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Abstract
Temporal graphs extend ordinary graphs with discrete time that affects the availability of edges.
We consider solving games played on temporal graphs where one player aims to explore the graph,
i.e., visit all vertices. The complexity depends majorly on two factors: the presence of an adversary
and how edge availability is specified.

We demonstrate that on static graphs, where edges are always available, solving explorability
games is just as hard as solving reachability games. In contrast, on temporal graphs, the complexity
of explorability coincides with generalized reachability (NP-complete for one-player and PSPACE-
complete for two player games). We show that if temporal graphs are given symbolically, even
one-player reachability (and thus explorability and generalized reachability) games are PSPACE-hard.
For one player, all these are also solvable in PSPACE and for two players, they are in PSPACE, EXP
and EXP, respectively.
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1 Introduction

Two player zero-sum games on graphs are a common formalism in formal verification,
especially reactive synthesis (see e.g. [21, 16, 34, 35]). The two players jointly determine an
infinite path stepwise, where the owner of the current vertex gets to extend the path to a
valid successor. One player aims to satisfy a given winning condition, such as reaching a
target vertex, and the opposing player aims to prevent that. Under very general conditions,
that are satisfied here, such games are determined, meaning that exactly one player has a
winning strategy that guarantees a favourable outcome for them no matter their opponent’s
choices. Solving a game refers to the algorithmic task to determine which player has a
winning strategy.

Temporal graphs are a way to model dynamic systems: they extend graphs with discrete
and global time and can specify for each edge at which times it can be traversed. Temporal
graphs are typically given as sequence of graphs over the same vertex set, an encoding we
refer to as explicit. For our purposes this is polynomially equivalent to encoding temporal
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Figure 1 Examples of games on temporal graphs. Vertices owned by Player 1 are drawn as
circles, those owned by Player 2 as diamonds. The labels on edges denote the times at which they
are available. Edges without labels are always available.

graphs as ordinary graphs in which (directed) edges carry an explicit list of timestamps,
which we also refer to as explicit encodings1. Alternatively, and more interestingly, we
consider succinct symbolic representations where the availability of edges is given as logical
predicate in the existential fragment of Presburger Arithmetic.

In this paper we study the computational complexity of solving games played on temporal
graphs (where players’ choices are required to respect the temporal constraints on edges). Our
focus lies on explorability games, where Player 1 wins if and only if all vertices of the graph
are visited. Explorability generalizes reachability conditions in the sense that reachability
games straightforwardly and in logarithmic space reduce to explorability games. On the
other hand, explorability is a special case of so-called generalized reachability conditions of
[17], where several target sets are given and at least one vertex must be reached in each.

For the benefit of readers unfamiliar with temporal graphs, or turn-based games, we start
by providing some intuition to help appreciate the difficulties caused by the dynamic changes
of the arena, as well as the presence of antagonistic choice. Consider first the one-player
explorability game played on the arena A1 in Figure 1a. Starting in s, Player 1 wins by
exploring the graph as s→ t→ u→ v. From any other vertex there is no exploring path due
to the non-availability of edges at time 0. An easy property that implies non-explorability
of static graphs is the presence of two pairwise non-reachable vertices. Indeed, if two such
vertices exists then any path can at most see one of them, hence not explore the graph. This
can be turned into a full characterization of explorability even in the presence of an opponent
(see Lemma 4). However, due to the temporal constraints on edges, this cannot naïvely be
extended to temporal graphs. For example, arena A1 is explorable yet v is not reachable
from t starting at time 0, and vice versa. On the other hand, in arena A2 (Figure 1b), for
every pair of vertices at least one can reach the other starting at time 0. Yet, from no initial
vertex and at no time, A2 is explorable.

Figure 1c demonstrates that even if Player 1 wins the explorability game (as here from
vertex s), she may not be able to enforce visiting the vertices in a particular order, as that
can be influenced by her opponent’s moves. Dually, as for the game starting in vertex s in
A2, even if Player 2 wins, he may not be able to dictate which vertex is left unexplored.

1 This is trivial for timestamps in unary encoding; Allowing binary-encoded timestamps in the input does
not impact the complexity of solving explorability games since winning plays necessarily use consecutive
times and thus cannot exist if the edge relation is too sparse.
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Related Work. Temporal graphs have been used to analyse dynamic networks and dis-
tributed systems in dynamic topologies, such as dissemination/propagation of informa-
tion [9, 12, 24, 36] or the spread of diseases [38]. There is a large body of mathematical
work that considers temporal generalizations of various graph-theoretic notions and prop-
erties [11, 18, 31]. Related algorithmic questions include graph colouring [28], travelling
salesman [32], maximal matchings [27], and checking the existence of temporal cliques [29],
Eulerian circuits [7], vertex-cover sets [3], and explorability [1, 2, 14] (called exploration).
Several prior works on explorability assume structural properties that ensure that the graph
is explorable. Questions then focus on the minimal time to explore. Pelc [33] provides several
sufficient conditions on temporal graphs to be explorable. Spirakis and Michail [32] showed
that without assumptions on the graph, checking explorability can be done in linear time for
static graphs and is NP-complete for temporal graphs. In most of the works, a path in the
temporal graph is allowed to wait at a vertex for an unbounded amount of time.

The edge relation is often deliberately left unspecified and sometimes only assumed
to satisfy some weak assumptions about connectedness, frequency, or fairness to study
the worst or average cases in uncontrollable environments. Depending on the application,
one distinguishes between “online” questions (e.g. [19, 26]), where the edge availability is
revealed stepwise, as opposed to the “offline” variant where all is given in advance. We refer
to [13, 22, 30] for overviews of temporal graph theory and its applications.

Fijalkow and Horn [17] study games with generalized reachability objectives, which
generalize not only reachability but also explorability games. Generalized reachability
conditions are conjunctions of reachability conditions: Player 1 aims to reach at least
one vertex out of each of several target sets. Explorability thus corresponds to the case
where every vertex forms a singleton target set. Solving generalized reachability games is
PSPACE-complete [17], but in polynomial time if all target sets are singletons.

Reachability and parity games played on (symbolically represented) temporal graphs
have been introduced in [6]; solving these games is PSPACE-complete. The lower bound
was shown by reduction from the emptiness problem for unary alternating finite automata,
crucially relying on the presence of antagonistic choice. As in [6], our notion of temporal
graphs assumes that some edge must be traversed at every unit time. Waiting (not moving
the token for a while) as occasionally permitted [30, 3] can be modelled by adding self-loops.

Turn-based games involving temporal constraints have also been studied in the context of
games played on the configuration graphs of timed automata [4]. Solving timed parity games
is complete for EXP [8, 25] and the lower bound already holds for reachability games on
timed automata with only two clocks [23]. However, the time in temporal graphs is discrete
as opposed to the continuous time semantics in timed automata. A direct translation of
(games on) temporal graphs to equivalent timed automata games requires two clocks: one to
hold the global time used to check the edge predicate and one to ensure that time progresses
one unit per step. Fearnley and Jurdziński [15] showed that the reachability problem (solving
one-player reachability games) for two-clock timed automata is already PSPACE-hard. Our
lower bound constructions have a similar flavour but are incomparable in that they do not
re-prove nor are implied by their result. They make crucial use of resetting of clocks which is
impossible in our model. Our construction in turn uses either antagonistic choice (Theorem 8)
or the more powerful transition guards in symbolic representations (Theorem 9).

Contributions. We study the complexity of solving explorability games and contrast the
worst-case complexity for related decision questions for games played on static graphs versus
temporal graphs. It turns out that explorability is no harder than reachability on static
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Static Explicit Symbolic

Reachability NL-complete NL-complete PSPACE-complete
[5, Theorem 4.18] [Theorem 6] [Corollary 14]

Explorability NL-complete NP-complete PSPACE-complete
[Theorem 5] [Theorem 7] [Corollary 14]

Gen. Reach NP-complete NP-complete PSPACE-complete
[17, Theorem 3] [Theorem 6] [Corollary 14]
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Reachability P-complete P-complete PSPACE-complete
[21] [Theorem 6] [6, Theorem 2]

Explorability P-complete PSPACE-complete PSPACE-hard; In EXP
[Theorem 5] [Theorem 8] [Corollary 14]

Gen. Reach PSPACE-complete PSPACE-complete PSPACE-hard; In EXPT
w

o-
pl
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er

[17, Theorem 1] [Theorem 6] [Corollary 14]

Figure 2 A table detailing the computational complexities for the one and two-player variants
of reachability, explorability, and generalized reachability games played on static, explicitly and
symbolically represented temporal graphs. New results are in boldface.

graphs whereas on temporal graphs, explorability games exhibit the hardness of generalized
reachability when the temporal edge availability is given explicitly. For temporal explorability
games with a succinct, symbolic representation, we have PSPACE-hardness for both variants
but a PSPACE-EXP complexity gap for two-player games. Specifically,
1. on static graphs, solving explorability games is complete for polynomial time (and

NL-complete for one-player games);
2. on explicitly represented temporal graphs, explorability games are PSPACE-complete

(NP-complete in the one-player variant);
3. reachability and thus explorability games on symbolically represented temporal graphs

are PSPACE-hard even in the single-player variant. This strengthens the known lower
bound from [6] which required a second antagonistic player.

Figure 2 summarizes these and related claims. Our most involved constructions are the
PSPACE lower bounds, both from the satisfiability of quantified Boolean formulae (QBF).

2 Notations

▶ Definition 1 (Temporal Graphs). A temporal graph G = (V, E) is a directed graph where V

are vertices and E : V 2 → 2N is the edge availability relation that maps each pair of vertices
to the set of times at which the respective directed edge can be traversed. If i ∈ E(u, v) we
call v an i-successor of u and write u

i−→ v. We call G static if for all u, v ∈ V , E(u, v) is
either N or ∅. Its horizon is h(G) = supu,v∈V (E(u, v)), that is, the largest finite time at
which any edge is available, or ∞ if no such finite time exists.

Naturally, one can unfold a temporal graph G into its expansion up to time T ∈ N∪{∞},
which is the static graph GT with vertices V × {0, 1, . . . , T, T + 1} and (u, θ)→ (v, θ + 1) if
and only if θ ∈ E(u, v). We denote by the expansion of a temporal graph G, its expansion
up to its horizon h(G). See for instance Figure 3 for the expansion of a temporal graph A1
(up to its horizon h(A1) = 3).

Complexity bounds for decision problems about temporal graphs very much depend on
the representation of the input. We will say a temporal graph is represented explicitly if it
is given as sequence of directed graphs, one per unit time from 0 up to its (finite) horizon.
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Figure 3 The expansion of A1.

We also consider a symbolic representation where the edge relation E is represented as a
formula in the existential fragment of Presburger Arithmetic (∃PA), the first-order theory
over natural numbers with equality and addition. That is, the formula Φu,v(x) with one
free variable x represents the set of times at which an edge from u to v is available as
E(u, v) = {n | Φu,v(n) ≡ true}. We use common syntactic sugar including inequality and
multiplication with constants.

In this representation, checking if an edge is available at a given time, i.e., checking
whether a given ∃PA formula is satisfied by a given valuation, is NP-complete (and in
polynomial time if the number of quantifiers are fixed) [37, Corollary 1]. The symbolic
representation of a temporal graph can be exponentially more succinct than the explicit one:
using repeated doubling one can express exponentially large values. This representation is
also at most exponentially larger because the Presburger-definable edge relation must be
ultimately periodic with base and period at most exponential [20].

▶ Definition 2 (Games on graphs). A game is played by two opposing players. It consists of
a directed graph (V, E), a partitioning V = V1 ⊎ V2 of the vertices into those controlled by
Player 1 and Player 2 respectively, and a winning condition. We refer to A = (V1, V2, E) as
the arena of the game.

The game starts with a token on an initial vertex s0 ∈ V and is turn-based, where in
round j, the owner of the vertex occupied by the token moves it to some successor. This way
an infinite path ρ = s0s1 . . . called a play is generated based on choices made by each player
given the current round and vertex. A play is won by Player 1 if it satisfies the given winning
condition, and by Player 2 otherwise.

A strategy for Player i is a recipe for how to move. It is a function σi : V ∗Vi → V from
finite paths ending in a vertex s in Vi to some successor. A strategy is winning from s ∈ V if
Player i wins every play that starts in s and during which all decisions are according to σi.

We call a vertex s winning for Player i if there exists a winning strategy from s, and
call the subset of all such vertices the winning region for that player. The main algorithmic
question is to solve a game, meaning in other words to compute the winning regions for a
given arena and winning condition. We consider the following winning conditions.

Reachability towards a given set F ⊆ V of target vertices. This is satisfied by those plays
that eventually visit a vertex in F .
Generalized Reachability towards target sets F1, F2, . . . , Fk ⊆ V . This is satisfied by those
plays that visit at least one vertex of every target set Fi.
Explorability is the condition that asks that eventually every vertex in V is visited.

Note that explorability is a special case of generalized reachability where every vertex
si ∈ V corresponds to one target set Fi = {si}.

CONCUR 2025
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We study games played on the expansion of a given temporal graph G = (V, E), where
the ownership of vertices and winning condition are defined on the underlying temporal
graph G and lifted to the expansion of G. That is, for any time θ and u ∈ Vi, the vertex
(u, θ) is owned by Player i. Similarly, (generalized) reachability conditions are defined in
terms of target sets F ⊆ V and explorability asks to visit every vertex in V .

3 Static Graphs

We first discuss the bounds of explorability games for both one and two player variants, on
static graphs, i.e., every edge is available at any time.

▶ Lemma 3. For every arena A = (V1, V2, E) and vertices s, t ∈ V one can construct (in
logarithmic space) an arena B = (V ′1 , V ′2 , E′) such that V ′ = V ′1 ∪ V ′2 , V ⊆ V ′, V2 = V ′2 and
Player 1 wins the reachability game on A from s to t if, and only if, she wins the explorability
game on B.

Proof. Without loss of generality, assume that t ∈ V1 and that each vertex has at least
one outgoing edge. We construct B as follows. Firstly, for every edge between vertices v, u,
introduce a new vertex [v, u] ∈ V ′1 that can either move to u or reset, i.e. move back to s.
Secondly, from target t there exists an edge to every other vertex.

We claim that Player 1 wins the reachability game on A if and only if she wins the
explorability game on B. Indeed, if Player 1 does not win on A, then she cannot visit t on
either arena and therefore loses in both. Conversely, if Player 1 does win on A, then she can
explore B by repeatedly moving from s to t; visit a previously unseen vertex, then reset to
s. Note that a reduction from a one-player reachability game where Player 1 owns all the
vertices will construct another one-player explorability game where this still holds. ◀

The following characterization of explorability games is adapted from [17, Theorem 4],
where s ⪯ t denotes that Player 1 wins the reachability game from s with target t.

▶ Lemma 4. Consider an arena with vertex set V and let s ∈ V be an initial vertex. Player 1
wins the explorability game from s if, and only if, both 1) for all u, v ∈ V either u ⪯ v or
v ⪯ u; and 2) for all u ∈ V , s ⪯ u.

Proof. Suppose both conditions 1 and 2 are true. Point 1 implies that there exists a
linearization of all n vertices such that v1 ⪯ v2 ⪯ . . . ⪯ vn. By Point 2 we have that s ⪯ v1
and therefore there is such a linearization of ⪯ with v1 = s. Consequently, for all 1 ≤ i < n

there exists a Player 1 strategy σi that wins the reachability game from vi to vi+1. Player 1
can follow the σi from vi until vi+1 is reached, then switch to σi+1 and so on, until all vertices
have been visited.

Suppose we have an arena where the first condition is false: there are u, v ∈ V with u ̸⪯ v

and v ̸⪯ u. Regardless of the starting vertex s, once a play visits u, Player 1 cannot ensure
to visit v from then on (or vice versa). Finally, if the second condition is false then there
must be one vertex u that Player 1 cannot ensure to visit from s. ◀

▶ Theorem 5. Solving one-player (respectively two-player) explorability games on a static
graph is complete for NL (respectively P).

Proof. The hardness is a consequence of Lemma 3. Note that the explorability game
constructed from a one-player reachability game is also one-player. As one and two-player
reachability games are NL-hard and P-hard respectively, the lower bounds follow. The upper
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bounds follow from Lemma 4, observing that at most n2 reachability queries are necessary to
verify the two conditions in the lemma. These queries can be done in NL in the one-player
case, and P in the two-player case. ◀

4 Explicitly represented Temporal Graphs

Before discussing explorability games, we first remark that solving reachability and generalized
reachability games have the same complexity on explicitly represented temporal graphs and
on static graphs. This is because for any temporal graph A one can construct its expansion
A′, which is only polynomially larger assuming explicit encodings, and modify the winning
conditions appropriately to get a game on this static graph: every target vertex v in A gives
rise to target vertices (v, θ) in A′ for all times 0 ≤ θ ≤ h(A).

This reduction allows transferring complexity upper bounds for solving games on static
arenas [17].

▶ Theorem 6. Assuming explicit encodings, solving one-player games on temporal graphs is
NL-complete for reachability conditions and NP-complete for generalized reachability. Solving
two-player games on temporal graphs is P-complete for reachability and PSPACE-complete
for generalized reachability.

Note that an explorability game on a temporal graph corresponds to a generalized
reachability game on its expansion as outlined above. However, the target sets are no longer
singleton sets and therefore the improved (NL. resp. P) upper bounds provided in [17] for (one
resp. two-player) generalized reachability with singleton targets do not apply to explorability
on temporal graphs. For example, the explorability game on A1 (Figure 1) corresponds to
the generalised reachability game on its expansion (Figure 3) with targets {s} × 4, {t} × 4,
{u} × 4, and {v} × 4, where 4 = {0, 1, 2, 3, 4} are all possible times up to the horizon.

In contrast to games on static arenas, where explorability is not harder than reachability,
we will see that on temporal graphs explorability is as hard as generalized reachability.

▶ Theorem 7. Solving one-player explorability games on an explicit temporal graph is
NP-complete.

Proof. The NP-hardness is due to Michail and Spirakis [32, Proposition 2] by reduction from
the Hamiltonian Path problem. Indeed, a directed graph with n vertices has a Hamiltonian
path if and only if it can be explored in exactly n steps. A matching upper bound can be
achieved by stepwise guessing an exploring path of length at most h(G), which is polynomial
given that the input graph is explicitly represented. ◀

We now consider the impact of an antagonistic player for explorability on temporal graphs.
A key element of our lower bound construction is the interaction of antagonistic choice and
the passing of time. Our reduction, from QBF, relies on a time-bounded final “flooding phase”
that allows exploration only if sufficient time is left, and which can only be guaranteed by
winning the preceding QBF game.

▶ Theorem 8. Solving two-player explorability games on explicit temporal graphs is PSPACE-
complete.

Proof. The upper bound for solving explorability games on a temporal arena A follows from
solving the generalized reachability game on the expansion of A, where we have a target
set Fi = {(vi, θ) | ∀ θ ∈ {0, 1, . . . , h(A)}} for every vertex vi of A. Generalized reachability
games can be solved in PSPACE [17, Theorem 1].
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We provide a matching lower bound using a reduction from QSAT. Given a QBF formula
Φ = ∃x1∀x2 . . . ∃xn. C1∧C2∧ . . .∧Ck, we construct a two-player explorability game GΦ on a
temporal graph so that Player 1 wins iff Φ is true. Let φ refer to the matrix C1∧C2∧ . . .∧Ck

of the given formula Φ, that is, each Ci is a disjunction of at most 3 literals. The game GΦ
has vertices V = V∀ ⊎ V∃ ⊎ {qφ} ⊎ Vliterals ⊎ Vclause, where

the vertices V∃ = {q1, q3, . . . , qn}, Vliterals = {qx1 , q¬x1 , qx2 , q¬x2 , . . . , qxn
, q¬xn

} and
Vclauses = {qC1 , qC2 , . . . , qCk

} are controlled by Player 1.
the vertices V∀{q2, q4, . . . , qn−1} and {qφ} are controlled by Player 2.

The game is played in 4 phases, each of a fixed length, as follows.
1. In the initial phase, from time 0 to k − 1, the game starts from qC1 and visits all clause

vertices of Vclauses in order and then ends up in the vertex q1 corresponding to the first
existential quantifier. Formally, the edges available during this phase are, for all 0 ≤ i < k,
E(qCi

, qCi+1) = E(qCk
, q1) = [0, k). Edges of the initial phase are drawn in red in the

example in Figure 4.
2. The selection phase, from time k to k + 2n− 1, the game visits the vertices corresponding

to the quantifiers in order of their appearance in the formula. Depending on whether
the quantifier is ∃ (or ∀), Player 1 (respectively Player 2) chooses to visit a vertex
corresponding to either a positive or negative literal for each variable. The edges available
during this phase are for all 0 ≤ i < n, E(qi, qxi) = E(qi, q¬xi) = E(qxi , qi+1) =
E(q¬xi

, qi+1) = E(qxn
, qφ) = E(q¬xn

, qφ) = [k, k + 2n). Corresponding edges are in blue
in Figure 4 and corresponds to choosing a valuation for the variables in the formula Φ.

3. The evaluation phase, at time k + 2n and k + 2n + 1, starts from vertex qφ, where
Player 2 selects a clause Ci by moving to vertex qCi

. Formally, we have for all 0 < i ≤ k,
E(qφ, qCi) = {k + 2n}. From qCi , Player 1 has the choice to visit a literal vertex qℓ at
time k + 2n + 1 if ¬ℓ is contained in the clause Ci, where ℓ is a literal. After this phase,
all vertices in V∀ ⊎ V∃ ⊎ {qφ} ⊎ Vclause have been visited as well as half of Vliteral. In
Figure 4, edges for the clause selection and literal selection are in green.

4. The game ends after a flooding phase that lasts for exactly n − 1 steps starting from
time k + 2n + 2. That is, all edges become unavailable from time k + 3n + 1 onwards.
During this phase, an edge is available from a literal vertex qℓi

to both literal vertex
qxi+1 and q¬xi+1 . Formally, the edges (qℓi

, qℓi+1), for all 0 < i < n and (qℓn
, qℓ1), where

ℓj ∈ {xj ,¬xj}, are available at times [k + 2n + 2, k + 3n + 1]. Thus, in this phase Player 1
can visit exactly n− 1 of the possibly unexplored vertices. The flooding phase is shown
in yellow in Figure 4.

Suppose the QBF formula Φ is true. Then the ∃-player has a strategy to assign values
to the variables xi (for odd i) to ensure that φ(x⃗) is true. By following the same choices in
the selection phase (moving qi−→ qxi

if xi is set to true and qi−→ q¬xi
otherwise), Player 1

guarantees that when qφ is reached, the jointly chosen variable assignment x⃗ satisfies φ.
At this point the play has already visited exactly one vertex among qxj and q¬xj for all
j ≤ n. Moreover, no matter which vertex qCi

is chosen by Player 2 in the next step, the
corresponding clause Ci is also satisfied by assignment x⃗. By construction, this means there
exists a literal ℓj ∈ Ci such that vertex qℓj

has been visited before. The Player 1 can then
move Ci−→ q¬ℓj to end the evaluation phase. Finally, in the flooding phase, Player 1 can
freely move to visit the remaining n− 1 literal vertices not visited thus far. This guarantees
that indeed, all vertices have been visited and Player 1 wins the explorability game.

If the QBF instance Φ is not satisfiable, then the ∀-player has a strategy to assign values
to the x2i to ensure that φ(x⃗) is false. By following the same choices during the selection
phase (moving qi−→ qxi if xi is set to true and qi−→ q¬xi otherwise), Player 2 guarantees
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q1

qx1

q¬x1

q2

qx2

q¬x2

qx3

q¬x3

qφ

qC1

qC4

qC2

qC3

q3

Figure 4 The exploration game for QBF formula ∃x1:∀x2:∃x3:(C1 = x2 ∨ x3) ∧ (C2 = ¬x1 ∨
¬x2 ∨ ¬x3) ∧ (C3 = x1 ∨ x2) ∧ (C4 = x1 ∨ x3), where colours encode edge availibility: red=[0, k),
blue=[k, k + 2n), green=[k + 2n, k + 2n + 1], yellow=(k + 2n + 1, k + 3n + 1].

that when qφ is reached, the jointly chosen variable assignment does not satisfy Φ, meaning
that there is some clause Ci that is not satisfied. In the evaluation phase, the strategy τ

then picks qCi
as the successor from qφ. Consequently, all successors of qCi

must be vertices
that have already been seen in the play. This means that exactly n of the literal vertices
are not yet visited. However, the game ends after the following n− 1 of the flooding phase.
Therefore, one of the literal vertices must be left unexplored. ◀

5 Symbolically represented Temporal Graphs

We now consider games on temporal graphs that are given in a succinct representation. More
precisely, we assume that the arena is given as the underlying (static) graph and for every
edge, the set of times at which it is available is represented by a formula in the existential
fragment of Presburger Arithmetic (∃PA). Recall that evaluating φ(x) for a given ∃PA
formula φ and time x ∈ N is in NP. We call this representation of temporal graphs symbolic.
Symbolic representations that are equally as powerful as ∃PA, such that they can represent
semi-linear sets, include the likes of solving a union of linear equations and commutative
context-free grammars [10]. Finding a satisfying valuation for both of these encodings of
semi-linear sets has also been shown to be in NP, much like ∃PA. We use ∃PA as the formulae
produced are concise and easy to understand after only a brief viewing. There are other
concise encodings (such as the inclusion of the universal fragment of PA) that could be used
for a symbolic temporal graph, however the problem of finding membership or satisfiability of
a given value may be too complex for the encoding to be efficient. For example, satisfiability
with respects to the universal fragment of PA is exponential and not in NP.

▶ Theorem 9. Solving one-player symbolic temporal reachability games is PSPACE-hard.

Proof. We reduce QSAT to one-player temporal reachability with symbolic time encoding.
Consider a quantified Boolean formula Φ = ∃x1∀x2 . . . ∃xn : φ where φ is a propositional
formula with variables in X = {x1, . . . , xn}. Without loss of generality assume that the
quantifiers alternate strictly, starting and ending with existential quantifiers (introduce at
most n + 1 useless variables otherwise). We show how to construct the symbolic one-player
game GΦ such that Φ is satisfiable if and only if some target vertex of GΦ can be reached.
We use elapse of time to encode valuations of variables of Φ. At a time θ ≥ 0, since φ
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∃i

αi = 0

{αj = 0}j∈N

{βj = 0}j>i

{γj = 0}j∈N

{δj = 0}j>i

δi = 1

γi = 0

= 0
= 0

∀i

∀c
i ∀b

i ∀a
i

αi = 0
δi = 0

{αj = 0}j∈N

{βj = 0}j>i

{γj = 0}j∈N

{δj = 0}j>i

δi = 1

αi = 1

γi = 0

γi = 1

γi = 1

γi = 0

γi = 0

{αj = 0}j ̸=i

{βj = 0}j>i

{γj = 0}j∈N

{δj = 0}j≥i

Figure 5 Gadgets to construct GΦ.

is quantifier-free, determining whether the valuation νθ : X → {0, 1} makes Φ true can be
checked with a single transition that is available exactly at time θ. The difficulty arises from
encoding of the “adversarial” behaviour of universal quantifiers. To do so, we leverage both
the graph structure and the Presburger arithmetic.

In our encoding, time is sectored into n segments of 4 bits. The horizon of GΦ is thus
h(GΦ) = 24n. For every i ∈ {1, . . . , n} and time θ ∈ {0, ..., 24n − 1}, we call αi, βi, γi, and δi

the four bits of the ith most significant sector, i.e., the bits at indices (4n− 1)− (4i− 4),
(4n− 1)− (4i− 3), (4n− 1)− (4i− 2) and (4n− 1)− (4i− 1) in the binary expansion of
θ. In particular, α1 = 4n− 1 and δn = 0 are respectively the most and the least significant
bits. Intuitively, in the sequel we use βi to represent the chosen value of variable xi ∈ X, we
control overflows of βi with assumption on αi and γi, and δi is an extra bit acting as buffer,
to allow spending time without influencing the others. In the sequel, we define constrains on
such bits. To do so, for all k ∈ {0, . . . , 4n− 1} and all v ∈ {0, 1}, we require the kth least
significant bit of a given time θ ∈ {0, . . . , 24n − 1} to be v. This can be expressed thanks to
following Presburger formula, which states that the kth least significant bit in the binary
expansion of θ equals v.

Ψk,v(θ) = ∃y0 : . . . ∃y4n : ∃v0 : . . . ∃v4n−1 : ∧


∧4n−1

j=0 (vj = 0 ∨ vj = 1) i.e., vj ∈ {0, 1}∧4n−1
j=0 (yj = 2yj+1 + vj) i.e., yj+1 is

⌊
θ

j+1

⌋
(y0 = θ) ∧ (vk = v) and vk is θ’s kth bit

In the following, we write ξi = v, where ξ ∈ {α, β, γ, δ} and v ∈ {0, 1} as a shorthand for the
formula for checking the corresponding bits.

In GΦ, each quantifier will have a corresponding vertex. If xi ∈ X is existentially
quantified, the vertex qi evaluates xi thanks to a self-loop which also set δi = 1. In other
words, Player 1 can use the self-looping transition of qi for spending time (not more than 2αi

steps since αi must be 0) which in particular leaves him possibility to set the bit βi as an
encoding the value of xi. Additionally, the non-looping transition of qi is available only when
the bit δi is 1. See the left gadget of Figure 5. Observe that, if qi is entered at time θ where
δi = 0, there are exactly two times θ0, θ1 when qi can be exited, and θ0 and θ1 only differ
on the bit βi. Formally, θ0 = θ + 2(4n−1)−(4i−1), θ1 = θ0 + 2(4n−1)−(4i−3). This is a direct
consequence of the availability of both outgoing transitions of qi leaving only the bit βi as
degree of freedom to Player 1. We shall prove that vertices encoding existential quantifiers
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Figure 6 Encoding of a formula with 5 quantifiers to a symbolic one-player game.

are the only source of branching in GΦ. If xi ∈ X is universally quantified, the self-loop of
the vertex qi only serves to set δi = 1, the evaluation of xi being driven by vertices encoding
existential quantifiers and auxiliary vertices qa

i , qb
i and qc

i . See the right gadget of Figure 5.
The vertex qi admits two behaviours. If qi is entered at a time when αi = 0, then qi exits
toward the vertex encoding the next existential quantifier. Otherwise, αi = 1 and then qi

backtracks toward the auxiliary vertices of the previous universal quantifier. The elapsing
of time while backtracking will set γi−2 to 1, and then sets it back to 0. If βi−2 = 0, the
side effect of backtracking is to switch βi−2 from 0 to 1. Otherwise, βi−2 = 1, and the side
effect of backtracking is to switch αi−2 from 0 to 1, which triggers a further backtrack in
qi−2. To end the construction of GΦ, we add two more vertices qφ (to check the valuation of
Φ encoded by elapse of time) and q⊤ (to end the cascade of backtrack). A complete picture
is given when Φ has 5 quantifiers in Figure 6. The quantifier-free Presburger formula φ̂ is
defined as φ where every positive occurrence xi in φ is replaced by βi = 1 in φ̂ and every
negative occurrence ¬xi is replaced by βi = 0. The size of GΦ, in particular the encoding of
edges availability is discussed at the end of the proof.

Next, we prove that Φ is satisfiable if and only if GΦ admits a path from q1 to q⊤
composed of exactly 24n edges, thanks to the unrestricted self-loop on q⊤. The argument
holds by induction on the odd number n ≥ 1 of quantifiers. In the base case, n = 1 and GΦ

has three vertices q1, qφ and q⊤. We show that when q1 is entered at time 0, it can be exited
only at time θ0 = 1 and θ1 = 5. By construction, q1 can only be exited toward qφ that has
a single outgoing edge toward q⊤. Hence, the edge from qφ to q⊤ can only be traversed at
time θ0 + 1 = 2 or θ1 + 1 = 6 where β1 = 0 and β1 = 1 respectively. By definition of φ̂, the
vertex q⊤ is reachable if and only if Φ is satisfiable.

Now, assume that Φ has an odd number n ≥ 3 of quantifiers. Let Φ = ∃x1∀x2Φ′ where
Φ′ = ∃x3∀x4 . . . ∃xn : φ. For all v1, v2 ∈ {false, true}, we denote Φ′[x1 ← v1, x2 ← v2] the
formula Φ′ where x1 takes value v1 and x2 takes value v2. Observe that Φ′[x1 ← v1, x2 ← v2]
is a quantified Boolean formula without free-variable. For all v1, v2 ∈ {false, true}, by
induction hypothesis GΦ′[x1←v1,x2←v2] admits a path from q′1 to q′⊤ composed of exactly
24(n−2) edges if and only if Φ′[x1 ← v1, x2 ← v2] is satisfiable. Intuitively, we construct such
a path of GΦ from q1 to q⊤ based on a path of GΦ′ from q′1 to q′⊤. This is effective since
GΦ′[x1←v1,x2←v2] is a subgraph of GΦ[x1←v1,x2←v2] where q3 and qa

2 in GΦ[x1←v1,x2←v2] match
respectively with q′1 and q′⊤ in GΦ′[x1←v1,x2←v2]. In fact, GΦ′[x1←v1,x2←v2] has an horizon
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of 24(n−2) because Φ′ has n − 2 quantifiers, and qa
2 has a self-loop available at all time in

this horizon, that is, GΦ′[x1←v1,x2←v2] cannot modify the bits of bit sectors 1 and 2. Also,
q3 is entered only when the 4(n − 2) least significant bits of the time are zero due to the
availability of the edge from q2 to q3, and qa

2 is leaved only if the 4(n− 2) bits overflow due
to as a direct consequence of the availability of the edge from qa

2 to qb
2.

We show that when q1 is entered at time 0, it can be exited only at time θ0 = 24n−4,
θ1 = 24n−4 + 24n−2. Then q2 is visited and since in both cases α2 = 0, by construction,
the vertex q3 is visited at time θ0 + 24n−8 or θ1 + 24n−8 (where δ2 switched to 1). Let
θ′0 = θ0 + 24n−8 where β1 = 0 and θ′1 = θ1 + 24n−8 where β1 = 1. In both cases, β2 = 0.
For all k ∈ {0, 1}, by induction hypothesis, there is a path from q3 at time θ′k to qa

2 at
time θ′k + 24(n−2) − 1 if and only if Φ′[x1 ← k, x2 ← 0] is satisfiable. If Φ′[x1 ← 0, x2 ← 0]
and Φ′[x1 ← 1, x2 ← 0] are not satisfiable, then GΦ cannot reach q⊤ from q1 and Φ is not
satisfiable. Otherwise, the two paths in GΦ that reach qa

2 at θ′0+24(n−2)−1 and θ′1+24(n−2)−1
can be extended to reach q2 at time θ0 +24n−6 and θ1 +24n−6 respectively (where β2 switched
to 1). Since α2 = 0 in both cases, the vertex q3 is visited at time θ0 + 24n−6 + 24n−8 and
θ1 + 24n−6 + 24n−8 respectively (where switched to δ2 = 1). Let θ′′0 = θ0 + 24n−6 + 24n−8

where β1 = 0 and θ′′1 = θ1 + 24n−6 + 24n−8 where β1 = 1. For all v1, v2 ∈ {false, true}, by
induction hypothesis, there is a path from q3 at time θ′′k to qa

2 at time θk + 24(n−2) − 1 if
and only if Φ′[x1 ← k, x2 ← 1] is satisfiable. If Φ′[x1 ← 0, x2 ← 1] and Φ′[x1 ← 1, x2 ← 1]
are not satisfiable, then GΦ cannot reach q⊤ and Φ is not satisfiable. Otherwise, the two
paths in GΦ that reach qa

2 at θ′′0 + 24(n−2) − 1 and θ′′1 + 24(n−2) − 1 can be extended to reach
q2 at time θ0 + 24n−5 and θ1 + 24n−5 respectively (where α2 switched to 1). Since α2 = 1,
the vertex q⊤ is visited at time θ0 + 24n−5 + 1 and θ1 + 24n−5 + 1 respectively. Hence, GΦ

admit a path from q1 to q⊤ if and only if there is k ∈ {0, 1} such that Φ′[x1 ← k, x2 ← 0]
and Φ′[x1 ← k, x2 ← 1] are satisfiable, i.e., if and only if Φ is satisfiable.

It is worth emphasizing that, when GΦ admits a path from q1 to q⊤, it can be constructed
with a memoryless strategy. In the above reduction, for each vertex qi that encodes an
existential quantifier, the inductively constructed strategy aims in qi at evaluating βi such
that the next time qφ is visited its outgoing edge will be available. Hence, in qi, the strategy
is solely based on the value βi−1, . . . , β1. Since the vertices encoding existential quantifiers
are the only source of branching in GΦ, the strategy is memoryless.

Finally, we show that the size of GΦ is polynomial in the size of Φ. Here after, the size
of the formula corresponds to the number of symbols to write it. The size of a symbolic
temporal graphs G, is defined by |G| = |V |+

∑
(u,v)∈V 2 |E(u, v)|. The graph GΦ has at most

4n + 2 vertices, and all availability are expressible by a Presburger formula of polynomial
size in |Φ|. Since the horizon of GΦ is 24n, each edge availability can be expressed as a
conjunction of at most 4n formulas of the form Ψk,v. ◀

▶ Corollary 10. Solving reachability games on one-player symbolic temporal graphs with at
most K temporal edges is ΣP

m-hard, i.e, hard for the m-th level of the polynomial hierarchy,
where K ≥ 2⌈m

2 ⌉+ 9⌊m
2 ⌋+ 1.

Proof. In the proof of Theorem 9, the number of quantifiers in Φ determines the number
of temporal edges used in the constructed symbolic temporal graph. The gadget to encode
existential quantifiers uses two temporal edges and the one for universal quantifiers uses nine
temporal edges, and there is one edge for the quantifier-free formula φ (see Figure 5). Note
that if a quantifier block contains more than m variables, we can blow up the number of bits
polynomially by having bits βj

i for 1 ≤ j ≤ m, while keeping the number of temporal edges
the same, thus obtaining a reduction from QSAT with a fixed number of quantifiers. ◀
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A similar ΠP
m-hardness also holds for a different choice of m. Note that this is in contrast

with the PSPACE-hardness proof for two-player reachability games on symbolic temporal
graphs, where the problem is PSPACE-hard even with just one temporal edge [17, Theorem 1].

A restriction that makes the problem easier is allowing waiting. It is typical in study of
temporal graphs to allow waiting for an arbitrary amount of time in temporal paths, i.e.,
instead of having to take an edge at every timestep, edges are traversed at increasing (but
not necessarily consecutive) timesteps. This corresponds to having a loop on all vertices
that can be traversed at any time. In case of two-player games, this allows Player 2 to stall
infinitely and therefore is not interesting. The following remark states that the explorability
on a one-player temporal arena with symbolic encoding becomes easy if waiting is allowed.
We show that this holds even for generalized reachability objectives.

▶ Theorem 11. Assuming symbolic encodings, solving one-player games on temporal graphs
with waiting is NP-complete for reachability, explorability and generalized reachability.

Proof. The NP lower bound follows from checking satisfiability of an existential Presburger
formula, which is known to be NP-complete [37]. Given a ∃PA formula ϕ with no free
variables, consider the symbolic temporal graph V = {s, t}, such that E(s, t) def= ϕ(x) is the
only available edge, where x is a variable that does not occur in ϕ. The vertex t is reachable
from s if, and only if, ϕ is true. For the upper bound, note that the length of a shortest
witnessing path, measured by the number of edges traversed, is at most quadratic in the
number of vertices of the graph. The NP upper bound can be shown by guessing the vertices
visited along a play, together with the time they are visited first. The intermediate path
between two such vertices can only visit linearly many vertices as no vertex is repeated
in such a path. If a revisit is necessary, there is another path which waits instead. If a
path does exist, then the time at which it is visited will at most be exponentially large and
consequentially can be guessed in polynomial time. Therefore, by guessing the path and the
times at which corresponding edges are taken, we obtain an NP algorithm. ◀

▶ Remark 12. In [15], Fearnley and Jurdziński introduce counter-stack automata to prove that
reachability in two-clock timed automata is PSPACE-complete. The model of counter-stack
automata bears similarity with the technique used in proof of Theorem 9. Indeed, both
rely on a linear ordering of counters (being bits in our model) and that incrementation of a
counter can only be performed when the value of all smaller counters is known. When elapse
of time sets a bit to 1, the smaller bits are reset to 0. In [15] counters can be reset, which
correspond to reset of clocks. Our proof cannot be derived from [15] because time cannot be
reset in our setting. Vice versa, our proof uses existential Presburger formula with arbitrarily
many variables which is not known to be expressible with a two-clock automata.

▶ Theorem 13. Solving two-player symbolic temporal generalized reachability games is in
EXP. It is in PSPACE for one-player games.

Proof. Consider a generalized reachability game G on arena A = (V1, V2, E) and with
targets F = F1, . . . Fk. Note that under symbolic encodings, temporal graphs are ultimately
periodic, meaning that there are b, p ∈ N so that for every i > b, i ∈ E(u, v) if, and only
if, i + p ∈ E(u, v). This is because the set of times at which any given edge is available is
defined using a Presburger formula and thus semilinear [20]. Moreover, the least common
multiple of the periods of the individual edges is therefore a period of (all edges in) the
temporal graph and we can bound b and p to be at most exponential in the size of the input.
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We can therefore construct an at most exponentially larger reachability game G′ in
which control states record the set of states (of G) that have already been visited, and
the time up to and within the period. That is, define the arena A′ = (V ′1 , V ′2 , E′) where
V ′ = V ×2V ×{0, 1, . . . , b+p−1} and with edge relation E′ so that (u, S, θ)−→ (v, S∪{v}, θ′)
if θ ∈ E(u, v) and either θ′ = θ + 1 or both θ = b + p− 1 and θ′ = b. Player 1 owns a state
(u, S, θ) in G′ iff she owns u in G. Finally, define the reachability target set in the constructed
game G′ as

F ′ = {(v, S, θ) ∈ V ′ : ∀Fj ∈ F ,∃v ∈ Fj , such that v ∈ S}.

Notice that any play from (v, ∅, 0) in G′ uniquely corresponds to a play from state s at
time 0 in the original game G. The second components within control states in G′ are
non-decreasing and record the set of states visited by the corresponding play in G. By
definition of our reachability target F ′, we see that a play is winning for Player 1 in the
constructed reachability game G′ if, and only if, the corresponding play is winning for Player 1
in the generalized reachability game G.

Note that the size of G′ is |V | · |2V | · (b + p), where b, p ≤ 2O(|G|). The claim thus follows
from the (known) facts that two-, and one-reachability games can be solved in polynomial
time and logarithmic space, respectively. ◀

▶ Corollary 14. Assuming symbolic encodings, solving one-player games on temporal graphs
is PSPACE-complete for reachability, explorability and generalized reachability. Solving two-
player games on temporal graphs is PSPACE-complete for reachability and PSPACE-hard and
in EXP for explorability and generalized reachability.

6 Conclusion

We study the complexities of solving explorability games on temporal graphs, splitting into
several cases based on the way temporal edges are defined and whether one or two-players
are active.

First, we transfer results for games on static graphs and show that there, solving explor-
ability games is NL-complete for the one-player and P-complete for the two-player case.

On explicitly represented temporal graphs in which waiting is permitted, it was known
that checking the existence of an exploring path, i.e. the solving one-player explorability games
is NP-complete [30]. We show here that even for the more general case where waiting is not
always allowed the problem remains in NP. We further show that solving two-player games
on explicitly represented temporal graphs is PSPACE-complete for reachability, explorability,
and generalized reachability conditions. The existing lower bound for reachability [6] crucially
relies on binary encodings and the presence of an antagonistic player.

The main technical contribution of this work is a strong lower bound for symbolically
represented temporal graphs: We show that already single-player reachability (and thus
explorability) games are PSPACE-hard. Our construction uses specially crafted Presburger
constraints to ensure that all possible choices of an “opponent” in a QBF game are verified.
Towards upper bounds, we show that even two-player generalized reachability games are
solvable in deterministic exponential time, which is better than the exponential space
procedure one gets for free (by encoding time into the state space) but not quite matching
our lower bound. We conjecture that indeed, solving two-player games for each of these three
objectives remains in PSPACE, mainly because raising the lower bound remained elusive.
To show EXP-hardness one needs to encode non-trivial and recoverable information into
timestamps. Our attempts to reduce from CTL Satisfiability or Countdown Games so far
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required to either construct Presburger constraints to compare bits that are exponentially
far apart in the binary expansion of a given free variable (time), or to construct gadgets that
“copy” bitstrings from lower to higher significant bit positions. It is worth noting that any
such construction must only be correct for explorability but not for the simpler reachability
conditions (which are PSPACE-complete [6]).

On the other hand, showing PSPACE-membership would require either find a polynomi-
ally bounded untimed game gadgets to evaluate any given ∃PA formula or to encode the
antagonistic behaviours arithmetically.
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