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Abstract
Abstract interpretation offers a powerful toolset for static analysis, tackling precision, complexity and
state-explosion issues. In the literature, state partitioning abstractions based on (bi)simulation and
property-preserving state relations have been successfully applied to abstract model checking. Here,
we pursue a different track in which model checking is seen as an instance of program verification.
To this purpose, we introduce a suitable language – called MOKA (for MOdel checking as abstract
interpretation of Kleene Algebras) – which is used to encode temporal formulae as programs. In
particular, we show that (universal fragments of) temporal logics, such as ACTL or, more generally,
universal µ-calculus can be transformed into MOKA programs. Such programs return all and only
the initial states which violate the formula. By applying abstract interpretation to MOKA programs,
we pave the way for reusing more general abstractions than partitions as well as for tuning the
precision of the abstraction to remove or avoid false alarms. We show how to perform model checking
via a program logic that combines under-approximation and abstract interpretation analysis to avoid
false alarms. The notion of locally complete abstraction is used to dynamically improve the analysis
precision via counterexample-guided domain refinement.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Verification by model checking; Theory of computation → Program verification;
Theory of computation → Programming logic; Theory of computation → Abstraction

Keywords and phrases ACTL, µ-calculus, model checking, abstract interpretation, program analysis,
local completeness, abstract interpretation repair, domain refinement, Kleene algebra with tests

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.8

Related Version Extended Version: https://arxiv.org/abs/2506.05525 [1]

Funding This research was partially funded by the Italian MUR, under the PRIN 2022 PNRR project
no. P2022HXNSC on “Resource Awareness in Programming: Algebra, Rewriting, and Analysis”,
and the PNRR project SEcurity and RIghts In the CyberSpace (SERICS, PE00000014 – CUP
H73C2200089001), by the INdAM-GNCS Projects RISICO (CUP E53C22001930001) and MARQ
(CUP E53C24001950001), by a WhatsApp Research Award and by an Amazon Research Award for
AWS Automated Reasoning.

1 Introduction

Abstraction is a fundamental craft for mastering complexity. In model checking, abstraction-
guided space reduction allows to mitigate the well-known state explosion problem [15].
Abstract interpretation [16, 17] is the de facto standard framework for designing sound
analyses. The idea of applying abstract interpretation to model checking has been widely
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8:2 Model Checking as Program Verification by Abstract Interpretation

investigated, e.g., [2–5,10–12,14,19–23,25,26, 28–30,33,35, 37, 38, 40, 44–47,49,50, 55] (§ 7
accounts for more closely related work). These approaches often rely on over-approximations
that preserve some logical properties, like state partitioning abstractions or simulation-
preserving relations.

Objective. In this work, we pursue a different approach, which consists in recasting model
checking of temporal formulae directly in terms of program verification, for which the whole
tool-suite of abstract interpretation is readily available. To this aim, we exploit an instance
of a Kleene algebra with tests and fixpoints (KAF) [36], whose primitives allow to map each
temporal formula to a program that can single out all and only the counterexamples to the
formula. This program can then be analysed through a sound abstract interpretation that
over-approximates the concrete behaviour, so that all possible counterexamples are exposed.
However, this over-approximation might not faithfully model the program behaviour in the
abstract domain, thus possibly mixing true and false alarms. This lack of precision cannot
happen when the abstract interpretation is complete [18]. However, completeness happens
quite seldom, and even if, in principle, it can be achieved by refining the abstract domain [27],
the most abstract domain refinement ensuring completeness is often way too concrete (it
might well coincide with the concrete domain itself).

To remove false alarms, the validity of temporal formulae can be analysed by deriving
certain judgements for the corresponding program in a suitable program logic. This enables
the use of techniques borrowed from locally complete abstract interpretation [7,9], where the
over-approximation provided by the abstract domain is paired with an under-approximating
specification, in the style of O’Hearn’s incorrectness logic [43]. This way, any alarm raised by
an incorrectness logic proof corresponds to a true counterexample and local completeness
guarantees that derivable judgements either exposes some true counterexamples (if any) or
proves that there are none. Moreover, the failure of a proof obligation during inference can
point out how to dynamically refine the underlying abstraction to enhance the precision and
expressiveness of the analysis, a technique called abstract interpretation repair [8].

Methodology (and a toy example). Our main insight is to design a meta-programming
language, called MOKA (MOdel checking as abstract interpretation of Kleene Algebras),
where suitable temporal formulae can be mapped to. We show how this can be done for
ACTL or, more generally, for the single variable µ-calculus without the existential diamond
modality. MOKA is a language of regular commands, based on Kleene algebra with tests
(KAT) [34] augmented with fixpoint operators (KAF) [36]. MOKA leverages a small set of
primitives to extend and filter computation paths. They can be combined with the usual
KAF operators of sequential composition, join (i.e., nondeterministic choice), Kleene iteration,
and least fixpoint computation. The corresponding programs are then analysed by abstract
interpretation.

The language MOKA operates on computation paths ⟨σ,∆⟩, where σ ∈ Σ represents the
current system state, and ∆ ∈ P(Σ) represents the set of traversed states. In the following, we
informally overload the symbol σ to denote ⟨σ,∅⟩. Several computation paths can be stacked
and unstacked through the MOKA primitives push and pop for dealing with nested temporal
formulae. A generic stack is denoted ⟨σ,∆⟩::S and we call σ its current state. Each temporal
formula φ is mapped to a MOKA program ⌊φ ⌉ that intuitively computes counterexamples
to φ, whence the bar over φ in the application of the encoding ⌊·⌉. Letting J·K denote the
usual (collecting) denotational semantics, a key result is, therefore, that a state σ satisfies
the formula φ iff the execution of ⌊φ ⌉ on σ returns the empty set. Of course, the results
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Figure 1 Variations on the traffic light example from [12].

can be generalised additively to sets of stacks, for which ⌊φ ⌉ filters out exactly those stacks
whose current state satisfies φ. We can thus summarise the semantic correspondence between
formulae satisfaction and execution of their MOKA programs by J⌊φ ⌉KP = {σ ∈ P | σ ̸|= φ}.
As a special case, it follows that σ |= φ iff J⌊φ ⌉K {σ} = ∅. For example, for an atomic
proposition p, we let ⌊p ⌉ ≜ ¬p?, where ¬p? is a MOKA primitive that filters out those states
where p is valid. As a further example, the MOKA program for the formula AG φ (stating
that φ along every possible path always holds) is ⌊AG φ ⌉ = push; next∗; ⌊φ ⌉; pop.

The intuition is quite simple: next∗ generates all the successors by iterating the next
operation, and they are filtered by ⌊φ ⌉, to expose those which fail to satisfy φ. The
operations push and pop manage the stack structure. In the example, to attain the semantic
correspondence above, whenever a state δ such that δ ̸|= φ is reachable from some initial
state σ, we want J⌊AG φ ⌉K {σ} to return σ and not δ: the operation push serves to stash σ

when looking for δ, and the operation pop to discard δ and unstash σ, to conclude σ ̸|= AG φ.
To make the next introductory examples easier to follow, we suggest that the reader ignore
the push and pop symbols, hence their faded rendering in MOKA programs.

To get a flavour of the proposed approach, we sketch an easy example, which is a variation
of [12, Examples 3.4, 3.7]. Consider the transition system in Figure 1a, which models
the behaviour of cars at a US traffic light. State names consist of two letters, denoting,
respectively, the traffic light status, i.e. red, yellow, green, and the car behaviour, i.e. stop,
drive. We model check the validity in the initial state rs of the safety property φ = AG (¬rd),
stating that it will never happen that the light is red and the car is driving. This is obviously
true for the system, since rd is an unreachable state. We therefore consider the MOKA
program ⌊φ ⌉ = push; next∗; rd?; pop, and compute its semantics J⌊φ ⌉K {rs}, which turns out
to be the empty set, thus allowing us to conclude that rs |= φ. In fact, after a few concrete
steps of iteration, Jrd?KJnext∗K {rs} = Jrd?K {rs, gs, gd, yd, ys} = ∅.

How the abstraction works. We show how any sound abstraction of state properties in
℘(Σ) of the original system can be lifted to a range of sound abstractions on stacks with
varying degrees of precision, in a way that MOKA programs can be analysed by an abstract
interpreter, denoted by J·K♯. The analysis output is always sound, meaning that the set of
counterexamples is over-approximated. In particular, letting α denote the abstraction map to
an abstract lattice, and ⊥ the bottom element of the corresponding abstract computational
domain, if J⌊φ ⌉K♯α({σ}) = ⊥, then σ |= φ holds. Vice versa, if J⌊φ ⌉K♯α({σ}) ̸= ⊥, then the
abstract analysis might raise a false alarm because, in general, abstractions are not complete.

Back to the previous example, let us consider the (non-partitioning) abstract domain
A ≜ {⊥A, a ∧ c, b ∧ c, a, b, c, a ∨ c, b ∨ c,⊤A} in Figure 1c, induced by the abstract properties
a, b and c, whose concretizations are represented as dotted boxes in Figure 1b. The abstract
interpreter computes J⌊AG (¬rd) ⌉K♯α({rs}) = Jpush; next∗; rd?; popK♯a = ⊥, thus allowing us
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8:4 Model Checking as Program Verification by Abstract Interpretation

to conclude that rs |= AG (¬rd). Since rs has a transition to gs, we have Jrd?K♯Jnext∗K♯a =
Jrd?K♯(a∨ c) = ⊥. It is worth remarking that in the abstract domain A, computing Jnext∗K♯a

requires two iterations instead of four, as it happens in the concrete computation. Consider
now the formula ψ = AG (g → AX d), namely, “whenever the semaphore is green, then
at the next state the car is driving”. Spelling out the MOKA encoding, we have: ⌊ψ ⌉ =
push; next∗; g?; push; next; ¬d?; pop; pop. Again, ψ holds for the concrete system in Figure 1a,
but here the abstract interpretation is imprecise, because Jpush; next∗; g?K♯α({rs}) = c::a and
Jpush; next; ¬d?K♯(c::a) = (a ∨ c)::c::a, so that J⌊ψ ⌉K♯α({rs}) = a ≠ ⊥, thus raising a false
alarm. As explained above, we exploit push/pop operators to manage the stack structure of
domain elements and to recover the (abstract) states from which the computation started
when property violations are found. For instance, in the case illustrated above, once the
stack (a ∨ c)::c::a is obtained, representing an abstract trace where the property fails, its
initial abstract state, a, is recovered by applying two successive pop operations.

To eliminate false alarms, we leverage the concept of local completeness in abstract
interpretation. Roughly, the idea consists in focusing on the (abstract) computation path
produced by some input of interest, and then refining the abstraction only when needed to
make it complete locally to such computation. More precisely, we apply a variation of local
completeness logic (LCL) [7, 9], which is here extended to deal with fixpoint operators. The
LCL proof system, parametrised by a generic state abstraction A, works with O’Hearn-like
judgements ⊢A [P ] r [Q], where r is a program and P,Q denote state properties or, equivalently,
the underlying sets of states satisfying those properties. The triple ⊢A [P ] r [Q] is valid when Q
is an under-approximation of the states reachable by r from P while the abstraction of Q over-
approximates such reachable states, and the abstract computation of r on the precondition P
is locally complete. Roughly, this can be expressed as Q ⊆ JrKP ⊆ γ ◦ α(Q). In our setting,
where the program ⌊φ ⌉ associated with a formula φ “returns” all the counterexamples to the
validity of φ, an inference of ⊢A [P ] ⌊φ ⌉ [Q] shows that Q ⊆ {σ ∈ P | σ ̸|= φ} ⊆ γ ◦ α(Q),
thus bounding the set of counterexamples to φ in P . Hence, if Q ̸= ∅ then φ does not hold
for each σ ∈ Q ⊆ P , while φ holds for all states σ ∈ P \ (γ ◦ α(Q)). If, instead, Q = ∅, then
α(Q) = ⊥, and φ holds in the whole P . As LCL derivations cannot succeed with locally
incomplete abstractions, if some proof obligation fails, the abstract domain needs to be “fixed”
to achieve local completeness. This can be accomplished, e.g., by applying the abstraction
repair techniques defined in [8].

For the toy traffic light example, we can derive in LCL the program triple ⊢A [{rs}] ⌊φ ⌉ [∅],
that confirms the validity of the formula φ. Vice versa, an attempt to derive the triple
⊢A [{rs}] ⌊ψ ⌉ [∅] fails because of local incompleteness. Roughly, we can successfully
derive ⊢A [{rs}] next∗; g?; [{gs, gd}], but then the execution of next on {gs, gd} is not
locally complete, because α(JnextK {gs, gd}) = α({gd, yd}) = b∧ c, while JnextK♯α({gs, gd}) =
JnextK♯c = a∨c. The abstraction repair procedure of [8] would then lead to refine the abstract
domain by adding a new abstract element c1 to represent the concrete set γ(c1) = {gs, gd}.
Since abstract domains must be closed under meets, the addition of c1 will also entail
the addition of c1 ∧ b such that γ(c1 ∧ b) = {gd}. Letting A1 ≜ A ∪ {c1 ∧ b, c1}, we
can still derive ⊢A1 [{rs}] next∗; g? [{gs, gd}], then ⊢A1 [{gs, gd}] next [{gd, yd}], and finally
⊢A1 [{gd, yd}] ¬d? [∅], which can be composed together to conclude ⊢A1 [{rs}] ⌊ψ ⌉ [∅]. In
fact, in A1 we just have J⌊ψ ⌉K♯α1({rs}) = ⊥.

Original contribution. We set up a theoretical framework for the systematic reduction of
model checking of temporal logics to program verification, thereby enabling the re-use of
abstract interpretation techniques and verifiers either directly or with minimal effort. This
framework consists of:
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MOKA, a meta-programming language in which different temporal logics can be encoded
so that the MOKA code for a formula φ computes exactly the counterexamples to φ;
a systematic technique for lifting abstractions over state properties to abstractions suitable
for the static analysis of MOKA programs;
an extension of the LCL program logic to handle least fixpoints, introducing a form of
“false alarm-guided” abstraction refinement loop in the analysis of MOKA programs.

Synopsis. In § 2 we provide some basics about abstract interpretation and the (fragments)
of temporal logics considered in the paper. In § 3 we introduce the language MOKA, and
then prove in § 4 the key results that relate formula satisfaction with program execution.
In § 5 we define a general technique for deriving abstract domains for the static analysis of
MOKA programs. In § 6 we showcase how local completeness logic reasoning can be exploited
in our framework. In § 7 we discuss related work. Finally, in § 8 we draw some conclusions
and sketch future avenues of research. Full proofs of our results and additional material are
available in the extended version of this paper [1].

2 Background

A complete lattice is a poset (L,≤L) where every subset X ⊆ L has both least upper
bound (lub) and greatest lower bound (glb), denoted by

∨
L X and

∧
L X, respectively, with

⊥L ≜
∨

L ∅ and ⊤L ≜
∧

L ∅. When no ambiguities can arise, a lattice will be denoted as L
and subscripts will be omitted.

Given two complete lattices L1 and L2, a function f : L1 → L2, is monotone if x ≤1 y

implies f(x) ≤2 f(y), and additive (resp., co-additive) if it preserves arbitrary lub (resp.,
glb). Any monotone function f : L → L on a complete lattice has both a least and a
greatest fixpoint, denoted by lfp(f) and gfp(f), respectively. The set of functions f : S → L

from a set S to a complete lattice L, denoted LS , forms a complete lattice when endowed
with the pointwise order s.t. f ≤ g if for all s ∈ S, f(s) ≤L g(s). If L1, L2 are complete
lattices, then L1 × L2 is their product lattice endowed with the componentwise order s.t.
(x1, x2) ≤ (y1, y2) if x1 ≤1 y1 and x2 ≤2 y2. We write Ln for the n-ary product of L with
itself and L+ ≜ {⊥,⊤} ∪

⋃
n≥1 L

n for the complete lattice of non-empty finite sequences in
L, ordered by x1 . . . xn ≤ y1 . . . ym if n = m and xi ≤L yi for all i ∈ [1, n], with top ⊤ and
bottom ⊥.

2.1 Abstract Interpretation

Let us recall the basics of abstract interpretation [17] (see [16] for a thorough account).
Given two complete lattices C and A, called the concrete and the abstract domain,

respectively, a Galois connection (GC) ⟨α, γ⟩ : C ⇄ A is a pair of functions α : C → A and
γ : A → C s.t. α(c) ≤A a ⇔ c ≤C γ(a) for any c ∈ C and a ∈ A.

The function α is referred to as abstraction map and turns out to be additive, while
γ is the concretization map which is always co-additive. Intuitively, any abstract element
a ∈ A such that c ≤ γ(a) is a sound over-approximation for the concrete value c, while the
abstraction α(c) is the most precise over-approximation of c in the abstract domain A, i.e.,
α(c) =

∧
C {a | c ≤C γ(a)} holds. The notation Aα,γ denotes an abstract domain endowed

with its underlying GC, and we will omit subscripts when α and γ are clear from the context.
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%1
s do {2

x := y; z := 0; 1
3

if (w != 0) then {4
2 y := y + 1;5

z := 1; } 3
6

} while (x != y) e
7

(a) Program c.

s

1

2

3

e

x:=y z:=0

w=0 w!=0

y:=y+1 z:=1

x=y

x!=y

(b) Control flow graph of c.
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(c) Predicate abstraction P.

Figure 2 Program from [4, Figure 1], with control flow graph and predicate abstraction domain.

▶ Example 2.1 (Image adjunction). Given any function f : X → Y , let f> and f< denote
the direct and inverse image of f , respectively. The pair ⟨f>, f<⟩ : P(X) → P(Y ) is a GC
that we refer to as the image adjunction (this is an instance of [24, Exercise 7.18]). ⌟

The class of abstract domains on C, denoted by Abs(C) ≜ {Aα,γ | ⟨α, γ⟩ : C ⇄ A}, can
be preordered by the domain refinement relation: A′ ⊑ A when γA(A) ⊆ γA′(A′).

▶ Example 2.2 (Control flow graphs and predicate abstraction). Any program can be rep-
resented by its control flow graph (CFG). Let Var be a set of variables valued in V and
denote by Env = VVar the set of environments. A CFG is a graph (N,E, s, e), where N
is a finite set of nodes, representing program points, s, e ∈ N are the start and end nodes,
respectively, and E ⊆ N × F ×N is a set of edges, labelled over a set of transfer (additive)
functions F ⊆ P(Env)P(Env). For example, the program c in Figure 2a is decorated with
program points n ∈ N = {s, 1, 2, 3, e}, has variables Var = {x, y, z, w}, and values ranging
in the finite domain V = Zk of integers modulo a given k > 0. The CFG of c is depicted in
Figure 2b.

Predicate abstraction allows to approximate program invariants [32]. Given a set of
predicates Pred ⊆ P(Env) (where any p ∈ Pred has a representation p = {ρ ∈ Env | ρ |= p}),
the predicate abstraction domain P is defined by adding to Pred the complement predicates
Pred ≜ {p | p ∈ Pred}, and then by closing Pred ∪ Pred under logical conjunction. We
define a function π : P(Env) → P that associates to each set of environments the strongest
predicate it satisfies. For example, given the two predicates p ≜ (z = 0) and q ≜ (x = y), the
predicate abstraction domain P induced by the set Pred = {p, q} is depicted in Figure 2c.
Correspondingly, the product abstraction PN allows us to represent the abstract state of
the program as a function that associates to each program point n the strongest predicate
in P that holds at n. Hence, for instance, the set of all possible initial states of c, which
is {(s, xyzw) | x, y, z, w ∈ V}, is represented by the function (s 7→ ⊤, 1 7→ ⊥, 2 7→ ⊥, 3 7→
⊥, e 7→ ⊥), often written (s 7→ ⊤), omitting the program points which are mapped to ⊥. ⌟

An abstract interpreter computes in the underlying abstract domain through correct (and
effective) abstract approximations of concrete functions. Given Aα,γ ∈ Abs(C) and a function
f : C → C, an abstract function f ♯ : A → A is a correct approximation of f if α ◦ f ≤ f ♯ ◦α,
and it is a complete approximation of f when α ◦ f = f ♯ ◦ α. The best correct approximation
(bca) of f in A, is defined as fA ≜ α ◦ f ◦ γ : A → A, and turns out to be the most precise
correct abstraction, i.e., fA ≤ f ♯ for any other correct approximation f ♯ of f . When f ♯ is
complete, then f ♯ = fA, thus making completeness an abstract domain property defined by
the equation α ◦ f = α ◦ f ◦ γ ◦ α. In program analysis, abstract domains are commonly
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endowed with correct but incomplete abstract transfer functions. When completeness holds,
the abstract interpreter is as precise as possible for the given abstract domain and cannot
raise false alarms when verifying properties that are expressible in the abstract domain [27].

2.2 Transition Systems and Logics
Temporal logics are typically interpreted over unlabeled, finite, directed graphs, whose nodes
and edges model states and transitions between them (i.e., state changes), respectively.

A transition system T is a tuple (Σ, I,P,_,⊢), where Σ is a finite set of states ranged
over by σ, I ⊆ Σ is the set of initial states, _ ⊆ Σ×Σ is the transition relation, P is a (finite)
set of atomic propositions, ranged over by p, and ⊢ ⊆ Σ × P is the satisfaction relation.

We write σ_σ′ instead of (σ, σ′) ∈ _ and let post(σ) = {σ′ | σ_σ′} denote the set of
direct successors of σ ∈ Σ. As common in model checking [13], we consider systems whose
transition relation is total, i.e., for all σ ∈ Σ there exists σ′ ∈ Σ such that σ_σ′.

A path is an infinite denumerable state sequence (σi)i∈N such that σi _σi+1 for all i ∈ N.

▶ Example 2.3 (Control flow graphs as transition systems). A CFG (N,E, s, e) can be
viewed as a transition system with states Σ = N × Env and transition relation defined by
(n, ρ) _(n′, ρ′) if there is an edge (n, f, n′) ∈ E such that ρ′ ∈ f({ρ}). Additionally, in order
to make the transition relation total we add self-loops to all the states (e, ρ) involving the
end node e. For instance, by using the shorthand (n, xyzw) for the states in Example 2.2,
the transition (s, 0111) _(1, 1101) is induced by the edge (s, x := y z := 0, 1) in Figure 2b,
while (3, 1111) _(e, 1111) by (3, x = y, e) in Figure 2b.

Let us point out that the predicate abstraction in Example 2.2 naturally lifts to the power-
set of states with codomain A = PN , with the abstraction map α(X)(n) ≜ π({ρ | (n, ρ) ∈ X})
for X ∈ P(Σ) = P(N × Env). Given σ♯ ∈ A, we define supp(σ♯) ≜

{
n ∈ N | σ♯(n) ̸= ⊥

}
. ⌟

ACTL. ACTL is the fragment of CTL whose temporal formulae are universally quantified
over all paths leaving the current state. Thus, given a set of atomic propositions p ∈ P:

ACTL ∋ φ ::= p | ¬p | φ1 ∨ φ2 | φ1 ∧ φ2 | AX φ1 | AF φ1 | AG φ1 | φ1 AU φ2

▶ Definition 2.4 (ACTL semantics). Given a transition system T = (Σ, I,P,_,⊢), the
semantics JφK ⊆ Σ of ACTL formulae over T is as follows:

JpK ≜ {σ ∈ Σ | σ ⊢ p} J¬pK ≜ {σ ∈ Σ | σ ̸ ⊢ p}
Jφ1 ∨ φ2K ≜ Jφ1K ∪ Jφ2K Jφ1 ∧ φ2K ≜ Jφ1K ∩ Jφ2K
JAX φ1K ≜ {σ ∈ Σ | ∀σ′.σ _ σ′ ⇒ σ′ ∈ Jφ1K}
JAF φ1K ≜ {σ0 ∈ Σ | for all path (σi)i∈N ∃k ∈ N. σk ∈ Jφ1K}
JAG φ1K ≜ {σ0 ∈ Σ | for all path (σi)i∈N ∀j ∈ N. σj ∈ Jφ1K}

Jφ1 AU φ2K ≜ {σ0 ∈ Σ | for all path (σi)i∈N ∃k ∈ N. (σk ∈ Jφ2K ∧ ∀j < k. σj ∈ Jφ1K)}

Universal fragment of single variable µ-calculus. The modal µ-calculus is a well known
extension of propositional modal logic with least and greatest fixed point operators. We will
focus on its universal fragment only allowing the 2 modal operator that quantifies over all
transitions. Moreover, for the sake of simplicity, we restrict to the single variable fragment
where, roughly speaking, nested fixpoints cannot have mutual dependencies.

Given a set of atomic propositions p ∈ P, the µ2-calculus is defined as follows:

µ2 ∋ φ ::= p | ¬p | φ1 ∨ φ2 | φ1 ∧ φ2 | 2φ1 | x | µx.φx | νx.φx

CONCUR 2025



8:8 Model Checking as Program Verification by Abstract Interpretation

▶ Definition 2.5 (µ2-calculus semantics). Given T = (Σ, I,P,_,⊢), and a valuation V :
Var → P(Σ), the semantics JφKV ⊆ Σ of µ2-calculus formulae over T is as follows:

JpKV ≜ {σ ∈ Σ | σ ⊢ p} J¬pKV ≜ {σ ∈ Σ | σ ̸ ⊢ p}
Jφ1 ∨ φ2KV ≜ Jφ1KV ∪ Jφ2KV Jφ1 ∧ φ2KV ≜ Jφ1KV ∩ Jφ2KV

J2φ1KV ≜ {σ ∈ Σ | ∀σ′.σ _ σ′ ⇒ σ′ ∈ Jφ1KV} JxKV ≜ V(x)
Jµx.φxKV ≜ lfp(λS.JφxKV[x 7→S]) Jνx.φxKV ≜ gfp(λS.JφxKV[x7→S])

where V[x 7→ S] is the usual notation for function update.

We write JφK instead of JφKV when the valuation is inessential, and σ |= φ when σ ∈ JφK.

3 The Language MOKA

We define a meta-language, called MOKA (for MOdel checking as abstract interpretation of
Kleene Algebras), as a (generalised) Kleene Algebra with a set of basic expressions suited for
identifying counterexamples to the validity of temporal formulae.

KAF. We rely on Kozen’s Kleene Algebra with tests [34] with a Fixpoint operator [36],
KAF for short. Given a set Exp of basic expressions e, KAF is defined below:

KAF ∋ r ::= 1 | 0 | e | r1; r2 | r1 ⊕ r2 | r∗
1 | X | µX.r1

The term 1 represents the identity, i.e. no action, 0 represents divergence, r1; r2 represents
sequential composition, r1 ⊕ r2 represents non-deterministic choice, r∗

1 represents the Kleene
iteration of r1, i.e. r1 performed zero or any finite number of times, X is a variable ranging in
a set Var, and µX.r1 represents the least fixpoint operator with respect to variable X.

Commands are interpreted as functions over a complete lattice C. Given a semantics
(| · |) : Exp → C → C for basic expressions, the semantics of regular expressions J·Kη : KAF →
C → C is inductively defined as follows, where η : Var → C → C is an environment:

J1Kη ≜ λx. x J0Kη ≜ λx. ⊥
JeKη ≜ (|e|) Jr1; r2Kη ≜ Jr2Kη ◦ Jr1Kη

Jr1 ⊕ r2Kη ≜ Jr1Kη ∨ Jr2Kη Jr∗
1 Kη ≜

∨ {
Jr1Kk

η | k ∈ N
}

JXKη ≜ η(X) JµX.r1Kη ≜ lfp(λf : C → C.Jr1Kη[X 7→f ])

It can be seen that the Kleene star r∗ can be encoded as a fixpoint µX.(1 ⊕ r; X), and,
when the semantics of basic expressions (| · |) is additive, also as r∗ = µX.(1 ⊕ X; r). Although
redundant, the inclusion of the Kleene star in our syntax is very convenient, as it enables
significant simplifications in some encodings, particularly when the full expressiveness of
least fixpoint calculations is not necessary (see the remark at the end of Section 4). The
same applies to the proof logic studied in Section 6: while basic LCL suffices for the KAF
fragment without least fixpoint operator, its extension µLCL is otherwise needed. For closed
KAF terms the environment is inessential and we write just JrK instead of JrKη.

The Language MOKA. Given a transition system T = (Σ, I,P,_,⊢), MOKA is an instance
of KAF interpreted over stacks of frames, each frame representing a computation path.

▶ Definition 3.1 (Frame, stack). A frame is a pair ⟨σ,∆⟩ ∈ Σ × P(Σ). We denote by FΣ
the set of frames. A stack is a finite non-empty sequence of frames, i.e. an element of F+

Σ ,
denoted by ⟨σ,∆⟩::S, where S is a stack or the empty sequence ε.
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A frame ⟨σ,∆⟩ represents a computation in T where σ is the current state and ∆ is the
set of traversed states, used for loop-detection. The order of the traversed states and their
possible multiple occurrences are abstracted away as they are irrelevant when checking the
satisfaction of a formula. Frames are stacked to deal with formulae with nested operators.

The language MOKA is defined as instance of KAF with basic expressions for extending
and filtering frames, for (de)constructing stacks, and to keep track of fixed-point equations.

▶ Definition 3.2 (MOKA language). The language MOKA is an instance of KAF with the
following basic expressions, where p ranges over atomic propositions:

e ::= p? | ¬p? | loop? | next | add | reset | push | pop

The (concrete) semantics of MOKA is given over the powerset of the set of stacks,
C = P(F+

Σ), ordered by subset inclusion. Although we could focus on stacks of uniform
length, we use a larger domain to simplify the notation.

The semantics of MOKA commands JrKη : P(F+
Σ) → P(F+

Σ) follows from the general
definition for KAF, once we specify the semantics of its basic expressions.

▶ Definition 3.3 (Basic expression semantics). Given T = (Σ, I,P,_,⊢), the semantics of
MOKA basic expressions is the additive extension of the functions below, where ⟨σ,∆⟩::S ∈ F+

Σ :

(|p?|) {⟨σ, ∆⟩::S} ≜ {⟨σ, ∆⟩::S | σ ⊢ p} (|¬p?|) {⟨σ, ∆⟩::S} ≜ {⟨σ, ∆⟩::S | σ ̸ ⊢ p}
(|loop?|) {⟨σ, ∆⟩::S} ≜ {⟨σ, ∆⟩::S | σ ∈ ∆} (|next|) {⟨σ, ∆⟩::S} ≜ {⟨σ′, ∆⟩::S | σ _ σ′}

(|add|) {⟨σ, ∆⟩::S} ≜ {⟨σ, ∆ ∪ {σ}⟩::S} (|reset|) {⟨σ, ∆⟩::S} ≜ {⟨σ,∅⟩::S}
(|push|) {⟨σ, ∆⟩::S} ≜ {⟨σ, ∆⟩::⟨σ, ∆⟩::S} (|pop|) {⟨σ, ∆⟩::S} ≜ {S | S ̸= ε}

The basic expressions p?, ¬p?, loop?, next, add, reset operate on the top frame. The
filter p? (resp. ¬p?) checks the validity of the proposition p (resp. ¬p), loop? checks if the
current state loops back to some state in the trace, next extends the trace by one step in all
possible ways, add adds the current state to the trace and reset empties the trace. Instead,
push and pop change the stack length: push extends the stack to start a new trace, while
pop restores the previous trace from the stack. Given a set of states X ⊆ Σ, we write JrKηX

as a shorthand for JrKη({⟨σ,∅⟩ | σ ∈ X}).

4 Formulae as MOKA programs

We show that ACTL and µ2-calculus formulae φ can be transformed into MOKA programs
⌊φ ⌉ so that for any transition system T , the semantics of ⌊φ ⌉ over T consists exactly of the
counterexamples to the validity of φ, that is, the states which do not satisfy φ.

▶ Theorem 4.1 (Model checking as program verification). Given T = (Σ, I,P,_,⊢), for any
ACTL or µ2 formula φ and set of stacks P ⊆ F+

Σ , it holds J⌊φ ⌉KηP ={⟨σ,∆⟩::S ∈ P | σ|̸= φ} .

It follows that J⌊φ ⌉KηP ⊆ P and that J⌊φ ⌉Kη{σ} = ∅ iff σ |= φ. It is also worth noting that
the semantics of MOKA programs encoding formulae is a lower closure on sets of states, being
monotone, reductive and idempotent (and it preserves arbitrary unions) [39, Section 3.2.3].
In this respect, it behaves analogously to the collecting semantics of Boolean tests which filter
out memory states, keeping only those that satisfy the condition. As a consequence, similarly
to what happens when abstracting Boolean tests, in any abstract domain A approximating
sets of states the identity λa ∈ A. a, is a correct (over-)approximation of J⌊φ ⌉Kη.
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8:10 Model Checking as Program Verification by Abstract Interpretation

ACTL as MOKA. To each ACTL formula φ we assign the MOKA program ⌊φ ⌉ as follows:

⌊ p ⌉ ≜ ¬p? ⌊ ¬p ⌉ ≜ p?
⌊φ1 ∧ φ2 ⌉ ≜ ⌊φ1 ⌉ ⊕ ⌊φ2 ⌉ ⌊φ1 ∨ φ2 ⌉ ≜ ⌊φ1 ⌉; ⌊φ2 ⌉

⌊AX φ ⌉ ≜ push; next; ⌊φ ⌉; pop
⌊AF φ ⌉ ≜ ⌊φ ⌉; push; reset;

(
add; next; ⌊φ ⌉

)∗ ; loop?; pop
⌊AG φ ⌉ ≜ push; next∗; ⌊φ ⌉; pop

⌊φ1 AU φ2 ⌉ ≜ ⌊φ2 ⌉; push; reset;
(
add; next; ⌊φ2 ⌉

)∗ ;
(
loop? ⊕ ⌊φ1 ⌉

)
; pop

The intuition is that MOKA programs ⌊φ ⌉ act as (negative) filters: applied to a set of
frames ⟨σ,∆⟩::S, each representing a computation that reached state σ, they filter out states
where φ is satisfied, keeping only candidate counterexamples to the validity of φ. In general,
when the check requires exploring the future of the current state, a new frame is started
with push; if the search is successful, a closing pop recovers the starting state violating the
formula. We explain the main clauses defining ⌊φ ⌉ (see [1, Theorem B.1] for the proof of the
correctness of this transform). It turns out that ⟨σ,∆⟩::S is a counterexample for

AX φ if φ is violated in at least one successor state of σ (as computed by next; ⌊φ ⌉).
AF φ if there is an infinite trace where φ never holds. This is encoded by saying that
φ does not hold in the current state, i.e. ⌊φ ⌉, and after that, there is an infinite trace
traversing only states (collected through the command (add; next; ⌊φ ⌉)∗) that do not
satisfy φ. Since we deal with finite state systems, infinite traces can be identified with
looping traces (whence the check loop?); for this to work, after the push we reset the past.
AG φ if we can reach, by repeatedly applying next, a counterexample to φ.
φ1 AU φ2 if φ2 does not hold in the current state, i.e. ⌊φ2 ⌉, and progressing through
states that do not satisfy φ2 with (add; next; ⌊φ2 ⌉)∗, either we detect a maximal (looping)
trace or a state where φ1 does not hold.

▶ Example 4.2 (Control flow graphs and ACTL encoding). In our running example (see
Examples 2.2 and 2.3), we check the property stating that if the program c terminates
then the variable z is zero, which in the CFG means “when the exit node e is reached,
z = 0” holds. This is expressed by the ACTL formula φ = AG (n = e → z = 0), where
we use p → φ′ as syntactic sugar for ¬p ∨ φ′. The corresponding MOKA program is:
mφ ≜ ⌊φ ⌉ = ⌊AG (n = e → z = 0) ⌉ = push; next∗; n = e?; z ̸= 0?; pop. ⌟

µ2-calculus as MOKA. To each µ2-formula φ we assign the MOKA program ⌊φ ⌉ as follows:

⌊ p ⌉ ≜ ¬p? ⌊ ¬p ⌉ ≜ p?
⌊φ1 ∧ φ2 ⌉ ≜ ⌊φ1 ⌉ ⊕ ⌊φ2 ⌉ ⌊φ1 ∨ φ2 ⌉ ≜ ⌊φ1 ⌉; ⌊φ2 ⌉

⌊2φ ⌉ ≜ push; next; ⌊φ ⌉; pop ⌊x ⌉ ≜ X
⌊µx.φx ⌉ ≜ push; reset;µX.

(
loop? ⊕ (add; ⌊φx ⌉)

)
; pop ⌊νx.φx ⌉ ≜ µX.⌊φx ⌉

The second component of a frame ⟨σ,∆⟩ is still used to identify looping computations.
This intervenes in the encoding of least fixpoints µx.φx: when checking the formula, the
current state first logged to the current frame (add; ⌊φx ⌉ branch); a counterexample is found
when we try to verify the fixpoint property in a state where the check has already been tried
(filtered by loop?). The encoding of greatest fixpoints νx.φx instead is simpler: searching for
counterexamples naturally translates to a least fixpoint, which is offered natively by MOKA.

The correctness of this transform (see [1, Theorem B.2 and Corollary B.3]) leverages
a small variation of the tableau construction in [53], with judgements roughly of the form
σ,∆ ⊢ φ, meaning that the formula φ holds in a state σ assuming that all the states in ∆
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have been visited while checking the current fixpoint subformula. Then, it can be shown
that given a formula φ and a stack ⟨σ,∆⟩::S, if there is no successful tableau for σ,∆ ⊢ φ

then J⌊φ ⌉Kη {⟨σ,∆⟩::S} = {⟨σ,∆⟩::S} holds, while J⌊φ ⌉Kη {⟨σ,∆⟩::S} = ∅ otherwise.

▶ Example 4.3 (Control flow graphs and µ2-calculus encoding). Consider again Examples 2.2
and 2.3. We now check the property “if after three steps we end up in program point
3 then we will loop forever, every 4 steps, on this program point 3.” It is known that
regular properties of this kind cannot be expressed in ACTL (see, e.g., [54]). This prop-
erty can be expressed in the µ2-calculus as ψ ≜ 23(n = 3 → νx. (n = 3 ∧ 24x)),
where 2k is a shortand for 2 . . .2 repeated k times. Letting rk as a shorthand for
a k times composition r; . . . ; r of a MOKA program r, the MOKA program encoding ψ

is ⌊ψ ⌉ = (push; next)3; (n = 3; ⌊νx. (n = 3 ∧ 24x) ⌉); pop3, with ⌊νx. (n = 3 ∧ 24x) ⌉ =
µX. ([n ̸= 3? ⊕ ((push; next)4; X; pop4)]). ⌟

It is well known that all ACTL formulae can be expressed as µ2-calculus formulae. For
example, AX φ = 2φ, AF φ = µx. (φ∨2x), and AG φ = νx. (φ∧2x). Hence one could obtain
programs generating counterexamples for ACTL by encoding ACTL in the µ2-calculus and
then generating the corresponding program. However, this in general produces programs
which are (unnecessarily) more complex than those produced for ACTL formulae. For
instance, the program for AF φ obtained through the µ2-calculus encoding above would be
push; reset;µX.

(
loop? ⊕ (add; ⌊φ ⌉; push; next; X; pop)

)
; pop.

5 Abstract Interpretation of MOKA

We show how to lift an abstraction over the states of a transition system to an abstraction over
the domain of stacks. This is achieved stepwise by first considering an abstraction applied to
each single stack, and then by merging classes of stacks through a suitable equivalence. The
resulting stack abstraction will induce the abstract interpretation of MOKA programs.

Lifting the abstraction. Let (Σ, I,_) be a fixed transition system and let ⟨α, γ⟩ : P(Σ) ⇄ A

be an abstraction of state properties. We consider the lattice FA ≜ A×A, with componentwise
order, whose elements ⟨σ♯, δ♯⟩ are called abstract frames, and, in turn, F+

A whose elements
⟨σ♯, δ♯⟩::S♯ are called abstract stacks. As in the concrete case, we abbreviate ⟨σ♯,⊥A⟩ as σ♯.

The abstraction map α on state properties can be extended to a frame abstraction, that
by abusing the notation, we still denote by α, and is defined by α(⟨σ,∆⟩) ≜ ⟨α({σ}), α(∆)⟩.
In turn, the abstraction is inductively defined on stacks as α(⟨σ,∆⟩::Sn) ≜ α(⟨σ,∆⟩)::α(Sn).

Now, a set of stacks is abstracted to a set of abstract stacks by first applying α pointwise
using the image adjunction (see Example 2.1) and then joining classes of abstract stacks in a
way which is parameterised by a suitable equivalence. Given an equivalence ∼ ⊆ L×L, we let
[x]∼ denote the equivalence class of x ∈ L w.r.t. ∼. Given x ∈ L we let ↓ x ≜ {y ∈ L | y ≤ x}.

▶ Definition 5.1 (Equivalence adjunction). Given a complete lattice L, a compatible equi-
valence is an equivalence ∼⊆ L× L such that for all x ∈ L, it holds that [x]∼ is closed by
joins of non-empty subsets. Let P(L)∼ ≜ {X ∈ P(L) | ∀x ∈ X. [x]∼ ∩X = {x}}, ordered as
follows: X ≤∼ Y if for all x ∈ X there is y ∈ Y such that x ∼ y and x ≤ y.
Then, the pair ⟨α∼, γ∼⟩ : P(L) ⇄ P(L)∼ defined, for X ∈ P(L), Y ∈ P(L)∼, by

α∼(X) ≜
{∨

(X ∩ [x]∼) | x ∈ X
}

γ∼(Y ) ≜
⋃

{[y]∼∩ ↓ y | y ∈ Y }

is a Galois connection, called equivalence adjunction.
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In words, P(L)∼ ⊆ P(L) consists of the subsets of L containing at most one representative
for each equivalence class, and α∼(X) abstracts X in the subset (in P(L)∼) consisting of the
least upper bounds of ∼-equivalent elements in X.

We can now define the stack abstraction parameterised by an equivalence on the lattice of
abstract frames. Given an equivalence ∼ ⊆ X ×X on any set X, ∼+ denotes the equivalence
on X+ induced by ∼ as follows: for all x1 · · ·xn, y1 · · · ym ∈ A+, x1 . . . xn ∼+ y1 . . . ym ∈ X+

if n = m and xi ∼ yi for all i ∈ {1, . . . , n}.

▶ Definition 5.2 (Stack abstraction). Let ∼ be a compatible equivalence on the abstract
domain A and let us extend it to the lattice of abstract frames FA by ⟨σ♯

1, δ
♯
1⟩ ∼ ⟨σ♯

2, δ
♯
2⟩

if σ♯
1 ∼ σ♯

2. The ∼-stack abstraction is the domain As
∼ ≜ P(F+

A)∼ along with the Galois
connection ⟨αs

∼, γ
s
∼⟩ : P(F+

Σ) ⇄ As
∼ defined by αs

∼ ≜ α∼+ ◦ α> and γs
∼ ≜ α< ◦ γ∼+.

In words, given a set X of stacks, its abstraction αs
∼(X) first applies pointwise the

underlying α to each stack in X, and then joins equivalent abstract stacks. As corner cases
we can have the identity relation ∼ = id, which joins abstract frames with identical first
component, and ∼ = A×A, the trivial relation, which joins all abstract stacks into one.

An abstract interpreter for counterexamples. Given an abstraction for state properties
⟨α, γ⟩ : P(Σ) ⇄ A and a compatible equivalence on A, following the standard approach
in abstract interpretation [16], we consider an abstract semantics JrK♯

η : As
∼ → As

∼, defined
inductively as explained in § 3 and using as abstract semantics for basic expressions e their
BCAs on As

∼, denoted by (|e|)As
∼ . We write JrK♯ instead of JrK♯

η when the abstract environment
is inessential. Notably, the BCAs of basic expressions independent from the underlying
system can be effectively defined, and some of them result to be complete.

▶ Theorem 5.3 (Basic abstract operations). Let ∼ be a compatible equivalence on the abstract
domain A. The BCAs of the basic expressions add, reset, push, pop for the ∼-stack abstraction
are as follows: for all ⟨σ♯, δ♯⟩::S♯ ∈ F+

A

(|add|)As
∼

{
⟨σ♯, δ♯⟩::S♯

}
=

{
⟨σ♯, δ♯ ∨ σ♯⟩::S♯

}
(|reset|)As

∼
{

⟨σ♯, δ♯⟩::S♯
}

=
{

⟨σ♯, ⊥⟩::S♯
}

(|push|)As
∼

{
⟨σ♯, δ♯⟩::S♯

}
=

{
⟨σ♯, δ♯⟩::⟨σ♯, δ♯⟩::S♯

}
(|pop|)As

∼
{

⟨σ♯, δ♯⟩::S♯
}

=
{

S♯
}

and the operations reset, push, pop are globally complete. Moreover

(|p?|)As
∼

{
⟨σ♯, δ♯⟩::S♯

}
≤∼

{
⟨σ♯ ∧ p?As

∼ , δ♯⟩::S♯
}

(|¬p?|)As
∼

{
⟨σ♯, δ♯⟩::S♯

}
≤∼

{
⟨σ♯ ∧ ¬p?As

∼ , δ♯⟩::S♯
}

(|loop?|)As
∼

{
⟨σ♯, δ♯⟩::S♯

}
≤∼

{
⟨σ♯, δ♯⟩::S♯ | σ♯ ∧ δ♯ ̸= ⊥

}
where p?As

∼ = α(Jp?KΣ) is the abstraction of the set of concrete states satisfying p (and
similarly for ¬p?As

∼).

For loop? one can get (|loop?|)As
∼

{
⟨σ♯, δ♯⟩::S♯

}
=

{
⟨σ♯ ∧ δ♯, δ♯⟩::S♯ | σ♯ ∧ δ♯ ̸= ⊥

}
under

additional conditions on ∼ (cf. [1, Definition C.6]).
The soundness-by-design of this abstract semantics entails a sound program verification.

▶ Proposition 5.4 (Program verification for satisfaction). Given a transition system T =
(Σ, I,P,_,⊢), for all ACTL or µ2-calculus formulae φ, abstract domain A, and a compatible
equivalence ∼ on A, if J⌊φ ⌉K♯

η(αs
∼(I)) = ⊥ then, for all σ ∈ I, we have σ |= φ.

As in the concrete case, the abstract semantics of programs encoding formulae is a lower
closure. This, together with the observation that the semantics only depends on the top
frame of a stack, is relevant for the concrete implementation.
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▶ Remark 5.5. We recalled in § 4 that for any Boolean test b and abstract domain A,
the identity function λa ∈ A. a is a correct approximation of the filtering semantics JbK
of b. This function can be enhanced to λa ∈ A.α(JbKΣ) ∧A a, which is also a correct
approximation of JbK [39, Section 4.1]. If A is a partitioning abstraction then one can show
that λa ∈ A.α(JbKΣ) ∧A a is indeed the best correct approximation of JbK. However, this
property does not hold in general, even assuming that A is a disjunctive abstraction, i.e., the
additivity of γ (this is substantiated in [1, Example C.10]). ⌟

▶ Example 5.6 (Control flow graphs and abstract frames). In our running example, abstract
frames are of the shape A×A = PN ×PN . The abstraction of singletons is α({(n, ρ)}) = (n 7→
a) with a(n′) = ⊥ for all n′ ≠ n. With the aim of joining past states when they correspond to
the same program point, we consider the equivalence ∼⊆ PN ×PN on abstract frames defined
by σ♯

1 ∼ σ♯
2 when supp(σ♯

1) = supp(σ♯
2). The property ψ = 23(n = 3 → νx. (n = 3 ∧ 24x))

from Example 4.3 holds in the system, and we can prove it with this abstraction. Let
σ♯ = (s 7→ ⊤) = α({(s, xyzw)}) we can compute J⌊ψ ⌉K♯

η(σ♯) = ⊥, implying that the formula
holds from any initial states (convergence is after a single full iteration). Instead, the abstract
computation for φ = AG (n = e → z = 0) from Example 4.2 yields a false positive. ⌟

6 Locally Complete Analyses

If the abstract interpretation of a MOKA program returns an alarm, i.e., J⌊ψ ⌉K♯αs
∼(I) ̸= ⊥,

then any initial state in the concretisation of J⌊ψ ⌉K♯αs
∼(I) is a candidate counterexample to the

validity of ψ. However, due to over-approximation, we cannot distinguish spurious counter-
examples from true ones. Here, we discuss how to combine under- and over-approximation
for the analysis of MOKA programs ⌊ψ ⌉ to overcome this problem. In particular we leverage
Local Completeness Logic (LCL) [7, 9] possibly paired with Abstract Interpretation Repair
(AIR) strategies [8], to improve the analysis precision.

LCL. Most abstract domains are not globally complete for program analysis, so that
the corresponding analyses may well yield false alarms. Accordingly, [7, 9] studies how
completeness can be locally weakened to an analysis of interest: given a function f : C → C,
an abstract domain Aα,γ ∈ Abs(C) is locally complete on a value c ∈ C, denoted by CA

c (f),
when α ◦ f(c) = α ◦ f ◦ γ ◦ α(c) (hence global completeness amounts to CA

c (f) for all c ∈ C).
Intuitively, the absence of false alarms in an abstract computation comes as a consequence
of the local completeness of the abstract transfer functions on the traversed concrete states.

Moreover, local completeness is a convex property, and this allows to check local com-
pleteness on suitable under-approximations u ≤ c such that α(u) = α(c), as CA

u (f) implies
CA

c (f). The work [7,9] implements this idea through LCL, an under-approximating program
logic (in the style of incorrectness logic [43]), parameterised by the abstract domain A which
provides an over-approximation. The LCL proof rules for KAT programs are recalled in
Table 1. A provable LCL triple ⊢A [P ] r [Q] ensures that each state satisfying Q is reachable
from some state satisfying P , and also guarantees that Q and JrKP have the same abstraction
in A. This means that the LCL program logic is sound w.r.t. the following notion of validity.

▶ Definition 6.1 (Valid LCL triples). Let P,Q ∈ C and r be a KAT program. A program triple
⊢A [P ] r [Q] is valid if CA

P (r) ∧ Q ≤ JrKP ∧ α(JrKP ) = α(Q).

The condition CA
P (r) states that A is locally complete for JrK on P , while Q ≤ JrKP that

Q under-approximates JrKP and α(JrKP ) = α(Q) that γ(α(Q)) over-approximates JrKP .
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Table 1 Rules of the Local Completeness Logic [9].

CA
P (e)

⊢A [P ] e [JeKP ]
(transfer)

P ′ ≤ P ≤ γ(α(P ′)) Q ≤ Q′ ≤ γ(α(Q))
⊢A [P ′] r [Q′]
⊢A [P ] r [Q]

(relax)

⊢A [P ] r1 [W ] ⊢A [W ] r2 [Q]
⊢A [P ] r1; r2 [Q]

(seq)
⊢A [P ] r1 [Q1] ⊢A [P ] r2 [Q2]

⊢A [P ] r1 ⊕ r2 [Q1 ∨ Q2]
(join)

⊢A [P ] r [W ] ⊢A [P ∨ W ] r∗ [Q]
⊢A [P ] r∗ [Q]

(rec)
⊢A [P ] r [Q] Q ≤ γ(α(P ))

⊢A [P ] r∗ [P ∨ Q]
(iterate)

Table 2 Novel rules for µLCL.

⊢A [P ] µ0X.r [⊥]
(µ0)

⊢A [P ] r[µnX.r/X] [Q]
⊢A [P ] µn+1X.r [Q]

(µ+)

JµX.rK♯α(P ) ≤A α(Q)
⊢A [P ] µnX.r [Q]
⊢A [P ] µX.r [Q]

(fix)

LCL for MOKA. The LCL proof system has been defined for KAT programs only, hence it is
enough for MOKA programs induced by ACTL formulae. For analysing general KAF and thus
MOKA programs, we extend it to µLCL including the inference rules in Table 2, where r[s/X]
denotes the capture-avoiding substitution of the free occurrences of X for s in r and the term
µnX.r represents the n-th fixpoint approximant with the expected semantics (Jµ0X.rKη ≜ λx.⊥
and Jµn+1X.rKη ≜ JrKη[X 7→JµnX.rKη ]). The syntax µnX.r is used only in µLCL derivations.
Intuitively, since µ0X.r behaves as 0, the unique valid judgement is ⊢A [P ] µ0X.r [⊥]. The
rule (µ+) serves just to unfold µn+1X.r as many times as needed. The key rule is (fix) which
can be used whenever the n-th approximant provides enough information: in case the premise
holds, by local completeness we will have JµnX.rK♯α(P ) = α(Q). Since it is always the case
that JµnX.rK♯α(P ) ≤A JµX.rK♯α(P ), if the side condition JµX.rK♯α(P ) ≤A α(Q) holds, then
local completeness for the fixpoint term µX.r can be inferred. These novel rules are sound,
in the sense of preserving validity (Definition 6.1).

▶ Remark 6.2. When a least fixpoint appears in ⌊φ ⌉, we can exploit the following heuristic for
choosing the value of n: if the abstract domain satisfies the Ascending Chain Condition (ACC)
then, for every P ∈ C there is nP ∈ N such that JµnP X.rK♯α(P ) = JµX.rK♯α(P ). Then, by
taking any n ≥ nP such that ⊢A [P ] µnX.r [Q] is provable, the condition JµX.rK♯α(P ) ≤A α(Q)
is readily satisfied, so that ⊢A [P ] µX.r [Q] is valid. More precisely, the rule below is sound:

⊢A [P ] µnX.r [Q] JµnX.rK♯α(P ) = JµX.rK♯α(P )
⊢A [P ] µX.r [Q]

(afix) ⌟

The following result relating µLCL proofs with validity of formulae follows as an easy
consequence of [9, Corollary 5.6] and Theorem 4.1.

▶ Corollary 6.3 (Precision). Let T = (Σ, I,P,_,⊢) be a transition system. For all ACTL or
µ2-calculus formulae φ, abstract domain A and compatible equivalence ∼ on A, if the triple
⊢As

∼
[I] ⌊φ ⌉ [Q] is derivable, then Q ⊆ I and

Q = ∅ if and only if for all σ ∈ I we have σ |= φ;
if Q ̸= ∅ then for all σ ∈ Q we have σ |̸= φ.
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▶ Example 6.4 (Control flow graphs and LCL derivations). As pointed out in Example 5.6
the computation of the program mφ, which encodes in MOKA the property φ = AG (n =
e → z = 0) (see Example 4.2), yields a false alarm when we use the abstract domain A

depicted in Figure 2c. Consider as set of initial states I0 = {⟨(s, 0100),∅⟩, ⟨(s, 0011),∅⟩},
whose abstraction covers the set of possible initial states {⟨(s, xyzw),∅⟩ | x, y, z, w ∈ Zk},
because αs

∼(I0) = (s 7→ ⊤). Since the property holds, trying to derive a triple ⊢As
∼

[I0] mφ [∅]
leads to the failure of some local completeness assumption, which can drive the refinement of
A. The imprecision is found in the fourth iteration of the next operator, in which the set
{(3, 1100), (3, 0111)} is abstracted to (3, xyzw), losing the relation between p and q being
either both valid or both invalid. Several domain repairs are possible. Following [8] we
can repair the domain by adding the abstract point q → p (a more abstract repair than
adding the element q ↔ p, as proposed in [4]). Here we can also exploit a different route,
by refining the equivalence so that σ♯

1 ∼ σ♯
2 when supp(σ♯

1) = supp(σ♯
2) ̸= 3. This intuitively

corresponds to abstract separately the states at program point n = 3. In both cases, it holds
J⌊φ ⌉K♯α′s

∼ (I0) = ⊥ in the refined abstract domain A′. ⌟

▶ Example 6.5 (Traffic light example, LCL derivation and repair, µ-calculus version). Consider
the toy traffic light example from Figure 1a and the property ψ = AG (g → AX d), briefly
discussed in the introduction. We give some additional details in the light of the results
presented. We first translate the formula in µ2-calculus as ψµ = νx.((g → 2d) ∧ 2x) whose
encoding is ⌊ψµ ⌉ = µX.(r1 ⊕ push; next; X; pop) ≜ µX.rx, where r1 ≜ g?; push; next; ¬d?; pop.
Then we try to derive the triple ⊢As

∼
[{rs}] µX. rx[∅] in the abstract domain A (see Figure 1c)

by applying the rule (afix) with n = 2 (the number of iterations needed for convergence
of the abstract fixpoint in A). By definition, µ0X.rx = 0; then the first approximant is
µ1X.rx = r1 ⊕ push; next; 0; pop, but we can omit the branch that contains 0, so µ1X.rx = r1;
and the second approximant is r2 ≜ µ2X.rx = r1 ⊕ push; next; r1; pop. The attempt to derive
the triple ⊢As

∼
[{rs}] r2 [∅] is sketched below, where the mid row gives an indication of the

triples labelling the leaves of the derivation, reporting for each basic command involved, the
pre-condition and post-condition of the triple, while the top row reports their abstractions.

⊢As
∼

[rs] g? ; push ; next ; ¬d? ; pop

[
rs

]a

[∅] [∅] [∅] [∅] [∅]
⊥ ⊥ ⊥ ⊥ ⊥

⊕ push ; next ; g? ; push ; next ; ¬d? ; pop ; pop [∅]

[
rs

] [
rs

. . .

][
rs gs

. . . . . .

][
gs
. . .

] [
gs
. . .

]
!

a
a a ∨ c c c

While we can derive ⊢As
∼

[{rs}] r1[∅], the source of local incompleteness is found in
the second branch, at the ! position, where the proof obligation for CAs

∼
{gs}(next) fails,

since αs
∼ ◦ JnextK({gs}) = αs

∼({gd, yd}) = b ∧ c, while αs
∼ ◦ JnextK ◦ γs

∼ ◦ αs
∼({gs}) = αs

∼ ◦
JnextK {gs, gd, gs, ys} = αs

∼({gs, gd, gs, ys, rs}) = a∨c. We can thus repair the abstract domain
A. Following the procedure in [8], we add the new abstract point c1:

c1 ≜
∨

{T ⊆ Σ | T ⊆ γ ◦ α {gs} , JnextKT ⊆ JnextK({gs})} = {gs, gd}

The repaired domain is A1 ≜ A ∪ {c1, b ∧ c1}, where b ∧ c1 is also added because the
domain must be closed under meets. Now, in A1, the proof obligation for CAs

1∼
{gs}(next) holds

true: JnextK({gs}) = α1
s
∼ ◦ JnextK ◦ γ ◦ α1

s
∼({gs}) = b ∧ c. In fact, in A1 we just have

J⌊ψ ⌉K♯α1
s
∼({rs}) = ⊥ (we omit the details for the first branch r1 that are as above):

⊢As
1∼

[rs] r1

[
rs

]a

[∅]
⊥

⊕ push ; next ; g? ; push ; next ; ¬d? ; pop ; pop [∅]

[
rs

] [
rs

. . .

][
rs gs

. . . . . .

][
gs
. . .

] [
gs
. . .

][
gd yd
. . . . . .

]
[∅] [∅] [∅]

a
a a ∨ c c1 c1 b ∧ c

⊥ ⊥ ⊥

⌟
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7 Related Work

Abstract interpretation and model checking have been applied to and combined with each
other in several ways [2, 4, 5, 10–12, 14, 19–22, 25, 26, 28–30, 33, 35, 37, 38, 44–47, 49, 50] (see
the survey [23] for further references). Abstract model checking broadly refers to checking a
(temporal) specification in an abstract rather than a concrete model. On the one hand, in
state partition-based approaches, the abstract model is itself a transition system, possibly
induced by a behavioural state equivalence such as (bi)simulation, so that the verification
method for the abstract model remains unaltered, e.g., [10–12,14, 37]. On the other hand, if
the abstract model derives from any, possibly nonpartitioning, state abstraction then the
verification on this abstract model relies on abstract interpretation, e.g., [5, 21,25,38, 45,46].
Hybrid abstraction techniques, in between these two approaches, have also been studied, e.g.,
predicate abstraction [28,33], and the mixed transition systems with several universal and/or
existential abstract transition relations in [3,22]. Moreover, several works investigated the
role of complete/exact/strongly preserving abstractions in model checking, e.g., [20,26,37,44],
and how to refine abstract models, e.g., [11,12,19,21,25,29,30,45,47,50]. Let us also mention
that [2] develops a theory of approximation for systems of fixpoint equations in the style of
abstract interpretation, showing that up-to techniques can be interpreted as abstractions.

Our refinement technique somehow resembles CounterExample-Guided Abstraction Re-
finement (CEGAR) [12], a popular method for automatising the abstraction generation
in model checking. CEGAR deals with state partition abstractions, thus merging sets of
equivalent states: one starts from a rough abstraction which is iteratively refined on the
basis of spurious counterexample traces arising due to over-approximation. The approach is
sound for safety properties, i.e., no false positives can be found, and complete for a significant
fragment of ACTL∗. It turns out that state partition abstractions are a specific instance in
our approach. The attempt of proving the absence of counterexamples in LCL using an initial
coarse abstraction will yield a computation by some means similar to CEGAR: failing LCL
proof obligations lead to abstraction refinements which can be more general than partitions.

The general idea that model checking can be expressed as static analysis has been first
investigated in [40]. This work shows that model checking of ACTL can be reduced to a
logic-based static analysis formulated within the flow logic approach [42], which is then
computed through a solver for the alternation-free least fixed point logic designed in [41].
This reduction technique has been later extended to the µ-calculus in [55]. One major goal
of [40] was to show the close relationship and interplay between model checking and static
analysis, coupled with early work in [51] and, later, in [48,49,52], proving that static program
analysis can be reduced to model checking of modal formulae. Let us remark that the
reduction of [40, 55] to a flow logic-based static analysis is given for concrete model checking
only and does not encompass the chance of dealing with abstract model checking and related
abstraction refinement techniques such as CEGAR, that can be instead achieved by-design
in our approach.

8 Conclusion and future work

We have introduced a framework where model checking of temporal formulae in ACTL or in
the universal fragment of the modal µ-calculus can be reduced to program verification, paving
the way to reuse the full range of abstract interpretation techniques. Formulae are mapped
to programs of the MOKA language, that are then analysed through a sound-by-construction
abstract interpretation. This exposes all the possible counterexamples, although false alarms
can arise. We show how false alarms can be removed by inspecting the derivability of suitable
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judgements in LCL, a program logic exploiting under- and over-approximations leveraging
the notion of locally complete abstract interpretation. We expect that our approach, relying
on KAF, naturally applies also to logics including operators based on regular expressions
(see, e.g., [6, 31]). A first candidate is Propositional Dynamic Logic (PDL) [31], a modal
logic closely connected to KAT. Its distinctive feature is a modal operator [r]φ where r is a
KAT expression, which is satisfied by a state σ when all the computations of r starting from
σ end up in a state satisfying φ. For instance, the property expressed in the µ2-calculus
in Example 4.3 can be equivalently written in PDL as [next]3(n = 3 → ([next]4)∗(n = 3)),
where, since we work in an unlabelled setting, “next” stands for the only action in the system.
Indeed, PDL smoothly fits in our setting (we refer the interested reader to [1, Appendix E]).

Future Work. A number of interesting avenues of future research remain open. Our results
are limited to universal fragments of temporal logics and finite state domains. A dual theory
can be easily developed for existential fragments, focusing on the generation of witnesses
rather than counterexamples. It would be interesting to combine the two approaches for
dealing with universal and existential operators at the same time. Some ideas could come
from [22] that, for solving the problem, works with two different abstract transition relations.
The restriction to finite state domains is due to the fact that our encoding of logical formulae
into MOKA programs relies on the loop? operator for detecting infinite traces which are
identified with looping traces. Further work could overcome this restriction by considering an
encoding that captures non-looping infinite traces in the concrete domain and by exploiting
ACC domains for the abstraction.

The use of LCL allows us to track the presence of false alarms back to the failure of local
completeness proof obligations, which can be resolved by refining the abstract domain. This
can be done at different levels: either refining the abstraction over states or refining the
equivalence on abstract frames. A proper theory of refinements, possibly identifying optimal
ways of patching the domain, is a matter of future investigations.

We point out that providing a general bound for the complexity of the abstract model
checking procedure is not straightforward, as it crucially depends on the choice of the abstract
domain. Different domains may induce significantly different behaviors, especially for non-
partitioning abstractions or when local completeness and domain refinement techniques are
applied. A precise complexity analysis tailored to specific domains is an interesting subject
for future work.

Concerning the automatisation, the abstract interpreter could be easily implementable
leveraging the standard toolset of abstract interpretation. The abstract interpreter should
be instrumented to report, when the result is not ⊥, an abstract counterexample trace to
check whether the counterexample is a false or true alarm. Making refinements effective
requires working in a class of domains where local refinements are representable, e.g., by
predicate abstractions or state partition abstractions. Developing a theory of refinements
within specific subclasses of domains is a direction of future work.
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