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—— Abstract

A classical approach to studying Markov decision processes (MDPs) is to view them as state
transformers. However, MDPs can also be viewed as distribution transformers, where an MDP
under a strategy generates a sequence of probability distributions over MDP states. This view
arises in several applications, even as the probabilistic model checking problem becomes much
harder compared to the classical state transformer counterpart. It is known that even distributional
reachability and safety problems become computationally intractable (Skolem- and positivity-hard).
To address this challenge, recent works focused on sound but possibly incomplete methods for
verification and control of MDPs under the distributional view. However, existing automated
methods are applicable only to distributional reachability, safety and reach-avoidance specifications.
In this work, we present the first automated method for verification and control of MDPs
with respect to distributional omega-regular specifications. To achieve this, we propose a novel
notion of distributional certificates, which are sound and complete proof rules for proving that
an MDP under a distributionally memoryless strategy satisfies some distributional omega-regular
specification. We then use our distributional certificates to design the first fully automated algorithms
for verification and control of MDPs with respect to distributional omega-regular specifications.
Our algorithms follow a template-based synthesis approach and provide soundness and relative
completeness guarantees, while running in PSPACE. Our prototype implementation demonstrates
practical applicability of our algorithms to challenging examples collected from the literature.
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1 Introduction

Markov decision processes (MDPs) are a standard model for reasoning and sequential decision
making in the presence of uncertainty. The verification community has long studied MDPs
as state transformers, where their semantics are interpreted over cylinder sets of paths (see
e.g. [8]). As a result, quantitative verification questions focus on state-based properties, such
as the eventual reachability of a state with maximum probability over all MDP strategies.
There is a rich body of literature on efficient algorithms for reasoning about state-based
properties in MDPs, including model checking over expressive logics such as PCTL* [30].

An orthogonal class of objectives, which forms our focus in this paper, considers properties
that are defined over the space of probability distributions over MDP states, rather than the
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state space of the MDP. This allows one to reason about the movement of the probability
mass, for instance, one can say that always in the future the probability mass is equally
divided between two bi-stable states. Such objectives, that we call distributional objectives,
are simpler to reason about under alternative semantics which view MDPs as distribution
transformers. In this view, starting from some initial distribution over MDP states, the MDP
under a strategy induces a sequence of distributions over MDP states, generating a new
distribution at each time step. One can then specify properties with respect to this sequence of
distributions, such as distributional reachability or safety. This view naturally arises in several
applications, including multi-agent systems [9, 5] or biochemical reaction networks [29, 28].
However, it turns out that even the simplest distributional properties such as distributional
reachability and safety cannot be expressed in PCTL* [10], rendering classical probabilistic
model checking algorithms inapplicable to reasoning about distributional specifications. This
means that reasoning about distributional properties in MDPs requires new methods. The
past decade has seen a rich line of theoretical work on analyzing Markov chains and MDPs
as distribution transformers [31, 29, 11, 6, 4, 5, 2, 26]. However, existing automated methods
are restricted to distributional reachability, safety, or reach-avoidance specifications.

In this paper, we present the first automated method for strategy verification and synthesis
in MDPs with respect to distributional w-reqular specifications, significantly extending the
class of distributional objectives for which automated methods are available. In doing so, we
focus on the verification problem for a given MDP strategy, as well as the control problem
which asks to synthesize an MDP strategy which ensures that a distributional w-regular
specification is satisfied. Our strategy verification and synthesis methods are based on the
novel notion of distributional certificates which we introduce in this work. Distributional
certificates provide a sound and complete proof rule for proving that an MDP under a
distributionally memoryless strategy satisfies the distributional w-regular specification of
interest. We restrict our attention to distributionally memoryless strategies, which make
moves based on the current distribution rather than the state, and which are known to be
sufficient for reasoning about distributional reachability and safety [4, 5]. Our distributional
certificates build on the ideas from program verification and certificates such as ranking
function [22], invariants [21] or Biichi ranking functions [17], and bring these ideas to the
setting of reasoning about distributional w-regular specifications in MDPs.

We then present our automated algorithms for strategy verification and synthesis in
MDPs with respect to distributional w-regular specifications. In the setting of distributional
objectives, it is known that safety and reachability are already hard, or more precisely,
positivity and Skolem-hard [3]. The decidability of both are long-standing open problems
in linear dynamical systems [32]. As a result, rather than aiming for sound and complete
algorithms that would inherently be computationally expensive/infeasible, we adopt a
template-based synthesis approach and instead design algorithms that can more efficiently
search for distributional certificates and distributionally memoryless strategies that can be
expressed in affine arithmetic. By fixing symbolic affine templates for the certificate and the
strategy and by using existing methods for solving quantified formulas over real arithmetic,
one is able to reduce the strategy verification and synthesis problems to satisfiability checking
in existential theory of the reals, therefore obtaining sound algorithms that run in PSPACE.
Furthermore, our algorithms also provide relative completeness guarantees for computing an
affine distributional certificate and a memoryless strategy, whenever they exist.

We implement our approach and consider standard benchmarks and examples from the
literature, while focusing on several distributional w-regular specifications for our evaluation.
Our results show the practicality of the approach and the potential for future applications.
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Related work. In addition to the work already mentioned, we discuss a (non-exhaustive
list of) few others. Our distributional certificates draw insights from classical certificates
for program verification and template-based synthesis algorithms for their computation.
Notable examples include ranking functions for proving termination in programs [22, 13] and
invariants for proving safety in programs [21, 14]. Our distributional certificates draw insights
from Biichi ranking functions of [17] for proving LTL properties in programs. However, there
are several important differences. First, we leverage and lift the idea of Biichi ranking to the
setting of probability distributions over MDP states. Second, our distributional certificates
and algorithms for their computation also need to reason about strategies in MDPs. This is
reflected in the following key difference. Our certificates provide soundness and completeness
guarantees for all distributional w-regular specifications and distributionally memoryless
strategies, and proving this requires reasoning about reachability under a strategy (see
the proof of Theorem 9). The certificate of [17], on the other hand, is complete only for
specifications that can be represented via deterministic Biichi automata, if the specification
needs to be satisfied from a set of initial states (see Corollary 2 in [17]).

In the distributional setting, the probabilistic logics defined in [10, 11, 2] are all orthogonal
to the classical semantics, and the model checking techniques developed are not template-
based. To the best of our knowledge, none of these works have been automated. The works [4,
5] propose certificates for distributional reachability, safety and reach-avoidance and design
template-based synthesis algorithms for their computation. Our paper follows this line of work
and introduces distributional certificates and template-based algorithms for distributional
w-regular specifications, hence significantly generalizing the class of distributional properties
that we can automatically reason about.

Certificates were also used for reasoning about infinite-state probabilistic models such as
probabilistic programs under the state-based view. In particular, supermartingale certificates
were proposed for qualitative reachability [12, 15], quantitative reachability, safety and reach-
avoidance [33, 19, 34, 18, 35], and most recently for qualitative w-regular specifications [1].
However, these certificates are not, a priori, applicable to the distributional setting.

2 Preliminaries

In this section, we recall the basics of probabilistic systems and Markov decision processes. A
probability distribution over a countable set X is a map p : X — [0,1] such that }__ u(z) =
1. The support of X is defined via supp(p) = {x € X | u(x) > 0}. We use A(X) to denote
the set of all probability distributions over X.

MDPs. A Markov decision process (MDP) is a tuple M = (S, Act, P). We use S to denote
a finite set of states and Act to denote a finite set of actions. Slightly overloading the notation,
for each state s € S, we write Act(s) C Act to denote the set of available actions at s. Finally,
P : 8 x Act — A(S) is a transition function, assigning to each state s and available action
a € Act(s) a probability distribution over the succcessor states. When |Act(s)| =1 for each
state s, we say that M is a Markov chain.

An infinite path in an MDP is a sequence p = s1, a1, 83, a9, -+ € (S X Act)¥, such that
a; € Act(s;) and P(s;,a;)(s;+1) > 0 for all i € N. A finite path ¢ in an MDP is a finite prefix
of an infinite path that ends in a state. We use p; and p; to denote the i-th state along an
(in)finite path. We use IPathsaq and FPathsag to denote the sets of all infinite and finite
paths in the MDP M, respectively.

6:3
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Semantics of MDPs. The semantics of MDPs are formalized in terms of strategies. A
strategy (or policy) in an MDP M is a function 7 : FPathsg — A(Act) which to each finite
path (called a history) assigns a probability distribution over the action to be taken next.
We require that, if a finite path ¢ € FPathsy ends in a state s, then supp(w(g)) C Act(s). A
strategy is said to be memoryless if the probability distribution over actions depends only on
the last state of the finite path and not on the whole history, i.e. if 7(0) = 7(0’) whenever p
and ¢’ end in the same state. For every initial state distribution po € A(S), an MDP M and
a strategy 7 together give rise to a probability space over the set of all infinite paths in the
MDP [8]. We denote by P, the probability measure and by EJ the expectation operators in
this probability space, omitting the MDP M from the notation when clear from the context.

MDPs as distribution transformers. MDPs are typically regarded as random generators
of infinite paths, giving rise to a probability space over the set of all infinite paths in the
MDP. Classical probabilistic model checking problems then explore the expected behaviour
of these randomly generated infinite paths, giving rise to path properties [8]. However, one
can also view MDPs as (deterministic) transformers of distributions.

Consider an MDP M, a strategy =, and an initial state distribution pg € A(S). For each
i € N and state s, define p;(s) =P [p € IPathsy | p; = s|, i.e. the probability that the i-th
state of a randomly generated infinite path is s. We write p; = M™ (g, ) for the induced
probability distribution of the i-th state of a randomly generated infinite path. Hence, the
MDP M, a strategy 7, and an initial state distribution uo € A(S) together give rise to a
sequence of probability distributions over the MDP states

pos  p1 = M"(po, 1), po = M (po,2), pz = M"(po,3),

One can then study properties of this sequence of distributions. Some examples are distribu-
tional reachability and distributional safety, which ask if the induced sequence of distributions
contains or does not contain an element of some specified set of distributions [4, 5].

w-regular specifications. In this work we will consider w-regular specifications, which
subsume a broad class of specifications such as those belonging to linear temporal logic (LTL)
or computation tree logic (CTL) [8]. An w-regular specification over a finite set AP of atomic
propositions is defined by a non-deterministic Biichi automaton (NBA) N =(Q, 3,9, qo, F),
where Q is a finite set of states, ¥ = 2*P is a finite set of letters, § : Q x ¥ — 29 is a
(non-deterministic) transition function, go € @ is the initial state and F' C @ are accepting
states. An infinite word of letters 01,09, -+ € ¥ is said to be accepting, if it gives rise to at
least one accepting run in N, i.e. if there exists a run qg, q1, go, - . . such that g;+1 € §(q;, 03)
for each i and such that g; € F for infinitely many i. Note that given an LTL formula ¢,
it can be converted to an equivalent NBA N¥ in exponential time (see e.g., [8]). In what
follows, we will often write examples and benchmarks in LTL as it will be easier and often
more intuitive. But for our analysis, we will convert them to their equivalent NBA and
reason only about these NBA as the w-regular specification.

Transition systems. In order to reason about the synchronous evolution of a sequence of
distributions over the MDP states and a run in the NBA, we will later introduce the notion
of product distributional transition systems in Section 4. Hence, we here recall the notion of
transition systems, which are commonly used to model imperative numerical programs.

An (infinite-state) transition system is a tuple T = (L, V, linit, Oinit, —), where

L is a finite set of locations,

V is a finite set of real-valued variables,
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linit € L is the initial location,

Oinit C RIVI is the set of initial variable valuations, and

— is a finite set of transitions of the form 7 = (1,12, G, U,) with [, a source location,

I’ a target location, G, a guard which is a boolean predicate over the variables in V', and

U, : R" — R™ an update function.
A state in the transition system is a tuple (I,z) € L x RVl consisting of a location in L and
a valuation of variables in V. A transition 7 = (I.,1,,G,,U,) is said to be enabled at a state
(I,z)if l =1; and = = G.. An infinite path (or a run) in the transition system is a sequence
of states (lg, zo), (I1,21), ... with lgp = lini, o € Init, and where for each i € Ny there exists
a transition 7; = (I;,l;+1, G+, U;) enabled at (I;, x;) such that x;41 = U, (z;). A state (I, z)
is said to be reachable, if there exists an infinite path that contains (I, x).

3 Problem Statement

We now formally define the problems that we consider in this work. Our goal is to design
fully automated algorithms for formal verification and control in MDPs with respect to
distributional w-regular specifications. Hence, we first need to formalize the notion of
distributional w-regular specifications. In what follows, let M = (S, Act, P) be an MDP.

Distributional w-regular specifications. Similarly to the classical w-regular specification
setting, we first need to specify a finite set of atomic propositions AP. We are interested in
reasoning about a sequence of distributions induced by an MDP under a strategy. Hence, we

let the set AP consist of finitely many logical formulas of the form exp(u(s1), ..., u(s)s))) > 0.

Here, exp : RISl — R is an arithmetic expression over the probabilities pu(s1), ... ,1(s)s)) of
being in each state of the MDP, where s1,..., /g is an arbitrary (but throughout fixed)
enumeration of MDP states. In practice, we let AP contain exactly those atomic propositions
that appear in the property that we want to reason about. A distributional w-reqular
specification ¢ is then defined by an NBA N¥ = (Q, %, 4, qo, F) with 3 = 24P,

We now define the semantics of distributional w-regular specifications. Consider a finite
set of atomic propositions AP, a distributional w-regular specification ¢, a strategy = and
an initial distribution g € A(S) in the MDP M. The MDP M under strategy m from the

initial distribution p induces an infinite word o, 01,02, ... in the language 2AP ag follows.
As defined in Section 2, an MDP M under strategy m from the initial distribution po induces
a sequence g, t1, (o, - - . of distributions over MDP states. Then, for each i € Ny, we define

the letter o; as the set of all atomic propositions in AP that are satisfied at the distribution
Wi, i.e. o; = {p € AP | u; = p}, where we use |= to denote proposition satisfaction. We say
that the MDP M satisfies distributional w-regular specification ¢ under strategy 7 from
initial distribution pug € A(S), if this infinite word og, 01,09, ... is accepted by the NBA N¥.

Distributionally memoryless strategies. We restrict our attention to a class of strategies
called distributionally memoryless strategies. A strategy m : FPathspy — A(Act) is said
to be distributionally memoryless if the probability distribution over actions prescribed by
the strategy depends only on the current distribution over the MDP states and not on the
whole history. Formally, we require that for any initial distribution pg € Init and for any two
finite runs p = s, ag, $1,4a1,. ..,y and p’ = s, ay, $4,al, ..., s, that induce the sequences of
probability distributions g, g1, - . ., b, and pg, gy, . ., pl, with g, = pl,, we have 7(p) = w(p’).
When the strategy 7 is distributionally memoryless, we write M™(u) = M™(u, 1) to denote
an application of a single-step distribution transformer operator.

6:5
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0.5

Figure 1 An MDP which will serve as our running example. The MDP contains three states
S ={A, B,C}, two actions Act = {a,b} with Act(A) = {a,b}, Act(B) = {a}, Act(C) = {a}, and
its transition function is defined via P(A,a)(A) =1, P(A,b)(B) =1, P(B,a)(C) =1, P(C,a)(C) =
P(C,a)(A) = 0.5. We consider a singleton initial distribution set Init={(A: %, B: 1, C: 1)}

It was shown in [4, 5] that distributionally memoryless strategies are sufficient for reasoning
about distributional reachability, safety and reach-avoid specifications. That is, for each
of these distributional specifications, there exists a strategy in the MDP under which the
specification is satisfied if and only if there exists a distributionally memoryless strategy in
the MDP under which the specification is satisfied. While this result need not necessarily
hold for distributional w-regular specifications, the restriction will be needed for enabling
automated verification and synthesis as they can be represented in a more compact form.

Problem statement. We are now ready to define our strategy verification and synthesis

problems. Consider an MDP M, a set of initial distributions Init C A(S), and a distributional

w-regular specification ¢:

1. Strategy verification problem. Given a distributionally memoryless strategy 7, verify
that the MDP M satisfies ¢ under 7 from every initial distribution po € Init.

2. Strategy synthesis problem. Compute a distributionally memoryless strategy 7, such
that the MDP M satisfies ¢ under 7 from every initial distribution po € Init.

» Example 1 (Running example). The MDP shown in Fig. 1 was considered in [4] for studying
distributional safety specifications and it will serve as our running example. We consider
the strategy synthesis and verification problems with respect to the distributional w-regular
specification ¢ = G F (p(B) > 0.249). For readability, we specify ¢ as an LTL formula over
the set of atomic propositions AP = {(u(B) > 0.249)}. This is an example of a distributional
persistence specification, which specifies that the sequence of distributions g, p1, ... should
contain infinitely many distributions u; with u;(B) > 0.249. The goal of strategy synthesis
is to compute a strategy under which ¢ is satisfied. An example of such a strategy is a
(distributionally) memoryless strategy = which in state A takes action b with probability 1.
The goal of strategy verification is to verify this claim.

» Remark 2 (Problem hardness). The problem of determining if an MDP M under a dis-
tributionally memoryless strategy m satisfies a distributional w-regular specification ¢ is
computationally hard. It was shown to be Skolem-hard already in the very restricted setting
when M is a Markov chain (so the strategy 7 is trivial) and ¢ is a distributional reachability
specification for an affine set of goal distributions {u € A(S) | p(s1) = 0.25} [3].

» Remark 3 (Universal and existential satisfaction problems). In the terminology of [5] which
considered distributional reachability and safety specifications, our problem corresponds to
the universal satisfaction setting, where the specification needs to be satisfied from every
initial distribution pg € Init. Dually, one can also consider the existential satisfaction setting,
where the specification needs to be satisfied from at least one initial distribution g € Init.
While we will focus on the universal satisfaction setting for ease of presentation, we also show
that all our results straightforwardly extend to the existential satisfaction setting as well.
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» Remark 4 (Memoryless vs distributionally memoryless strategies). Note that distributionally
memoryless strategies are not necessarily memoryless (in the “classical” state-based sense).
This fact was already shown in [4] for distributional safety specifications, where one may
require infinite memory as well as randomized strategies in order to satisfy the specification.
This is in stark contrast with the state-based view, where deterministic memoryless strategies
are sufficient for specifications such as reachability and safety [8].

4 Certificate for Distributional w-regular Specifications

We now present our sound and complete certificate for proving that an MDP under a
distributionally memoryless strategy satisfies some distributional w-regular specification,
which is the main theoretical contribution of this work. In Section 5, we will present our
algorithms for automated synthesis and verification of strategies in MDPs with respect to
distributional w-regular specifications, where the certificate will play a central role.

In what follows, we fix an MDP M = (S, Act, P), a set of initial distributions Init, a
distributionally memoryless strategy 7, and a distributional w-regular specification ¢ defined
over atomic propositions AP with an NBA N¥ = (Q, X, 6, qo, F) where ¥ = 2AP,

4.1 Product Distributional Transition System

Recall from Section 2 that, for each initial distribution in Init, the MDP M and the strategy
7 induce a sequence of distributions over the MDP states. This sequence gives rise to an
infinite word in the language 2*” and a run in the NBA N¥. In what follows, we introduce
product distributional transition systems (PDTS), which will allow us to synchronously
reason about the distribution sequence and the NBA run.

» Definition 5 (Product distributional transition system). Let M = (S, Act, P) be an MDP,
Init be a set of initial distributions, w be a distributionally memoryless strategy, and N¥ =
(Q,2”7.6,qo, F) be an NBA for some distributional w-reqular specification ¢ defined over
atomic propositions AP. A product distributional transition system (PDTS) is a transition
system T = (L™, V> 170, 0700,—7), where

L* = Q is the set of states of N¥;

V> = {u1,..., s} is a finite state of real-valued variables, with each variable ji;

corresponding to the probability of being in an MDP state s;;

1 = qo is the initial state of N¥;

i = Init is the set of initial distributions in M; and

—X= {(¢,¢,G(0),M™) | ¢, € Q,0 € 2P ¢’ € &(q,0)}, where G(c) = (Apeop) N

(Apear\oD) is the predicate defined by atomic propositions contained in o, and M7 is the

linear function defined by the single-step distribution transformer operator of M and .

» Example 6. Fig. 2 left shows the NBA for the distributional specification ¢ = GF (p(B) >
0.249) considered in Example 1. Fig. 2 right then shows the PDTS of our running example
MDP in Fig. 1 and the NBA. The PDTS has the same set of locations L* = {qo, q1} as the
NBA and the set of variables V* = {1, 2, p3} corresponding to the probabilities of being
in MDP states A, B, C. The initial location is linit = go and the set of initial distributions is

Init = {(4: %7 B: %, C: %)} Finally, the three PDTS transitions are shown in Fig. 2.

Note that PDTS indeed models a synchronous execution of a sequence of distributions
over MDP states and a run in the NBA. Each infinite path (qo, it0), (g1, pt1), - - . in the PDTS
starts from a state (qo, o) € {qo} X Init. Then, for each state (g;, u;) along the infinite path,
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p(b) >
(p(b) < 0.249) po=M" ()
(p(b) > 0.249)

11 1
VX = (§7§,§)
—_—
start —> @
true

true p = M7 (p)

Figure 2 The figure on the left shows the NBA for distributional specification ¢ = GF(p(b) >
0.249). The figure on the right then shows the PDTS of the MDP in Fig. 1 with the strategy that
in state A takes action b with probability 1, and the NBA on the left. Each PDTS transition is
labeled with its guard (top line) and its update function (bottom line). We write p' = M7 (u) as a
shorthand notation for p/ = {A: 0.5 u(C), B : u(A),C : u(B) + 0.5 - u(C)}.

the next state is obtained by applying some enabled transition (g;, ¢;+1,G(0;), M™). For the
transition to be enabled, we must have o; = {p € AP | u; |= p} be the unique letter defined
by all atomic propositions satisfied in p;. The PDTS then moves to a state (g1, it+1)s
where ;11 = M™(u;) is indeed the next distribution in the sequence and ¢;+1 € §(g;, 0;) is
indeed a successor state in the NBA.

An infinite path (qo, po), (g1, 1), - .. in the PDTS is accepting if (g;, ;) € F x A(S) for
infinitely many ¢ € Ny, i.e. if it visits states with locations belonging to the accepting set of
the NBA infinitely often. The following proposition formalizes the relationship between the
satisfaction of a distributional w-regular specification in the MDP and the existence of an
accepting infinite path in the PDTS. We state the proposition for a single initial distribution
1o € Init, so that it is applicable both in the universal and the existential satisfaction problem
settings (see Remark 3).

» Proposition 7. An MDP M with an initial distribution py € A(S) satisfies a distributional
w-reqular specification ¢ under a distributionally memoryless strategy 7 if and only if there
exists an accepting infinite path in the PDTS T> = (LX, V>, 12, 0% . —>).

s Yingty VY inet?

Proof. Suppose that MDP M with initial distribution g satisfies distributional w-regular
specification ¢ under distributionally memoryless strategy m. Let pq, f41, ... be the sequence
of distributions induced by the MDP M under strategy =, and let og,01,... be the induced
infinite word from the initial distribution pg. By the definition of satisfiability of distributional
w-regular specifications in Section 3, the infinite word og, 01, ... is accepted by the NBA
N¥. Hence, there exists a run ¢g,qi1,... in N¥ such that g;11 € 6(g;,0;) for each i € N.
But this also means that (qo, o), (g1, 141),... is an accepting path in the PDTS 7> =
(L*, VX 1502 —>), which proves one direction of the proposition.

Conversely, suppose that there exists an accepting infinite path (go, po), (g1, 1), - - . in the
PDTS 7> = (L*, V>, 1., 02:,—>). Then, by the definition of transition update functions
in the PDTS, we know that pg, tt1,... is the sequence of distributions induced by the MDP
M under strategy m. Moreover, by the definition of transition guards in the PDTS, we
know that g;+1 € 0(g;,0;) for each i € N with o; being the unique letter defined by atomic
propositions in AP satisfied in p;. Hence, qg, g1, - .. is an infinite run in the NBA N¥ induced
by the infinite word og, 01, .... But from the fact that (go, po), (q1, 1), .- is an accepting
run in the PDTS, it follows that ¢; € F for infinitely many ¢ € N and so the infinite word
09,01, ... is accepted by the NBA N?¥. By the definition of satisfiability of distributional
w-regular specifications in Section 3, this implies that MDP M with initial distribution ug
satisfies specification ¢ under strategy 7, which concludes our proof. <



S. Akshay, O. Neysari, and D. Zikeli¢

4.2 Distributional Certificates

We are now ready to define our notion of distributional certificates. A distributional certificate
is a pair (C, ) that consists of two components — a distributional Biichi ranking function C
and a distributional invariant I. The distributional Biichi ranking function C : @ x A(S) — R
is a function that to each state of the PDTS assigns a real value, which is required to satisfy
two conditions. First, the Initial condition requires the value of C to be non-negative at
all initial states of the PDTS. Second, the Biichi ranking condition requires that, for every
reachable state in the PDTS at which the value of C is non-negative, there exists at least one
successor state at which non-negativity is preserved. Furthermore, the value of C decreases
by at least 1 if the state is not contained in the accepting set of the PDTS. We prove in
Theorem 9 below that these two conditions are necessary and sufficient to ensure that, for
every initial state (qo, po) in the PDTS, there exists an accepting infinite path in the PDTS.

Note that the Biichi ranking condition needs to be satisfied only at reachable states of
the PDTS. However, the problem of determining the exact set of reachable states is not
feasible. Hence, with later automation in mind, we append our certificate with a distributional
invariant T C @ x A(S), which is a set that over-approximates the set of reachables states in
the PDTS. This is ensured by extending the Initial condition to require that all initial states
of the PDTS are contained in the invariant I, and by extending the Biichi ranking condition
to require that the successor state described above is also contained in the invariant I.

The following definition formalizes this intuition. In what follows, for each letter o € 24P
and distribution p € A(S), we write u = G(0) as a shorthand for u = (Apeop) A(Apear\o—P)-

» Definition 8 (Distributional certificate). A distributional certificate for an MDP M with a
set of initial distributions Init, a distributionally memoryless strategy 7, and a distributional w-
reqular specification @ with NBA N, is a tuple (C,I) consisting of a function C : Q x A(S) —
R and a set I C Q x A(S), such that the following conditions hold:

Initial condition. For all g € Init, we have C(qo, o) > 0 and (qo, o) € I.

Biichi ranking condition. We have the following:

Non-negativity at accepting states. For all NBA states q € F and letters o € 2AP,
VueRSL\/ peAWS) A pkGlo) AClg,p) =0 A (gp) €T
q'€6(q,0)
— C(g M () > 0 A (g, M7 (i) € 1. (1)

Strict decrease and non-negativity at non-accepting states. For all NBA states q ¢ F
and letters o € 2AP

VueRPL\/ neAS)AuEGO) ACgn) =0A (gp) €l
q'€d(q,0)

= Clg,p) =1 2C(¢, M () 20 A (¢, M () 1. (2)

The following theorem establishes that distributional certificates provide a sound and
complete proof rule for proving that an MDP under a distributionally memoryless strategy
satisfies a distributional w-regular specification.

» Theorem 9 (Soundness and completeness). An MDP M with a set of initial distributions Init
under a distributionally memoryless strateqy m satisfies a distributional w-regular specification
@ if and only if there exists a distributional certificate for M, Init, T and .

6:9
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Proof.

Soundness. Suppose that there exists a distributional certificate (C, I) for M, Init, 7 and ¢.
To show that ¢ is satisfied, by Proposition 7 it suffices to show that the PDTS 7 admits
an accepting infinite path for every initial state in {go} X Init.

Fix an initial state (qo, tt0) € {go} X Init. By the Initial condition in Definition 8, we know
that C(qo, o) > 0 and (qo, po) € I. Hence, by the Biichi ranking condition in Definition 8,
we can repeadly select successor states in order to obtain an infinite path (qo, o), (¢1, 1), - - -
in 7 such that, for each i € Ny, we have

C(qi, ;) > 0 and (g;, ;) € I, and

whenever ¢; ¢ F' is not an accepting state in N®, we have C(g;, ;) — 1 > C(git1, thit1)-
We claim that (qo, £0), (q1, 41), - - . is an accepting infinite path in 7*. To prove this, note
that for every (g;, ;) with ¢; € F, the value of C needs to keep decreasing by at least 1 in
each subsequent step while also remaining non-negative. Hence, in at most [C(g;, ;)] steps,
the path must again reach an accepting state. Thus, the infinite path (qo, po), (q1, 1), - - -
reaches accepting states in F' x A(S) infinitely many times and is an accepting infinite path.
Since the initial state (qo, 10) € {qo} X Init was arbitrary, this concludes the proof.

Completeness. Conversely, suppose that M with a set of initial distributions Init under
distributionally memoryless strategy 7 satisfies distributional w-regular specification ¢. We
construct an instance (C, I) of a distributional certificate for M, Init, 7 and ¢ as follows.

Consider an arbitrary but throughout fixed enumeration gz, ..., qjq| of NBA states. We
define an operator NEXT : Q x A(S) — @ x A(S) via

NEXT(q, ) = (g5, M™ (1)) with i being the smallest index such that (q, ), (g;, M (1))

are successor states along some accepting infinite path in the PDTS; if such an accepting

infinite path exists, or

NEXT(q, pt) = (g, i), otherwise.
In other words, NEXT(q, 1) fixes a successor state of (g, ) along some accepting infinite
path in the PDTS if such a path exists, or halts the sequence at the state (¢, 1) otherwise.
Therefore, the transitive closure of the operator NEXT(q, pt) from the set of initial PDTS
states {qo} X Init allows us to consistently fix a unique accepting infinite path for each state
(g, 1) that is contained along some accepting infinite path.

We can now define our distributional certificate (C,I). Let distributional invariant
I C Q x A(S) be the set of all states in the PDTS that are reachable from {go} x Init under
the transitive closure of the NEXT operator. Moreover, for each PDTS state (¢, 1) € I, let
daccept (¢, i) denote the number of steps when applying the NEXT operator until an accepting
state in F' x A(S) is reached, with daccept (¢, 1) = 0 if (g, 1) € F x A(S) is an accepting state.
Finally, let the distributional Biichi ranking function C be defined via

C(q M) _ daccept (qa ,LL), lf (Qa :U‘) € Ia
7 -1, otherwise.

We claim that (C,I) is an instance of a distributional certificate. The Initial condition
in Definition 8 is satisfied since the MDP M under strategy p satisfies o, therefore every
initial state (qo,u) € {qo} x Init belongs to some accepting infinite path in the PDTS
and so (go, ) € I and daccept(go, #) > 0. On the other hand, by the definition of the
NEXT operator and I, for each (g, ) € I we have that also NEXT(q, ) € I. Moreover,
NEXT(g, tt) = daccept (¢, ) —1 > 0 if ¢ ¢ F and NEXT(g, ) > 0 id ¢ € F. Hence, the Biichi
ranking condition in Definition 8 is also satisfied, and (C, I) is a distributional certificate. <«
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» Example 10. Consider again the MDP in Fig. 1. As in Example 1, consider the strategy
m which in state A takes action b with probability 1, and the distributional specification
¢ =GF (p(B) >0.249). An NBA for ¢ and the resulting PDTS are shown in Fig. 2. The
following is an example of a distributional certificate (C,I) for M, Init, 7 and :

14250 - u(A) + 750 - u(C), if ¢ = qo,

Clq,pn) =
(@) {1.25 —1.25- u(C), if ¢ = qu,

and 1= {(qo, 1) | 1.25 + u(A) + 1+ p(B) — p(C) = 0} U { (a1, 1) | j(A) +0.25 - pu(B)}.

One can verify by inspection that the Initial condition and the Biichi ranking condition
in Definition 8 are satisfied. We note that the above distributional certificate (C,I) is the
certificate computed by our prototype implementation in Section 6.

» Remark 11 (Distributional certificates for the existential problem). As discussed in Section 2
and Remark 3, our distributional certificate in Definition 4.2 and our soundness and com-
pleteness result in Theorem 9 consider the universal satisfaction setting. However, their
extension to the existential setting is immediate. The only required change in the definition
of distributional certificates is to require the Initial condition in Definition 4.2 to hold for
some initial distribution pg € Init. On the other hand, the soundness and completeness proof
proceeds analogously as in the proof of Theorem 9, with the difference in the completeness
proof being that the distributional invariant I is defined as the transitive closure of the NEXT
operator with the singleton initial set {(qo, po)}, rather than the initial set {go} x Init.

5 Template-based Strategy Verification and Synthesis with Certificates

We now present our algorithms for the strategy verification and synthesis problems for
distributional w-regular specifications. The core of the verification algorithm is to synthesize
an affine distributional certificate in the PDTS of the input MDP and the specification,
which proves that the specification is satisfied. When we move from strategy verification to
strategy synthesis, we also synthesize an affine distributionally memoryless strategy.

The restriction to affine distributional certificates and affine distributionally memoryless
strategies is needed to ensure tractability. While Theorem 9 establishes soundness and
completeness of our distributional certificates, in combination with Remark 2 it also implies
that giving a sound and complete algorithm for synthesizing distributional certificates is
Skolem-hard. Hence, in this section, we instead focus on designing sound and relatively
complete algorithms for synthesizing an affine distributional certificate together with an affine
distributionally memoryless strategy (the latter for the synthesis problem), when they exist.

Affine distributional certificates and strategies. We first formalize the notions of affine
distributional certificates and distributionally memoryless strategies:
Affine distributional certificates. A distributional certificate (C, I) is said to be affine
if both the distributional Biichi ranking function C and the distributional invariant I
can be expressed in terms of affine expressions and inequalities over the space A(S) of
probability distributions over MDP states. We require C to be of the form

S|

C(Qa ,LL) = Z ag ’ M(Sl) + bqv (3)
i=1

where af, ..., ai’s‘,bq are some real valued coefficients for each NBA state ¢ € Q. That

is, for each NBA state ¢, the function C(g,-) is an affine function over the probabilities
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of being in each MDP state, with p(s1),...,u(s|y|) being the variables that capture
probabilities of being in each MDP state and af, ... ,a‘qsqu being the coefficients of the
affine function. Similarly, we require I to be a set defined by a conjunction of N; affine
inequalities over the probabilities of being in each MDP state, i.e. to be of the form

1= {(n.) € AWS) x Q| AN T* (g, 1) 2 0}, (4)
where each I*(q, ) = Ziill T p(s) +dH1 >0 and &9 cfé‘f, d* are some real

valued coefficients for each NBA state ¢ € @Q and each k € {1,..., N;}. The number Ny
is referred to as the size of the invariant and will be an algorithm parameter.

Affine distributionally memoryless strategies. A distributionally memoryless
strategy m : A(S) — A(Act) is said to be affine, if for each state s € S, action a € Act
and state distribution pu € A(S), the probability of taking action a in state s given the
current distribution over states p is of the form

S €0 i) + FTa
(s, a) (1) = \é\ 77; ) (5)
dich 9is® p(si) + h3

where €T ¢ ..., €lsls,a0 faa and g7 g, ... 19[5),> hT are real valued constants. The denom-
inator is used in order to normalize the probabilities such that the sum of probabilities of
all actions being taken at a state s is 1.

Algorithm input. Both our verification and synthesis algorithms take as input an MDP M =
(S, Act, P), a set of initial distributions Init, and a distributional w-regular specification ¢
defined over atomic propositions AP. We assume that the distributional w-regular specification
is provided via an NBA N¥ = (Q, %, 6, qo, F') with letters ¥ = 2P which accepts the same
set of infinite words over 2AP as (. Finally, the algorithms also take as input the size of the
invariant Ny that needs to be synthesized. The verification algorithm in addition takes as
input an affine distributionally memoryless strategy m.

Algorithm overview. Both verification and synthesis algorithms follow a template-based
synthesis approach and proceed in four steps. In the first step, the PDTS of the input MDP
and the distributional specification is constructed. In the second step, the algorithms fix a
symbolic template for the affine distributional certificate, i.e. symbolic variables for each real
valued coefficient in affine expressions that define the certificate. The synthesis algorithm
also fixes a symbolic template for the affine distributionally memoryless strategy. In the third
step, the algorithms collect a system of constraints over the symbolic template variables,
that together encode all defining conditions of distributional certificates in Definition 8 as
well as conditions for the strategy template to define a valid distributionally memoryless
strategy (the latter for the synthesis algorithm). Finally, in the fourth step, the collected
system of constraints is solved by using an SMT-solver, to get a concrete valuation of the
symbolic template variables which in turn gives rise to a distributional certificate and a
distributionally memoryless strategy. In what follows, we detail each of these four steps.

Step 1: Constructing the PDTS. In this step, the PDTS T* = (LX, VX, 1., 0:.,—>)

init> Yinit»

is constructed from the given MDP M and the NBA N¥. as explained in Section 4.1.
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Step 2: Fixing templates. The algorithms fix a template for the affine distributional certi-
ficate (C, I), while the synthesis algorithm also fixes a template for the affine distributionally
memoryless strategy m. The novelty, compared to prior work on verification and synthesis
for distributional reachability and safety specifications [4, 5], lies in a more complex template
design for the distributional certificate, which is now defined with respect to the PDTS:
Template for C. Recall that an affine distributional Biichi ranking function is of the
form C(q, p) = Z‘S| - p1(s;) + b7 as in eq. (3). Hence, the template for C is defined by
introducing a set of symbolic template variables af, ... ,afs‘ , b7 for each NBA state ¢ € Q.
Template for I. Similarly, the template for an affine distributional invariant I is of the
form as in eq. (4). Hence, the template for I is defined by introducing a set of symbolic
template variables clf’q,. \SI ¢ d*4 for each NBA state ¢ € Q and each k € {1,..., Ny},
where Ny is the algorithm parameter that specifies the size of the invariant.
Template for 7 (synthesis algorithm). The template for an affine distributionally
memoryless strategy 7 is of the form as in eq. (5), hence it is defined by introducing
symbolic template variables 7, ,,..., eTSLW, Jeo and g7, ... ’gﬁ?l,s’ h7 for each state
s € S and action a € Act. Note that, in the special case when we are interested in
synthesizing memoryless strategies instead of distributionally memoryless strategies, the
strategy template becomes simpler. Instead of the template as in eq. (5), we introduce a
single symbolic template variable pf , for each state-action pair s € S and a € Act, to
encode the probability of taking action a in state s.

Step 3: Collecting constraints. In this step, the algorithms collect a system of constraints
over the symbolic template variables that together encode that C and Z indeed define a valid
distributional certificate. For the synthesis algorithm, we also collect a system of constraints
that encode that 7 defines a valid distributionally memoryless strategy. In each of the
following constraints, each appearance of C, Z and  is replaced by the symbolic template
introduced in Step 2, in the form as in eq. (3), (4) and (5). Moreover, we write p € A(S) for
the conjunction of affine inequalities /\Lill (i > 0) A(pr 4+ 4 pysp = 1).
Initial condition. We define
Nr
Dinie =V € RIS e A(S) A p € Init = C(qo, ) >0 A /\ I*(qo, 1) > 0.
k=1
Biichi ranking condition for accepting states. For each accepting state ¢ € F' and
letter o € 2AP in the NBA, we define

Nr
Cpichigo =V RIS \/ peAS) ApEGO) ACqu) =0 A N\ IFqp) >0
q’'€d6(q,0) k=1

Ny
— C(¢', M () 20 A N\ TF(M™(d, ) > 0.

k=1

Biichi ranking condition for nonaccepting states. For each non-accepting state
q € Q\F and letter o € 2AP in the NBA in the NBA, we define

Ny
Cpiichigo =V RIS\ peAS) A pEG) ACqu)=0A N\ IHqp) >0
q'€6(q,0) k=1

Ny
= C(u,q) =12 C(M™(p),¢) >0 A N\ IFM™ (¢, 1)) > 0.
k=1
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Strategy conditions (synthesis algorithm). For the strategy template to indeed
define a valid affine distributionally memoryless strategy, we require that:

o= N\ ( 3 wsa)w) =1A N (x(s,a)(n) 20)).

s€ES a€cAct acAct

In the above definitions, note that M™ () is the one-step successor from distribution p when
policy  is applied in the MDP, computed as: }_ g ,c aci(s) T(s: @) (1) - P(s, a).

Step 4: Constraint solving. The strategy condition constraint ®, is a purely existentially
quantified Boolean combination of affine inequalities over the symbolic template variables.
However, constraints ®ini; and ®Ppichi,q,0 are all of the form

>

m n
Ve RIS \/ /\ aff-expr; ;(t, 1) >0 >

i=1j=1

poly-expr, (t, 1) > 0,

1

where ¢ is the vector of all symbolic template variables, aff-expr; ;(¢,11)’s are some affine
functions and poly-expr;’s are some polynomial functions over the vectors of variables ¢
and p. Polynomial expressions on the right hand side arise due to the quotients of affine
expressions that define affine distributionally memoryless strategies, see eq. (5). Hence,
multiplying both sides of the inequality by the affine expressions appearing in denominators
results in polynomial expressions over variables in ¢ and p.

The problem of synthesizing affine distributional certificates and affine distributionally
memoryless strategies then reduces to solving a system of constraints that contain quantifier
alternation 3t¢.Vu. Such quantifier alternation over real-valued variables is generally hard to
handle directly and can lead to inefficiency in solvers. In order to allow for a more efficient
constraint solving, before passing our system of constraints to an SMT-solver, we first
apply Handelman’s theorem [27] to translate ®ini; and Pgiichi ¢, into a purely existentially
quantified system of polynomial constraints over the symbolic template variables in ¢ and
auxiliary variables introduced by the translation, whose satisfiability implies satisfiability of
the original constraints. This translation is common in template-based program analysis,
see [7] for details. This step allows for more efficient constraint solving as well as better
bound on the algorithm complexity. Finally, the resulting purely existentially quantified
system of polynomial constraints over real-valued variables is solved via an SMT solver.

In the special case when we are interested in synthesizing memoryless strategies rather
than distributionally memoryless strategies, we may use Farkas’ lemma [25] rather than
Handelman’s theorem. This yields a sound and complete translation into an equisatisfiable
purely existentially satisfied system of constraints.

Soundness, relative completeness, complexity. Soundness of our algorithms follows from
the soundness of all four steps above, including soundness of the transformations via Handel-
man’s theorem and Farkas’ lemma [7]. Since the Farkas’ lemma transformation leads to an
equisatisfiable system of constraints, it also follows that our algorithm is relatively complete —
it is guaranteed to synthesize an affine distributional certificate and memoryless strategy
whenever they exist. Finally, our algorithms provide a PSPACE complexity upper bound as
they reduce the synthesis and verification problems to solving a sentence in the existential
first-order theory of the reals. The following theorem summarizes these results.
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» Theorem 12.

Soundness: If the algorithm returns an affine distributional certificate (C,I) and an affine
distributionally memoryless strategy m (for the synthesis algorithm), then the MDP M
with initial distributions Init under strateqy m satisfies specification .

Relative completeness: If there exist an affine distributional certificate (C,I) and a memory-
less strategy m, then there exists an invariant size N; € N such that (C,I) and m are
computed by the algorithm.

Complexity: The runtime of the algorithm is in PSPACE in the size of the encoding of the
MDP, NBA N¥, startegy m (for the verification algorithm) and invariant size Ny € N.

6 Experimental Evaluation

We implemented a prototype of our method in Python 3 and experimentally evaluated it
on a number of challenging verification and synthesis tasks collected from the literature
on distributional specifications in MDPs. Our prototype takes as input an MDP (in the
Prism [30] input format) and an LTL specification. The LTL specification is then translated
into an NBA via Spot [24]. For the constraint solving step in our algorithms, we use
PolyQEnt [16] which provides a tooling support for quantifier elimination via Farkas’ lemma
and Handelman’s theorem. PolyQEnt uses Z3 [23] and MathSAT5 [20] as backend SMT
solvers for the final system of purely existentially quantified constraints. We set the invariant
size parameter to N; = 1, which was sufficient for all our experiments. Our experiments
were conducted on consumer-grade hardware (AMD Ryzen 5 5625U CPU, 8GB RAM).

Benchmarks. We evaluated our method on several examples collected from the literature:
GridWorld (synthesis). Motivated by [5], these benchmarks model robot swarms
in gridworld environments. Initially, all robots are placed in the top-left corner of the
gridworld environment. Some of the cells are covered by walls whereas some are slippery
and with certain probability may lead to moving in an undesired direction. Hence, each
environment induces an MDP. As shown in [5], the evolution of a robot swarm can be
analyzed by taking the distribution transformer view of MDPs and considering how the
robots are distributed across the gridworld cells at each time step. In Table 1, we consider
5 gridworld benchmarks of varying sizes and consider two distributional specifications:
(1) at least 90% of robots should be in some slippery target cell infinitely often, and (2) in

addition, at most 50% of robots should occupy some narrow passage at any point in time.

PageRank (verification). We consider a Markov chain representation of the PageRank
algorithm taken from [2]. Given the context, we consider various verification tasks, which
are of the form: always if the probability mass at some vertex/page is above a threshold,
then eventually, it must be above a threhold in another page.

Pharamakocinetics (verification) We also consider a 6 state Markov chain from [2]
which is adapted from a Pharmacokinetics example in [11]. We use the two queries that
were listed in [2] as the motivating examples to obtain our specifications.
Benchmarks from [4] (verification and synthesis). Finally, we collect 3 pairs of
verification and synthesis tasks from [4]. In the verification task a strategy is fixed,
whereas in the synthesis task one also needs to compute the strategy. While [4] considered
distributional safety specifications, we design more complex w-regular specifications.

Results. Our experimental results are shown in Table 1. Our results demonstrate that
our prototype is able to solve a number of challenging verification and synthesis tasks for
distributional w-regular specifications in MDPs, that were beyond the reach of all existing
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Table 1 For each experiment we report, from left to right, the benchmark, specification, task
(verification or synthesis), the number of coefficients, the number of constraints, the number of
coefficients in PolyQEnt generated file (i.e. after application of Farkas’ lemma), the number of
constraints in PolyQEnt generated file, SMT-solving time, and the total runtime.

Model Specification Task | Coeff # | Const # | PQ Coeff # | Query # | SMT time | Total time
GW (3*3) G F “V5>=0.9" Synth 62 41 171 34 <2s 6s
GW (3*3) G F “V5>=0.9" & G “V4<=0.5” Synth 80 45 277 49 < 5s < bs
GW (4*4) G F “V11>=0.9" Synth 121 79 286 81 < 10s 10s
GW (4*4) G F “V11>=0.9" & G “V9<=0.5" Synth 153 83 448 87 12s 13s
GW (5%5) G F “V19>=0.9” Synth 198 129 435 131 302s 303s
PageRank F G “v2>0.2” Verify 60 13 400 35 63s 64s
PageRank G (“0.2<=V0” — F “0.2<=V2") Verify 48 13 253 22 17s 185
PageRank G (“0.2<=V2” = F “0.2<=V2") Verify 48 13 253 22 8s 8s
PageRank G (“0.2<=V3” = F “0.2<=V2") Verify 48 13 253 22 44s 45s
PageRank G (“0.2<=V4” = F “0.2<=V2") Verify 48 13 253 22 5s 6s
PageRank G “V0>=0.2" | “V1>=0.2" | “V2>=0.2" | Verify 60 19 569 44 1365 137s

| “V3>=0.2" | “V4>=0.2" — F “V2=1"

PageRank F «V2=1"— G “V1<=0.2" Verify 144 35 630 46 6s 6s
Pharmacokinetics F «V4=1" Verify 42 9 176 14 <ls <ls
Pharmacokinetics | G (“0.13<=V3<=0.2" | “0<=V3<0.13") | Verify 56 11 365 28 102s 102s

CAV23 [4] G F “V1>=0.249" Verify 16 7 85 13 <2s <2s

CAV23 [4] G F “V1>=0.249" Synth 20 14 108 16 Ts <2s

CAV23 [4] “V1>=0.249" U “V2 >= 0.25” Verify 32 13 185 22 < bs Ts

CAV23 [4] “V1>= 0.249" U “V2 >= 0.25” Synth 36 20 189 25 Ts 5s

CAV23 [4] €0.334>=V1>=0.332" U “V0=0.25” Verify 32 17 229 24 <4s 4s

CAV23 [4] €0.334>=V1>=0.332" U “V0=0.25" Synth 36 20 233 28 <ls <l1s

methods. This is achieved at runtimes that are comparable or even lower than those
reported by earlier methods for distributional reachability and safety specifications in [4, 5]
on benchmarks of similar size. Hence, even though we consider a significantly more general
class of distributional w-regular specifications, our algorithms do not lead to a significant
computational overhead. Moreover, for all our strategy synthesis tasks, our prototype was able
to compute memoryless strategies that lead to distributional specification satisfaction. This
demonstrates the generality of relative completeness guarantees provided by our algorithms.

We also make some observations. First, as can be seen from runtimes reported in Table 1,
the final SMT-solving step is computationally the most expensive step of our algorithms.
Constraint generation took at most a few seconds in all cases. Second, we observe that
strategy synthesis tasks are generally computationally more expensive, which is expected
given that they require synthesizing both the strategy and the distributional certificate.
However, in some cases the synthesis problems can also be solved more efficiently. This is
demonstrated by the last 6 experiments (CAV’23 in Table 1), where synthesis is achieved at
lower runtimes due to our prototype being able to compute a simple memoryless strategy
that was easier to verify, compared to the strategy considered in the verification task.

Finally, regarding the invariant size parameter, we used Ny = 1 because it was sufficient
for all our benchmarks. We also ran our prototype tool with Ny = 2 on 12 of the benchmarks
and 8 of them were solved within the timeout of 5 minutes. The timeouts are likely due to
the larger size of the final system of constraints. Indeed, given more time, we expect our
method can be effectively applied with larger template sizes as well.

7 Conclusion

In this paper, we considered distributional w-regular specifications in MDPs and addressed
the problems of strategy verification and synthesis. We developed new notions of product
distributional transition systems between an MDP and an NBA. We then introduced dis-
tributional certificates, using which we provided template-based synthesis algorithms for
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strategy verification and synthesis. Our experiments demonstrate the benefits and promise
of our approach. As future work, we would like to go beyond MDPs and consider partially
observable MDPs. Moreover, it would be interesting to lift the objectives from NBA to Rabin
automata, where even the notion of distributional certificates is unclear.
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