Characterizations of Fragments of Temporal Logic
over Mazurkiewicz Traces

Bharat Adsul =

IIT Bombay, Mumbai, India

Paul Gastin &
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
CNRS, ReLaX, IRL 2000, Siruseri, India

Shantanu Kulkarni & 4&
IIT Bombay, Mumbai, India

—— Abstract

We study fragments of temporal logics over Mazurkiewicz traces which are well known and established

partial-order models of concurrent behaviours. We focus on concurrent versions of “strict past” and
“strict future” modalities. Over words, the corresponding fragments have been shown to coincide
with natural algebraic conditions on the recognizing monoids. We provide non-trivial generalizations
of these classical results to traces. We exploit the local nature of the temporal modalities and obtain
modular translations of specifications into asynchronous automata. More specifically, we provide
novel characterizations of these fragments via local cascade products of a very simple two-state
asynchronous automaton operating on a single process.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics; Theory
of computation — Distributed computing models; Theory of computation — Algebraic language
theory; Security and privacy — Logic and verification

Keywords and phrases Mazurkiewicz traces, temporal logics, asynchronous automata, cascade
product, Green’s relations, algebraic automata theory

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2025.5

1 Introduction

Temporal logics are widely used logical formalisms to reason about properties of computations.
Words serve as temporal models of sequential computations/behaviours and linear temporal
logic LTL formulas use natural future as well as past temporal modalities to talk about
interesting patterns of these behaviours. The celebrated theorem of Kamp [16] showed that,
over words, properties definable in LTL coincide with those definable in the first order (FO)
logic. By the seminal results of McNaughton-Papert [18] and Schutzenberger [20], these also
equal regular languages describable by star-free regular expressions and those recognized by
finite aperiodic monoids.

The above mentioned results clearly indicate the important role played by the temporal
modalities in the very rich expressive power of LTL. Natural and commonly used temporal
modalities include future modalities X (“neXt/tomorrow”), F (“Future”), U (“Until”), the past
counterparts Y (“previous/Yesterday”), P (“Past”), S (“Since”) and their strict variants such
as XF (“strict future”) and YP (“strict past”). Several works [7], [14], [5] have studied natural
fragments of LTL obtained by allowing only some of these modalities and have characterized
these fragments in terms of algebraic conditions on the recognizing finite monoids. These
algebraic characterizations have been crucially used to show that the computational problems
of definability in the associated fragments are decidable.

Let us consider the fragment LTL[YP] obtained by allowing only unary strict past modality
YP. When interpreted over words, the formula YP ¢, at a given position, asserts that ¢
holds at some position in the strict past (that is, strictly left) of the current position. It has
? Bharat Adsul, Pau.l Gastin, and Sk.lantanu Kulkarni;

37 icensed under Creative Commons License CC-BY 4.0
36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 5; pp. 5:1-5:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:adsul@cse.iitb.ac.in
https://orcid.org/0000-0002-0292-6670
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0002-1313-7722
mailto:shantanu3637@gmail.com
https://sites.google.com/view/shantanukulkarni/
https://orcid.org/0009-0001-3525-2369
https://doi.org/10.4230/LIPIcs.CONCUR.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

5:2

Fragments of Temporal Logic over Traces

been shown in [6], [7], [14], [5] that a language is definable in LTL[YP] iff it can be recognized
by a R-trivial monoid iff the syntactic monoid of the language is R-trivial. Here R stands for
one of fundamental Green’s relations on a monoid. The R-triviality condition on a monoid
M simply means that if two elements of M are right multiples of each other then they are
equal (that is, for all m,n € M, I3 p,q € M : n=m -p and m = n - ¢ implies m = n). This
characterization can also be stated in simpler automata-theoretic terms [6]. A finite-state
automaton is said to be partially ordered if there is a partial order > on the states so that
every transition is of the form (p, a, q¢) where p > ¢. Said differently, an automaton is partially
ordered iff the only cycles present in the underlying directed transition graph are self loops.
Using this notion, the above mentioned characterization can be stated as follows: a language
is LTL[YP]-definable iff it can be accepted by a partially ordered automaton.

It turns out that the dual fragment LTL[XF] which admits the unary strict future modality
XF is characterized by the dual condition of L-triviality. As expected, a monoid is L-trivial
if no two distinct elements can be left multiples of each other. The fragment LTL[XF,YP]
which includes both XF and YP modalities has been well studied and is known to coincide
with important first order logic fragments, namely, FO? and A,. It also has an algebraic
characterization in terms of monoids from the class DA. See the survey [9] for more details.

In this work we study the above mentioned temporal logic fragments from the concur-
rency viewpoint. We consider Mazurkiewicz traces as the underlying models of concurrent
behaviours. A Mazurkiewicz trace or simply trace, over a set of processes, represents a
concurrent behaviour as a labelled partial-order between events. This partial-order between
events faithfully captures the causal information flow among processes. Traces are extensively
studied and there is a rich theory of regular trace languages [23], [12]. Regular trace languages
are known to coincide with MSO-definable languages as well as languages recognized by
finite monoids. We consider natural event-based interpretations of temporal modalities XF
and YP over traces. For instance, the formula YP ¢, at a given event, asserts that ¢ holds at
an event which is in the strict causal past of the current event. We denote by LocTL[YP] the
local/event-based temporal logic over traces which has access to the temporal modality YP.
One can similarly define LocTL[XF] and LocTL[XF,YP]. One of our main results states that
a trace language is definable in LocTL[YP] iff it can be recognized by a R-trivial monoid.
This can be viewed as a non-trivial generalization of the corresponding result over words.
We also obtain an analogous algebraic characterization of LocTL[XF] in terms of L-trivial
monoids. An algebraic characterization of LocTL[XF, YP] in terms of monoids from the class
DA already appears in [17].

Another important contribution of this work is a modular translation of formulas in these
fragments into asynchronous automata. In an asynchronous automaton, each process runs
a finite local-state device and these devices synchronize with each other on shared actions.
Asynchronous automata can be naturally used to accept trace languages. Zielonka’s theorem
states that regular trace languages are precisely the languages accepted by asynchronous
automata. As in [19, 2, 3], one can use asynchronous automata as transducers on traces,
similar in spirit to the sequential letter-to-letter transducers on words. Unlike these works
which use deterministic asynchronous transducers to locally compute relabelling functions
on input traces, we allow non-deterministic asynchronous transducers. As expected, these
transducers compute relabelling relations from input traces to output traces. The local cascade
product of deterministic asynchronous automata (or transducers) from [2, 3] is a natural
generalization of cascade product in the sequential setting [21]. It further extends naturally to
the non-deterministic setting and corresponds to compositions of related relabelling relations.

B. Adsul, P. Gastin, and S. Kulkarni

We use this machinery to provide a translation (in fact, a characterization) of
LocTL[XF,YP] formulas into local cascade products of very simple two-state asynchron-
ous automata operating on a single process. For LocTL[YP] formulas, the resulting atomic
two-state transducers are deterministic while for LocTL[XF] formulas, they are reverse-
deterministic. We remark that our results and their proofs for traces specialize to the setting
of words.

The rest of the paper is organized as follows. After setting up the preliminary notions in
Section 2, we establish in Section 3 that R-trivial trace languages are definable in LocTL[YP].
In Section 4, we provide a translation of LocTL[YP] formulas into cascade products of localized
deterministic asynchronous transducers/automata whose transition monoid is isomorphic to
U; - the unique two element aperiodic monoid. Section 5 is devoted to dual results concerning
L-trivial and LocTL[XF]-definable trace languages. We also sketch a cascade product based
characterization of LocTL[XF,YP] in this section.

2 Preliminaries

In this section, we set up the notation and review basics of traces. We also recall the
recognizability of trace languages by morphisms into monoids and define the fundamental
Green’s relations on monoids.

2.1 Trace basics

Let P be a finite, non-empty set of processes. For every process i € P, ¥, is the set of
letters/actions in which process ¢ participates. A distributed alphabet over P is the family
> = {Z;}iep with ¥ = U;cpX; being the associated total alphabet. Letters a,b € ¥ are
dependent if there is a process which participates in both of them (3i € P, a,b € %;),
otherwise they are independent. For a letter a € ¥ we define loc(a) = {i € P | a € £;} to be
the set of processes that participate in a.

A poset is a tuple (E, <) with E being the underlying set and < being the partial order
on E. A Y-labelled poset over ¥ is a triple (E, <, \) where (E, <) is the underlying poset,
and A: F — X is the labelling function which labels each element in E with a letter from X.
For elements e, e’ € E, € is said to be an immediate successor of e, denoted by e < ¢, if e is
below €’ (e < €’) and there is no event f strictly between e and ¢/ (Bf € E, e < f < ¢').

A (Mazurkiewicz) trace t = (E,<,\) over 3 is a finite X-labelled poset with A satisfying
the following two properties:

1. for e,e’ € E, if e < €', then A(e) and A(e') are dependent;
2. for e, € E, if A(e) and A(e’) are dependent, then they are ordered (e < e’ or e’ <e).

For a trace t = (F,<,)\) we sometimes slightly abuse notation to say event e € t
which we take to mean that event e € E. The set of process i-events in t is defined as
E, ={e € E | Ae) € ;}. Note that F; is totally ordered by <. For an event e € t, we
slightly abuse the notation and define loc(e) = loc(A(e)) to be the set of processes that
participate in e. For an event e we define e = {f € t | f < e} to be the set of events in ¢
below e. Similarly e = {f € t | f < e} is the set of events in ¢ strictly below e. It is easy to
see that by restricting < and A to events in |e, we obtain a valid trace. By abuse of notation,
we denote this trace by (Je, <, \) or simply Je. It will be clear from the context whether
we mean e to be a trace or merely a set of events. Similarly, {Je also refers to the trace
(Ye, <, A) induced by e.

5:3

CONCUR 2025

5:4

Fragments of Temporal Logic over Traces

The set of all finite traces over ¥ is denoted by TR(X). We define the trace concatenation

operation - on TR(X) as follows. Let t1 = (F1,<1,A1),t2 = (E2,<3,X2) € TR(X) with
E1 N Ey = (. We define 1 - to or simply ¢1¢2 to be the trace (F1 U E2, <, \) € TR(E]) where:
1. <is the transitive closure of <;U<,U{(e1,e2) € E1 x E2 | A1(e1), Az2(e2) are dependant}.

2. For all e € E1 U Ey, Ae) = Ai(e) if e € By and Aa(e) if e € Es.

A trace t is said to be a prefix of trace t if there exists ¢ € TR(X) such that t = ¢'t". It
is easy to see that, for e € ¢, |e and |}e are both prefixes of t.

2.2 Recognizable trace languages

Recall that a monoid is a set M equipped with a binary associative operation - and containing
an identity element 1,7, such that ¥m € M, m - 15y = 137 - m = m. The set TR(X), under
the operation of trace concatenation, is a monoid with the empty trace ¢ as the identity
element. Let M and N be two monoids with operations - and o respectively. A morphism
h from M to N is a map h: M — N such that: h(1y) = 1y and for all my,mq € M,
h(my - mg) = h(mq) o h(ms).

Asubset LCT R(i) is called a trace language over 3. We call a morphism from the trace
monoid TR(X) to any other monoid M as a trace morphism. A trace language L C TR(X)
is recognizable if there exists a trace morphism A from TR(X) to a finite monoid M such
that L = U,eph ™1 (m) for some P C M. We may refer to h as the recognizing morphism
or say that L is recognized by M via recognizing morphism h. The class of recognizable
trace languages, also referred to as regular trace languages, has several characterizations
and we note a few in particular, namely MSO-definable languages over traces [22] and trace
languages accepted by asynchronous automata [23].

Classically, the algebraic viewpoint in terms of what are known as Green’s relations over
monoids has been fruitful for characterizing interesting subclasses of regular languages which
have an intimate connection with logics. We now briefly recall these fundamental Green’s
preorders and the associated equivalence relations.

Let M be a monoid with - as the binary monoid operation and let my,mgy € M. The
Green’s preorder relations are defined as follows:

1. my <g mq (read as my is R-below my) if there exists m € M such that m; = mq - m.
2. m1 <, mg if there exists m € M such that m; = m - mo.

3. my <; my if there exist u,v € M such that m; =u-mo v

4. m1 <g mo if mi1 <g mo and my <y, mo

These preorders naturally give rise to the associated equivalence relations R, L, 7, H. We
say that m; R mgy (read as m; is R-equivalent to ms) if m; <g mo and ms <p m;. A
monoid M is R-trivial if Ymy, mo € M, m; R mo implies mq = mo. In other words, M is
R-trivial iff the preorder < on M is in fact a partial order on M iff the equivalence relation
R coincides with the identity relation on M.

The other equivalence relations £, 7, H and their triviality for M are defined analogously.
A trace language L C TR(f]) is called R-trivial if it can be recognized by a finite R-trivial
monoid. One can similarly define L-trivial, J-trivial and H-trivial trace languages.

» Example 1. Consider the monoid U; = {1,0} with 1 as the identity and 0 as the zero
element. So,1-1=1,0-1=1-0=0-0 = 0. It is easily checked that U; is R-trivial,
L-trivial, J-trivial as well as H-trivial.

As mentioned in the introduction, for word languages, R-triviality (L-triviality) corres-
ponds to definability in LTL with only the strict past (respectively strict future) modal-
ity. See [5] for a proof based on Green’s relations. It turns out that, for finite monoids,

B. Adsul, P. Gastin, and S. Kulkarni

‘H-triviality condition is equivalent to the aperiodicity property. As a consequence, H-trivial
word languages coincide with languages definable in the first order logic and linear temporal
logic. These results find interesting generalizations over traces in [15, 13, 8].

3 Algebra to temporal logic

We now state our main theorem and set up the technical machinery and prove it.

» Theorem 2. Let L C TR(X). Then the following are equivalent.

1. L is a R-trivial trace language.

2. L can be expressed using a sentence in LocTL[YP].

3. L can be accepted by a cascade product of localized Uy asynchronous automata.

Proof. 1 — 2 is shown in Theorem 14, 2 — 3 is shown in Theorem 22, 3 — 1 is shown in
Theorem 24. |

The result we wish to prove in this section is the 1 — 2 for Theorem 2, which says that
any trace language which is recognized by a R-trivial monoid can be expressed as a sentence
in LocTL[YP]. This statement is restated as Theorem 14. We start by defining formally the
syntax and semantics of LocTL[YP].

3.1 LocTL[YP] syntax and semantics

We now define LocTL[YP]. We have sentences ®, which are evaluated over finite Mazurkiewicz
traces and hence define languages over TR(X) and also event formulas ¢ which are evaluated
at a given event in a trace. The syntax is as follows:

O:u=Ep| P VDy| P
pu=alpiVer |9 |YPyp

The semantics for the boolean operations are as usual. For a trace t = (E, <, \) and an event
e € E, the following defines the semantics of LocTL[YP]

tE=Ep if there exists an event e in ¢t such that t,e = ¢
t,el=a if A\(e) =a
t,e EYPo if there exists an event f in ¢ with f < e and ¢, f = ¢.

In the rest of the paper we shall use the following macros liberally:

Ap=-E-p, Po=¢oVYPy,
YHp ==YP -, Heo=9pAYHop.

The modalities can be read as Exists (E), All (A), Past (P), Historically (H), Yesterday
Past (YP), Yesterday Historically (YH). For a set of letters A, we may abuse notation and
use A to denote the event formula \/ 4 a testing whether the event is labelled by a letter
in A. For instance, we may use ¥; as the macro for the event formula \/ acy, @ which tests
whether the current event is an i-event.

» Example 3. Let t € TR(X) be a trace and e € t be an event. We design an event formula
ot such that ¢, e = o} iff there are at least k process i-events strictly below event e. We define
¢t inductively as:) = T and for k > 0, ¢} = YP(X; A ¢i_;). Consider the LocTL[YP]
sentence ®,,,, = E(3; A @) | A—pl Agi). Clearly ®,,, has the property that trace ¢

satisfies ®,, ,, if and only if the m'" process i-event is strictly below the n'" process j-event.

5:5

CONCUR 2025

5:6

Fragments of Temporal Logic over Traces

3.2 Critical structures for a morphism into a R-trivial monoid

Throughout the rest of this section, we fix a morphism h: TR(E) — M to a fixed finite
R-trivial monoid M.

Let t = (E, <, \) be a trace and e € E be an event of ¢. Note that, viewing |e and {le as
traces, we have h(le) = h({e)h(A(e)) <g h(lle). The event e is said to be a critical event in
t if h(le) # h({e). Since the monoid M is R-trivial, this is equivalent to h(le) <gr h({e).
We let Xy = {e € E | h(le) <g h(le)} be the set of all critical events of trace t.

» Lemma 4. In the above notation, | X;| < |P| x |M].

Proof. We show that the number of critical events on a single process line is less than |M].
This clearly implies that |X;| is less than |P| x |M|. For any ¢ € P, the set of critical process
i events is X; N F;. Assume X; N E; = {e1,ea, - e} with e; < eg < -+ < ¢ (F; is totally
ordered by <). Since e; are critical events we have h(le;) <r h({e;). Since (the trace
induced by) le; is a prefix of (the trace induced by) {e;41, we have h({ej11) <gr h(le;).
We get

h(lex) <r h(Vexr) <pr h(lex—1) <r h(Jex—1) <p - -h(le1) <r h(Ye1) <p 1u .
Therefore k < |M| which concludes the proof. <

A configuration of ¢ is a subset C C FE of events which is downward closed: C = |C.
Clearly, for any event e € F, |e and |le are configurations of ¢. We sometimes abuse the
notation and use C to also denote the trace induced by a configuration C' of ¢. It is easy to
see that t = C -t where t’ is the trace induced by the set E'\ C of events of ¢ which do not
belong to C.

A configuration C of t is critical if for every maximal event e € C, we have h(C) #
h(C\ {e}), equivalently, h(C) <g h(C\ {e}). Note that if e is a maximal event of C' then
C\ {e} is a configuration of ¢.

» Lemma 5. FEvery maximal event of a critical configuration is a critical event.

Proof. Suppose for contradiction that there exists a critical configuration C' and a maximal
event e € C such that h(C) <g h(C \ {e}) but h(le) = h({e). We have that h(C) =
h(le) - h(C\ le). Substituting h(le) by h({lle), we get h(C) = h({e) - h(C'\ Le) = h(C \ {e})
giving us a contradiction to the fact that h(C) # h(C \ {e}). <

» Example 6. A configuration in which every maximal event is critical, may not itself be
critical. We show this via an example. Consider three processes and the distributed alphabet
defined by £; = {a}, ¥2 = {b} and X3 = {c} (each process has a local action). Consider
the R-trivial (commutative) monoid M = ({0, 1,2}, ®,0) with truncated sum defined as
@y = min(2,z +y). In other words, 0 is the neutral element, 2 is absorbent, and 1 ® 1 = 2.
We have 2 <z 1 < 0. Consider the (truncated) length trace morphism h: TR(X) — M
defined by h(z) =1 for all z € 3. Finally, let t = abc = (E, <, A) be the trace with 3 events
labelled a, b and c¢ respectively. Each event e in t is critical and is maximal in ¢t. But the
configuration E is not critical since for each e € E, we have h(E \ {e}) =2 = h(E).

» Lemma 7. Any prefiz t' of t containing all the critical events of t, evaluates to the same
monoid value as t under h. In other words, we have h({X;) = h(t).

Proof. We have h(t) <g h({X;) since | X; is a prefix of ¢. For the converse, we first show
that there exists a critical configuration C of t = (E, <, A) such that h(C) = h(t). The
configuration C' = E satisfies h(C) = h(t). Let C be a configuration with h(C) = h(t).

B. Adsul, P. Gastin, and S. Kulkarni

Either C is critical and we are done, or we can drop a maximal event from C' to get a
strictly smaller configuration C’ satisfying h(C”) = h(t). Repeating this, we find a critical
configuration C' of ¢ such that h(C) = h(t). By Lemma 5, the maximal events of C are
critical. Hence we get C' C | X;. This implies h(} X;) <g h(C) = h(t). By R-triviality, we
deduce h({X:) = h(t). <

The type of a trace t = (E, <, \) is the X-labelled poset type(t) = (X¢, <, A) obtained as
the restriction of the labelled poset (E, <, A) to the critical events of ¢.

» Example 8. It is important to note that the type of a trace need not necessarily be a trace
itself. Let t = abc be a trace over the distributed alphabet X1 = {a,b}, 33 = {b, ¢} with 3
events e; < es < eg labelled a, b, ¢ respectively, as shown in the figure below. Consider the
R-trivial (commutative) monoid M = ({1, 2,3}, max, 1) where max is the binary maximum
operation. It is clear that 3 < 2 <p 1. Consider the trace morphism h: TR(X) — M
defined by h(a) = 2, h(b) = 1 and h(c) = 3. We see that only e; and eg are critical events of
t. Then, type(t) = ({e1,e3}, <, A) with e; < ez which is induced by the original partial order
on t. Since the labels a and ¢ are independent, type(t) is not a trace.

1 >R 2 = 2 >r 3
A A A A
| | | |
p1 a .
| | | |
L | | |
| T Y |
pr— —
| Coex es |
| | | |
| | | |

Let s = (Z,<,)) be a ¥-labelled poset. A linearization of s is a word! w = (Z, <X, \)
where =< is a total order on Z which is consistent with <, that is, satisfying < C <. We
denote by Lin(s) C X* the set of linearizations of s.

Let h': ¥* — M be the word morphism defined by h'(a) = h(a) for all a € . For all
traces t € TR(X) and for all linearizations w € Lin(t), we have h/(w) = h(t).

For every monoid element m € M we define ¥ = {a € ¥ | m - h(a) = m} as the set
of letters stabilizing m. The complement X\ ¥ = {a € ¥ | m - h(a) # m} also denoted
3™ is the set of letters which cause an R-descent for m. This means that for every a € ¥™

m - h(a) <g m.

» Lemma 9. Let ¢t = (E,<,\) be a trace and type(t) = (X¢, <, A) be its type. For all
linearizations w € Lin(type(t)), we have h'(w) = h(t).

Proof. The proof is by induction on the number k = | Xy| of critical events of ¢.

For the base case k = 0 there are no critical events in t. This means that w = ¢ and all
events in ¢ have labels in '™ . Clearly, we have h/(g) = 15 = h(t).

Assume now k > 0 and that the result holds for all traces s with |X,| < k. Consider
the linearization w = ajas---ar € Lin(type(t)). We have w = (X¢,=<,\) with X; =
{e1,€e2,...,€ex}, e1 < e2 < -+ < e and A(e;) = a;. Note that the event e, is maximal in

L' A word a1as ---an € X is identified with the structure ({e1,e2,...,en}, =, A) with A(e;) = a; and
e1 <ex <---<é€n.

5:7

CONCUR 2025

5:8

Fragments of Temporal Logic over Traces

1 X:. Consider the trace s which is the prefix of ¢ induced by (} X:) \ {ex}. It is easy to see
that type(s) = ({e1,...,ex—1},<,A) and v = a; ---ag_1 € Lin(type(s)). By induction, we
have h'(v) = h(s). Therefore, h'(w) = h'(v) - ' (ag) = h(s) - h(A(ex)) = h({X¢) = h(t) where
the last equality follows from Lemma 7. <

It follows immediately that the type of a trace determines its value under h.

» Corollary 10. Let t,t' € TR(X) be two traces. If type(t) and type(t') are isomorphic,
denoted type(t) = type(t'), then h(t) = h(t).

We conclude this subsection with some more definitions. Recall that we have fixed the
distributed alphabet 3 and the morphism h from TR(X) to the finite R-trivial monoid M.
We define the type set of 3, with respect to h, to be the set of all possible types of all traces
over . More precisely, types(X) = {type(t) | t € TR(X)}. Note that, it clearly depends on
h. By Lemma 4, every type is a -labelled poset whose underlying set has size less than
|P| x |M|. Therefore types(X) is a finite set.

By Corollary 10, the type of a trace determines its monoid value under the recognizing
morphism h. Hence we can define a function 7: types(X) — M by 7(type(t)) = h(t) for all
t € TR(X). Note that, by Lemma 9, if 0 = (X, <, \) is a type then 7(c) = h/(w) for all
w € Lin(o).

Let t = (F, <,) be a trace and e € E be an event. The type of e in ¢ is the type of the
prefix of ¢ induced by the strict past of e: type(t, e) = type(le) = (Xye, <, A) = (XeNle, <, A).
We have m(type(t, e)) = h({e).

» Lemma 11. Lett = (E,<,)\) be a trace and e, f be events int. Iftype(t,e) = type(t, f) = o
and \(e) = \(f) € ¥™ where m = 7(0) then e = f.

Proof. Assume towards a contradiction that there are two events e, f in ¢ with type(t,e) =
type(t, f) = o and A(e) = A(f) = a € ™ where m = 7(c). Without loss of generality we
may assume e < f since they are both labelled with the same letter and hence are ordered.
Then, e is a critical event: indeed, type(t,e) = o hence h(l}e) = 7(c) = m and A\(e) = a € ¥™
implies that h(le) = m - h(a) # m. We deduce that Xy U {e} C Xy : there are more
critical events in the strict past of f than in the strict past of e. This is a contradiction with
type(t, e) = type(t, f). <

3.3 Proof of Theorem 2 [1 — 2]

Having done the necessary setup we now prove the first direction of Theorem 2 (restated as
Theorem 14 at the end of this subsection). We start with Lemma 12 which supplies the key
argument by constructing LocTL[YP] event formulas for identifying the type of an event.

An event formula ¢ of LocTL[YP] is called a strict past formula if it is a boolean
combination of formulas of the form YP ¢’. A strict past formula does not test the label of
the current event.

» Lemma 12. For every o € types(X), there exists a strict past event formula ¢, such that,
for all traces t = (E,<,\) € TR(X) and all events e in t, t,e = ¢, iff type(t,e) = o.

Proof. We construct ¢, by induction and prove that it has the correct property.

Base case: |o| =0, i.e., o = (0,0,0). Note that w((0,0,0)) = 1p; = h(e) where ¢ is the empty
trace. We define ¢, = YH(X!'™). We now prove that it has the desired property.

B. Adsul, P. Gastin, and S. Kulkarni

If t,e = YH(X!M) then every letter in the strict past of e stabilizes the monoid identity
element. We deduce easily that there are no critical events in the strict past of e. Therefore
type(t,e) = (0,0,0).

Conversely, if type(t,e) = (0,0,0) then there are no critical events in the strict past of
e. Since the empty trace is the smallest prefix of a trace and it maps to 1), under h, we
deduce easily that every letter in the strict past of e must stabilize the monoid identity 1.
Therefore t,e = YH(X1M).

Induction hypothesis: Let k > 0 and assume that for every type o with |o| < k, we have
constructed ¢, satisfying the property of the lemma. Consider an arbitrary type 7 € types(f])
of size k + 1. We construct ¢, below and prove its correctness.

Let s = (E,, <s,A\s) € TR(X) be a trace with 7 = type(s) = (X, <s, As). For an element
x € X, welet 7, = ({2, <s, As) be the restriction of the labelled poset 7 to the critical events
strictly below x ({2 = {y € X5 | y <s z}). It is easy to see that 7, = type(s,x) = type({,z)
where |,o = {e € E, | e <; x} is (the prefix of s induced by) the strict past of z in s.
Let m; = h({,2) = 7(72) and a, = As(z). Since x € X is a critical event of s, we have
h(lsw) = h(V2) - h(As(2)) = myh(as) <g my = h({}4z). Therefore, a, € Lme = X7(72),

Notice that the size of 7, € types(i) is at most k. By induction hypothesis, we have a
formula ¢, satisfying the property of the lemma. We use the macro (7, z) to denote the
event formula ¢, Aa,. Finally, if Z C X, we let 77 = (1. Z, <5, As). Then, 77z = type(};2)
is a type and we let mz = 7(7z) = h({,Z). We define

©r = @1 A ©2 A Porder Y1 = YH(@crit V @stab)
0y = /\ YP (T,) Perit = \/ o(T,)
r€Xg rz€Xg
Poraer = [\ YP (w(ﬂ y) AYP (T, x)) AN -YP (@(T, y) NYP 90(77517))
z,y€EXs|r<sy z,y€EXs|rLsy
Pstab = \/ Xz N /\ YP @(Ta Jf) A /\ -YP @(Ta Jf)
Z=|,ZCX, z€Z TEXN\Z

Before proceeding to the formal proof of correctness of ., we first provide an intuitive
explanation of the various parts of ¢..

po: asserts that for every “event” x in 7, there is a (unique) corresponding critical event
in the strict past whose type is isomorphic to 7, and whose label is same as that of x.
p1: asserts that every event in the strict past either corresponds to some “event” x in 7
(satisfies @erit) or is labelled with a stabilizing letter for the type Z arising out of the
“events” x in T

Porder: asserts that the ordering between “events” in 7 and the corresponding critical
events is identical.

We now formally show that ¢, indeed satisfies the property of the lemma. Towards this,
fix a trace t = (F¢, <¢, \¢) and an event e in ¢.

(—) Assume that t,e = ¢,. We show that type(t,e) = 7.

First consider the fact that ¢,e = @o. This means that for all z € X, there exists
an event e, € |,e, such that t,e, = ¢(7,2). By the inductive hypothesis, we have 7, =
type(t,e;) = type({,e,) and Ai(e;) = a, € ¥™=. From Lemma 11, e, is the unique event in
t satisfying ¢ (7, z). Using h({},e.) = 7(7:) = m, and \i(e,) = a, € 2=, we deduce that e,
is critical in {};e. Therefore, Y = {e, |z € X} C X ..

5:9

CONCUR 2025

5:10

Fragments of Temporal Logic over Traces

Now, using the fact that ¢, e = @order and the unicity of the events e,, we deduce that
for all z,y € X,, we have x <, y if and only if e, <; e,. We also know that for all z € X,
we have A\s(z) = a, = A\i(e;). Therefore, 7 = (Y, <¢, A¢).

In order to obtain 7 = type(t,e) = (Xy,e, <4, A¢) as desired, it remains to prove that
Y = X,.. Towards a contradiction, assume that this is not the case and consider a minimal
event f € Xy . \Y. Since t,e = ¢1, we have t, f = @erit V @stap- I t, f 1= @erie then t, f =
(7,) for some x € X and by the unicity constraint f = e, € Y, a contradiction. Hence,
t, f = @stap and there is a downward closed set Z = | Z C X such that A\i(f) € ¥™Z and
U fNY ={e, | x € Z}. By minimality of f, we get |}, fNXy,e =, fNY ={e, |z € Z}. We
deduce that type(t, f) = ({ex | x € Z}, <¢, M) 2 77 and h({},f) = mz. Using A\ (f) € X2
we conclude that f is not critical, a contradiction.

(+) Conversely, assume that 7 = type(t, e). We show that t,e = ..

From the isomorphism between 7 = (X, <y, As) and type(t,e) = (Xy, e, <¢, A¢) we get a
one-one correspondence z € X, — e; € X . such that for all z,y € X, we have x <, y if
and only if e, <; e, and A(e;) = As(x). We deduce that type(t,e;) = 7, and M(ey) = ag
for all z € X;. Therefore, ¢, e, | o(7,x) for all z € X, and ¢, e = ¢o.

Next, it is easy to check that t,e = @order using the unicity property (Lemma 11) and
the fact that < y if and only if e, <; ¢, for all z,y € X,.

Let f € |J,e be an event in the strict past of e. Either f € X . is a critical event and
[= e, for some x € X,. In this case, we get ¢, f |= o(7,2) and t, f = @erie. Or f € J,e\ Xy,e
is a non-critical event. Let Z = {z € X, | e, < f}. Then, Z = |.Z is downward closed and
using the unicity property we deduce that ¢, f = A, YPo(T,2) A N\,ex 7~ YP o(7, 2).
Now, due to the fact that 7 = type(t, e) it is clear that 7z = type(t, f). We deduce that
myz = m(1z) = h({;f). Since f is not critical, we have A\;(f) € £™%. Therefore, t, f E ©stab-
We have shown that t,e = ;. <

» Lemma 13. For every element m € M we can define a strict past event formula o., in
LocTL[YP] such that for every trace t and event e of t, we have t,e |= o, iff h({e) = m.

Proof. We define ¢,, = \/UEtypes(i)m(J):m o and show that it has the desired property.

Let ¢ be a trace and e be an event in t. If ¢,e = ¢, then there exists some o € types(X)
such that w(0) = m and t,e = p,. By Lemma 12, o = type(t, e) = type({e). By definition
of m, we have h(l{le) = 7(0). As w(0) = m, we conclude that h({e) = m. Now for the
other direction assume h({le) = m. By Lemma 12, ¢, e = ype(t,e) and by definition of T,
m(type(t,e)) = h(lle). As h({le) = m, w(type(t,e)) = m and hence ¢, e = ¢p,. <

» Theorem 14. Let L € TR(X) be recognized by the morphism h : TR(X) — M. Then there
is a sentence ®p of LocTL[YP] which defines L: for all tracest € TR(X), t = &y <= t € L.

Proof. As L is recognized by h, there is a subset P C M such that L = h=!(P). For each
monoid element m € M, we define below a sentence ®,,, of LocTL[YP] which defines the trace
language h=1(m): for all traces t we have t = ®,, <= h(t) = m. The sentence defining L
is (bL == VmGP (bm

Let # ¢ X be a new letter. We extend the distributed alphabet ¥ by making # an action
shared by all processes: Y4 = {%; U {#}}iep. For each trace t € TR(X), we consider the
augmented trace f =t - # € TR(X4) obtained by adding a maximum event ey labelled #
to t. Note that all processes participate in ey and ¢t = ex. Now by Lemma 13, we have a

B. Adsul, P. Gastin, and S. Kulkarni

strict past event formula? ,,, such that ,ey | ¢m < h(leg) =m < h(t) =m. We
can now set ®,, as the sentence obtained by replacing every outermost occurrence of YP in
©m by E. Tt is easy to see that t = @, iff t,e4 E ©m. As aresult, t = @, iff h(t) =m. =

4 Logic to cascade products to algebra

In this section, we first introduce a localized version of LocTL[YP] namely LocTL[YP;] and
show that both have the same expressive power. LocTL[YP;] is more suited for the direction

2 — 3 of Theorem 2 where we connect logic to cascade products of asynchronous automata.

Subsequently, in Section 4.2 we introduce asynchronous devices and their cascade products
and prove Theorem 22 in Section 4.3. Finally we show the 3 — 1 direction of Theorem 2 by
connecting cascade products to algebra in Theorem 24.

4.1 LocTL[YP;] and its equivalence with LocTL[YP]

We define local modalities E; and YP; for each process ¢ € P as follows:

Let t be a trace and e be an event of ¢. It is clear that, t,e = YP; ¢ iff e is an i-event and
there exists an i-event e’ in the strict past of e such that ¢, e’ |= ¢. Further ¢ = E; ¢ iff there
exists an i-event f of ¢ such that ¢, f |= ¢.

We define LocTL[YP;] as a fragment of LocTL[YP] in which only above local modalities
are allowed. More precisely, the syntax of LocTL[YP;] logic is as follows:

(I)ZZ:EiQD‘CI)l\/@Q‘_\(I)
pu=alpiVer |9 |YPp

» Lemma 15. LocTL[YP] and LocTL[YP;] express the same class of trace languages over ¥.

Proof. We only need to show how to express the modalities E and YP of LocTL[YP] with
the local modalities of LocTL[YP;]. We have E¢ = \/,, E; .

For the strict past modality YP we use a well-known fact on traces. Let t = (E, <,)
be a trace and e, f be events in . Then e < f if and only if there is a sequence of events
e=eyg<e; <e<--<ep=fwithl <k <|P|and for each 1 < j <k, there is a process
i; € P such that e;j_1,e; are both i;-events. It is easy to deduce from here that

YPo=\/ YP, - YP,YP, .
21502 4e-ns ir€P
1<k<| P

This shows that YP modality can be expressed in LocTL[YP;] and concludes the proof. <

» Remark 16. Referring to the syntax and semantics from [1] (Section 2.2), it is clear that
LocTL[YP;] is a sublogic of LocPastPDL. Indeed, let ¢ be a LocTL[YP;] event formula and
assume there exists an equivalent event formula @ in LocPastPDL. Then YP; ¢ is implemented
with (+—)% and E; ¢ is implemented with EM; ({+})%)

2 Formally the formula ¢, may use #. We can take care of this by using - wherever it occurs in the
formula.

5:11

CONCUR 2025

5:12

Fragments of Temporal Logic over Traces

4.2 Asynchronous devices and cascade product

We now recall the model of asynchronous automata due to Zielonka [23].
A deterministic asynchronous automaton A over % (or simply over ¥) is a tuple A =
({Si}icp> {0a}taesy Sin) Where
for each ¢ € P, S; is a finite non-empty set of local i-states.
for each a € X, 6,: S, — S, is a deterministic joint transition function where S, =
[Tictoc(a) Si is the set of a-states.
with S = Hie? S; as the set of all global states, sy, € S is a designated initial global
state.

Let s € S be a global state. We can write s as (s4,$_,) wWhere s, is the projection of s
onto loc(a) and s_, is the projection onto P \ loc(a). For any letter a € ¥, we can extend
the joint transition function 6,: S, — S, to a global transition function A,: S — S on
global states as follows: Aq((Sq,5-4)) = (84(S4),5—a). For a trace t € TR(X), we let A,
be the identity function on S, and define A;: S — S as the composition A; = A, o Ay
when t = t'a. Note that A; is well defined, since for any pair (a,b) of independent letters,
Ay oAy =Apo0A,. We denote by A(t) the global state A¢(siy) reached when A runs on ¢.

At this point we define the transition monoid M (A) associated with the asynchronous
automaton A. Let M(A) be the finite set of functions {A; | t € TR(X)}. This set under the
usual function composition operation is a monoid with A, as it’s identity element.

For any asynchronous automaton A, if we fix some F C S to be the set of accepting
global states then we say L(A, F) = {t | A(t) € F} is the trace language accepted by A.

We also use asynchronous automata as letter-to-letter asynchronous transducers as in
[19, 2, 3] which compute a relabelling function. Let T' be a finite non-empty set. We
can define a natural extended distributed alphabet, ﬁ by inheriting the distribution
from ¥ that is, loc((a, 7)) = loc(a). TR(X) and TR(ﬁ‘) are the set of traces over the
original and extended distributed alphabets. A function 6: TR(X) — TR(E/;/F) is called a
D-labelling function if, for every t = (E,<,\) € TR(X), 0(t) = (E,<,(\,p)) € TR(ET;/F).
A T-labelling function decorates each event e of the trace t with a label p(e) from T.

An asynchronous T-transducer over % (or simply X) is a tuple A = (A, {1q}) where
A= ({Si},{0a}, sin) is an asynchronous automaton and each p, (a € X) is a map pq: Sq — I
We overload notation and use A: TR(Y) — TR(E/]_>\</1") to also denote the I'-labelling function
computed by the transducer A. For t = (E, <,\) € TR(S), we define A(t) = (E, <, (\, p)) €
TR(g_;_T‘) such that, for every e € E with A(e) = a, pu(e) = pq(sq) where s = A({e).

An asynchronous automaton (resp. transducer) with local state sets {S;} is said to be
localized at process i if all local state sets S; with j # ¢ are singletons. It is localized if it
is localized at some process. For an automaton/transducer localized at ¢, all non-trivial
transitions are on letters in which process ¢ participates.

Y, UX,,

Eil Ej

Figure 1 U, [i] automaton.

» Example 17. We define Uj[i] to be a deterministic asynchronous automaton which is
localized at process i. In Uj[i], the local state set of process i has two states: S; = {1,2}
while all other processes have a single state. In Figure 1 we show the local automaton for

B. Adsul, P. Gastin, and S. Kulkarni

process %, which operates only on 3; = 3;, W3;,. Note that, a letter in 3;, allows to change
the local state from 1 to 2 while the rest of the transitions are self-loops. Clearly, we can
identify the global-states of Uy [¢] with S;. With this convention, we always use 1 as the initial
global state for Uy[i]. Note that the transition monoid of Us[é] is isomorphic to a submonoid
of Uy from Example 1. For a trace ¢, U;[i](t), the global state reached by U [i] when run on
t, is 2 iff there exists an i-event in ¢ with label in 3;,.

A degenerate Uy [i] automaton is a U [i] automaton for which 3;, =). As state 2 is not
reachable from the initial state 1, we can safely assume that S; = {1}. Observe that the
transition monoid of a degenerate Uy [i] is the trivial monoid.

» Example 18. An asynchronous I'-transducer over ¥ whose underlying automaton is U, [i]

— —

from Example 17, is denoted by Uj[i]. More precisely, Uy [i] = (Ui [i], {pta}). Recall that in

Unli], S; = {1,2} and S; = {1} for j # i. Further, for each a € 3, pq: S, — I'. These output

functions {u,} can be viewed as follows.

1. For each a such that ¢ € loc(a), we identify S, with S;. Thus, u,: S; — T.

2. For each a such that i € loc(a), S, is a singleton. As a result, u, is a constant function
and can be simply thought of as an element of T'.

—

Note that, U;[i] always uses 1 as the initial global state and it has an associated I'-labelling

function Uy [i]: TR(S) — TR(E x I).

A degenerate @ I-transducer has a degenerate U [i] as its underlying automaton and
has effectively only one global state. As a result, its output function can be simply specified
as a output function p: ¥ — I

Now we introduce the local cascade product of asynchronous transducers [4, 3] which will
play an important role in later sections.

» Definition 19. Let A = ({5}, {62}, sin, {tta}) be a T-transducer over ¥ and B =
({Qi} {0} @ins {V(ay) }) be Il-transducer over ¥ x I'. We define the local cascade
product of A and B to be the I-transducer A oy B = ({S;i x Qi},{Va}, (Sin, in)s {7a})
over X where Vq((8a,qa)) = (0a(8a); 0(a,pa(sa))(@a)) and 1o Sy X Qo — 11 is defined by
Ta((saa qa)) = V(a,ua(sa,))(%)-

In the sequential case, that is, when |P| = 1, the local cascade product coincides with the
well-known operation of cascade product of sequential letter-to-letter transducers.
The following lemma is easily verified. See [3] for more details.

» Lemma 20. The II-labelling function computed by //1\04 B is the composition of the T'-
labelling function computed by A and the Il-labelling function computed by B: for every
t € TR(Y),

(Aog B)(t) = B(A(1))

Although we have defined the local cascade product of transducers, it is equally easy to
define the local cascade product of asynchronous automata. We refer to [3] for precise details
of this construction and its connection with the wreath product operation and the resulting
local cascade product principle.

4.3 Proof of Theorem 2 [2 — 3]

In this section, we provide a proof of 2 — 3 of Theorem 2. In view of Lemma 15, it suffices
to show that languages expressed by LocTL[YP;] sentences are accepted by local cascade
product of Uy [i] automata. This is precisely the content of Theorem 22.

5:13

CONCUR 2025

5:14

Fragments of Temporal Logic over Traces

Let ¢ be a LocTL[YP;] event formula. For each trace t € TR(X) and event e in t, we let
pe(e) € {T, L} be the truth value of ¢ at e, and we let 0¥ be the {T, L}-labelling function
given by 09(t) = (E, <, (\, i), for each t = (E,<,\) € TR().

» Lemma 21. Let ¢ be a LocTL[YP;] event formula and let 6% be the corresponding {T,L}-
labelling function. Then we can construct a local cascade product A of Ul[i) transducers
which computes 0% .

Proof. The construction of EW proceeds by structural induction on ¢. We first consider
the base case with ¢ = a. Fix some process i € loc(a). We let A, be the degenerate
{T, L}-transducer Uy[i] over ¥ whose output function is u: ¥ — {T, L} where u(b) =T

if b = a and p(b) = L otherwise. Clearly, the {T, L}-labelling function computed by A,
coincides with 6%.

(ma) [L, (@) | T

Now we consider the inductive case where ¢ = YP; ¢’. By induction, we have {T, L}-
transducer ‘asa/ which computes %", Note that the output alphabet of jg,/ isIT=%Xx{T,L}
with the distribution IT; = ¥; x {T, L}.

We construct A as a local cascade product A 10y B, where B is a {T, L}-transducer Ul[]
over IT defined below so that A computes 6%. In view of Lemma 20, A, o(t) = E(ﬁ /(t)). By
induction on ¢’, A, = =0¢. Thus the requirement that A computes 0¥ simply translates
to the reqmrement that B(Gw/(t)) = 0°(t).

Let t = (E,<,\) be a trace over ¥ and ¢ = 0¢'(t) = (E,<,(\,x')). Further, let

"=0%(t)=(E,<,(\). As ¢ =YP; ¢/, for an event e € E, u(e) = T iff e is an i-event
and there is an i-event f in the strict past of e such that u/(f) = T.
We are now ready to construct B Basa ﬁlﬁ transducer over II so as B(t') = ¢". The local

component for process i in B = Ul[] is as depicted in the figure below.

(%, L)] L (k,%) | T

(, T)| L

More precisely, for B over I, with S; = {1, 2}, the only non-self-loop transitions (from local
state 1 to local state 2) are on letters of the form (a, T) with a € ¥;. The output functions
are as follows. For a € X, pi(q,4)(1) = L, fi(a,«)(2) = T and for a € %, pi(a) = L

Clearly, B outputs L on events in which process ¢ does not participate. Further, it
outputs T on an i-event only after reaching state 2 which ensures that there is an i-event in
the strict past where the input label (the truth value of ') carries the value T. It is easy
to see from here that, for every ¢t € TR(X), B (OW/ (t)) = 6¥(t). This in turn implies that
A = A xY) B correctly computes 6%.

We now consider the case where ¢ = @1 V 3. By induction, we have a transducer
2@1 (ZZW) which computes 0¥ (respectively §¥2). We consider the natural direct product
A= 24:1 X &02 which is a ({T, L} x {T, L})-transducer which simultancously computes
the truth values of 1 as well as 5. We can easily see that the direct product is a special

B. Adsul, P. Gastin, and S. Kulkarni

case of the cascade product. We can simply define A\@ =A oy B where B is a degenerate

—

{T, L}-transducer U;[i] (for any process ¢) over X x ({T, L} x{T, L}) whose output function
w is as follows: p((a,b1,b2)) = by V by. It is easy to see that A computes 6%.

The remaining case where ¢ = —¢’ can be similarly handled by a local cascade product
of ESD/ with a degenerate am transducer. |

» Theorem 22. Let ® be a LocTL[YP;] sentence. There exists an asynchronous automaton
Ag which is a cascade product of Ui[i] automata and it accepts exactly the trace language
defined by ®. In other words, Ag accepts Le = {t € TR(X) | t = D}.

Proof. A basic LocTL[YP;] trace formula @ is of the form E; ¢, where ¢ is a LocTL[YP}]
event formula. For a trace ¢, we have that ¢ |= E; ¢ iff there exists a j-event e in the trace
such that ¢, e = ¢. From Lemma 21 we have a {T, L }-transducer Ew which is a local cascade
product of U/]m transducers such that 2@ =0%. Let t = (F,<,\) be any trace over X. It is
clear that t |= E; ¢ iff some j-event in the output trace t' = Ew(t) is labelled by T. Therefore

the desired property of Ag is that it should accept the trace ¢ iff ¢ has a T-labelled j-event.

To achieve this, we simply take the cascade product of the {T, L }-transducer X@ with an
asynchronous automaton Uy [j] over ¥ x {T, L}. Beginning in the initial global state 1, the
non-trivial component of U; [j] automaton owned by process j waits at local state 1 for the
label T to occur on j-events and transits to local state 2 after seeing the label T and stays
there thereafter. This U;[j] automaton is depicted in the figure below.

(x, L) (, %)

a0amn O

In order to accept Lg, in the automaton Ag = 21\90 oy U1[j], we define a global state of
Ag to be accepting if its component for the last (in the cascade product) U; [j] global state

is 2. As A\w is a local cascade product of U, [i] transducers and the underlying automaton

—

for each Un[i] is simply a U [i] automaton, it is not difficult to see that Ag is in fact a local
cascade product of Uj [i] automata.

This takes care of basic primitive languages defined by sentences of the form E; . As
a general sentence ® is a boolean combination of sentences of the form E; ¢, Lg is also a
boolean combination of basic primitive languages. The result for general ® follows as boolean
combinations can be handled by direct product construction which can be easily implemented
by the local cascade product construction. <

4.4 Proof of Theorem 2 [3 — 1]
In this subsection, we provide a proof of 3 — 1 of Theorem 2 in the form of Theorem 24.

» Lemma 23. Let A be an asynchronous automaton over 3 which is a local cascade product
of Ui[i] automata. Then the transition monoid of A is R-trivial.

Proof. Let A = ({S:},{da}, sin) be a local cascade product of Uy[i] automata. We show
that there is a partial order < on the global state set S = [],., S; such that, for every
(s,a) € S x X, Ay(s) < s (recall that, A,: S — S is the natural global transition function
induced by the joint transition function d,: S, — S,). It is known [6] and easy to see that
the existence of such a partial order implies that the transition monoid of A is R-trivial.

5:15

CONCUR 2025

5:16

Fragments of Temporal Logic over Traces

We show the existence of the required partial order by induction on the number of
constituent U; [{] automata in A. In the base case, A itself is a U;[i]. As the global state set
of Uyi] is {1,2} (see Example 17), by setting < to be the total order with 2 < 1, we get the
desired property.

To complete the inductive step, we assume the existence of a partial order < on the global
state set S of A. We now use it to construct the required partial order < on the global state
set of A oy Up[i]. Note that the global state set of A o, Uy[i] is simply S x {1,2}. We define
< as follows: for s,s’ € S and k, k' € {1,2}, (s, k') < (s,k) iff s’ < s, and k' < k. In other
words, < is simply the direct product of < on S and the total order on {1,2} with 2 < 1. Let
a € ¥, then the (global) deterministic transition on a of A o, Uy[i] takes the state (s, k) to
the state (s', k") = (Aa(s), A(a,s,)(K)). It is clear from this description that (s', k") < (s, k).
This shows that < on S x {1,2} has the desired property and we are done. |

» Theorem 24. [Let L C TR(fJ) be accepted by an asynchronous automaton A which is a
local cascade product of Up[i] automata. Then L is R-trivial.

Proof. We consider the transition monoid M (A) associated with A. Recall that it is the
finite monoid consisting of {A,: t € TR(X)} where A, is the global transition function on
the global state set induced by the trace ¢. By the previous lemma, this monoid is R-trivial.
Due to the local nature of the transitions of A, if ¢ and b are independent then A, and A,
commute. As a result, we have a well defined morphism h: TR(X) — M(A) which sends ¢
to A;. Suppose that L is accepted by A with s;,, as the initial global state and F' as a subset
of global accepting states of A. Then L is recognized by the trace morphism A via the set
{A, € M(A) | Ai(sin) € F}. Hence L is R-trivial. <

5 Results on related fragments

In this section we briefly present other results which are of the same form as Theorem 2 but
for trace languages which are L-trivial or recognized by monoids from the class DA. First we
shall define the necessary terminology and then subsequently state the results.

LocTL[XF, YP] is the fragment of temporal logic over traces which contains both the strict
future (XF) and the strict past (YP) modality. We give below the syntax for LocTL[XF,YP]
and only explain the semantics of the new modality XF.

(I)IZ:E()O|<I)1\/(I)2‘_|@
pu=alpiVer| 9| XFe|YPo

For a trace t = (F,<,\) and an event e € E, we have t,e |= XF ¢ if there exists an event f
int with e < f and ¢, f = . Observe that LocTL[YP] is the past fragment of LocTL[XF, YP].
We can similarly define LocTL[XF] is as the future fragment of LocTL[XF,YP] which has
access to only XF modality.

For a trace t = (F, <, \), the reverse trace t" = (F, <’, \) is defined to be the trace where,
fore,f e E, e<' fiff f <e. For a trace language L C TR(fJ), the reverse language L" is
defined as L™ = {t" | t € L}.

For a monoid M, M" denotes the opposite monoid with multiplication o” defined as
mo’" n:=mnom for all m,n € M". It is easy to see that L is recognized by M iff L" is
recognized by M". Further, it it easy to deduce that M is L-trivial iff M" is R-trivial. It
follows that L is L-trivial iff L” is R-trivial.

B. Adsul, P. Gastin, and S. Kulkarni

It is also easy to verify that L is LocTL[XF] definable iff L" is LocTL[YP] definable. Given
a sentence ® in LocTL[XF] defining L, we can obtain a LocTL[YP] sentence ®" which defines
L™ by simply replacing all occurrences of XF operators in ® by YP, and vice versa. In view
of the above discussion, it follows from Theorem 2 that a trace language L is L-trivial iff it
is definable in LocTL[XF].

In order to obtain a translation of LocTL[XF], or more generally, LocTL[XF, YP] event
formulas and sentences into cascade products of asynchronous devices, as in Lemma 21
and Theorem 22 for LocTL[YP], we work with localized modalities XF; and YP; and use
non-deterministic asynchronous automata/transducers.

We can define the localized logic LocTL[XF;, YP;] by using the process indexed modalities
XF;, YP; and E; instead of XF, YP and E as in Section 4.1. The semantics of XF; modality
is as follows: for a trace t = (F,<,\) and e € E, t,e = XF; ¢ iff e is an i-event and there
exists an i-event f with e < f such that ¢, f = ¢. It can be shown that LocTL[XF;, YP;]
has the same expressive power as LocTL[XF, YP]. Observe that LocTL[YP;] is a fragment of
LocTL[XF;, YP;]. One can similarly define the fragment LocTL[XF;] of LocTL[XF;, YP;] which
has the same expressive power as LocTL[XF].

Now we turn our attention to local cascade product of non-deterministic asynchronous
automata and transducers. For the purpose of this work, it suffices to work with deterministic
and reverse deterministic versions and their cascade products.

We begin with the key example of the reverse deterministic asynchronous automata U7 [].

In U7[i], the local state set of process i has two states, that is, S; = {1,2} while all other
processes have a singleton state set S; = {1} for j # i. For a letter a ¢ 3;, the processes
participating in a have a deterministic transition, namely, a self-loop.

27;1 Ei1 U Ziz E]

O~ O

Figure 2 U7 [i] automata: on the left is the local automaton for process 4, on the right is the local
single state automaton for every other process j # i.

IfaeX, =%, U3, we can identify a joint a-state with the local state of process i.
With this identification, process i has non-deterministic transitions as shown in Figure 2.
For instance, assume a € ¥;,. Then there is no transition on a at state 1. Further, at state
2, on a, the next state can be either state 1 or state 2. Note that these local transitions are
obtained by simply reversing the local transitions in the deterministic U;[i] automata.

We always use the global state 1 as the only final/accepting state. It is important to
observe that, for a trace ¢, U7 [i] admits a unique accepting run p; (which ends in global state
1). If ¢ has no i-event with label in ¥;,, then p, must begin in global state 1 and stays there
until the end. However, if ¢t has an i-event with label in 3;,, then p; must begin in the global
state 2 and process ¢ component changes its local state from 2 to 1 on the last occurrence
of an i-event with label in ¥;,. After this crucial event, process i stays at local state 1 as
all subsequent “future” i-events are labelled by letters in 3J;,. This unambiguity property
of UT[é] is crucial. While using U7 7] as a language acceptor, we allow a set of initial global
states. Thanks to the unambiguity property, the language accepted with single initial global
state 1 is the complement of the language accepted with single initial global state 2.

—

Now we introduce the reverse deterministic asynchronous I'-transducers Uj[i]. The

—

underlying automaton of UT[¢] is U{[i] and the output function provides a label from I'

on each local transition of UJ[i]. In U7[i], we allow any initial global state but insist

5:17

CONCUR 2025

5:18

Fragments of Temporal Logic over Traces

—

that 1 is the only accepting state. We also associate with U7 [i] a I'-labelling function
U/{m: TR(Z) — TR(§>\</F) as follows: let ¢ = (FE,<,\) and p; be the unique accepting run
of the underlying U7 [¢] on ¢. We define @(t) to be the trace t' = (E, <, (A, 1)) where, for
e € E, p(e) is the label from T on the transition used to “read” e on the unique run p;.

—

Let I' = {T, L}. We now construct an instance of a I'-transducer Uj[i] over ¥ x I". This
transducer, called Uxg, below, implements the localized modality XF;.

x| L

(%, L)] L (%) | T
OO

Figure 3 ﬁx\Fz transducer which implements XF; modality.

Consider a LocTL[XF;, YP;] formula ¢ = XF; ¢’. We have the I'-relabelling functions 6°'
and 0¥ which keep track of truth values of ¢’ and ¢ respectively. Let ¢t = (E,<,\) be a
trace over ¥ and 0% (t) = (E, <, (\, /) and 09(t) = (E, <, (X, 1)) be traces over ¥ x . For
any event e of t, p/(e) =T iff t,e = ¢ and p(e) = T iff t,e = . Fix an event e € E. By
semantics of XF;, u(e) = T iff e is an i-event and there exists a strict future i-event f (that
is, e < f) such that p/(f) = T. For the I-transducer U/XE over ¥ x I', depicted in Figure 3,
it is easy to verify that, for every trace t over X, ljx\pi((ﬂ“"/ (t)) = 6%(¢).

In view of the above discussion, it is not surprising that the following theorem holds. We
skip the technical details.

» Theorem 25. Let L C TR(X). Then the following are equivalent.
1. L can be expressed by a sentence in LocTL[XF,YP].
2. L can be accepted by a cascade product of Uy[i] and U7 [i] automata.

Even over words, the above result appears to be new. Further, we note that it has
been shown in [17] (also see [11], [10]) that, over trace languages, LocTL[XF, YP] definability
coincides with recognizability by monoids from the class DA.

The following theorem is a dual of our main theorem.

» Theorem 26. Let L C TR(X). The following are equivalent.
1. L is a L-trivial trace language.
2. L can be expressed by a sentence in LocTL[XF].

3. L can be accepted by a cascade product of UT[i] automata.

Recall that a trace language is J-trivial iff it is R-trivial as well as L-trivial. This
observation leads to the following result.

» Theorem 27. Let L C TR(X). The following are equivalent.
1. L is a J-trivial trace language.
2. L can be expressed by a sentence in LocTL[XF] as well as a sentence in LocTL[YP].

3. L can be accepted by a cascade product of UT[i] automata as well as another cascade
product of Uy [i] automata.

B. Adsul, P. Gastin, and S. Kulkarni

—— References

1

10

11

12

13

14

15

Bharat Adsul, Paul Gastin, Shantanu Kulkarni, and Pascal Weil. An expressively complete local
past propositional dynamic logic over Mazurkiewicz traces and its applications. In Proceedings
of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’24, New York,
NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3661814.3662110.
Bharat Adsul, Paul Gastin, Saptarshi Sarkar, and Pascal Weil. Wreath/cascade products
and related decomposition results for the concurrent setting of Mazurkiewicz traces. In
Igor Konnov and Laura Kovacs, editors, 31st International Conference on Concurrency
Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume
171 of LIPIcs, pages 19:1-19:17. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020.
doi:10.4230/LIPICS.CONCUR.2020.19.

Bharat Adsul, Paul Gastin, Saptarshi Sarkar, and Pascal Weil. Asynchronous wreath product
and cascade decompositions for concurrent behaviours. Log. Methods Comput. Sci., 18, 2022.
doi:10.46298/LMCS-18(2:22)2022.

Bharat Adsul and Milind A. Sohoni. Asynchronous automata-theoretic characterization of
aperiodic trace languages. In Kamal Lodaya and Meena Mahajan, editors, F'STTCS 2004:
Foundations of Software Technology and Theoretical Computer Science, 24th International
Conference, Chennai, India, December 16-18, 2004, Proceedings, volume 3328 of Lecture Notes
in Computer Science, pages 84-96. Springer, 2004. doi:10.1007/978-3-540-30538-5_8.
Mikotaj Bojanczyk. Languages recognised by finite semigroups, and their generalisations to
objects such as trees and graphs, with an emphasis on definability in monadic second-order
logic, 2020. arXiv:2008.11635.

J.A. Brzozowski and Faith E. Fich. Languages of R-trivial monoids. Journal of Computer and
System Sciences, 20(1):32-49, 1980. doi:10.1016/0022-0000(80)90003-3.

Joélle Cohen, Dominique Perrin, and Jean-Eric Pin. On the expressive power of temporal logic.
Journal of Computer and System Sciences, 46(3):271-294, 1993. doi:10.1016/0022-0000(93)
90005-H.

Volker Diekert and Paul Gastin. Pure future local temporal logics are expressively complete
for Mazurkiewicz traces. Information and Computation, 204(11):1597-1619, November 2006.
d0i:10.1016/J.1IC.2006.07.002.

Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments of
first-order logic over finite words. Int. J. Found. Comput. Sci., 19(3):513-548, 2008. doi:
10.1142/S0129054108005802.

Volker Diekert, Martin Horsch, and Manfred Kufleitner. On first-order fragments for

Mazurkiewicz traces. Fundamenta Informaticae, 80(1-3):1-29, 2007. URL: http://content.

iospress.com/articles/fundamenta-informaticae/fi80-1-3-02.

Volker Diekert and Manfred Kufleitner. On first-order fragments for words and Mazurkiewicz
traces: a survey. In Proceedings of the 11th international conference on Developments in
language theory, pages 1-19, 2007.

Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific, 1995.
doi:10.1142/2563.

Werner Ebinger and Anca Muscholl. Logical definability on infinite traces. Theor. Comput.
Sci., 154(1):67-84, 1996. doi:10.1016/0304-3975(95)00130-1.

Kousha Etessami and Thomas Wilke. An until hierarchy and other applications of an
Ehrenfeucht-Fraisse game for temporal logic. Information and Computation, 160(1):88-108,
2000. doi:10.1006/inco.1999.2846.

Giovanna Guaiana, Antonio Restivo, and Sergio Salemi. On aperiodic trace languages.
In Christian Choffrut and Matthias Jantzen, editors, STACS 91, 8th Annual Symposium
on Theoretical Aspects of Computer Science, Hamburg, Germany, February 14-16, 1991,
Proceedings, volume 480 of Lecture Notes in Computer Science, pages 76—88. Springer, 1991.
doi:10.1007/BFB0020789.

5:19

CONCUR 2025

https://doi.org/10.1145/3661814.3662110
https://doi.org/10.4230/LIPICS.CONCUR.2020.19
https://doi.org/10.46298/LMCS-18(2:22)2022
https://doi.org/10.1007/978-3-540-30538-5_8
https://arxiv.org/abs/2008.11635
https://doi.org/10.1016/0022-0000(80)90003-3
https://doi.org/10.1016/0022-0000(93)90005-H
https://doi.org/10.1016/0022-0000(93)90005-H
https://doi.org/10.1016/J.IC.2006.07.002
https://doi.org/10.1142/S0129054108005802
https://doi.org/10.1142/S0129054108005802
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-02
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-02
https://doi.org/10.1142/2563
https://doi.org/10.1016/0304-3975(95)00130-1
https://doi.org/10.1006/inco.1999.2846
https://doi.org/10.1007/BFB0020789

5:20

Fragments of Temporal Logic over Traces

16

17

18

19

20

21

22

23

Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. University of
California, Los Angeles, CA, USA, 1968.

Manfred Kufleitner. Polynomials, fragments of temporal logic and the variety DA over
traces. Theoretical Computer Science, 376:89-100, 2007. Special issue DLT 2006. doi:
10.1016/J.TCS.2007.01.014.

Robert McNaughton and Seymour A Papert. Counter-Free Automata (MIT research monograph
no. 65). The MIT Press, 1971.

Madhavan Mukund and Milind A. Sohoni. Keeping track of the latest gossip in a distributed
system. Distributed Comput., 10(3):137-148, 1997. doi:10.1007/s004460050031.

M.P. Schiitzenberger. On finite monoids having only trivial subgroups. Information and
Control, 8(2):190-194, 1965. doi:10.1016/S0019-9958(65)90108-7.

Howard Straubing. Finite automata, formal logic, and circuit complexity. Birkhatiser Verlag,
Basel, Switzerland, 1994.

Wolfgang Thomas. On logical definability of trace languages. In V. Diekert, editor, Proceedings
of a workshop of the ESPRIT Basic Research Action No 3166: Algebraic and Syntactic Methods
in Computer Science (ASMICS), Kochel am See, Bavaria, FRG (1989), Report TUM-19002,
Technical University of Munich, pages 172-182, 1990.

Wieslaw Zielonka. Notes on finite asynchronous automata. RAIRO Theor. Informatics Appl.,
21(2):99-135, 1987. doi:10.1051/ita/1987210200991.

https://doi.org/10.1016/J.TCS.2007.01.014
https://doi.org/10.1016/J.TCS.2007.01.014
https://doi.org/10.1007/s004460050031
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1051/ita/1987210200991

	1 Introduction
	2 Preliminaries
	2.1 Trace basics
	2.2 Recognizable trace languages

	3 Algebra to temporal logic
	3.1 LocTL[YP] syntax and semantics
	3.2 Critical structures for a morphism into a R-trivial monoid
	3.3 Proof of Theorem 2 [1 - > 2]

	4 Logic to cascade products to algebra
	4.1 LocTL[YP_{i}] and its equivalence with LocTL[YP]
	4.2 Asynchronous devices and cascade product
	4.3 Proof of Theorem 2 [2 - > 3]
	4.4 Proof of Theorem 2 [3 - > 1]

	5 Results on related fragments

