We remark that # on lpofs also satisfies a non-straightforward associativity, that however becomes the
usual one when passing to pomsets.
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JskipK ≜ ⟨fork⟩

JaK ≜ ⟨a⟩

JC1; C2K ≜ JC1K # JC2K

JC1 | C2K ≜ JC1K ∥ JC2K

Jif b then C1 else C2K ≜ guard(b, JC1K , JC2K)

Jwhile b do CK ≜ lfp
(
Φ⟨C,b⟩

)



...

a

OO

fork

b
T
XX XX

F

AAAA

a

OO

fork

b
T

]] ]]

F

====


# a′ =

... a′

a

OO

fork

OO

b
T
XX XX

F

AAAA

a′

a

OO

fork
OO

b
T

]] ]]

F

====

Figure 2 Left: pomset semantics of commands J−K : cmd → pom. Right: semantics of the
program (while b do a) ; a′.

Clearly Φ⟨C,b⟩ is Scott continuous, as it is defined by Scott continuous operations guard and
# [67, Corollaries F.6 and F.9]. So, by Kleene’s fixed point theorem, Φ⟨C,b⟩ has a least fixed
point given by:

Jwhile b do CK = lfp
(
Φ⟨C,b⟩

)
= sup
n∈N

Φn⟨C,b⟩ (⊥pom)

where f0 ≜ id and fn+1 ≜ f ◦ fn. Considering a loop Jwhile b do aK with a single action a

as its body, we can unroll the definition several times to get the following infinite chain:

⊥ ⊑pom

⊥

a

OO

fork

b
T
WW WW

F

CCCC
⊑pom

⊥

a

OO

fork

b
T
XX XX

F

CCCC

a

OO

fork

b
T

[[ [[

F

>>>>

⊑pom · · · ⊑pom

...

a

OO

fork

b
T

ZZ ZZ

F

CCCC

a

OO

fork

b
T

[[ [[

F

>>>>

Φ0
⟨a,b⟩(⊥pom) Φ1

⟨a,b⟩(⊥pom) Φ2
⟨a,b⟩(⊥pom) supn∈N Φn⟨a,b⟩(⊥pom)

The supremum of this chain is clearly an infinite structure with a terminating branch for
each n ∈ N, and an infinitely ascending spine. The ⊥ node is pushed to a progressively
higher level after each unrolling, so in the supremum it does not appear at all.

On the right of Figure 2, we show J(while b do a) ; a′K, containing a loop with a single
action in the body followed by another action. As discussed in Section 4.2, sequentially
composing another action a′ after a loop produces a copy of a′ for each branch, resulting in
countably many copies of a′. This approach is necessary to make a′ finitely preceded.

The semantics obeys a binary branching property, guaranteeing that test nodes branch
into exactly two successors, one where the test passes and another where it fails. Further,
variables can only be introduced into formulae after a test. From now on, we assume that all
pomsets have this property, which is clearly preserved by the operations of Section 4.

▶ Definition 5.1 (Binary Branching). A pomset α ∈ pom has the binary branching property
if, for every α ∈ α and every x ∈ Nα such that λα(x) ∈ test , succα(x) = {y1, y2} such that:
1. φα(y1) ⇔ φα(x) ∧ x;
2. φα(y2) ⇔ φα(x) ∧ ¬x; and
3. predα(y1) = predα(y2) = {x}.
Furthermore, if x is not the successor of a test, then φα(x) ⇔

∧
y∈predα(x) φα(y).

CONCUR 2025
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next(α,ψ, S) ≜ {x ∈ Nα \ S | x↓α ⊆ S, ψ ⇒ φα(x)}
Llpof (α,ψ, S)(s) ≜ η(s) if next(α,ψ, S) = ∅

Llpof (α,ψ, S)(s) ≜&
x∈next(α,ψ,S)


Llpof (α,ψ, S ∪ {x})† (JaKact (s)) if λα(x) = a ∈ act
Llpof (α,ψ ∧ Lx = JbKtest (s)M, S ∪ {x})(s) if λα(x) = b ∈ test
⊥D if λα(x) = ⊥
Llpof (α,ψ, S ∪ {x})(s) if λα(x) = fork

Figure 3 Linearization for finite lpofs Llpof : lpof fin(label) × form × P(nodes) → S → D(S).

5.2 Linearization

We now discuss how to produce a state transformer from the pomset semantics of Section 5.1,
which is useful for understanding the input-output behavior of programs resulting from
scheduling concurrent threads. This state transformer is obtained via linearization, which
consists of considering all interleavings of the threads in order to interpret the semantics of a
complete program as a function from inputs to collections of outputs. Once the program is
linearized, more threads cannot be composed in parallel, as the causality information is gone.
Nevertheless, linearization is useful to understand the program’s behavior, and relate the
behavior to other semantic models, as shown in Sections 2 and 6.

When performing linearization, we will interpret programs in a computational domain D,
which must support nondeterminism – in order to model the different ways that threads can
be interleaved – but may support additional computational effects too, which we will model
using monads. Hence, we assume some familiarity with basic notions of monads and Kleisli
categories; for a detailed introduction, we refer to [3]. More precisely, we need the following:
1. A domain D and set of states S, such that ⟨D(S),⊑⟩ is a pointed dcpo with bottom ⊥D.
2. An associative, commutative, and monotone nondeterminism operator &: D(S)2 → D(S).
3. An additive monad in the category dcpo ⟨D, η, (−)†⟩, meaning that:

a. the operations η : X → D(X) and (−)† : (X → D(Y )) → D(X) → D(Y ) obey the
monad laws f† ◦ η = f , η† = id, and (g† ◦ f)† = g† ◦ f†.

b. Kleisli extension is Scott Continuous (i.e., supf∈D supd∈D′ f†(d) = (supD)†(supD′)),
strict (i.e., f†(⊥D) = ⊥D), and additive (i.e., f†(d& d′) = f†(d) & f†(d′)) [66,69].

4. An interpretation function for actions J−Kact : act → S → D(S) that is monotone (i.e.,
JaKact (s) ⊑ Ja′Kact (s) if a ≤act a

′) and one for tests J−Ktest : test → S → B.
There are many domains that obey these properties, depending on which computational effects
are present. These include: the Hoare, Smyth, and Plotkin powerdomains for nondeterministic
computation [1, 46, 53] (where the latter two additionally deal with nontermination), the
convex powerset [20,42] and the powerdomain of indexed valuations [60,61,63] (for mixed
probabilistic and nondeterministic computation), and other domains for nondeterminism
with exceptions [66,69]. In Theorems 5.3 and 6.1, we will show that standard semantics in
two of those domains are recovered from our pomset semantics.

We will start by defining a linearization operation on finite lpofs, which is shown in
Figure 3. Linearization is defined recursively, until there are no more nodes to schedule. It
must be defined on finite structures, otherwise the recursion is not well-founded, but we
can extend linearization to infinite structures using the extension lemma. In Llpof (α,ψ, S),
the set S ⊆ Nα contains all the nodes that have already been processed and ψ is a path
condition, indicating the outcomes of the tests associated to the nodes in S.
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The function (α,ψ, S) gives the nodes that are ready to be scheduled, which includes
all nodes that obey the path condition ψ, and whose predecessors are in S. If (α,ψ, S) is
empty, then Llpof (α,ψ, S) simply returns the current state s using the monad unit η. If not,
then it nondeterministically selects a next node, where &i∈I di ≜ di1 & · · · & din , for any
finite index set I = {i1, . . . , in}. If the next node is an action, then it interprets the action
using J−Kact , and then uses Kleisli composition to compose the result with the linearization
of the remaining lpof. If the next node is a test, then that test is evaluated and the result
is added to the path condition, where Lx = 1M ≜ x and Lx = 0M ≜ ¬x. If the next node is ⊥,
then the linearization is ⊥D, and fork is treated like a no-op.

We next use Llpof to define linearization on finite pomsets Lfin : pomfin(label) → S → D(S)
as Lfin([α]) ≜ Llpof (α, true, ∅). Clearly Llpof (α, true, ∅) = Llpof (β, true, ∅) if α ≡ β, so Lfin(α)
can be defined for any arbitrary representative lpof α ∈ α. Finally, linearization is
extended to infinite pomsets L : pom → S → D(S) by taking the supremum over all of the
finite approximations: L(α) ≜ L∗

fin(α). Linearization over finite pomsets is monotone [67,
Lemma G.3], therefore the extension is well-defined and Scott continuous.

To ensure that linearization acts as desired, we provide a sanity check lemma to relate
the linearized semantics to well-known counterparts. Linearizing skip gives the monad unit;
linearizing a singleton action has the same behavior as interpreting the action; linearizing
a sequential composition is equal to Kleisli composition of the individual linearizations;
linearizing an if-statement is equal to linearizing one of the two branches, depending on the
truth of the guard; and the linearization of a while-loop is equal to the least fixed point over
a different characteristic function Ψ⟨f,b⟩. The function Ψ⟨f,b⟩ inherits Scott continuity from
the Kleisli composition operator, therefore the fixed point exists.

▶ Lemma 5.2 (Linearization). The following properties hold:

L(JskipK) = η L(JaK) = JaKact L(JC1;C2K) = L(JC2K)† ◦ L(JC1K)

L(Jif b then C1 else C2K)(s) =
{

L(JC1K)(s) if JbKtest (s) = 1
L(JC2K)(s) if JbKtest (s) = 0

L(Jwhile b do CK) = lfp
(
Ψ⟨L(JCK),b⟩

)
where Ψ⟨f,b⟩(g)(s) ≜

{
g†(f(s)) if JbKtest (s) = 1
η(s) if JbKtest (s) = 0

Lemma 5.2 is quite significant; it implies that L(JCK) corresponds to standard monadic
semantics in a variety of domains. In particular, it brings us to our first adequacy theorem,
showing that our pomset model recovers standard probabilistic semantics JCKC : S → C(S)
(shown in Figure 4 of Section A.2) [20,36,68] based on the convex powerset for a parallel-free
fragment of our programming language.

▶ Theorem 5.3. For any program C ∈ cmd without parallel composition: L(JCK) = JCKC.

Proof. By induction on the structure of C. The cases follow immediately from Lemma 5.2. ◀

6 Pomset Languages and Purely Nondeterministic Concurrency

Powerdomains give semantics to programs that combine nondeterminism with looping or
recursion [46,53]. In this section, we create a powerdomain instantiation of our semantics
from Section 5 and prove that the resulting model corresponds to well-known models of
non-probabilistic concurrent programs [27,34]. We work in the Hoare or lower powerdomain,
named as such for its connection to partial correctness and Hoare Logic [16, 21]. Indeed, the
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Hoare powerdomain identifies the terminating traces of a program, but not that the program
always terminates. From a concurrency perspective, this corresponds to safety properties [33].
For simplicity, we presume that the order over actions ≤act in this section is flat.

Since typical pomsets do not contain formulae [17, 18, 48], they cannot encode control
flow branching introduced by if-statements and while-loops. As we already saw in Section 2,
concurrent semantics typically use pomset languages – sets of pomsets – where each individual
pomset contains only the actions that occur in a single branch of computation [27,34].

We emulate pomset language semantics using pomsets with formulae. First, we define
a label set labelPL ≜ actPL ∪ testPL ∪ {fork,⊥}, whose components are as before, but now
testPL ≜ ∅, and instead actPL ≜ act ∪ {assume b | b ∈ test} includes an action assume b for
every test b ∈ test , which guarantees that a certain condition holds in the current branch.
Pomset languages pomLang ≜ P(pomfin(labelPL)) are sets of finite pomsets over labelPL.

The pomset language semantics J−KPL : cmd → pomLang , which is standard [27,34], is
given in Figure 5 of Section A.3. In this model, each α ∈ JCKPL corresponds to a particular
sequence of test resolutions. When an assume fails, the trace is eliminated. When a branch
occurs, i.e., in an if-statement or while-loop, the set of traces is duplicated to account for
both the “true” and “false” branches, as we saw in Figure 1. Loops are interpreted as the
(possibly infinite) union of all finite traces, so infinite pomsets are not needed.

The Hoare powerdomain consists of sets of states, ordered by subset inclusion ⟨P(S),⊆⟩,
which is known to be a pointed dcpo with supremum given by union ∪ and ∅ as bottom.
Let & ≜ ∪ and define the monad operations as η(s) ≜ {s} and f†(S) ≜

⋃
s∈S f(s), which are

well known to be Scott continuous, strict, and additive [66]. Accordingly, action evaluation
J−KactPL

: actPL → S → P(S) is given below, where assume actions result in {s}, if the test
is true in state s, and ∅, otherwise. We also define a specialized linearization operation
LPL : pomLang → S → P(S), which is simply a union over the linearization of all traces.

JaKactPL
(s) ≜


JaKact (s) if a ∈ act
{s} if a = assume b, JbKtest (s) = 1
∅ if a = assume b, JbKtest (s) = 0

LPL(S)(s) ≜
⋃

α∈S
Lfin(α)(s)

Since all formulae are true, the next nodes to schedule are exactly those whose predecessors
have all been processed, i.e., (α, true, S) = {x ∈ Nα \ S | x↓α ⊆ S}. This corresponds to
standard interleaving definitions of linearization [48]. We now prove that pomset language
semantics J−KPL (Figure 5) corresponds exactly to the Hoare powerdomain instance of our
semantic model from Section 5. The proof relies on a translation tr : pom → pomLang , which
recovers a pomset language from a pomset with formulae, and is defined in [67, Appendix H].

▶ Theorem 6.1 (Equivalence of Semantics). The following diagram commutes:

cmd
J−K

//

J−KPL

��

pom

L

��

tr

uu

pomLang
LPL

// (S → P(S))

The upper commuting triangle does not depend on the Hoare powerdomain, so it is tempting
to say that pomset languages give an adequate model in other domains too. However, as we
showed in Section 2, just because a semantic structure exists does not mean that it conveys
the desired meaning. Indeed, the fact that L = LPL ◦ tr relies on two particular properties of
the Hoare powerdomain. First, if h(x) = f(x) & g(x), then h†(S) = f†(S) & g†(S), which is
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invalid in probabilistic domains. In fact, this corresponds to the problematic Equation (3)
from Section 2. Second, LPL is computed as a union over a possibly infinite set (the union is
infinite whenever the program contains a while-loop). Unbounded nondeterminism is known
to cause problems in many domains – including the Smyth and Plotkin powerdomains [2,4,54]
– thus no infinitary version of & exists.

So, although programs in any domain can be interpreted as pomset languages, those
semantic objects may not give an adequate meaning to the program. Particularly in
probabilistic domains – i.e., the convex powerset – prior pomset language models [27, 34] do
not give us a way to find the relative probabilities of the different outcomes after actually
running the program. Our new approach, using a single structure that records both causality
and control flow, is more suitable for interpreting the semantics of concurrent programs in
new domains, such as probabilistic computation. As we saw in Section 2 and Theorem 5.3,
pomsets with formulae accurately capture the concurrent behavior of these programs, while
also allowing us to recover the precise probabilities of each outcome.

7 Discussion and Related Work

We developed a new semantic structure – pomsets with formulae – and studied its domain-
theoretic properties, which we used as basis to provide semantics for a probabilistic concurrent
imperative language with unbounded loops. Our work builds on a rich history of using
partial orders and pomsets in denotational models of concurrent programs [17,18,47], which
have been used as a semantic basis for concurrent separation logic [8], concurrent Kleene
algebras [22,26,27,34], and other applications [14,25,29].

While there are links between pomset semantics and operational models of concurrency
[7], pomsets are often preferred for their finer notion of concurrency compared to the
interleaving semantics offered by operational models. This is especially useful in the context
of weak memory [25,29]. Probabilistic event structures model probabilistic process algebras
[28, 62, 64, 65], whereas we model a full imperative language with sequential composition,
control flow, and unbounded loops, for which adding formulae was essential.

Concurrency has previously been combined with other computational effects in limited
ways. For example, semantics for probabilistic concurrent programs have been defined in both
operational [55,56] and denotational [70] styles, but these approaches are limited to programs
with bounded looping constructs. The inclusion of unbounded looping adds significant
complexity in the probabilistic case. Whereas finite-trace models are sufficient for many
non-probabilistic scenarios, unbounded looping in probabilistic programs requires infinite
traces, as the probability of termination may only become 1 in the limit. A proper theory of
infinite traces requires pomsets to be enriched with a dcpo [37,38] or metric [9] structure;
prior work in this area was very informative to our own development, although the inclusion
of deterministic branching in our own pomset structure added significant complexity.

An operational model of probabilistic concurrency has been developed based on Markov
Decision Processes [15]. This semantics is used to lower bound expected values, but does
not straightforwardly extend to more complex domains such as the convex powerset, which
give the full set of distributions over outcomes. In addition, a denotational model has been
developed [44], where the underlying semantic structure is obtained as the solution to a
domain equation. Our construction is more concrete, giving a full account of the causality in
the program and thus capturing non-interleaving models of concurrency too.

Branching pomsets were recently introduced to model choices in choreographic programs
[12–14]. While branching pomsets can, in theory, contain infinitely many nodes, the domain
theoretic properties needed to approximate infinite structures have not been explored, which
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was a significant focus of this paper. Indeed, our extension lemma (Lemma 3.10) was
necessary for linearization, without which we would not have been able to relate our pomeset
model to the known convex powerset semantics [20,36,68].

Going forward, it would be interesting to explore the applicability of pomsets with
formulae to convex powerdomain constructions other than Smyth [30, 57–59], or to other
domains for mixing probabilities and nondeterminism including indexed valuations [60,61,63]
and multisets of distributions [24, 32]. While our linearization procedure is based on an
omniscient scheduler, we are also interested in exploring more restricted models including
oblivious schedulers (which cannot see the outcomes of random sampling), and fair schedulers.
This will be challenging, as those models are non-compositional and therefore linearization
on infinite pomsets could not be defined via Lemma 3.10. Still, pomsets with formulae are a
good basis for studying these questions, as the structure itself makes no assumptions about
how scheduling of parallel branches occurs.
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A Preliminaries and Omitted Definitions

A.1 Order Theory and Domain Theory
▶ Definition A.1 (Poset). A partially ordered set, or poset, is a set equipped with a partial
order: that is, a pair ⟨X,≤⟩ consisting of a set X and an order relation ≤ ⊆ X ×X which
is reflexive, transitive and antisymmetric. When the order is instead irreflexive ( i.e., x ̸< x

for all x ∈ X), the poset is called strict and the order relation is denoted by <.

Given a strict poset ⟨X,<⟩ and x ∈ X, we define the upward and downward closures:

x↑ ≜ {y ∈ X | x < y} x↓ ≜ {y ∈ X | y < x};

and its set of immediate successors and predecessors as

succ(x) ≜ {y ∈ x↑ | ̸ ∃z.(x < z < y)} pred(x) ≜ {y ∈ x↓ | ̸ ∃z.(y < z < x)}

All the above operations can easily be extended to sets of elements, e.g., X↑ ≜
⋃
x∈X x↑, for

any set X. The set of minimal and maximal nodes of a poset is given by:

max ≜ {x ∈ X | succ(x) = ∅} min ≜ {x ∈ X | pred(x) = ∅}

To define our new structures we need a few more definitions on posets that will play a role
in proving the existence of fixed points, essential for giving a semantics to unbounded loops.
First, we recall the notion of downward closed sets.

▶ Definition A.2 (Downward Closure). Given a poset ⟨X,<⟩, a set Y ⊆ X is downward
closed, written Y ⊆↓ X, iff for all y ∈ Y it holds that y↓ ⊆ Y .

Second, we need a notion of a poset being finitely preceded.

▶ Definition A.3 (Finitely Preceded). A poset ⟨X,<⟩ is finitely preceded if there are finitely
many elements smaller than each element; that is: |x↓| < ∞, for all x ∈ X.
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Third, we define the level of elements in the poset.

▶ Definition A.4 (Level [37]). Given a finitely preceded poset ⟨X,<⟩, define lev : X → N:

lev(x) ≜ sup
{
n
∣∣ ∃x0, . . . , xn ∈ X. x0 ∈ min ∧ xn = x ∧ ∀i < n. xi+1 ∈ succ(xi)

}
We also define its inverse lev−1 : N → P(X):

lev−1(n) ≜ {x ∈ X | lev(x) = n}

▶ Definition A.5. The satisfaction relation ⊨ ⊆ (nodes → B) × form for Boolean formulae
is given below:

v ⊨ true always
v ⊨ false never
v ⊨ ψ1 ∧ ψ2 iff v ⊨ ψ1 and v ⊨ ψ2

v ⊨ ψ1 ∨ ψ2 iff v ⊨ ψ1 or v ⊨ ψ2

v ⊨ ¬ψ iff v ̸⊨ ψ
v ⊨ x iff v(x) = 1

A.2 The Convex Powerdomain
We begin by providing the omitted definitions from Section 2, regarding the dcpo structure
of the convex powerset. We start by defining the order on probability distributions. For any
set X, let X⊥ = X ∪ {⊥} and the order over distributions ⊑D ⊆ D(X⊥) × D(X⊥) be defined
as follows:

µ ⊑D ν iff ∀x ∈ X. µ(x) ≤ ν(x)

Note that this means that µ(⊥) ≥ ν(⊥) if µ ⊑D ν, and that the bottom of the order is
⊥D = [⊥ 7→ 1]. A set of distributions S ⊆ D(X⊥) is upward closed if, for all µ ∈ S, it holds
that µ ⊑D ν implies ν ∈ S. In addition, S is Cauchy closed if it is closed in the product of
Euclidean topologies [36, Definition 5.4.3]. Now, the convex powerset is defined as follows:

C(X) ≜ {S ⊆ D(X⊥) | S is nonempty, convex, upward closed, and Cauchy closed}

Convex powersets are ordered via the Smyth order [53] ⊑C ⊆ C(X) × C(X), defined below:

S ⊑C T iff ∀ν ∈ T. ∃µ ∈ S. µ ⊑D ν

Since the sets above are upward closed, the Smyth order collapses to reverse subset inclusion
S ⊑C T iff S ⊇ T . This makes the convex powerdomain ⟨C(X),⊑C⟩ a pointed dcpo with
suprema given by set intersection and bottom ⊥C = D(X⊥) being the set of all distributions,
for the full proof refer to [68].

Finally, we give the definitions for the monad operations [23]: unit η : X → C(X) and
Kleisli extension (−)† : (X → C(Y )) → C(X) → C(Y ).

η(x) ≜ [x 7→ 1] f†(S) ≜

 ∑
x∈supp(µ)

µ(x) · νx

∣∣∣∣∣∣ µ ∈ S, ∀x ∈ supp(µ). νx ∈ f⊥(x)


where (−)⊥ : (X → C(Y )) → X⊥ → C(Y ) is defined as follows: f⊥(x) ≜ f(x) if x ∈ X and
f⊥(⊥) ≜ ⊥C otherwise.
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JskipKC(s) ≜ η(s)

JC1;C2KC(s) ≜ JC2K
†
C (JC1KC (s))

Jif b then C1 else C2KC(s) ≜
{

JC1KC(s) if JbKtest (s) = 1
JC2KC(s) if JbKtest (s) = 0

Jwhile b do CKC(s) ≜ lfp(Ψ⟨JCKC,b⟩)(s)
JaKC(s) ≜ JaKact (s)

Figure 4 Convex powerset semantics J−KC : cmd → S → C(S) due to [20, 36, 68], where Ψ is
defined in Lemma 5.2.

JskipKPL ≜ {⟨fork⟩}
JaKPL ≜ {⟨a⟩}

JC1;C2KPL ≜ JC1KPL # JC2KPL

JC1 |C2KPL ≜ JC1KPL ∥ JC2KPL

Jif b then C1 else C2KPL ≜ ({⟨assume b⟩} # JC1KPL) ∪ ({⟨assume ¬b⟩} # JC2KPL)
Jwhile b do CKPL ≜ lfp

(
Ξ⟨C,b⟩

)
where Ξ⟨C,b⟩(S) ≜ ({⟨assume b⟩} # JCKPL # S) ∪ ({⟨assume ¬b⟩} # JskipKPL)

S # T ≜ {α # β | α ∈ S,β ∈ T}
S ∥ T ≜ {α ∥ β | α ∈ S,β ∈ T}

Figure 5 Standard pomset language semantics J−KPL : cmd → pomLang .

As is required in Section 5.2, it is proven in [68] that the Kleisli extension for C defined
above is Scott continuous and additive:

sup
f∈D,x∈D′

f†(S) = (supD)†(supD′) f†(S & T ) = f†(S) & f†(T )

Based on these operations, Figure 4 shows the convex powerset semantics for the parallel-free
fragment of the language in (1), J−KC : cmd → S → C(S). This is precisely the same
semantics used in prior work for reasoning about programs that are both nondeterministic
and probabilistic [20,36,68]. This semantics does not capture parallel computation, which
requires the more sophisticated semantic domains that we develop in this paper. The
Scott continuity property above ensures that Ψ⟨JCKC,b⟩ : (S → C(S)) → S → C(S) is Scott
continuous, and therefore the semantics of loops is well defined.

A.3 Pomset Languages
As we saw in Section 6, a pomset language is a set of finite pomsets without any tests or
formulae. Control flow is determined by assume actions, which keep or eliminate traces
depending on the whether the corresponding test passes or fails.

pomLang ≜ P(pomfin(labelPL))

We give the pomset language semantics for a nondeterministic language in Figure 5.
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