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Abstract
Significant progress has been recently achieved in developing efficient solutions for simple stochastic
games (SSGs), focusing on reachability objectives. While reductions from stochastic parity games
(SPGs) to SSGs have been presented in the literature through the use of multiple intermediate game
models, a direct and simple reduction has been notably absent. This paper introduces a novel and
direct polynomial-time reduction from quantitative SPGs to quantitative SSGs. By leveraging a
gadget-based transformation that effectively removes the priority function, we construct an SSG that
simulates the behavior of a given SPG. We formally establish the correctness of our direct reduction.
Furthermore, we demonstrate that under binary encoding this reduction is polynomial, thereby
directly corroborating the known NP ∩ coNP complexity of SPGs and providing new understanding
in the relationship between parity and reachability objectives in turn-based stochastic games.
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1 Introduction

Stochastic games (SGs) are a broadly used framework for decision-making under uncertainty
with a well-defined objective. They aim at modeling two important aspects under which
sequential decisions must be made: turn-based interaction with an adversary environment, and
dealing with randomness. Stochastic games have been introduced long ago by Shapley [40]
as important models, and many variations have been shown to be inter-reducible and
in NP ∩ coNP [18, 2, 9]. SGs find their applications in various fields, including artificial
intelligence [33], economics [1], operations research [20], or providing tools to graph theory [41].
Moreover, Markov Decision Processes (MDP) [38], a foundational framework for modeling
decision-making in stochastic environments, are special cases of SGs, where one of the players
has no states under control.

While we make use of simple stochastic games (SSGs) with reachability objectives, we
focus on the specific case of stochastic parity games (SPGs), which are zero-sum, and where
the set of winning runs is ω-regular. Solving such a game consists in finding an optimal
strategy and determining its winning probability.

Take, for instance, the case of a market competition, where two firms Alpha and Beta
try to expand their market share. From the standpoint of each firm, the other acts as a
direct competitor, and therefore we assume the players are adversarial. States represent
the relative valuation of the firms over a sustained period of time, and business decisions
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Figure 1 Reducing SPGs to SSGs.

(made by either firm Alpha or Beta) and the fluctuation of market shares, policy changes,
and external forces (modeled as randomness) lead to transitions between game states. Firm
Alpha is interested in keeping its share above a set key threshold, say 50%. We distinguish
between three priorities, leading to a zero-sum game:

Priority 0: Alpha’s market share is significantly above 50%.
Priority 1: Alpha’s market share is significantly below 50%.
Priority 2: Alpha’s market share fluctuates around 50%. While this is sustainable without
major fluctuation, this is not sustainable if the only other fluctuation is Alpha’s share
regularly dropping below 50% (priority 1).

If the minimum priority visited infinitely often is 0, Alpha can manage in the long term to
regularly dominate the market, recovering any loss that occurred in the meantime. If the
minimum priority visited infinitely often is 1, despite any temporary success, Alpha’s market
share will stay near or below 50% in the long run, which is not sustainable for the firm.
Finally, if the minimum priority visited infinitely often is 2, Alpha and Beta will eventually
find an even balance point.

A variety of algorithms have been considered for (reachability) SSGs [17, 21, 3, 37],
which we present in our related work section below. In Markov chains (MCs), ω-regular
objectives can be reduced directly to reachability objectives [4]. A similar reduction exists
from MDPs with ω-regular objectives to reachability objectives and has been used extensively,
for example in [22]. This means that solvers often focus on optimizing specifically the
computation of reachability probabilities. Such a direct reduction is lacking for SPGs. To
reduce quantitative SPGs to SSGs, some intermediate steps are necessary, via a reduction to
stochastic mean-payoff and stochastic discounted-payoff games [11, 2] (see the lower part of
Figure 1), making this approach less appealing. For qualitative solutions, a translation via
deterministic parity games (i.e. with no random states) exists [13, 14, 9], see the upper part
of Figure 1.

Outline and Contribution

In this paper, we propose a direct reduction from SPGs to SSGs with a reachability objective
(see the solid arrow in Figure 1). To that end, we leverage a gadget whose structure comes
from [9], but where we use new probability values, to reduce deterministic parity games to
quantitative SSGs. Given an SPG G, where a parity condition is satisfied if the minimum
priority seen infinitely often is even, we show in Section 3.1 how to use the gadget to transform
G into an SSG G̃. This introduces two new sink states, one winning and the other losing for
the reachability objective. Parity values are removed, and every transition going to a state
that used to be even (respectively odd) now has a small chance to go to the winning (resp.
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losing) sink. We scale the probabilities, with lower parity values yielding a higher chance to
go to a sink. Theorem 10 ensures that any optimal strategy in G̃ is also optimal in G (the
reciprocal may not be true). We can then compute an optimal memoryless strategy in G̃,
and compute its value in G.

We show in Theorem 13 that under binary encoding, our reduction is polynomial. We
thus reobtain in a direct way the classical result that solving quantitative SPGs is in the
complexity class NP ∩ coNP [2, 9]. While the complexity remains the same as for existing
algorithms, and the values used in the reduction make it unlikely to be very efficient in
practice, this new approach implies that any efficient SSG solver can be used for SPGs. The
direct reduction was already conjectured to exist by Chatterjee and Fijalkow in [9], but as
expected, proving its correctness is challenging, and involves the computations of very precise
probability bounds. Despite the inspiration drawn from a known gadget, the technical depth
of this paper resides in the intricate and novel proofs for the correctness of our reduction.
In addition, our direct reduction gives new insights into the relationship between SSGs and
SPGs.

In Section 2, we present the necessary background knowledge. In Section 3, we define the
gadget and present some related results, which we use in Section 4 to define the reduction
properly, and to show its correctness and its complexity. We give some concluding remarks
in Section 5.

Related Work

Stochastic parity games, mean-payoff games and discounted payoff games can all be reduced
to SSGs [26, 43], and this also applies to their stochastic extensions, namely stochastic
parity games [9], stochastic mean payoff games and stochastic discounted payoff games [2].
SSGs also find their applications in the analysis of MDPs, serving as abstractions for large
MDPs [28]. The amount of memory required to solve stochastic parity games has been
studied in [7].

Various extensions have been considered within this family of inter-reducible stochastic
games. Introducing more than two players allows for the analysis of Nash equilibria [15, 42].
Using continuous states can provide tools to represent timed systems [34]. Multi-objective
approaches have been employed to synthesize systems that balance average expected outcomes
with worst-case guarantees [16]. Parity objectives are significant in many of these scenarios
where long-run behavior is relevant, but the classical reduction to SSGs cannot be directly
applied.

Common approaches to solving SSGs, as presented in [17], include value iteration (VI),
strategy iteration (SI), and quadratic programming, but are all exponential in the size of the
SSG. These approaches have been widely studied on MDPs, where recent advancements have
been made to apply VI with guarantees, using interval VI [5], sound VI [39], and optimistic
VI [24]. Interestingly, optimistic VI does not require an a priori computation of starting
vectors to approximate from above. Similar ideas have been lifted to SSGs: Eisentraut et
al. [21] introduce a VI algorithm for under- and over-approximation sequences, as well as
the first practical stopping criterion for VI on SSGs. Optimistic VI has been adapted to
SSGs [3], and a novel bounded VI with the concept of widest path has been introduced
in [37]. A comparative analysis [29] suggests VI and SI are more efficient. Storm [25] and
PRISM [31] are two popular model checkers incorporating different variants of VI and SI,
and both employ VI as the default algorithm for solving MDPs. PRISM-games [30] exploits
VI for solving SSGs.

CONCUR 2025
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For SPGs, we distinguish three main approaches. Chatterjee et al. [10] use a strategy
improvement algorithm requiring randomized sub-exponential time. With n game states and
d priorities, the expected running time is in 2O(

√
dn log(n)). The probabilistic game solver

GIST [12] reduces qualitative SPGs to deterministic parity games (DPG), and benefits from
several quasi-polynomial algorithms for DPGs [27, 36, 32] since the breakthrough made by
Calude et al. [8], but this approach is unlikely to achieve polynomial running time [19]. Hahn
et al. [23] reduce SPGs to SSGs, allowing the use of reinforcement learning to approximate
the values without knowing the game’s probabilistic transition structure. Their reduction is
only proven correct in the limit.

2 Preliminaries

Our notations on Markov chains and stochastic games on graphs mainly come from [4].

2.1 Discrete-Time Markov Chains

A discrete distribution over a countable set A is a function µ : A −→ R≥0 with
∑

a∈A µ(a) = 1.
The support of the discrete distribution µ is defined as supp(µ) ≜ {a ∈ A | µ(a) > 0}. We
denote the set of all discrete distributions over A with D(A).

A discrete-time Markov Chain (MC) M is a tuple M = (V, δ, vI) where V is a finite
set of states, δ : V → D(V ) is a probabilistic transition function, and vI ∈ V is the initial
state. Given δ(v) = µ with µ(v′) = p, we write δ(v, v′) = p. For S ⊆ V and v ∈ V , let
δ(v, S) =

∑
s∈S δ(v, S).

An infinite sequence π = v0v1 · · · ∈ V ω is an infinite path through MC M if δ(vi, vi+1) > 0
for all i ∈ N. We denote all infinite paths that start from state v ∈ V with Paths(v). Prefixes
of infinite path π = v0v1 · · · ∈ V ω are {v0 · · · vi | i ∈ N} and are finite paths. We denote all
finite paths that start from state v ∈ V with Paths∗(v). The set of infinitely often visited
states in π = v0v1 · · · ∈ V ω is defined as inf(π) = {v ∈ V | ∀n ∈ N, ∃k ∈ N s.t. vn+k = v}.

The probability Pr of a finite path π = v0v1 . . . vn ∈ V ∗ is given by
∏

i∈[0,n−1] δ(vi, vi+1).
The set of infinite paths that start with a given finite path is called a cylinder, and as in [4],
we extend the probability of cylinders in a unique way to all measurable sets of V ω.

Reachability Probabilities

Let M = (V, δ, vI) be an MC. For target states T ⊆ V and starting state v0 ∈ V , the event
of reaching T is defined as Reach(T ) = {v0v1 · · · ∈ V ω | ∃i ∈ N, vi ∈ T}. The probability to
reach T from v0 is defined as Prv0(Reach(T )) = Pr({π̂ | π̂ ∈ Paths∗(v0) ∩ ((V \T )∗T )}).

Let variable xv denote the probability of reaching T from any v ∈ V . Whether T is
reachable from a given state v can be determined using standard graph analysis. Let Pre∗(T )
denote the set of states from which T is reachable. If v /∈ Pre∗(T ), then xv = 0. If v ∈ T ,
then xv = 1. Otherwise, xv =

∑
u∈V \T δ(v, u) · xu +

∑
w∈T δ(v, w). This is equivalent to a

linear equation system, formalized as follows:

▶ Theorem 1 (Reachability Probability of Markov Chains [4]). Given MC M = (V, δ, vI)
and target states T ⊆ V , let VQ = Pre∗(T )\T , A = (δ(v, v′))v,v′∈VQ

and b = (bv)v∈VQ
=

(δ(v, T ))v∈VQ
. Then, the vector x = (xv)v∈VQ

with xv = Prv(Reach(T )) is the unique
solution of the linear equation system x = A · x + b.



R. Berthon, J.-P. Katoen, and Z. Zhou 9:5

v0 v1 v2 v4

v3 v5

0.1 0.1 0.1

0.5

0.50.9

0.9

0.9

Figure 2 An example stochastic arena G.

Limit Behavior

Let MC M = (V, δ, vI). A set L ⊆ V is strongly connected if for all pairs of states v, v′ ∈ L,
v and v′ are mutually reachable. Hence a singleton {v} is strongly connected if δ(v, v) > 0.
Set L ⊆ V is a strongly connected component (SCC) if it is maximally strongly connected,
i.e., there does not exist another set L′ ⊆ V and L ⊊ L′ such that L′ is strongly connected.
L ⊆ V is a bottom SCC (BSCC) if L is a SCC and there is no transition leaving L, i.e., there
does not exist v ∈ L, v′ ∈ V \L such that δ(v, v′) > 0. We denote the set of BSCCs in MC
M with BSCC(M).

The limit behavior of an MC regarding the infinitely often visited states is captured by
the following theorem.

▶ Theorem 2 (Limit behavior of Markov Chains [4]). For MC M = (V, δ, vI), it holds that
Pr{π ∈ Paths(vI) | inf(π) ∈ BSCC(M)} = 1.

2.2 Stochastic Games

A stochastic arena G is a tuple G = ((V, E), (V∃, V∀, VR), ∆), where (V, E) is a directed graph,
with a finite set of vertices V , partitioned as V∃ ⊎ V∀ ⊎ VR = V , and a set of edges E ⊆ V × V .
The probabilistic transition function ∆ is such that for all vr ∈ VR, ∆(vr) is a distribution
over V , and for v ∈ V∃ ⊎ V∀, v′, we have (vr, v) ∈ E if and only if v ∈ supp(∆(vr)). We
usually uncurry ∆(vr)(v) and write ∆(vr, v) .

Without loss of generality, we assume each vertex has at least one successor. This property
is called non-blocking. The finite set V of vertices is partitioned into three sets: V∃ – vertices
where Eve chooses the successor, V∀ – vertices where Adam chooses the successor, and VR

are the random vertices. A stochastic arena is a Markov Decision Process (MDP) if either
V∃ = ∅ or V∀ = ∅, and an MC if both V∃ = ∅ and V∀ = ∅.

Figure 2 illustrates a stochastic arena G. Square-shaped vertex v3 is a vertex in V∃ where
Eve chooses the successor, pentagon-shaped vertex v4 is in V∀ where Adam chooses the
successor, and the circular vertices VR = {v0, v1, v2, v5} are random. Edges from random
vertices are annotated with probabilities from ∆.

Strategies

Let G = ((V, E), (V∃, V∀, VR), ∆) be a stochastic arena. A strategy σ of Eve is a function
σ : V ∗ · V∃ → D(V ), such that for all v0v1 . . . vn ∈ V ∗ · V∃, we have σ(v0v1 . . . vn, vn+1) > 0
implies (vn, vn+1) ∈ E. A strategy γ of Adam is defined analogously. We denote the sets of
all strategies of Eve and Adam with ΣA

∃ and ΣA
∀ respectively.

CONCUR 2025
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Figure 3 Sub-arena Gσ,γ induced by strategies σ = [v4 7→ v5] and γ = [v3 7→ v5].

A strategy σ of Eve is a pure memoryless strategy, if for all w, w′ ∈ V ∗ and v ∈ V∃,
σ(w · v) = σ(w′ · v) and the support of this distribution is a singleton. A pure memoryless
strategy γ of Adam is defined analogously. We denote the sets of pure memoryless strategies
of Eve and Adam with Σ∃ and Σ∀ respectively.

In a stochastic arena G, when Eve and Adam follow pure memoryless strategies σ ∈ Σ∃
and γ ∈ Σ∀ respectively, the arena Gσ,γ = ((V, E′), (V∃, V∀, VR), ∆) results. Here, the new
edge set E′ is such that for all u ∈ V∃, (u, v) ∈ E′ if and only if σ(u) = v, and for all
u ∈ V∀, (u, v) ∈ E′ if and only if γ(u) = v. We refer to such arenas obtained by fixing pure
memoryless strategies as sub-arenas. In fact, given a fixed starting vertex vI ∈ V , we often
view the sub-arena Gσ,γ as an MC Mσ,γ = (V, δ, vI), where the state space is the vertex set
V in G, and the transition function δ combines deterministic moves indicated by strategies σ

and τ , and the transition function ∆ defined on random vertices:

δ(u, v) =
{

∆(u, v) if u ∈ VR, or u ∈ V∃, σ(u) = v or u ∈ V∀, γ(u) = v

0 otherwise

We continue with the stochastic arena G from Figure 2. Fixing strategy σ = [v3 7→ v5]
for Eve and γ = [v4 7→ v5] for Adam induces the sub-arena Gσ,γ , as shown in Figure 3.

Winning Objectives

A play of G is an infinite sequence of vertices π = v0v1 · · · ∈ V ω where for all i ∈ N,
(vi, vi+1) ∈ E. We denote the set of all plays of G with ΠG, or in short Π when G is clear
from the context.

Let G be a stochastic arena. A winning objective for Eve is defined as a set of plays O ⊆ Π.
As we study zero-sum games, the winning objectives of the two players are complementary.
The winning objective for Adam is thus Π\O. A play π satisfies an objective O if π ∈ O,
and is a winning play of Eve. A winning play π of Adam satisfies Π\O.

A reachability objective asserts that the play in G has to reach target vertices T ⊆ V ,
formally given by RE(T ) = {v0v1 · · · ∈ Π | ∃k ∈ N, vk ∈ T}. If T = {v} for some vertex v,
we simply write RE(v).

Let p : V → N be a priority function which assigns a priority p(v) to each vertex
v ∈ V . For T ⊆ V , let p(T ) = {p(t) | t ∈ T}. A parity objective asserts that the minimum
priority visited infinitely often along an infinite path is even: PA(p) = {π = v0v1 · · · ∈
Π | min(p(inf(π))) is even}.

We formally define stochastic games as follows:

▶ Definition 3 (Stochastic Games). Let G = ((V, E), (V∃, V∀, VR), ∆) be a stochastic arena.
A stochastic game (SG) with winning objective Φ ⊆ Π is defined as (G, Φ). If Φ is a
reachability or parity objective, (G, Φ) is a stochastic reachability game (SRG) or stochastic
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parity game (SPG) respectively. SRGs are also referred to as simple stochastic games
(SSG). When the winning objective is clear from the context, we refer to G as a stochastic
game.

Solving stochastic games

Let (G, Φ) be an SG, and let Eve and Adam follow strategies σ ∈ ΣA
∃ and γ ∈ ΣA

∀ . Given a
starting vertex v ∈ V , the probability for play π to satisfy Φ – the probability for Eve to win
– is denoted Pv

σ,γ(Φ). The probability for Adam to win is Pv
σ,γ(Π\Φ).

Let the value of a vertex v be the maximal probability of generating a play from v that
satisfies Φ, formally defined using a value function ⟨E⟩(Φ)(v) = supσ∈ΣA

∃
infγ∈ΣA

∀
Pv

σ,γ(Φ)
for Eve, and ⟨A⟩(Π\Φ)(v) = supγ∈ΣA

∀
infσ∈ΣA

∃
Pv

σ,γ(Π\Φ) for Adam. A strategy σ for Eve
is optimal from vertex v if infγ∈ΣA

∀
Pv

σ,γ(Φ) = ⟨E⟩(Φ)(v). Optimal strategies for Adam are
defined analogously.

We divide solving stochastic games into three distinct tasks. Given an SG, solving the
SG quantitatively amounts to computing the values of all vertices in the arena. Solving the
SG strategically amounts to computing an optimal strategy of Eve (or Adam) for the game.

Since for both SSGs and SPGs, solving quantitatively and strategically is polynomially
equivalent [2], we just say “solving” in what follows. We mainly consider quantitative solving,
but Theorem 10 applies to both quantitative and strategic solving.

Determinacy

Determinacy refers to the property of an SG where both players, Eve and Adam, have
optimal strategies, meaning they can guarantee to achieve the values of the game, regardless
of the strategies employed by the other player. Pure memoryless determinacy means that
both players have pure memoryless optimal strategies.

▶ Theorem 4 (Pure Memoryless Determinacy [35]). Let (G, Φ) be an SG, where Φ is a
reachability or parity objective. For all v ∈ V , it holds that ⟨E⟩(Φ)(v) + ⟨A⟩(Π\Φ)(v) = 1.
Pure memoryless optimal strategies exist for both players from all vertices.

When Eve and Adam follow pure memoryless strategies σ ∈ Σ∃ and γ ∈ Σ∀ respectively,
we obtain sub-arena Gσ,γ , which can be seen as the MC Mσ,γ . We can reduce the winning
probabilities PvI

σ,γ to reachability probabilities in Gσ,γ as follows. Given a reachability
objective RE(T ), PvI

σ,γ(RE(T )) = PrvI
σ,γ(Reach(T )). Given a parity objective PA(p), , i.e.

(G, PA(p)), we call B ∈ BSCC(Mσ,γ) an even BSCC if min(p(B)) is even, meaning intuitively
the smallest priority of its vertices is even. Odd BSCCs are defined analogously. Then
PvI

σ,γ(PA(p)) = PrvI
σ,γ(Reach(BE)), where BE =

⋃
min(p(B)) is even B ∈ BSCC(Mσ,γ).

▶ Corollary 5 (Sufficiency of Pure Memoryless Strategies [11]). Let G = ((V, E), (V∃, V∀, VR), ∆)
be a stochastic arena, RE(T ) a reachability objective, and PA(p) a parity objective. For all
vertices v ∈ V , it holds:

⟨E⟩(RE(T ))(v) = sup
σ∈ΣA

∃

inf
γ∈ΣA

∀

Pv
σ,γ(RE(T )) = sup

σ∈Σ∃

inf
γ∈Σ∀

Prv
σ,γ(Reach(T ))

⟨E⟩(PA(p))(v) = sup
σ∈ΣA

∃

inf
γ∈ΣA

∀

Pv
σ,γ(PA(p)) = sup

σ∈Σ∃

inf
γ∈Σ∀

Prv
σ,γ(Reach(BE))

where BE =
⋃

min(p(B)) is even B ∈ BSCC(Mσ,γ).

Therefore we consider only pure memoryless strategies in the sequel, unless stated otherwise.

CONCUR 2025
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Figure 4 The gadgets for reducing SPG G (left) to SSG G̃ (right).

3 A Gadget for Transforming SPGs into SSGs

The aim of this paper is to reduce an SPG (G, PA(p)) to an SSG (G̃, RE(vwin)) such that
the probability of reaching target vertex vwin in this SSG is related to the probability of
winning in the SPG (G, PA(p)). As an important step toward this goal, we introduce in this
section a gadget that expands each transition of G while removing the priority function.

Let G = ((V, E), (V∃, V∀, VR), ∆) be a stochastic arena, p : V → N be a priority function,
and (G, PA(p)) be an SPG. Section 3.1 presents the gadget enabling the reduction from SPG
to SSG (G̃, RE(vwin)). We then analyze how probabilistic events in G̃ are related to those
in G. Section 3.2 presents a bound on the probability of reaching BSCCs in G̃. Section 3.3
provides a bound on the winning probability once a BSCC in G̃ is reached, while Section 3.4
gives interval bounds on the winning probabilities in G̃ with regard to those in G.

3.1 Gadget Construction
To reduce the parity objective to a reachability objective, we transform the SPG (G, PA(p))
into the SSG (G̃, RE(vwin)) by means of a gadget, whose structure was defined by Chatterjee
and Fijalkow in [9] to reduce deterministic parity games (DPG) to SSGs.

When both players’ strategies are fixed in a DPG, every play forms a lasso, i.e. a
finite simple path that ends in a simple cycle. Chatterjee and Fijalkow’s analysis proceeds
by examining lasso plays to choose transition probabilities of the gadget. The specific
probabilities they introduce do not extend to a reduction from SPGs to SSGs, because in our
stochastic setting, a lasso lifts to a more complicated structure, namely an induced Markov
chain: the simple path becomes the transient segment, and each cycle becomes a BSCC.
Hence, our approach makes use of smaller probability values, requiring more representation
space.

The structure of the gadget remains applicable, and its intuition is as follows: whenever
a play visits a vertex with even priority in G, give a small but positive chance to reach a
winning sink in G̃. Vertices with odd priority yield a small chance to reach a losing sink.
Finally, to represent that smaller priorities have precedence over larger ones, the probability
of reaching a sink from a vertex depends on the priority it is associated to. We introduce a
monotonically decreasing function α for this purpose.
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We obtain the stochastic arena G̃ by modifying G as indicated in Figure 4. Each vertex
v in G is duplicated in G̃ yielding vertices v̂ and v. A transition ∆(u, v) in G is replaced by
first moving to v̂, which can then either evolve to a sink with probability αp(v), or to the
copy v with the complementary probability. Depending on p being even or odd, the sink is
vwin or vlose.

Formally, for U ⊆ V , let U = {v | v ∈ U}, Û = {v̂ | v ∈ U} and Ũ = U ⊎ Û .
We define the arena G̃ = ((Ṽ ⊎ {vwin, vlose}, Ẽ), (V ∃, V ∀, V R ⊎ V̂ ⊎ {vwin, vlose}), ∆̃) where
the new edge set Ẽ is as follows: Ẽ = {(u, v̂) | (u, v) ∈ E} ⊎ {(v̂, v), (v̂, vwin) | v ∈
V, p(v) is even} ⊎ {(v̂, v), (v̂, vlose) | v ∈ V, p(v) is odd} ⊎ {(vwin, vwin), (vlose, vlose)}.

To define the new transition function ∆̃, let α : N → [0, 1] where αi represents the
probability of entering the winning (resp. losing) sink before visiting a vertex with even
(resp. odd) priority i. We give suitable values for α later, in Lemma 11 on page 14. Now, we
define ∆̃ : Ṽ × Ṽ → [0, 1] as follows:

∆̃(ũ, w̃) =



∆(u, w) if ũ ∈ V , w̃ ∈ V̂

1 − αp(u) if ũ ∈ V̂ , w̃ ∈ V , u = w

αp(u) if ũ ∈ V̂ , p(u) is even, w̃ = vwin

αp(u) if ũ ∈ V̂ , p(u) is odd, w̃ = vlose

1 if ũ = w̃ = vwin or ũ = w̃ = vlose

0 otherwise

When the context is clear, we also address the SPG (G, PA(p)) and the SSG (G̃, RE(vwin))
with G and G̃ respectively.

Since all new vertices V̂ ⊎ {vwin, vlose} are random vertices, a strategy of either player in
SPG G is a strategy in SSG G̃ and vice versa. That is, there is a one-to-one relationship
between strategies in G and G̃. Hence, to keep notations simpler, we do not distinguish
between strategies in G and G̃.

A pair of strategies σ, γ ∈ Σ∃ × Σ∀ for Eve and Adam in G induces the sub-arena Gσ,γ .
Similarly, we obtain G̃σ,γ . If U is an even or odd BSCC in SPG Gσ,γ , we denote with Ũ

what we call the associated even pBSCC or odd pBSCC in SSG G̃σ,γ respectively. While
those are not BSCCs, they correspond to the BSCC of the associated parity game, and we
never consider the only true BSCCs of G̃σ,γ , i.e. {vwin} and {vlose}.

We continue with the example in Figure 2 and Figure 3. For the vertices v0, v1, and
v2, we assign priority 0, and for each remaining vertex vi, i ∈ {3, 4, 5}, we assign priority i.
An illustration of the corresponding sub-arena G̃σ,γ , induced by our gadget construction, is
provided in Figure 5. Since we do not need to distinguish between different types of vertices,
we use circles for all vertices. In Gσ,γ , the set {v3, v4, v5} forms an odd BSCC. We refer to
the set {v̂3, v3, v̂4, v4, v̂5, v5} in G̃σ,γ as the associated odd pBSCC with v̂3, v̂4, and v̂5 having
outgoing transitions to either vwin or vlose.

3.2 Before Entering a pBSCC in SSG G̃

Recall that when Eve and Adam follow pure memoryless strategies σ ∈ Σ∃ and γ ∈ Σ∀, the
resulting sub-arenas Gσ,γ and G̃σ,γ can be viewed as finite Markov chains. We first focus on
what happens before a play reaches a pBSCC in G̃σ,γ . Specifically, we give a lower bound on
the probability of reaching an entry state of a pBSCC without entering a winning or losing
sink. Later, in Lemma 11, we use this bound to determine a suitable value for α0.

Intuitively, we show that the probability of entry is minimized in a classical worst-case
scenario extending the sub-arena {v0, v1, v2} in Figure 3, and {v̂0, v0, v̂1, v1, v̂2, v2} in Figure 5.
More precisely, we consider an original sub-arena Kσ,γ , depicted in Figure 6a with n states
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v̂0 v0 v̂1 v1 v̂2 v2 v̂4 v4

v̂5v5v̂3v3

vwin

vlose

1−α0 0.1 1−α0 0.1 1−α0 0.1 1−α4

1

1−α50.51−α3

1

0.5

α3

α5

0.9

0.9

0.9

α0

α0
α0

α4

Figure 5 The sub-arena G̃σ,γ induced by the gadget.

arranged in a sequence (as {v0, v1, v2} in Figure 3) before reaching a BSCC. Each state has
the minimal probability δmin of progressing to the next state and a maximal probability
1 − δmin of returning to the initial state. All these states have parity value 0. Upon applying
our gadget construction to obtain K̃σ,γ in Figure 6b, we introduce random states ({v̂0, v̂1, v̂2}
in Figure 5) that have the highest probability α0 of going to the winning sink vwin.

In the following, let (G, PA(p)) be an SPG, and (G̃, RE(vwin)) be its associated SSG.
For all strategy pairs σ, γ ∈ Σ∃ × Σ∀, let P̃r

v

σ,γ(crossPath) denote the probability for a play
starting from v ∈ V to reach a pBSCC in G̃. Note that we never consider v̂ ∈ V̂ as the
starting vertex.

▶ Lemma 6. For all strategy pairs σ, γ ∈ Σ∃ × Σ∀, for all v ∈ V , it holds:

P̃r
v

σ,γ(crossPath) ≥ (1 − x0)xn
0

(1 − x0) − (1 − xn
0 )x1

where n = |V |, x0 = δmin(1 − α0), x1 = (1 − δmin)(1 − α0), and δmin = min
u,v∈V

{∆(u, v) |

∆(u, v) > 0}.

Sketch of Proof. We fix an arbitrary strategy pair σ, γ ∈ Σ∃ × Σ∀, and analyze the
corresponding MC G̃σ,γ . We simplify the MC while either preserving or under-approximating
the probability of reaching a pBSCC in G̃σ,γ . These steps merge all pBSCCs into a sink
vb, eliminate auxiliary states to simplify the MC, increase all values of α, and restructure
transitions so that only one designated vertex can reach the sink vb directly. We denote
the resulting MC with G̃4. We then derive a lower bound on the probability of reaching
vb in G̃4, which provides a reachability lower bound in a template MC with absorbing
sinks and bounded transition probabilities. As the reachability probabilities of vb in G̃4

underapproximate those in G̃σ,γ , this yields the desired lower bound on P̃r
v

σ,γ(crossPath).

3.3 Inside a pBSCC in SSG G̃

We now focus on what happens after a play reaches a pBSCC in sub-arena G̃σ,γ . Specifically,
we consider MCs and give a lower bound on the probability of reaching the winning sink
after reaching an even pBSCC, and dually an upper bound on the probability of reaching
the winning sink after reaching an odd pBSCC.
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v · · · · · · vb
δmin δmin δmin

1−δmin

1−δmin 1

(a) The original sub-arena Kσ,γ .

v̂ v · · · · · · v̂b vb

vwin

1−α0 δmin 1−α0 δmin δmin

1−α0

1

α0

α0

α0

1−δmin

1−δmin

1

(b) The sub-arena K̃σ,γ induced by the gadget, where P̃r
v

σ,γ(crossPath) is minimized.

Figure 6 Example sub-arenas where the probability of crossPath is minimized.

v̂ v · · · · · · v̂f vfv̂′

vwin vlose

1−αk+1 δmin 1−αk+1 δmin δmin 1−αk+1

αk+1

αk+1

αk+1

1−δmin

1−δmin

1−δmin

δmin

1−αkαk

1 1

Figure 7 The MC where the lower bound on minimum winEven probability is attained.

The lower bound is attained in the MC shown in Figure 7, where k is an even parity
value. There are 2n + 1 states in a line, and winning and losing sinks. Each white state has
maximal probability 1 − δmin to return to the initial state, and otherwise proceeds to the
next blue state. Each blue state, except v̂′, can with probability αk+1 go to the losing sink,
and otherwise proceeds to the next white state. The special state v̂′ goes with probability αk

to vwin, and otherwise proceeds to v. Unlike the case with {v̂0, v0, v̂1, v1, v̂2, v2} in Figure 5,
this MC cannot be obtained by applying our gadget on some sub-arena Gσ,γ , and hence this
bound is not guaranteed to be tight. More precisely, the outgoing transitions of v̂ indicate
that v has an odd parity value, while v̂′ suggests otherwise. The upper bound is obtained by
considering the same MC, where k is an odd parity value. Later, in Lemma 11, we use these
two bounds to find suitable values for all αk with k ∈ N.

Let U be an even BSCC with smallest priority k in Gσ,γ and Ũ its associated pBSCC

in G̃σ,γ . Let P̃r
k,Ũ

σ,γ (winEven) denote the minimum probability of reaching the winning sink

after reaching Ũ . That is, P̃r
k,Ũ

σ,γ (winEven) = min{P̃r
ṽ

σ,γ(Reach(vwin)) | ṽ ∈ Ũ}. We denote
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9:12 A Direct Reduction from Stochastic Parity Games to Simple Stochastic Games

it P̃r
k,Ũ

σ,γ (winEven) when Ũ is clear from context. Analogously, given an odd BSCC U with

smallest priority k in Gσ,γ , we use P̃r
k

σ,γ(winOdd) to denote the maximum probability of
reaching the winning sink after reaching Ũ .

▶ Lemma 7. For all strategy pairs σ, γ ∈ Σ∃ × Σ∀, for all even k, it holds:

P̃r
k

σ,γ(winEven) ≥ (1 − αk+1) · (1 − x2) · xn−1
2 · x4

1 − (x2 + x3) + x5 · xn
2 + t · xn−1

2 − x5 · xn−1
2

and for all odd k, it holds:

P̃r
k

σ,γ(winOdd) ≤ 1 − (1 − αk+1) · (1 − x2) · xn−1
2 · x4

1 − (x2 + x3) + x5 · xn
2 + t · xn−1

2 − x5 · xn−1
2

where n = |V |, x2 = δmin(1 − αk+1), x3 = (1 − δmin)(1 − αk+1), x4 = δminαk, x5 =
δmin(1 − αk) + (1 − δmin)(1 − αk+1), and δmin is as before.

Sketch of Proof. The proof follows the same structure as the one for Lemma 6, applied to
a BSCC in Mσ,γ . We apply a similar four-step transformation and obtain a simplified MC
where we can directly derive an upper bound. The lower bound comes as the dual.

3.4 Range of Winning Probabilities in the SSG
We now relate the winning probabilities in the constructed SSG G̃ to the original SPG G.
Intuitively, with a fixed strategy pair σ, γ ∈ Σ∃ × Σ∀, the value P̃σ,γ of the SSG G̃ falls into
a range around the value Pσ,γ of the SPG G, and the range size depends on the probabilities
crossPath, winEven and winOdd.

▶ Lemma 8. Let x, y ∈ (0, 1) such that P̃r
v

σ,γ(crossPath) > x for all even k, and

P̃r
k

σ,γ(winEven) ≥ y, and for all odd k, P̃r
k

σ,γ(winOdd) ≤ 1 − y, then it holds:

y · Pv
σ,γ − y + x · y ≤ P̃v

σ,γ ≤ Pv
σ,γ + 1 − x · y

4 Reducing SPGs to SSGs

We now present the direct reduction from SPGs to SSGs. Let G = ((V, E), (V∃, V∀, VR), ∆)
be a stochastic arena, p : V → N be a priority function, and (G, PA(p)) be an SPG. We
construct the SSG (G̃, RE(vwin)) using the gadget presented in Section 3.1. Section 4.1
presents a lower bound on the difference between winning probabilities associated to different
strategy pairs in G. Section 4.2 presents the main theorem establishing the reduction, while
Section 4.3 gives complexity bounds.

4.1 A Lower Bound on Different Strategies
We consider two strategy pairs (σ, γ), (σ′, γ′) ∈ Σ∃ × Σ∀ and show a general result on all such
pair: if they yield different values in G, then there exists a lower bound on the difference
between these values.

In the following, we assume for all u ∈ VR, v ∈ V that ∆(u, v) is a rational number au,v

bu,v
,

where au,v ∈ N, bu,v ∈ N+ and au,v ≤ bu,v. Let M = max
(u,v)∈E

{bu,v} and n = |V |.
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▶ Lemma 9. For all (σ, γ), (σ′, γ′) ∈ Σ∃ × Σ∀, for all v ∈ V , the following holds:

Pv
σ,γ ̸= Pv

σ′,γ′ ⇒ |Pv
σ,γ − Pv

σ′,γ′ | >
1

(n!)2M2n2 = ϵ

Proof. Let Prv
σ,γ(enterEven) be the probability for a play starting from v ∈ V to reach an

even BSCC. It follows from Corollary 5 that for all σ, γ ∈ Σ∃ × Σ∀ and v ∈ V , we have
Pv

σ,γ = Prv
σ,γ(enterEven). We can obtain Prv

σ,γ(enterEven) by setting all vertices belonging
to at least one even BSCC as the target set, and calculating the reachability probability.
Calculating Pv

σ,γ is thus reduced to solving a linear equation system x = Ax + b according to
Theorem 1. We omit the details of A and b. Every non-zero entry of A and b is either 1, or
au,v

bu,v
for some u, v ∈ VR × V .

We use the following notations:
Let s = |b|. It follows that s < n since there is at least one vertex in a BSCC.
Let Q = I − A. For i ∈ 1, 2, . . . , n we denote the i-th row of Q with Q[i], and the entry
of Q at i-th row and j-th column with Q[i, j]. It can be written as Q[i, j] = ci,j

di,j
, where

|ci,j | and |di,j | are natural numbers bounded by M with |ci,j | ≤ |di,j |.
We denote the i-th entry of b with b[i]. It can be written as b[i] = ci,s+1

di,s+1
, where |ci,s+1|

and |di,s+1| are natural numbers bounded by M with |ci,s+1| ≤ |di,s+1|.
The equation system can be written as:

Qx = b

We take an arbitrary row i, and write the i-th equation Q[i] · x = b[i] as follows:[
ci,1
di,1

ci,2
di,2

· · · ci,s

di,s

]
· x = ci,s+1

di,s+1
(1)

We multiply equation (1) with
∏s+1

t=1 di,t to obtain:
For all j = 1, . . . , s, Q[i, j] equals (

∏s+1
t=1 di,t) ci,j

di,j
, an integer with absolute value bounded

by Ms+1.
For all i = 1, . . . , s, b[i] equals (

∏s
t=1 di,t)ci,s+1, an integer with absolute value bounded

by Ms+1.
We apply this transformation to each row of the equation system, and write the new equation
system as:

Q′x = b′

By Cramer’s rule, for all i = 1, 2, . . . , s, we obtain:

x[i] = det(Q′
i)

det(Q′)

where Q′
i is the matrix obtained by replacing the i-th column of Q′ with the column vector b′.

It follows that all entries of Q′
i are also integers with absolute values bounded by Ms+1.

Since x[i] is a reachability probability, we have x[i] ≤ 1. Following from the calculation
of determinants, we obtain the following:

|det(Q′
i)| ≤ |det(Q′)| ≤ s!(Ms+1)s < n!Mn2

Therefore, if the equation system resulting from σ′, γ′ yields x′[i] > x[i], we have:

x′[i] − x[i] >
1

(n!Mn2)2 = 1
(n!)2M2n2 ◀
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9:14 A Direct Reduction from Stochastic Parity Games to Simple Stochastic Games

4.2 Direct Reduction
We now establish the direct reduction from SPGs to SSGs.

▶ Theorem 10 (Reducing SPGs to SSGs). If for all (σ, γ) ∈ Σ∃ ×Σ∀, and v ∈ V , the following
conditions hold:
1. P̃r

v

σ,γ(crossPath) > 4−ϵ
4

2. P̃r
k

σ,γ(winEven) ≥ 4
4+ϵ for all even k, and P̃r

k

σ,γ(winOdd) ≤ 1 − 4
4+ϵ for all odd k

where ϵ = 1
(n!)2M2n2 , then every optimal strategy σ ∈ Σ∃ of Eve in the SSG (G̃, RE(vwin)) is

also optimal in the SPG (G, PA(p)). The same holds for Adam.

Proof. We assume conditions 1 and 2 hold. We show that every optimal strategy σ ∈ Σ∃ in
SSG G̃ is also optimal in SPG G. We prove this by contraposition.

We take Σ∗
∃ ⊆ Σ∃ and Σ∗

∀ ⊆ Σ∀ as the sets of optimal strategies of Eve and Adam in G̃.
We obtain by Lemma 8 that for all v ∈ V and all σ, γ ∈ Σ∗

∃ × Σ∗
∀, the following holds:

y · Pv
σ,γ − y + x · y ≤ P̃v

σ,γ ≤ Pv
σ,γ + 1 − x · y

Since conditions 1 and 2 hold, we substitute x and y to obtain:

P̃v
σ,γ ≤ Pv

σ,γ + 2ϵ

4 + ϵ
(2)

If σ is not optimal in G, then there exists another strategy σ′ ∈ Σ∃ and a vertex v ∈ V such
that Pv

σ′,γ > Pv
σ,γ . It follows again from Lemma 8 that:

yPv
σ′,γ − y + x · y ≤ P̃v

σ′,γ ≤ Pv
σ′,γ + 1 − x · y (3)

Furthermore, Lemma 9 yields:

Pv
σ′,γ > Pv

σ,γ + ϵ (4)

As a result, we obtain the following:

P̃v
σ′,γ ≥ y · Pv

σ′,γ − y + x · y by (3)
> y · (Pv

σ,γ + ϵ) − y + x · y by (4)

= 4
4 + ϵ

(Pv
σ,γ + ϵ) − 4

4 + ϵ
· ϵ

4

= Pv
σ,γ − ϵ

4 + ϵ
Pv

σ,γ + 3ϵ

4 + ϵ

≥ Pv
σ,γ + 2ϵ

4 + ϵ

≥ P̃v
σ,γ by (2)

It indicates that P̃v
σ′,γ > P̃v

σ,γ , which contradicts the assumption that σ ∈ Σ∗
∃. ◀

Until now, we have used the function α in Theorem 10, obtaining inequalities relating
parity values in SPG G to transition probabilities in SSG G̃. We now give requirements for
α that satisfy all these inequalities.

▶ Lemma 11. When the values of α are arranged as follows, the conditions in Theorem 10
are satisfied:
1. If α0 ≤ δn

min
8(n!)2M2n2 , then condition 1 is satisfied.

2. If for all k ∈ N, the following holds, then condition 2 is satisfied:

αk+1

αk
≤ δn

min(1 − δmin)
8(n!)2M2n2 + 1

.
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Sketch of Proof. Both cases follow a similar structure. For α0 (respectively αk+1/αk), we
derive from the bound given by Lemma 6 (resp. Lemma 7) a corollary giving a bound that
explicitly makes use of α. We then directly obtain the two cases of Lemma 11 from these
two bounds. The full proof of this lemma, detailing how to compute function α can be found
in Appendix A.1.

4.3 Complexity Considerations
To introduce complexity results, we first define size of a stochastic game G as |G| =
|V | + |E| + |∆| where |∆| is the space needed to store the transition function (which may
be stored in unary or binary). A now longstanding result shows that most stochastic game
settings are polynomially reducible one to the other. In particular:

▶ Theorem 12 (From Theorem 1 in [2]). Solving stochastic parity games and solving simple
stochastic games is polynomial-time equivalent. Either can be using unary or binary encoding.

We show that the reduction we have introduced in this paper is polynomial with binary
encoding. We recall that M = max

(u,v)∈E
{bu,v} and n = |V |.

▶ Theorem 13. Given an SPG G, there exist polynomial values for function α that satisfy
Theorem 10, such that the SSG G̃ is of size O(n5 log M) in binary.

Proof. Since δmin ≥ 1
M and 1 − δmin ≥ 1

2 , the following is a valid instance of α, polynomial
in G (and polynomial in the transition probabilities appearing in G) under binary encoding:

∀k ∈ N, αk =
(

1
16(n!)2M2n2+n + 1

)k+1

Then the size of the SSG G̃ is:

|G̃| = |Ṽ ⊎ {vwin, vlose}| + |Ẽ| + |∆̃|
= O(n) + O(n2) + O(n2) · O(n · (n log n + n2 log M))
= O(n5 log M) ◀

According to [2], quantitative SSGs under unary and binary encoding are in the same
complexity class, and so in NP ∩ coNP [18]. We thus obtain that our reduction yields an
NP ∩ coNP algorithm for solving SPGs.

5 Epilogue

We have given a polynomial reduction from quantitative SPGs to quantitative SSGs, taking
inspiration from a gadget used in [9] to obtain a reduction from deterministic PGs to
quantitative SSGs. After fixing a pair of strategies, the values of both the SPG and the SSG
are determined, but the construction of the SSG makes it difficult to establish coinciding
values. Using these fixed strategies, we showed that the value of the SSG falls into a
range around the value of the SPG, where this range depends on the probability to reach
a pBSCC of the SSG and the minimum probability to reach a winning sink in pBSCCs of
the SSG. When considering all possible strategy pairs, we obtained a lower bound ϵ on their
value differences in the SPG, by restricting transition probabilities to rational numbers and
analyzing reachability equation systems of Markov chains. We then showed that by arranging
transition probabilities of the SSG properly in terms of the size of the SPG, its smallest
probability, and ϵ, the value ranges of different strategy pairs can be narrowed so that they
do not overlap. In this case, a reduction from SPGs to SSGs is achieved.
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9:16 A Direct Reduction from Stochastic Parity Games to Simple Stochastic Games

Although under unary encoding, exponential numbers can be introduced into the prob-
ability function α of the newly constructed SSGs, both reductions are polynomial. Hence,
our construction yields an NP ∩ coNP algorithm in both qualitative and quantitative SSGs
under unary and binary encoding, substantiating the complexity results from previous
works [18, 2, 9]. .

Our result enables solving SPGs by first reducing them to SSGs and then applying
algorithms for SSGs. However, its implementability is in question, due to the possibly huge
representation of α. Our reduction also captures the transformation from an MDP with
a parity objective into an SSG. As we assume the minimum transition probability to be
δmin ∈ (0, 1

2 ] in the original SPG, we cannot capture the subcase of reducing DPGs to
quantitative SSGs. Although our reduction is unlikely to be leveraged to effectively solve
SPGs in practice, some improvements are possible. First, we have not formally examined
the optimal arrangement of α. It is possible to find the weakest requirements on α so that
the reductions are correct, thus optimizing possible implementations. Second, some specific
cases lead to very small values of α. These cases are similar to the ones that can challenge
classical MDP solvers using VI, and so we can benefit from any family of arena structure
where these cases are avoided, leading to implementable valuations of α.
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A.1 Proof of Lemma 11
▶ Lemma 11. When the values of α are arranged as follows, the conditions in Theorem 10
are satisfied:
1. If α0 ≤ δn

min
8(n!)2M2n2 , then condition 1 is satisfied.

2. If for all k ∈ N, the following holds, then condition 2 is satisfied:

αk+1

αk
≤ δn

min(1 − δmin)
8(n!)2M2n2 + 1

.

A.1.1 Arranging α0

We start by giving a bound on P̃r
v

σ,γ(crossPath) that involves α0. To do so, we make use of
Lemma 6.

▶ Corollary 14 (Another Lower Bound of crossPath Probability). For all strategy pairs
σ, γ ∈ Σ∃ × Σ∀, for all v ∈ V , the following holds:

P̃r
v

σ,γ(crossPath) >
δn

min(1 − α0)n+1

2α0 + δn
min(1 − α0)n+1

Proof. We scale down P̃r
v

σ,γ(crossPath) as follows:

P̃r
v

σ,γ(crossPath)

≥ (1 − x0)xn
0

(1 − x0) − (1 − xn
0 )x1

Lemma 6

= (1 − δmin(1 − α0))δn
min(1 − α0)n

α0 + (1 − δmin)δn
min(1 − α0)n+1

>
(1 − δmin)(1 − α0)δn

min(1 − α0)n

α0 + (1 − δmin)δn
min(1 − α0)n+1 since 1 − δmin(1 − α0) > (1 − δmin)(1 − α0)

= δn
min(1 − α0)n+1

α0
1−δmin

+ δn
min(1 − α0)n+1

≥ δn
min(1 − α0)n+1

2α0 + δn
min(1 − α0)n+1 since 1 − δmin ≥ 1

2

◀

We can now arrange α0. It follows from Corollary 14 that:

P̃r
v

σ,γ(crossPath) >
δn

min(1 − α0)n+1

2α0 + δn
min(1 − α0)n+1

Therefore to show:

P̃r
v

σ,γ(crossPath) >
4 − ϵ

4 (5)

where ϵ = 1
(n!)2M2n2 , it suffices to show that:

δn
min(1 − α0)n+1

2α0 + δn
min(1 − α0)n+1 ≥ 4 − ϵ

4 (6)

which can be further simplified as:

ϵ ≥ 8α0

2α0 + δn
min(1 − α0)n+1 (7)
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We show that when α0 ≤ δn
min

8(n!)2M2n2 , inequalit (7) holds. We start with the right side:

8α0

2α0 + δn
min(1 − α0)n+1

≤ 8α0

2α0 + δn
min(1 − (n + 1)α0) follows from Bernoulli’s inequality

= 8α0

α0 + δn
min + α0(1 − (n + 1)δn

min)

≤ 8α0

α0 + δn
min

since 1 − (n + 1)δn
min > 0

≤
δn

min
(n!)2M2n2

δn
min

8(n!)2M2n2 + δn
min

= 1
1
8 + (n!)2M2n2

≤ 1
(n!)2M2n2 = ϵ

Therefore we obtain that when α0 ≤ δn
min

8(n!)2M2n2 , inequality (5) holds, and thus condition (1)
is satisfied.

A.1.2 Arranging αk+1/αk

We start by getting a lower bound on P̃r
k

σ,γ(winEven) for even k’s, which makes use of αk+1
and αk. The reasoning for odd k’s is symmetric. To do so, we use Lemma 7.

▶ Corollary 15 (Another Lower Bound of winEven Probability). For all strategy pairs σ, γ ∈
Σ × Γ, for all even k, the following holds:

P̃r
k

σ,γ(winEven) >
δn

min(1 − δmin) − αk+1
αk

δn
min(1 − δmin) + αk+1

αk

Proof. We scale down the right side as follows:

P̃r
k

σ,γ(winEven)

≥(1 − αk+1) · (1 − x2) · xn−1
2 · x4

1 − (x2 + x3) + x5 · xn
2 + t · xn−1

2 − x5 · xn−1
2

Lemma 7

= (1 − δmin + δminαk+1) · δn−1
min (1 − αk+1)n · δminαk

αk+1 + δn−1
min (1 − αk+1)n−1(δ2

min(−αk + αk+1 + αkαk+1 − α2
k+1) + δmin(αk − 2αk+1 + α2

k+1))

>
(1 − δmin) · δn

min · (1 − αk+1)n+1 · αk

αk+1 + δn
min · (δmin(−αk + αk+1 + αkαk+1 − α2

k+1) + (αk − 2αk+1 + α2
k+1))

since 1 − δmin + δminαk+1 > (1 − δmin)(1 − αk+1) and (1 − αk+1)n−1 < 1

≥ (1 − δmin)δn
minαk(1 − (n + 1)αk+1)

αk+1 + δn
min(αk(1 − δmin) − αk+1(2 − αk+1 − δmin(1 + αk − αk+1)))

follows from Bernoulli inequality

>
(1 − δmin)δn

minαk − (n + 1)δn
min(1 − δmin)αkαk+1

αk+1 + (1 − δmin)δn
minαk

since αk+1(2 − αk+1 − δmin(1 + αk − αk+1)) > 0

>
δn

minαk(1 − δmin) − αk+1

δn
minαk(1 − δmin) + αk+1

since (n + 1)δn
min(1 − δmin)αk < 1

=
δn

min(1 − δmin) − αk+1
αk

δn
min(1 − δmin) + αk+1

αk

◀
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We now arrange αk+1/αk. It follows from Corollary 15 that for all strategy pairs
σ, γ ∈ Σ × Γ, for all even k, the following holds:

P̃r
k

σ,γ(winEven) >
δn

min(1 − δmin) − αk+1
αk

δn
min(1 − δmin) + αk+1

αk

(8)

Therefore to show:

P̃r
k

σ,γ(winEven) ≥ 4
4 + ϵ

(9)

it suffices to show that for all k ∈ N:

δn
min(1 − δmin) − αk+1

αk

δn
min(1 − δmin) + αk+1

αk

≥ 4
4 + ϵ

(10)

We denote αk+1
αk

with r in the following calculation. Inequality 10 can be further simplified
to:

ϵ

4 + ϵ
≥ 2r

(1 − δmin)δn
min + r

(11)

and can be finally simplified to:

r ≤ (1 − δmin)δn
min

8(n!)2M2n2 + 1
(12)

Therefore we obtain that if for all k ∈ N, the following holds:

αk+1

αk
≤ (1 − δmin)δn

min
8(n!)2M2n2 + 1

then inequality (9) holds, and thus condition (2) is satisfied.
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